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Abstract. Both the plastic deformation and the friction forces generate heat in sheet metal 

forming processes. This yields a temperature rise on the blank and tools, which is mainly dictated 

by the blank properties and the press speed. Although modest values of temperature rise yield 

negligible changes in the mechanical behavior of metals, the lubricant properties are rather 

influenced by the temperature. Thus, the deep drawing of an aluminum cylindrical cup was 

selected to evaluate, experimentally and numerically, the temperature variation of the forming 

tools and blank at room temperature. Different values of punch speed are compared to evaluate 

the impact of the heat losses to the environment. The experimental results show that the 

temperature rise on the die surface is higher than 9ºC when the punch speed is 10 mm/s. The 

temperature is underestimated by the finite element model due to the isothermal conditions 

imposed on the forming tools. 

1. Introduction 

In sheet metal forming at room temperature, the heat generated by plastic deformation and friction leads 

to the increase of the blank temperature. This is particularly relevant in mass production lines since the 

repeated processing of material results in a periodic input of heat into the tools. Moreover, high contact 

pressures contribute to the plastic deformation of the asperities of the blank surface, increasing the 

effective contact area with the tools, i.e. heat transfer coefficient increases [1]. This temperature increase 

depends on the forming rate, the blank’s mechanical behavior, and the tools-blank contact conditions. 

Temperature variations in the forming process can have a high impact on the material forming behavior, 

lubrication conditions and wear performance, contributing to variability [2]. Thus, in order to improve 

the sheet metal forming robustness, the heat generated by plastic deformation and friction should be 

quantified. The thermo-mechanical analysis, through finite element modeling, can help to improve 

knowledge concerning the influence of the temperature variation in the forming conditions.  

This study analyses the temperature variation when forming an aluminum alloy at room temperature, 

which is complemented by thermo-mechanical finite element analysis aiming to understand the impact 

of the punch speed on the temperatures experimentally measured. Additionally, the contribution of the 

plastic deformation and friction to the generated heat is also analyzed. Isolated thermal conditions are 

simulated to assess the heat generated, as well as the heat conduction through the blank. Finally, 

convection was then applied to replicate experimental results. 
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2. Cylindrical cup forming 

The deep drawing of an aluminum cylindrical cup at room temperature was selected to evaluate, 

experimentally and numerically, the temperature variation of the forming tools and blank [3]. Different 

values of punch speed are compared to evaluate the impact of the heat losses to the environment on the 

cup temperature. 

2.1. Experimental setup  

The experimental apparatus used to perform the cylindrical cup forming is presented in Figure 1 (a), 

while the geometry of the tools is presented in Figure 1 (b). In addition to the forming force, the 

temperature is monitored using five thermocouples, placed in different locations (blank, die, punch and 

blank-holder), as shown in Figure 1 (b). The circular blank (60 mm diameter) is trimmed from sheets of 

AA6016-T4 aluminum alloy (1.05 mm thickness), which is lubricated to reduce the friction forces.  

 

  

Figure 1. Setup of the cylindrical cup forming: (a) experimental apparatus; (b) scheme of the tools 

geometry, including the location of the thermocouples (all dimensions are in mm). 

 

Figure 2 presents the stress–strain curve of the alloy under analysis, considering three different values 

of crosshead velocity in the uniaxial tensile test, highlighting that this material is not strain rate sensitive 

at room temperature. This behavior is replicated in the punch force evolution during the deep drawing 

operation, which is presented in Figure 3 for two different values of punch velocity. The increase of the 

punch force after 22 mm of punch displacement is related to the ironing of the blank between the die 

and the punch [3].  

 

 

 

 

Figure 2. Comparison between experimental and 

numerical uniaxial tensile stress–strain curves for 

three different values of crosshead velocity. 

 Figure 3. Comparison between experimental (two 

distinct values of punch velocity) and predicted 

punch force evolution. 
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2.2. Finite element model  

The thermo-mechanical analysis was performed with the in-house finite element code DD3IMP [4,5], 

assuming that the forming tools are rigid and isothermal. The plastic behavior of the aluminum alloy is 

described by the isotropic work hardening (Voce law) and the anisotropic yield criterion (Barlat’91). 

Both are assumed as temperature independent for the range under analysis. The parameters of the 

constitutive model were obtained from [6]. The thermal properties of this aluminum alloy are: thermal 

capacity cp=850 J/(KgK) and thermal conductivity k=184 W/(mK) [7]. The friction coefficient (μ=0.15) 

was evaluated by fitting the predicted punch force evolution to the experimental data (see Figure 3). 

Only one-quarter model is simulated, allowing to perform the discretization of the blank with 5910 

hexahedral finite elements (2 layers through the thickness). Full integration is adopted in the thermal 

problem while selective reduced integration is adopted in the mechanical one.  

 

3. Results and discussion  

Assuming isolated thermal conditions for the blank, the evolution of the temperature variation evaluated 

in four different nodes (aligned with the rolling direction) is presented in Figure 4, for two values of 

punch velocity. The nodes are initially located in the blank center (Node1) and at 15 mm (Node2), 20 

mm (Node3) and 25 mm (Node4) from the center. The temperature increases due to the heat generated 

both by plastic deformation and by the friction forces. Since the forming time is 10 times larger using 

the lower punch velocity, the thermal conduction leads to a temperature homogeneity after forming 

(Figure 4 (a)). 

 

   

Figure 4. Evolution of the temperature variation in four nodes of the blank, assuming isolated thermal 

conditions, predicted for two values of punch velocity: (a) 1 mm/s; (b) 10 mm/s. 
 

