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ABSTRACT 

The development of biomass as a future sustainable energy resource, requires the continuous 
development of technologies that improve its efficiency of conversion and the reduction of harmful 
emissions to the environment. Biomass can be burned directly from the environmental state or 
processed through densification in the form of wood pellets. The combustion behavior of pine wood 
pellets was investigated in this study.  

The decomposition of wood particles under different heating and air flow rates were analyzed using the 
TGA device. The wood pellets burning in a small scale reactor were investigated under different 
temperatures and time. The wood pellets combustion in a fixed bed combustor with the boiler capacity 
of 20 kW were tested with several parameters including Power, excess air (EA), the split ratio (SR) and 
grate area (GA). In this work, the Taguchi method was applied to conduct the experiments. From these 
experiments, several parameters were evaluated including the mass loss and elemental analysis of 
wood pellets, kinetic parameters, gas emissions (CO), fuel bed temperature, efficiency, the ashes 
agglomeration, and the combustion instability. 

The results obtained from TGA showed that the heating rate affects the heat flow, ignition temperatures, 
burnout temperatures, and mass loss rate value and different kinetic parameters. But there was no 
significant influence of the air flow rates on the thermal decomposition of wood particles. The results of 
the experiment in a small scale reactor revealed that the mass losses increase for any specific 
temperature and the higher the temperature, the faster the pellets volatilize, and the mass loss occurs 
at a very slow rate for very low temperature. 

The reaction rate increased with the temperature and the higher the combustion temperature applied 
the higher the mass loss of all substances observed. The remaining mass as fixed carbon and ashes or 
unburned substances was about 3%. The residence time and temperature influenced the species 
concentration of wood pellets. The wood pellets combustion in a fixed combustor showed that the 
highest temperature in fuel bed was observed at 15 mm followed by 25 mm, 5 and 60 mm. The lower 
CO emission or higher efficiency was obtained at a medium thermal load. 

The results obtained from the ANOVA analysis showed that the SR and the Power are the most 
important parameters contributing to CO reduction and also the fuel bed temperature. In addition, the 
parameters that may change the temperature mean value in the core of fuel bed is Power, followed by 
GA. The combustion instability resulted from the accumulation of unburned wood pellets on the grate, 
which caused low combustion rate and generated the vortex and oscillation in the air flow rate, thus 
creating noise and disturbances, and increasing the CO emission. 

Keywords: wood pellets, combustion, gas emission, Taguchi method, Thermogravimetric analysis, 
heating rate, devolatilization. 
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RESUMO 

O desenvolvimento da biomassa como fonte energética sustentável para o futuro requer o 
desenvolvimento de tecnologias que melhorem a sua eficiência de conversão e a redução de emissões. 
A biomassa pode ser queimada diretamente no seu formato original, com apenas algumas operações 
de recolha e processamento, ou através de um conjunto de processos de densificação no formato de 
pellets de madeira. 

Neste projeto investigou-se o comportamento da combustão de pellets de madeira de pinho. Utilizou-se 
um equipamento TGA para analisar a decomposição de partículas de madeira sobre diferentes 
condições de taxas de aquecimento e de caudais de ar. Investigou-se também a combustão de pellets 
de madeira num reator de pequena escala, variando a temperatura e o tempo de reação. 

Utilizou-se uma caldeira de 20 kW com grelha fixa para investigar a combustão de pellets, 
nomeadamente a influência de vários parâmetros, incluindo: potência de queima, excesso de ar, 
relação de ar primário/secundário e área da grelha. Utilizou-se o método de Taguchi para o 
planeamento das experiências. Foram avaliados diversos parâmetros como: perda de massa e análise 
elementar dos pellets, cinética de reação, emissões gasosas (CO), temperatura no leito, eficiência, 
aglomeração de cinzas e instabilidades no processo de combustão. 

Os resultados dos ensaios TGA demonstraram que as taxas de aquecimento afetam o escoamento de 
calor, temperatura de ignição e extinção, taxa de perda de massa e vários parâmetros da cinética de 
reação. No entanto, verificou-se que não há qualquer influência dos caudais de ar na decomposição 
térmica das partículas de madeira. 

Os resultados das experiências no reator de pequena escala revelaram que as perdas de massa 
aumentam para qualquer valor de temperatura e que quanto maior a temperatura, maior a taxa de 
volatilização dos pellets, e que para temperaturas baixas a perda de massa ocorre a uma taxa reduzida. 
As taxas de reação aumentam com a temperatura, assim como se observou que para todas as 
substâncias, a perda de massa aumentava com o aumento da temperatura. A massa final na forma de 
carbono fixo, cinzas e inqueimados foi de cerca de 3%. 

Na combustão de pellets em grelha fixa verificou-se que a temperatura mais elevada se situava a 15 
mm, seguida por 25, 5 e finalmente a 60 mm de altura. Na potência média obtiveram-se os níveis de 
emissões mais baixos de CO e os valores mais elevados de eficiência de combustão. 
Os resultados de aplicação da análise ANOVA permitiram concluir que os parâmetros que mais 
contribuem para a redução de emissão de CO e para o valor da temperatura, foram ao potência e a 
relação ar primário/secundário. Para além disso, os parâmetros que mais influenciam o valor médio da 
temperatura no leito são a potência, seguida da área de grelha. 

Conclui-se que as instabilidades resultam da acumulação de pellets não queimados na grelha, que 
provocam uma redução na taxa de combustão, geram vórtices e oscilações no escoamento de ar, 
provocando assim ruído, aumentando a emissão de CO. 

Palavras-chave: pellets de madeira, combustão, emissão de gases, método de Taguchi, análise 
Termogravimétrica, taxa de aquecimento, desvolatilização. 
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1. INTRODUCTION

1.1 Motivation 

If properly developed biomass energy sources are abundant and can add value to the economy and 

ensure sustainability for future energy supply. Availability of biomass energy can be managed and 

developed in accordance with the requirements of existing technologies to produce useful energy. 

Among the various biomass fuels, wood pellets (made of wood materials) have been developed over the 

last few years by both industries and R&D institutions in order to maximize the combustion efficiency 

and provide simple and reliable utilization. 

Wood pellets are a solid fuel that can be used to generate heat from the combustion process, which can 

subsequently be used for heating, in both domestic and industrial facilities. The overall performance of 

wood pellets combustion depends upon the specific design and characteristics of the grate and of the 

combustion chamber. Good combustion occurs when all the fuel and air are well mixed, resulting in 

high combustion efficiency. Incomplete combustion will result in undesirable emissions such as CO, 

unburned carbon, NOx, etc. which have a negative impact on health and the environment. 

1.1.1 Background 

Biomass is one of the renewable energy sources that are abundant in nature (Ghodke and Mandapati, 

2019), widely available and with enormous potential for future sustainable energy supply. It could be 

said that most of the countries have substantial potential for biomass energy. Biomass also has 

advantages for providing employment opportunities in rural areas (González et al., 2011). In addition, 

its use is increasing because it is considered carbon neutral (Euh et al., 2016) and contributes to 

reducing greenhouse gas emissions (Alakoski et al., 2016). Data presented from Hoogwijk and Graus 

(2008) estimated that the energy potential for a number of energy crops of biomass in different regions 

is 271 EJ/yr (see Figure 1.1). 

The existence of biomass on earth covers wide regions including forests and oceans. Most of the 

biomass potential is available on the ground, at a total of about 1,800 billion tonnes while the potential 

in the ocean is 4 only billion tonnes, with a comparable amount of biomass existing in the soil (ABA 

Japan, 2002). In addition, the total biomass on the ground is 33,000 EJ on an energy basis, which 

corresponds to over 80 times the total annual energy consumption of the world. Biomass has a high 

potential for future energy resources and is an enormous renewable resource comprising of 

approximately 4,500 EJ (220 odt), of annual primary production. The data regarding annual bioenergy 
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potential is approximately 2,900 EJ including 1,700 EJ from forests, 850 EJ from grasslands and 350 

EJ from agricultural areas (Hall and Rao, 1999, cited by Rosillo-Calle, 2007). In addition, energy 

farming is also contributing in existing agricultural land alone, which indicate over 800 EJ without 

affecting the world’s food supply (Faaij et al., 2002, cited by Rosillo-Calle, 2007). 

 

Figure 1.1. The estimated number of the energy crops of biomass in different regions. 

(Hoogwijk and Graus, 2008). 

The main sources of biomass outside the EU (Bjerg et al., 2011) are Canada, the US, and Russia. 

Russia, Southern US, and South America, and Africa, are the fastest growing regions as shown by the 

worldwide pellet production between 2012 and 2017, depicted in Figure 1.2. The pellet production has 

grown significantly in developing markets, including South America (primarily Brazil and Chile), Asia and 

Oceania, and Europe outside of the EU28. In Asia and Oceania, the pellet production volume increased 

by more than 40% in 2017, mostly in Vietnam and Malaysia. In addition, Canada has boreal forests 

which contain an abundance of dead trees or wood from dead and diseased forests (Bjerg et al., 2011; 

Barrette et al., 2017). 

Depending on the source, different estimatives of biomass resources have been presented which 

suggests that the stock of biomass depends on the world consumption itself, giving some uncertainty to 

the actual figures. Thrän et al. (2010) calculated the energy crop potentials for 133 individual countries, 

which indicates that the food demand takes priority. Moreover, Wang and Dunn (2015) stated that the 

biofuel feedstocks must come from land that was neither forested before nor necessary for food crops 

(set aside land) as adopted by the U.S. Renewable Fuel Standard. 

About half of the Portuguese land area is covered by forests and other wooded land to a total of 

approximately 4.91 Mha (Bioenergy Europe, 2018). Meanwhile, more than one-third (3.2 Mha) of the 
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territory is forests (Ferreira et al., 2017), out of which 2.1 Mha forests are available for wood supply 

(Bioenergy Europe, 2018). Such figures show great potential for reducing its dependence on fossil fuels 

(Ferreira, 2016). The large biomass resources in Portugal includes wood residues, animal waste and 

municipal solid waste (Ferreira et al., 2017). The biomass resources in Portugal from the forest 

residues and energy crops are 11,611 and 8,378 GWh/year, respectively. Moreover, biomass is 

considered as the third renewable source in Portugal after hydro and wind. 

 

Figure 1.2. Evolution of pellet production in the World by regions. 

(adapted from Bioenergy Europe, 2018). 

The utilization of biomass energy in Portugal is growing significantly with a sharp increase in 2010, 

which is related to the Portuguese strategy in developing the biomass source for the energy production 

as described in Figure 1.3 (Ferreira et al., 2017). In fact, Portugal is one of the EU28 countries, which 

uses the majority of Roundwood for industrial purposes, as shown in Figure 1.4 (Bioenergy Europe, 

2018). This dynamism occurs despite the forest fires that devastated the country in 2017 that have 

destroyed around 520 thousand hectares of forest including several wood processing mills and 2 pellet 

plants. 



Chapter 1. Introduction 

 

4 
 

 

Figure 1.3. The utilization of biomass energy for power in Portugal (Ferreira et al., 2017). 

Biomass energy can be utilized in multiple domestic and industrial applications, such as cooking, 

heating, electricity generation and transportation (Hoogwijk and Graus, 2008; Paulauskas et al., 2015). 

It can also replace all fossil fuels used for the production of synthetic materials (i.e. chemicals, 

polymers) and for generating low and medium temperature steam. The operating costs depend on the 

technology used for the actual biomass conversion. For example, cost-effective opportunities exist for 

steam production from biomass residues and for the substitution of high-value petrochemicals. 

Together this would require by 2030 more than 20 EJ of biomass worldwide, in addition to baseline. 

The potential could double by 2050 and reach 38–45 EJ (25% of the total industrial energy use), with 

most demand in Asia, and other developing countries and economies in transition (Saygin et al., 2014). 

 

Figure 1.4. Removal of biomass sources from forests in Portugal (Bioenergy Europe, 2018). 
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Energy conversion from low quality biomass or by using inadequate technology (such as inefficient 

combustion) can cause harm to human health and contribute to the increase in air pollution. Inefficient 

combustion can produce high levels of particulate emissions, which have been a subject of interest 

regarding their formation, characteristics and implications to human health (Boman, 2005). In order to 

reduce the gas emissions from incomplete combustion, one needs to apply an efficient combustion 

process. McKendry (2002) evaluated the utilization of biomass as a traditional energy source mostly in 

the third world. This condition can play a pivotal role in helping the developed world reduce the 

environmental impact of burning fossil fuels to produce energy but only if significant areas for energy 

crops are made available. 

Biomass energy resources are abundant, especially in developing countries. If it is not properly 

developed, then the condition can be regarded as a lost opportunity, due to the waste or disposal of 

useful energy. Biomass wastes are occur in various forms, such as wood, paper, and other materials 

which are available in vast quantities (Olsson, 2006a). In this context, a plant for wood pellets 

production is supported by both an economic and energetic analysis and this activity can produce 

valuable environmental and agricultural benefits in terms of improvement of tourist potentiality (e.g. the 

quality of the environment is at a high level), reduction of greenhouse emissions and recovery of soil 

fertility (Di Giacomo and Taglieri, 2009). Developing the biomass energy requires all sectors and fields 

to establish the policies on energy, material, agriculture (food, feed), resource use and international 

collaboration across the industry, energy and transportation sectors. Besides, the industrial sector plays 

an important role in defining the policies. These need continuous improvement of bio-based alternatives 

by using the efficient and effective cost with new technologies through biomass to produce low CO2 

emissions to the environment (Saygin et al., 2014). 

Feedstock or biomass fuels can be produced in various forms and different materials before they are 

converted into useful energy such as pulp, waste paper, wood residue, cork pellet, wood pellet 

(hardwood pellet and softwood pellet). Wood residues for biomass fuel result from various activities or 

treatments such as manufacturing, discarded wood products diverted from landfills, and non-hazardous 

wood debris from construction and demolition activities (Ciferno and Marano, 2002). Development of 

biomass energy such as wood pellets will encourage wood pellet production to increase rapidly. This 

condition could be seen in several countries such as in the United States, as manufacturing and trade 

of wood pellets has seen an exponential growth in the last few years. This has been triggered by its 

potential utilization in applications typically dominated by fossil fuels, such as heat, power, and 

combined cycle generation (Pirraglia et al., 2013). 
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The methods for converting biomass to useful energy include pyrolysis, gasification, direct combustion, 

and liquefaction. The use of feedstocks can be adapted to the process applied. Cork pellets have 

several characteristics similar to those of forest waste, opening new horizons for its use outside of the 

cork industry for energy recovery or raw materials production. This can be completed either in 

traditional form (direct combustion) or using alternative technologies (gasification), or even in co-firing 

with coal (Nunes et al., 2013). As stated by Milne et al. (2002) biomass conversion technologies can be 

divided into two categories: direct production routes and conversion of storable intermediates. 

Residential biomass combustion appliances can produce various emission characteristics (such as VOC 

and PAH) according to different fuel and operational conditions. VOC emissions include methane, 

ethane, acetylene, and benzene with Non-methane volatile organic compounds (NMVOC) emissions in 

the range of 20-2,500 mg/MJ for wood stoves and 1-20 mg/MJ for pellet stoves. On the other hand, 

PAHtot emissions have been observed in the range of 1,300-220,000 µg/MJ for wood stoves and 2-300 

µg/MJ for pellet stoves. Phenantrene, fluoranthene, and pyrene are usually present in all cases as 

major PAH´s (Boman, 2005). In general, the emissions productions of PIC´s as well as PMtot were 

shown to be considerably higher from wood stoves when compared to those from pellet stoves. 

Different combustion appliances will produce different combustion characteristics and the use of high-

quality pellets under continuous and controlled conditions gives advantageous combustion conditions 

compared to the traditional batch firing of wood logs. The emission levels are directly correlated with the 

combustion quality. The total emissions of particulate matter (PMtot) varied in the range of 35-350 

mg/MJfuel for wood log stoves and 15-45 mg/MJfuel for the pellet stoves, (Boman, 2005). The emission 

concentration from different biomass fuels (for example from the combustion of both softwood pellets 

and hardwood pellets) has been investigated by Fachinger et al. (2017). Olsson (2006a) mentioned that 

the emissions from softwood pellets in residential appliances were generally low and are 

environmentally well suited to replace traditional firewood and oil boilers. 

Wood pellets as biomass fuel are very practical to use and provide an alternative for a more controlled 

and optimized combustion process with low emissions of products from incomplete combustion (PIC´s) 

(Boman, 2005). Wood pellets have been one of the most attractive forms of biomass conversion as a 

standardized fuel and play an important role in various countries. In 2017, the world pellet consumption 

has increased by more than 13% or about 31.39 million tonnes compared to its level of 2016 as shown 

in Figure 1.5 (Bioenergy Europe, 2018). The available data shows that the pellet consumption in 

industrial and residential/commercial sectors increased 2.1 and 1.49 million tonnes respectively. 