  

Figure 5. Predicted heat generated during the cup forming assuming isolated thermal conditions and 10 

mm/s of punch velocity: (a) ratio of heat generated by plastic deformation; (b) ratio of heat generated 

by friction forces. Temperature variation considering the heat generated by: plastic deformation (ΔTpd); 

by friction (ΔTf); and by both (ΔTpd+f). 
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In order to quantify the ratio of heat generated by plastic deformation and by friction forces over the 

total, the temperature variation is evaluated under different conditions, i.e. considering only the heat 

generated by plastic deformation and considering only the frictional heating. Since the action of the 

thermal conduction is lower for large values of punch velocity, the temperature ratio is calculated 

considering 10 mm/s of punch velocity and isolated thermal conditions (Figure 5). Globally, 90% of the 

heat generated comes from plastic deformation and the remaining 10% derives from the friction forces. 

Figure 6 presents the temperature variation along the initial radial coordinate of the blank, at the end 

of the forming process, considering isolated thermal conditions and free convection to air (h=10 W/m2K) 

[8]. The heat loss to the environment occurs through the upper and lower surfaces of the blank, while 

the air is assumed at room temperature (initial blank temperature). The influence of the free convection 

on the predicted temperature variation is higher for the lower punch velocity (1 mm/s) due to the largest 

operation time (30 seconds). Indeed, the effect of the free convection becomes negligible for the punch 

speed 10 times higher, as highlighted in Figure 6. Besides, the thermal conduction within the blank is 

less effective, which leads to a thermal gradient between the cup bottom and the rim of about 30ºC (see 

Figure 6 (b)). Since most of the heat is generated by plastic deformation (Figure 5), which occurs 

predominantly on the flange and die radius [5], the temperature is always higher close to the cup rim.  
 

  

Figure 6. Temperature variation of the blank after forming, comparing isolated thermal conditions with 

free convection (h=10 W/m2K), predicted for two values of punch velocity: (a) 1 mm/s; (b) 10 mm/s.  
 

   

Figure 7. Temperature variation of the blank at 20 mm of punch displacement, comparing different 

values of thermal contact conductance, predicted for two values of punch velocity: (a) 1 mm/s; (b) 10 

mm/s. 
 

In order to account the heat loss to the tools, the thermal contact conductance is considered using the 

model proposed in [9], where the interfacial heat transfer coefficient is dependent on the gap value. 
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Since this coefficient depends on several factors (temperature, contact pressure, surface roughness, 

material properties), three different values are adopted in the present study. The temperature variation 

along the radial direction of the blank, predicted for 20 mm of punch displacement, is presented in Figure 

7 for two values of punch velocity. The predicted temperature rise is strongly reduced by considering 

the heat loss to the tools, particularly for 1 mm/s of punch displacement. Indeed, the temperature is 

approximately constant in the cup bottom, increasing along the cup wall, as shown in Figure 7. 

 

   

Figure 8. Experimental temperature variation, evaluated both in the blank and in the tools (punch, blank-

holder and die), considering two values of punch velocity: (a) 1 mm/s; (b) 10 mm/s. 
 

   

Figure 9. Numerical temperature variation evaluated in different regions of the blank, considering two 

values of punch velocity: (a) 1 mm/s (hc=5 kW/m2K); (b) 10 mm/s (hc=10 kW/m2K). 

 

Figure 8 presents the experimental evolution of the temperature variation on the blank and tools (see 

Figure 1 (b)), obtained for two values of punch velocity. Globally, the temperature is higher for 10 mm/s 

of punch velocity because the heat losses by both natural convection and contact conductance are lower 

(3 seconds of forming time). On the other hand, since most of the plastic deformation of the blank occurs 

on the flange and die radius [5], the maximum value of temperature arises in the die, as shown in Figure 

8, in agreement with [10]. Note that the same comment is valid for the sliding friction forces. Regarding 

the temperature on the blank, the minimum arises in the center of the cup bottom (TC1), due to the 

location of the heat sources (away from the blank center). 

The numerical prediction of the temperature evolution is presented in Figure 9, considering the 

interfacial heat transfer coefficient hc=5 kW/m2K and hc=10 kW/m2K for 1 mm/s and 10 mm/s of punch 

velocity, respectively. These values were selected taking into account the comparison between 

numerical and experimental temperatures shown in Figure 7. Since the numerical model assumes 

isothermal conditions for the tools (room temperature), the temperature of the tools is evaluated by 

selecting the node of the blank closest to the corresponding thermocouple location. The die and blank-
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holder present the highest temperature values due to the contact with the cup wall, which is warmer than 

the cup bottom (Figure 7). The decrease of the blank temperature (cup bottom) after 15 mm of punch 

displacement is a consequence of assuming the tools at room temperature, which is not observed in the 

experimental measurements. Hence, the accuracy of the numerical model can be improved by 

accounting the thermal conduction within the tools.  

 

4. Conclusions 

This study presents the temperature analysis of tools and blank during the deep drawing of an aluminum 

cylindrical cup, under room temperature conditions. The heat generated by plastic deformation and 

friction forces is considered in the finite element model, as well as the heat loss to the environment (air) 

by natural convection and the heat loss to the tools by contact conductance. The numerical results are 

compared with experimental measurements of the temperature evolution (blank and tools). The 

numerical results show that 90% of the heat generated comes from plastic deformation and the remaining 

10% derives from the friction forces. On the other hand, since the punch velocity defines the forming 

operation time and, consequently, the amount of heat energy loss, two punch velocities are evaluated. 

Increasing the punch speed leads to a global increase of the temperature on the blank and tools. Indeed, 

experimental results show that the temperature rise on the die surface is higher than 9ºC when the punch 

speed is 10 mm/s. On the other hand, the accuracy of the numerical model can be improved since the 

tools are assumed isothermal. 
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