Figure 1.5 shows that the pellet consumption in South America is only available in 2014 and 2015 with 
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the capacity of 58 and 90 thousand tonnes respectively. As a biomass fuel, the wood pellet is 

considered of low emissions, environmentally friendly and suitable to use in domestic applications and 

industry (Olsson, 2006a; Olsson, 2006b). Because of its low emission and affordability, the demand for 

wood pellets has increased in many countries as a residential heating energy source (Olsson, 2006b). 

Pa et al. (2013) stated that by replacing firewood with wood pellets such as in British Columbia (BC) 

residential heating will significantly lowering the impacts on human health, ecosystem quality, climate 

change, and primary energy consumption. 

 

Figure 1.5. Evolution of pellet consumption in the world by regions (Bioenergy Europe, 2018). 

Although the utilization or production of wood pellets requires adequate technology, the relative benefits 

from their storage and transportation (Jenkins, 2010) make them a very compelling fuel carrier. Once 

processed, the wood pellets are stable, denser and with lower moisture than comparable fuels such as 

wood chips. As wood pellets are easier to supply to the market, their production might be economical at 

a commercial and industrial scale (Ravichandran, 2013). However, the use of energy derived from 

wood pellets, needs to be considered regarding the availability and costs. In the economic and 

environmental scenarios, based on the Preference Ranking Organization Method for Enrichment and 

Evaluation (PROMETHEE) rankings shows that wood pellets are the best energy source among other 

biomass sources observed (Sultana and Kumar, 2012). Pellets supply, pricing and the requirement of 

equipment maintenance need to be considered in using wood pellet boiler systems especially suited to 

application in domestic consumption due to the range of end-user problems that can occur such as 
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unintentional system shut down, noise, excessive maintenance and difficulties in handling the pellets 

(Thomson and Liddell, 2015). 

As previously mentioned regarding the energy utilization, there are several ways to harness the energy 

from biomass such as through the combustion process. Efficient combustion occurs when all the fuel is 

converted into useful energy. That depends on several conditions such as the mixture of fuel and air, 

and the specific design of the equipment used for the combustion process. One parameter that shows 

combustion quality is temperature. The importance of high temperature (>850 °C) in the bed zone with 

intensive, air rich and well-mixed conditions with isothermal conditions for 0.5-1.0 s in the post-

combustion zone were illustrated as requirements to obtain complete combustion conditions of wood 

pellets (Boman, 2005). 

Fuel-air mixing could be improved by applying various methods. For example, swirling flow provides 

enhanced fuel mixing with air flow and completes the combustion of volatiles (Suzdalenko et al., 2012). 

The combustion process in the wood boiler has been applied in the real world, and several studies are 

dealing with this condition. For example, the eco-labelled wood boiler studied by Olsson (2006a) 

showed a very high combustion efficiency. The impact of the emission on the health and environment 

produced from wood combustion in a boiler were low, therefore the boiler is recommended as an 

environmentally sound option for residential firewood combustion (Olsson, 2006a). 

The qualities of biomass feedstocks concern the cost, distribution, mass, physical, and chemical 

characteristics in which both moisture and energy content are key parameters in the evaluation of 

biomass (Milne et al., 2002). The composition of biomass feed will also influence the biomass 

feedstocks. As an example the increased of durability up to 99% of canola meal pellets resulted of 

adding a binder (5 wt%) and the inherent protein (40 wt%) and lignin (12 wt%) content in the feed. The 

effects of moisture content, additives, applied load and temperature on the mechanical properties of 

canola meal pellets was found to significantly affect the pellet quality (Tilay et al., 2015). 

1.1.2 Research opportunities 

Some problems can occur in converting the wood pellets into useful energy such as high gas emission 

produced from inappropriate combustion of wood pellets in the boiler, stove or furnace. Several gas 

emissions such as high CO and particle emissions are an indication of the incomplete combustion and 

fuel bed instability. These phenomena provided the opportunity to conduct the investigation for 

improving and optimize the apparatus and methods applied in the combustion process. 
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Wood pellets are often combusted in a furnace within the grate, as this grate becomes an essential part 

of the contribution on the quality of the combustions besides thermal load, split ratio, and excess air. 

These conditions can be considered and managed to create the good combustion of wood pellets in the 

boiler to produce low emissions, maintain good fuel bed stability and high efficiency. 

1.2 Objectives 

The combustion of wood pellets for applications such as heating is developed, in order to improve its 

efficiency and reduce its environmental impact. Taking into account the current knowledge, the main 

objective of the present work is to study the combustion of wood pellets in a 20 kW fixed bed 

combustor. Within this study several specific objectives are investigated: 

1) The mass loss and kinetics parameter of pine wood particles using TGA device. 

2) The mass loss and elemental analysis of pine wood pellets in a small scale reactor. 

3) The influence of the thermal load, grate area, excess air, and the split ratio of primary to the 

secondary air on the fuel bed temperature, gas emission, efficiency and ashes on the grate. 

4) The influence of the different parameters on the stability of the fuel bed and the onset of 

instabilities. 

1.3 Research methodology 

This research activity was initiated from the observation of the problems in the related fields. As the 

problem observation, was a motivation to conduct the literature review and identify the specific 

problem, then followed by developing the research hypothesis. 

Through the hypothesis phase, the possible solution was developed, followed by the apparatus and 

experimental design and set up. 

The research methodology to conduct this research activity is schematically shown in Figure 1.6. This 

research was conducted in the Laboratory of Energy and Fluids at the Mechanical Engineering 

Department of the University of Minho. 
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Figure 1.6. Flow chart for research activities. 

1.4 Structure of the thesis 

The structure of this thesis is organized in seven chapters, as follows: (1) Introductions; (2) Literature 

Review; (3) Materials and methods; (4) TGA analysis of pine wood particles; (5) Mass loss of pine wood 

pellets in a small scale reactor; (6) Emissions and temperatures measurement in a fixed bed 

combustor; and finally, (7) Closure. 

Chapter 1 presents the motivation of this work, the objectives of this study, research methodology, the 

structure of the thesis and the contribution of this work. 

Chapter 2 describes the literature review including the previous studies on wood pellets, biomass fuel, 

the combustion of biomass fuel, and fuel devolatilization. 

Chapter 3 discusses the materials and methods including the facility, material, and the methods 

applied in this study. The material used was pine wood pellet, the equipment used includes TGA 

devices, small scale reactor, boiler, and gas analyzer devices. 

Chapter 4 presents the experiment of TGA analysis of pine wood particles. 

Chapter 5 presents the experiment of mass loss of pine wood pellets in a small scale reactor. 

Chapter 6 presents the experiment of emissions and temperatures measurement in a fixed bed 

combustor, with the application of the Taguchi method. 

Chapter 7 details the main conclusions and opportunities for future work. 
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1.5 Contributions of this work 

From this study we can provide some contributions referred to the application of wood pellets 

combustion behavior, as follows: 

 The application of a higher heating rate on wood particles in TGA analysis may provide 

important information on thermal decomposition and kinetic parameters. 

 Different residence time and temperature applied to the thermal decomposition of wood pellets 

in a small scale reactor may provide knowledge about the devolatilization process in a 

commercial fuel (wood pellets). 

 Develop the Taguchi method for experimental planning to assess the influence of Power, EA, 

GA, and SR on the emissions and fuel bed temperature, which can be used to control ashes 

sintering. 

 A contribution to understanding the burning rate of wood pellets in a grate with a gravity feeding 

system. 
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2. LITERATURE REVIEW 

In this chapter, a literature review on wood pellets combustion is presented and discussed.  

2.1 Major literature sources on wood pellets combustion 

Combustion of wood pellets and different combustion appliances has been the object of various studies. 

Four types of wood pellets such as a pruning fruit tree, two commercial pellets from pine wood and 

Pyrenean Oak were analyzed by Arranz et al. (2015). Several parameters such as heating value, 

durability, bulk density, ash characterization and ash melting temperature were determined and 

analyzed in a domestic pellet stove. This study shows that pine wood pellets have better characteristics 

for their domestic use in small-sized stoves due to the lower ash content and higher heating value. 

Garcia-Maraver et al. (2014) conducted a study on the fuel quality and the gaseous and particulate 

matter (PM) emissions in a domestic boiler fired with five different types of pellets such as two 

commercial pellets from pine residues, cork residues, olive wood, and olive pruning. The authors 

measured various parameters including thermal loads, gaseous and PM emissions, ash composition in 

PM emissions, (characterized both morphologically and chemically), bulk density and durability indexes, 

and particle densities. This study reveals that gaseous and PM emissions are significantly affected by 

fuel type. 

Pine pellets, industrial wood wastes, and peach stones were combusted in a domestic boiler to study 

and evaluate the combustion and emission characteristics of the boiler (Rabaçal et al., 2013). This 

study shows that the type of pellets significantly affects the boiler operating conditions, the emissions 

characteristics, although the boiler thermal efficiency is not negatively affected. 

A study on the pellet quality and compression characteristics of canola meal was reported by Tilay et al. 

(2015). Several fuel characteristics were analyzed such as protein, fiber, fat, lignin, feed moisture 

content, binder, lubricant, in addition to densification process parameters. This study shows that by 

pelletization of canola meal with moisture-resistant and reasonable fuel characteristics provides a 

promising alternative for the utilization as an alternative source of renewable energy. 

The air-dried distilled spirit lees and its char in an oxygen-enriched laboratory scale, fluidized bed 

combustion, were performed by Zhu et al. (2015) to study the influence of water vapor in the 

combustion atmosphere on NOx emissions. This work shows that in a combustion atmosphere with 

excessive water vapor, this will inhibit the release of fuel-N in the devolatilization stage, promote the 
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formation of some reducing gases and also shortened the reaction time for homogeneous and 

heterogeneous NOx reduction. 

The quality of pellets from raw material (leaves, pruning, and wood) and different olive tree pruning 

residues was investigated by Garcia-Maraver et al. (2015). In this study, the physical and mechanical 

parameters, moisture content, compression, and temperatures for the pelleting conditions was 

analyzed. This study shows that low moisture content (9%), short compression lengths (20–24 mm), 

and temperatures above 40 oC were the best pelleting parameters observed. Biomass fuel of 

beechwood was studied both experimentally and numerically under high radiative heat flux (Pozzobon et 

al., 2014). Sample diameter, incident heat flux, initial moisture content, char, temperature, and 

reflectivity were assessed. This study shows the visible phenomena occurring inside the degrading 

sample, where the drying phase is followed by pyrolysis. 

Combustion of four biomass materials (willow, miscanthus, pine, and segregated waste) with different 

fuel properties was experimentally investigated in a fixed bed under fuel-rich conditions by Ryu et al. 

(2006). The study assessed the influence of gas composition, bulk density, particle size and analyzed 

the combustion characteristics by interpreted with the ignition front speed, burning rate, mass loss, 

equivalence ratio, and temperature gradient. This study reveals that the ignition front speed and the 

burning rate increased with increasing air flow. 

Qiu (2013) studied the combustion of biomass fuel in a domestic biomass boiler with a primary and 

secondary air supply to investigate the flue gas emissions, particularly pollutants CO, NOx, and particle 

emissions. The authors tested three types of biomass fuels such as wood pellets, miscanthus pellets, 

and straw pellets and, also, the temperature and gas emissions. It shows that biomass flue gas 

cleaning is highly concerned, while the ceramic filter cleaning technology proved to be very effective to 

meet the environment targets. 

The parameters of the grate furnaces were discussed by Loo and Koppejan (2008) and Burkhard and 

Russell (2010). Different grates are applied in the grate furnace technologies such as fixed grates, 

travelling grates, moving grates, rotating grates, and vibrating grates (Loo and Koppejan, 2008). 

The study of combustion and emissions of biomass pellets in a prototype pellet furnace with 7–32 kW 

capacity using four biomass pellets such as one grass pellet and three wood pellets was investigated by 

Roy et al. (2013). The study reveals that the grass pellets can successfully be combusted with similar 

performance and emissions to those of other wood pellets if burned in appropriate combustion 

installations. 
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Kruggel-Emden et al. (2013) showed that mixing of wood pellets is influenced by several parameters 

such as particle mass, the stroke length, particle shape, and the motion pattern, while the stroke 

velocity only has a minor effect on mixing and the amount of particles discharged from the grate. 

The numerical and experimental studies of Klason and Bai (2007) in a small-scale wood pellet furnace 

were compared while applying secondary and tertiary air jets. The flame temperature and species 

concentrations, including CO and NO were analyzed. It reveals that the fuel-NO path is responsible for 

the rapid NO increase and the high NO peak near the fuel bed. 

The behavior of dynamic combustion of a BioGrate boiler was investigated by Boriouchkine et al. 

(2014). This study shows that combustion dynamics is dependent not only on the air flow but also on 

the fuel. Using fuels with a lower devolatilization temperature allows for increased drying rate. 

Meanwhile, drying can be enhanced by increasing the air flow rate. 

Combustion of wood pellets in a High Temperature Air Combustion (HTAC) furnace, with rich and 

diluted air and applied high temperature air combustion to examine the mass loss and emission 

concentration, was conducted by Dinu (2006). This study shows that the mass loss rate of pellets 

increases with the temperature. The mass loss, emission concentrations (CO2, CO, and NOx), the 

ignition time and flame behavior was measured at two oxidizer temperatures and oxygen concentration. 

Devolatilization behavior of fuel pellets of wood and wood/coal in a fluidized bed was studied by Miccio 

et al. (2013). During the devolatilization, two events were observed in this study such as the eruption of 

a hot bubble and the generation of flames at the bed surface. This study shows that the trend of the 

devolatilization time is consistent with the volatile content of the fuel, and two kinds of events can be 

distinguished during devolatilization including the eruption of a hot bubble produced by bursting a 

submerged fuel-rich bubble and the generation of flames at the bed surface. A study on the 

devolatilization behavior including ignition, flame temperature, flame life-time, devolatilization time of 

different fuels of coal from lignite to anthracite and wood was investigated by Bu et al. (2015). The 

study reveals that for all the fuels tested, the ignition-delay time is much longer, and the flame 

temperature is lower in the O2/CO2 atmosphere than in an O2/N2 atmosphere. The devolatilization, 

activation energy and the frequency factor (pre-exponential factor) for different heating rates were 

evaluated by Soria-Verdugo et al. (2014). With the TGA tests, this study concluded that the activation 

energy and the frequency factor should be carried out at high heating rates, in which a high heating rate 

contributes to the better application of the Distributed Activation Energy Model (DAEM). 

Several parameters such as the flame stability limits, flame temperature, pressure drop, and pollutant 

emissions were measured from alumina pellets of different diameters as they were burned in a double-
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layer fuel bed packed (Gao et al., 2012). This study reveals that the unburned hydrocarbon emissions 

decreased with increased alumina pellet diameter. 

Measurement of the oxidation behavior of particulate matter (PM) from the combustion zone of a 

domestic pellet-fired boiler was conducted by Fernandes et al. (2013). Oxidation tests indicate that the 

PM samples obtained from locations near the visible flame boundary were significantly less reactive 

towards O2 than those sampled from locations along the burner axis. 

Pine chips and pine pellets were burned in a 50 kW domestic biomass boiler to analyze the influence of 

the excess air and rate of secondary air on the combustion efficiency and emissions (Serrano et al., 

2013). The work shows that the excess air reduces the gaseous emissions but also the boiler efficiency 

while increasing the rate of secondary air had no effects on efficiency but reduced the CO emissions 

below the standardization limit (EN 14785). 

The experimental study of the effect of pellet length on utility and combustion temperature was 

conducted by Sikanen and Vilppo (2012). Several parameters were measured in this study such as 

combustion temperature and stability and flue gas temperature. It shows that increasing the length of 

the pellets from 5.8 mm to 13.1 mm decreased the average burning temperature by 31% and flue gas 

temperature by 25%. 

Han et al. (2008) studied the combustion and emission behavior of cedar pellets fuel in a fluidized bed 

combustor from the effect of the particle size of alumina sand. The authors analyzed the temperature 

profile, fluidization velocity, and bed material particle size on emission and combustion efficiency. This 

study shows that high temperature can improve combustion efficiency and decrease CO emission. A 

CFD modelling of thermal conversion and packed bed compaction in biomass combustion was 

conducted by Gómez et al. (2014). This study modeled the ignition rates, maximum temperatures, and 

the transient evolution of bed height. The model presents the comparison of the drying, devolatilization, 

and char thicknesses for different air mass fluxes shows reasonably good tendencies even though the 

values are excessively high. 

2.2 Biomass 

Biomass is a cellulose material which can be broadly classified into two categories: woody and 

nonwoody biomass. Woody biomass may be further split into softwoods and hardwoods. Wood fuel 

includes round wood or cordwood, limb wood, wood chips, bark, sawdust, forest residues, charcoal, 

pulp waste, and spent pulping liquor (Borman and Ragland, 1998). 
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Softwoods are evergreen trees with needles often called conifers because their seeds are formed in 

cones (Borman and Ragland, 1998). They include species such as Douglas fir, pine, spruce, beech and 

oak, miscanthus (Fachinger et al., 2017). The hardwoods are generally denser compared to the 

softwoods and include species such apple, ash, bangkirai, birch, beech, cherry, hickory, oak, olive, 

plum, sugar maple (Fachinger et al., 2017). Hardwoods have shorter fibers and are more porous, 

making it more difficult to pulverize than coal (Borman and Ragland, 1998). Bark differs from hardwood 

and softwood in both structure and composition. Structurally, bark appears more spongelike than the 

organized fiber. It also contains more resin and more ash than wood (Borman and Ragland, 1998). 

Softwood and hardwood show different behavior in terms of emissions, such as the emission of organic 

carbon (OC) which is usually higher for softwood than for hardwood in residential devices. The same 

condition applies for higher PAH emissions in residential wood combustion (Vicente and Alves, 2018). 

In addition, the rate at which the hardwood and softwood release their energy can be different, as that 

for hardwood is usually much slower than for softwood (Jenkins, 2010). 

Dry wood consists of cellulose, hemicelluloses, lignin, resin (extractives), and ash-forming minerals. 

Cellulose (C6H10O5)n is a condensed polymer of glucose (C6H12O6) (Borman and Ragland, 1998). The 

fiber wall consists mainly of cellulose and represents 40 to 45% of the dry weight of wood. 

Hemicellulose (C5H8O4)n (Ferreira, 2016) consists of various sugars other than glucose that encase the 

cellulose fibers and represent 20 to 35% of the dry weight of wood (Borman and Ragland, 1998). Lignin 

(C11H12O4)n (Ferreira, 2016) is a nonsugar polymer that gives strength to the wood fiber, accounting for 

15 to 30% of its dry weight (Borman and Ragland, 1998). Wood extractives include oils, resins, gums, 

fats, waxes, etc., that originally do not exceed a few percents. However, extractives in bark range from 

20 to 40%. The constituents which make up the ash when wood burns amount to 0.2 to 1% by weight 

and are mainly calcium, potassium, magnesium, manganese, and sodium oxides and lesser amounts 

of other oxides such as iron and aluminum. The mineral matter is dispersed throughout the cells in 

molecular form. The ash from the bark is greater than from wood and typically is 1 to 3% (Borman and 

Ragland, 1998). 

Biomass fuels are a source for the combustion besides fossil fuel, and combustion can be applied to 

biomass feedstock with water contents up to 60% (Nussbaumer, 2008). The pollutant and deposit 

formation, corrosion, and ash in carbon, hydrogen, and oxygen are undesired. There are most relevant 

constituents in native biomass such as nitrogen as a source of NOX, and ash components, for example, 

K and Cl as a source of KCl that leads to particulate emissions (Nussbaumer, 2008). Native wood is 

domestic wood which grows naturally (Bishop, 2001; Hansen et al., 2009; Nichols and Vanclay, 2012). 
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Native wood is the most favorable biofuel for combustion due to its low content of ash and nitrogen 

(Nussbaumer, 2008). While wood is well-suited for household heating and other energy production as 

well as for larger plants, herbaceous biomass is reserved for larger plants. The same condition is true 

for urban waste wood and demolition wood. Efficient combustion is important, in order to limit the 

contaminated biomass to combustion plants, and with efficient flue gas cleaning for the abatement of 

toxic pollutants such as heavy metals and chlorine compounds (Nussbaumer, 2008). The driving force 

and potential for biomass combustion for energy purposes is both the CO2 neutrality of the sustainably 

cultivated biomass or the use of biomass residues and waste. As renewable resources, large potentials 

of both native biomass and biomass wastes are still untaped and allow a relevant increase of 

sustainable bioenergy use in the future. Combustion is the most important technology available today 

for biomass to continue to meet energy demand, though improvements in efficiency, emissions, and 

cost for further exploitation are required (Nussbaumer, 2008). 

2.2.1 Biomass conversion technologies 

Biomass is one of the renewable energy sources to use as useful energy mostly for direct heat (in a 

household and industry) and in power plants. 

The methods of converting biomass into useful energy include several routes such as biological, 

chemical and thermochemical conversion (flash pyrolysis, gasification, carbonization, and combustion) 

(Loo and Koppejan, 2008). Thermochemical conversion technologies show different stages of 

development, where combustion is the most developed and most frequently used (Loo and Koppejan, 

2008). Figure 2.1 depicts an overview of thermochemical conversion technologies, products, and 

potential end uses. 



Chapter 2. Literature review 

 

18 
 

 

Figure 2.1. Thermochemical conversion technologies (adapted from Loo and Koppejan, 2008). 

2.2.2 Contribution of biomass in the renewable sector 

Biomass can contribute to reducing the consumption of fossil fuel, as fossil fuel is a limited resource 

and being rapidly depleted due to the population and economic growth, among other issues. Besides, 

biomass development can create more jobs and also reduce the impact on the environment (Nunes et 

al., 2016). Approximately 60% of the need for process energy in pulp, paper, and forest products is 

obtained directly from biomass combustion (Chum and Overend, 2001). In addition, in the United 

States, among other renewable resources, biomass use as a primary energy source (approximately 

43%) is just behind hydropower with 51%. Besides, biomass has the highest potential to contribute to 

the energy needs of modern society for both the industrialized and developing countries worldwide 

(Demirbas et al., 2009), and also of its cost-effectiveness. 

2.2.3 Pellets 

Pellet is wood densified into a small cylindrical mass (Bjerg et al., 2011; Obernberger and Thek, 2010). 

Wood pellets are a certified product ranging from 6-12 mm in diameter, and a typical length of 10-40 

mm. The lower heating value of pellets varies between 10.8 and 18 MJ/kg (as received), and the bulk 

density is in the range of 600 kg/m3, may also be between 500 and 680 kg/m³. In addition, the water 

content is between 5-10% (Bjerg et al., 2011). The respective parameter of wood pellet depends on the 

quality of the respective pellet product, with the higher values referring to premium pellets (Bjerg et al., 
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2011). Pellets can be used for automatically charged stoves and boilers because of their good feeding 

and flowability, uniform properties. Consequently, pellet stoves and boilers for domestic use or 

applications are of easy operation (Loo and Koppejan, 2008). 

With the oil crisis in the 1970s, pellets were introduced in Europe and North America as a fuel 

substitute for solid fuels and oil (Bjerg et al., 2011). Since the 1990s wood pellets production has 

become commercially viable and has grown steadily throughout the last years. Wood pellets are used in 

various facilities such as in large-scale plants as well as in medium-sized plants and households. The 

quality of the wood pellets is varied as well, with different pellet qualities required for different 

applications. The material of the pellets and the characteristics of the respective plant will determine 

their usefulness in the industrial segment such as dedicated biomass plants as well as in co-firing 

installations (Bjerg et al., 2011). 

Regarding the standardization, throughout the years a wide range of wood pellet standards has been 

developed. The standards were developed independently in different regions, both in the EU and the 

US. The European Union has introduced the first EN standards (EN 14961 and EN 15234) in 2010. 

Besides other standards in place include DIN 51731/DINplus in Germany/Netherlands/Belgium, 

ÖNORM M 7315 in Austria and SS 187120 in Sweden, (Bjerg et al., 2011). In 2010, AEBIOM has 

launched the new European certification system ENplus, managed by the European Pellets Council, 

which has reached an international expansion. 

2.2.3.1 Characterization of raw materials and pellets 

The characteristics and quality of biomass fuel are mostly dependent mainly on the raw materials and 

the pre-treatment technologies applied (Loo and Koppejan, 2008). For example, the moisture content of 

the fuel may vary from 25 to 60wt% (w.b.) for bark and sawmill side-products or drop below 10wt% 

(w.b.) for pellets and dry wood-processing residues. Monedero et al. (2015) revealed that the swelling of 

the pellet occurs when the pellet moisture content is higher than 10 wt.%. With suitable pre-treatment 

technologies, fuel quality can be influenced and improved, though with a cost penalty. On the other 

hand, various combustion technologies are available according to the fuel quality. In this context, it 

must be noted that less homogeneous and low-quality fuels require more sophisticated combustion 

systems. Because of this condition and economy of scale reasons, only medium and large scale 

systems are suitable to utilize low-grade biomass fuels. Thus, the smaller the combustion plant, the 

higher the demands concerning fuel quality and fuel homogeneity (Loo and Koppejan, 2008). 
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The main components of biomass fuels consist of C, H and O. Carbon and hydrogen are oxidized 

during combustion by exothermic reactions to form CO2 and H2O (Loo and Koppejan, 2008). The 

organically bound oxygen released through the thermal decomposition of biomass fuels covers part of 

the overall oxygen required for the combustion reactions taking place, and the rest is supplied by air 

injection. In comparison to coal, C in biomass fuels is present in partly oxidized forms, which explains 

the low HHV of biomass fuels. In addition, biomass fuels contain a larger variety of inorganic materials 

than coal (Saidur et al., 2011). The C concentration in wood fuels (including bark) is higher than those 

of herbaceous biomass fuels, which justify the slightly higher HHV of wood fuels. On the other hand the 

carbon concentrations of olive residues are higher than those of wood fuels, which results in a higher 

HHV (Loo and Koppejan, 2008). 

 Carbon, hydrogen, oxygen and volatiles content of pellets 

Table 2.1 summarizes the expected range of C, H, O, and volatiles concentrations in different biomass 

fuels (Obernberger and Thek, 2010), although in the applicability of the materials for the pelletization is 

not influenced by these elements. However, the concentrations of these elements do have an effect on 

the calorific value, and the volatiles release influencing the combustion behavior. For different types of 

biomass, the high fixed carbon and volatile matter increase the heating value (Saidur et al., 2011). 

Moreover, C and H tend to raise the heating value compared to oxygen. The concentration of carbon, 

hydrogen, and oxygen are the main components of biomass fuels (since cellulose, hemi-cellulose, and 

lignin consist of these elements), whereby carbon and hydrogen are the main elements responsible for 

the energy content due to the exothermic conversion to CO2 and H2O, during combustion (Obernberger 

and Thek, 2010). 

The amount of volatile matter in biomass fuels is higher than in coal and varies between 70 and 86 wt% 

(d.b.) (Loo and Koppejan, 2008), although the specific value depends upon, the actual source of 

biomass. Such a high content of volatiles leads to fast devolatilization. The volatiles have a strong 

impact on the thermal degradation and combustion behavior of the biomass, because the gases formed 

and burned in homogenous gas phase reactions, and the remaining charcoal burns relatively slowly in 

heterogeneous combustion reactions (Obernberger and Thek, 2010). prEN 15104 sets the standards 

for C and H in biomass fuel. Approximated, the oxygen content can be determined as the difference 

between 100 minus the sum of carbon, hydrogen, sulphur, nitrogen, and ash in wt.% (dry basis). The 

content of volatile is determined according to EN 15148 (Obernberger and Thek, 2010). 
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Table 2.1. Concentrations of C, H, O and volatiles matter in different biomass materials. 

(Loo and Koppejan, 2008 cited by Obernberger and Thek 2010). 

Fuel type C H O Volatiles 
 Wt.% (d.b.) Wt.% (d.b.) Wt.% (d.b.) Wt.% (d.b.) 
Wood chips (spruce, 
beech, poplar, willow) 

47.1 – 51.6 6.1 – 6.3 38.0 – 45.2 76.0 – 86.0 

Bark (coniferous trees) 48.8 – 52.5 4.6 – 6.1 38.7 – 42.4 69.6 – 77.2 
Straw (rye, wheat, 
triticale) 

43.2 – 48.1 5.0 – 6.0 36.0 – 48.2 70.0 – 81.0 

Miscanthus  46.7 – 50.7 4.4 – 6.2 41.7 – 43.5 77.6 – 84.0 

 Nitrogen, sulphur and chlorine content of pellets 

The Standard prEN 14961-2 limits the acceptable levels of nitrogen, sulphur and chlorine in pellets. 

Compared to the herbaceous biomass, the limiting values of the standard are based on wood as the 

reference input material for pelletization, which indicates significantly lower concentrations of nitrogen, 

sulphur and chlorine. Although such elements do not have any influence on the palletization process, 

they should be taken into account when searching potential raw materials. By this condition, one should 

avoid the use of contaminated materials or materials that are not biological for the production of pellets. 

The presence of such elements can be the result of chemical contamination by, for example, 

insecticides, adhesives, glues, lacquers, dyestuff, wood preservatives or of admixing agricultural 

biomass (Obernberger and Thek, 2010). 

Nitrogen is easily volatile and is almost completely released to the flue gas during combustion to form 

the N2 and NOx. The formation of NOx is mostly dependent on the nitrogen content of the biomass fuel. 

Sulphur and chlorine are also very volatile gases and are mainly released into the gas phase during 

combustion. In gas phase reactions of aerosols, they are then formed together with potassium and 

sodium (sulphates, chlorides) as well as SOx and HCl. There are limitations concerning these elements 

due to technical as well as environmental issues (Obernberger and Thek, 2010). In combustion, the 

concentrations of nitrogen, sulphur and chlorine have different impacts. High levels of nitrogen, sulphur, 

and chlorine boost or increase the emissions of NOx, SOx and HCl. Chlorine itself also augments the 

formation of polychlorinated dibenzodioxins and furans (PCDD/F). Moreover, the combustion products 

of chlorine and sulphur have corrosive effects and are of great relevance in fouling/deposit formation. 

Nunes et al. (2016) revealed that the presence of Cl makes as active oxidation, and as the main factor 

that is responsible for accelerated corrosion rates in the boiler tubes. There are several conditions that 

contribute to corrosion from biomass combustion such as: deposits of ash containing alkali metal; 

chlorides on the heating exchange surfaces; the sulfation of the deposits in contact with SO2/SO3 in the 
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gases that generate HCl through the metal surface (Nunes et al., 2016) and large amounts of 

potassium chloride that vaporize in combustion which represent a high deposition and corrosion risk 

(Wang et al., 2017). 

 The higher heating value, lower heating value and energy density of pellets 

The higher heating value is basically defined as the energy content on a dry basis (Saidur et al., 2011). 

The HHV is a measured value of the specific energy of combustion for a mass unit of a fuel burned in 

oxygen (Obernberger and Thek, 2010). The HHV of raw material should be as high as possible as it 

determines the energy density of the pellets. The HHV is purely dependent on the material used, i.e. the 

chemical composition of the raw material and can therefore not be influenced (Obernberger and Thek, 

2010). According to ÖNORM C 1138, HHV is the heat released during combustion per mass unit fuel 

under the constraints that the water formed during combustion is in a liquid phase and that the water 

and the flue gas have the same temperatures as the temperature of the fuel prior to combustion (Loo 

and Koppejan, 2008). The HHV of biomass fuels usually ranges between 18 and 22 MJ/kg (d.b.) (Loo 

and Koppejan, 2008), the value for woody biomass (including bark) lies around 20.0 MJ/kg (d.b.) and 

for herbaceous biomass is around 18.8 MJ/kg (d.b.) (Obernberger and Thek, 2010). The HHV can be 

calculated by using the following empirical formula (Eq. 2.1) (Loo and Koppejan, 2008). 

ashO

NSHC

X 0211.0X1034.0

X 0151.0X 1005.0X 1783.1X 0.3491 HHV 




        (2.1) 

where, X is the mass concentration of carbon (C), hydrogen (H), sulphur (S), nitrogen (N), oxygen (O) 

and ash. 

The lower heating value (LHV) is defined (according to ÖNORM C 1138) as the heat released during 

combustion per mass unit of fuel under the constraints that the water formed during combustion is in a 

gaseous phase and that the water and the flue gas have the same temperature as the fuel prior to 

combustion (Loo and Koppejan, 2008). The lower heating value depends mainly on the HHV, moisture 

content, and the content of hydrogen in the fuel. Other substances such as nitrogen, oxygen or ash 

content considered has a small influence (Obernberger and Thek, 2010). The calculation for LHV is by 

subtracting the energy needed to evaporate the moisture content of the fuel (Saidur et al., 2011) or it 

can be calculated from the HHV (Obernberger and Thek, 2010). The lower heating value calculated 

based on the moisture content and the hydrogen content of the fuel as input parameters is described in 

Eq. (2.2) (Loo and Koppejan, 2008; Obernberger and Thek, 2010). 
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where LHV is lower heating value (MJ/kg) (w.b); HHV is higher heating value (MJ/kg) (d.b.); M is 

moisture content (wt.%) (w.b.) and XH is hydrogen content (wt.%), (d.b.). For woody biomass, for 

example, pellets, the content of hydrogen is around 6.0 wt.% (d.b.), and the value for herbaceous 

biomass is around 5.5 wt.% (d.b.) (Obernberger and Thek, 2010). The LHV is also calculated according 

to EN 14961-1 standard, as formulated in Eq. (2.3). Comparing the results obtained for the two 

equations produce nearly the same results. 

  
100

M
 443.2

100

M
  1   0.0008  X 0.2122 HHV  LHV NOH 








 XX   (2.3) 

where XO is the oxygen content in wt.% (d.b.) and XN is the nitrogen content wt.% (d.b.). It can be 

concluded that the energy density of biomass is lower compared with fossil fuels, and the low energy 

density is one of the disadvantages of biomass fuel (Saidur et al., 2011). The energy density can be 

calculated according to Eq. (2.4). 

be   .LHV                       (2.4) 

where e  is energy density (MJ/m3) and b is bulk density (kg (w.b)/m3). 

2.2.3.2 Advantages of pellets 

As stated, wood pellets have several advantages such as (being) easy to transport, affordable price, 

high energy  density, low emissions, and to be considered carbon neutral, while the pelletization 

delivers solid biomass feedstock of high physical and mechanical homogeneity (Bjerg et al., 2011). In 

terms of emissions, moving from 100% coal to wood pellets can decrease CO2 emissions by 75-85%, 

taking into account all CO2 emissions over the whole life cycle (Bjerg et al., 2011). Overall, the CO2 

emissions related to wood pellet production and provision depend mainly on transport distances 

(sourcing of biomass, local or global distribution). The combustion of biomass with other fuels (co-firing) 

can have some advantages regarding the cost, efficiency, and emissions (Nussbaumer, 2008). Rybak et 

al. (2017) have shown that the co-combustion of 40% unburned carbon with lignite showed no 

indication of deteriorating the behavior of the combustion including ignition behavior, flame stability, 

NOx and SO2 emissions. 
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2.2.3.3 Applications of pellets 

Pellets as a biomass fuel are used to produce energy in terms of heat through combustion process. 

Pellets can be burned in several appliances such as boilers and stoves or furnaces. As an example, a 

residential wood stove and a pellet stove was used by Fachinger et al. (2017) and a domestic wood 

pellet-fired boiler, with a maximum thermal capacity of 22 kW, was reported by Rabaçal et al. (2013). 

The use of wood pellets for energy purposes with boiler depends on the energy requirement. Typically 

for example for domestic use,  the boiler capacity is below 100  kWth; for micro-grids and by small scale 

industrial users 100 - 1,000 kWth; and for large scale heating system > 1,000 kWth (Obernberger and 

Thek, 2010). The numbers of pellets consumption in the EU-28 in 2016 and 2017 revealed that mostly 

pellets are applied in the residential sector (66.64 and 64.62%) following by the commercial sector 

(21.52 and 22.36) and CHP/industry (11.84 and 13.03), respectively. The total pellets consumption in 

those years is 13.5 and 15.1 million tonnes, an increase of about 11.59% (Bioenergy Europe, 2018). 

Wood pellets can be used as co-firing with different fuels such as coal (Guo and Zhong, 2018) and 

pellets with industrial waste (Ferreira et al., 2014). In Europe, the use of co-fired pellets is considered 

an attractive fuel for producing cost-effective renewable electricity and mitigating CO2 emissions (Ehrig 

and Behrendt, 2013; Kokko, 2012) and reducing NOx and SOx emissions (Adams, 2013). 

Bjerg et al. (2011) reveal that the demand for co-firing for electricity generation estimated in 2020 

shows that an estimated growth of 5%, corresponds to 110 million toe and for 10%, it will correspond to 

220 million toe in almost all the regions. In addition, the bio-coal pellets (black pellets) production and 

consumption are estimated to increase from 0.6 Mt in 2015 to 7.5 Mt/a by 2020 (Kokko, 2012). 

2.2.3.4 Raw material for pellets 

The main components of wood pellets are cellulose, hemicellulose, and lignin. The extracts (e.g. fats, 

proteins, resin, and oils) act as binders. The quality of wood pellets is visually associated with color. 

Dark pellets can contain bark, which indicates a lower quality compared to bright wood pellets, because 

bark yields higher amount of inorganic matter and thus higher amount of ashes (Bjerg et al., 2011). 

Obernberger and Thek (2010) define three different types of pellets based on color: white pellets, brown 

pellets, and black pellets. White pellets are made of sawdust or planer shavings without bark, and 

brown pellets are made from raw materials containing bark (not to be confused with bark pellets, which 

are produced solely from bark). Then, black pellets are produced from exploded wood pulp or torrefied 

wood. 
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The different types of pellet classification which are depending on fuel specification and standardization 

as mentioned in Obernberger and Thek (2010). The ENplus certification scheme for three pellet quality 

classes (A1, A2 and B) based on the classes of ISO 17225-2 with different composition is presented in 

Table 2.2, and other standardization can be seen in the annex (Table A.1) (European Pellet Council, 

2015). 

Pellets can be made from a wide variety of raw materials (such as herbaceous biomass, waste or peat); 

all forthcoming definitions are to be regarded and the term densified biomass fuels denote both pellets 

and briquettes made of solid biomass fuels (Obernberger and Thek, 2010). Figure 2.2 shows wood 

pellets of four different qualities and the wood pellets in the lower right corner are of good quality 

without dust, produced from clean and dry wood (Hansen et al., 2009). Then the pellets in the lower 

left corner are a mix of pellets produced from two different types of raw materials. This mix of pellets 

has caused heavy, and a glass-like slag formation in a small boiler because of the lower melting point of 

the ash. For the dark pellets pictured in the top left corner porous cinders were formed which caused 

the ash screw conveyor in a small boiler system to block up. The pellets shown in the top right corner 

had a very high content of dust and fine particles when delivered to the consumer. As a result, these 

pellets formed a bridge in the feeding system yielding poor combustion (Hansen et al., 2009). 

Table 2.2. Application of pellet standards ISO 17225-2. 

Property Unit 
ENplus 

A1 
ENplus A2 

ENplus 
B 

Testing 
Standard 11) 

Diameter mm 18or16   ISO 17829 

Length mm )440L15.3   ISO 17829 

Moisture (as received) w-% 10  ISO 18134 
Ash (dry basis) w-% 7.0  2.1  0.2  ISO 18122 
Net Calorific Value (as 
received)  

kWh/kg )96.4  ISO 18125 

-Nitrogen (dry basis) w-% 3.0  5.0  0.1  ISO 16948 
Sulfur (dry basis) w-% 04.0  05.0  ISO 16994 
Chlorine (dry basis) w-% 02.0  03.0  ISO 16994 

 

According to Obernberger and Thek (2010) pelletization is the production of uniform bodies from 

powdery, granulous or coarse material of partly dissimilar particle size and the output is called a pellet. 

The term compressed wood is a fuel made by densification of wood particles (Obernberger and Thek, 

2010). Depending on the dimensions, it is classified as wood pellets or wood briquettes. On the other 

hand, compressed bark (either as pellets or briquettes) is a fuel made by densification of bark particles. 
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Figure 2.2. Four different qualities of wood pellets (Hansen et al., 2009). 

2.3 Combustion 

Combustion is defined as the oxidation of fuel with the release of energy (Döring, 2013) as heat, or both 

light and heat or oxidation followed by a slow low-heat release and no flame (Turns, 2000). Carbon and 

hydrogen are oxidized in the presence of oxygen to produce carbon dioxide and water, respectively 

(Döring, 2013). Turns (2000) described that the combustion can occur in either a flame or non-flame 

mode, and flames are categorized as being either premix flames or non premix (diffusion) flames. The 

difference between combustion in a flame and non-flame modes can be illustrated by processes 

occurring in a knocking spark-ignition engine. This phenomenon shows a thin zone of intense chemical 

reaction propagating through the unburned fuel-air-mixture. The thin reaction zone is commonly referred 

to as a flame. The phenomena behind the flame are the hot products of combustion. When the flame 

moves across the combustion space, the temperature and pressure rise in the unburned gas. Under 

certain conditions, rapid oxidation reactions take place at many locations within the unburned fuel, 

leading to very rapid combustion throughout the volume (Turns, 2000). Olsson, (2006a) stated that in 

wood pellets combustion, there are five sequential combustion stages including initial smouldering, 

early flaming, late flaming, after-flame smouldering and final glowing (Figure 2.3). 
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Initial 
smouldering. 

Early flaming. Late flaming. After-flame 
smouldering 

Final glowing. 

Figure 2.3. Five sequential combustion stages (Olsson, 2006a). 

Figure 2.3 shows that during the short initial smouldering stage the concentrations of organic 

compounds (≤ 7C) were high and the main compounds emitted were methane, furan and ethene. In 

addition, the initial smouldering reflects pyrolysis of the original softwood, and high proportions of furan-

related compounds, such as furan, 2-methylfuran and 2,5-dimethylfuran, were released. Meanwhile, the 

combustion during the early and late flaming stages was very efficient, with high concentrations of 

carbon dioxide, together with low concentrations of carbon monoxide and organic compounds (≤ 7C). 

The temperature between the pellets was 400-500 ºC during early flaming and around 500 ºC during 

late flaming. About 80% of the dry biomass was combusted during the flaming stages with the dominant 

organic compounds (≤ 7C) emitted were methane, ethene and ethyne. during the short after-flame 

smouldering stage the highest concentrations of organic compounds (≤ 7C), especially methane, 

ethane, ethene and benzene, were found. Regarding the emissions from the final glowing of softwood 

pellets were even lower than from flaming burning and very different in composition, with only methane, 

ethyne and benzene as prominent compounds. However, the CO emissions were higher for glowing 

than for flaming combustion. Besides, the formation of ethyne and benzene may be explained by the 

charcoal-like character of the glowing pellets, with a high carbon content (more than 80% compared to 

about 50% in dry wood) and a low hydrogen/carbon ratio. It is said that the combustion during the early 

and late flaming stages was very efficient and only low emissions of organic compounds (≤ 7C) were 

determined. The emissions from initial and after-flame smouldering were much higher and are likely to 

occur mainly as a result of improperly functioning pellet combustion appliances (Olsson, 2006a). 

2.3.1 Reactant and product mixture 

The stoichiometric quantity of oxidizer is defined as the right amount needed to completely burn a 

quantity of fuel. If supplied more than a stoichiometric quantity of oxidizer, the mixture is said to be a 

fuel lean mixture, while supplying less than the stoichiometric oxidizer results in a rich fuel mixture 
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(Turns, 2000). To determine the stoichiometric oxidizer- (or air-) fuel ratio (mass) one has to write 

simple atom balances, assuming that the fuel reacts to form an ideal set of products. For any 

hydrocarbon fuel, given by CxHy, the stoichiometric reaction can be defined as in Eq. (2.5). 

CxHy + a(O2 + 3.76N2) → xCO2 + (y/2)H2O + a3.76N2          (2.5) 

where, 

4/yxa                      (2.6) 

For simplification purposes the composition for air is 21% O2 and 79% N2 (by volume), i.e. that for each 

mole of O2 in the air, there are 3.76 moles of N2. The stoichiometric air-fuel ratio can be found as in 

Eq. (2.7). 
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              (2.7) 

where Ma is the molecular weights of the air and Mf is the molecular weight of the fuel. The equivalence 

ratio   , is used to indicate quantitatively whether a fuel-oxidizer mixture is rich, lean or 

stoichiometric. The equivalence ratio is defined as in Eq. (2.8). 
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From the definition above, it turns out that for fuel-rich mixture 1 , for fuel-lean mixture 1 , and 

for a stoichiometric mixture 1 . 

In most combustion applications, the equivalence ratio is the single most important factor in 

determining a system´s performance. Other parameters frequently used to define relative stoichiometry 

are percent stoichiometric air, which is related to the equivalence ratio as defined in Eq. (2.9a) and 

percent of excess air in Eq. (2.9b) (Turns, 2000). 




%100
% stoic                    (2.9a) 

 
%100

1
%




e                   (2.9b) 

For efficient combustion to occur, most of the hydrocarbon combustion processes use an excess air. 

Therefore, it is common to relate the proportion of reagent mixing is not according to the fuel content, 

but due to the excess air for a more convenient and real perception. This relationship is called as the 

excess air ratio    and corresponds to the inverse of the equivalence ratio as defined in Eq. (2.10) 

(Ribeiro, 2012). 
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


1                       (2.10) 

and the percentage of excess air is defined as: 

% e = (λ - 1)100%                      (2.11) 

2.3.2 Biomass combustion 

Biomass combustion is defined as a complex process that consists of consecutive heterogeneous and 

homogeneous reactions. The main steps in biomass combustion are drying, devolatilization, 

gasification, char combustion, and gas phase oxidation. During the combustion process, time used is a 

variable of utmost relevance, and for each reaction, it depends on several parameters such as the fuel 

size, properties, temperature, and combustion conditions. Figure 2.4 shows the combustion process for 

a small biomass particle (Loo and Koppejan, 2008). Regarding the batch combustion of a small particle 

shows a distinct separation between a volatile and a char combustion phase with time. For the large 

particles, the phases overlap to a certain extent. Nonetheless, even for logwood furnaces, a certain 

separation of distinct combustion regimes with time can be found (Nussbaumer, 2008). 

Automatic combustion systems are operated continuously, as the consecutive reactions take place 

simultaneously at different places in the furnace (for example in different sections on and above a 

grate). Through careful furnace design, the zones for different steps during combustion can be 

optimized. In addition, a distinct separation of different steps can be advantageous with respect to 

pollutant formation. Excess air ratio    as the main combustion parameter describes the local ratio 

between the available and the stoichiometric amount of combustion air (Nussbaumer, 2008).  
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Figure 2.4. The combustion process of a small biomass particle 

(Loo and Koppejan, 2008). 

2.3.2.1 Wood combustion theory 

Because biomass has a wider spectrum of components when compared with hydrocarbons, the general 

reaction equation for combustion (Eq. 2.12) is modified to account for such differences (Eq. 2.13) 

(Ribeiro, 2012). 

  222222 NSOOH
2

CON76.3OSNOHC ye
b

axedcba     (2.12) 

where a, b, c, d, and e relate to the moles´ fraction of each constituent of the fuel knowable by 

elemental chemical analyzes. The x factor corresponds to the quantity of air involved in the reaction, 

also in moles, and can be calculated for the stoichiometry depending on the chemical composition of 

the fuel: 

e
cb

ax 
24

                  (2.13) 

The factor y depends directly on x and relates to the amount of nitrogen which passes through the 

reaction without reacting (Ribeiro, 2012), see Eq. (2.14) (Flagan and Seinfeld, 1988): 

2/76.3 dxy                    (2.14) 

The mass of air (ma) can be calculated by multiplying the amount of molecular weights by x each 

species constituting the air, as follows: 

 
22 NO M76.3M  xma                 (2.15) 

Complete combustion occurs when all oxidation becomes oxidizable components. The excess air ratio 

   must then always be equal to or greater than 1  1 . 
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Some prerequisites for complete combustion are firstly a high combustion temperature, well-mixed 

combustion air and combustible gases, a small amount of excess air and a sufficiently long stay of the 

fuel molecules in the hot combustion zone. The combustion of wood is shown diagrammatically in 

Figure 2.5 and can be described as follows (Döring, 2013). 

1) As the biomass enters into the combustion chamber, the fuel begins to be heated up due to 

reflected-radiation from the flame, fire bed, and combustion chamber walls. 

2) From about 100 oC onwards, the fuel begins to dry out due to evaporation and removal of the 

water. In this process, the water is expelled both from the porous structure of the organic 

material and from the interior of the cells (at higher temperatures). 

3) Whilst the biomass is still drying in its interior, the pyrolytic decomposition begins at a surface 

temperature of about 200 oC with the dissociation of the macromolecules (i.e. cellulose, 

hemicellulose, lignin), the volatile components (CO, CH4, H2Osteam, etc.), tars and organic 

vapors/aromatics being transported to the surface of the wood and released, leaving solid 

carbon (charcoal). 

4) At about 500 oC, the solid carbon (about 15–20% of the biomass) begins to become gasified 

with carbon dioxide, water vapor, and oxygen to become carbon monoxide. At the same time, 

the volatile compounds (about 80–85%) become mixed with the oxygen supplied, starting a 

homogeneous combustion reaction of the gases. 

5) The charcoal begins to oxidize at about 700 oC with a heterogeneous gas/solid reaction which 

is why this phase is much slower than the combustion of the gases in the combustion 

chamber. Depending on the fuel and heating system used, the temperatures in wood-burning 

systems rise up to 1,500 oC (2,000 oC max, but typically between 900 and 1,300 oC) in the 

main reaction zone during the 2-stage combustion and are about 600–700 oC at the end of the 

combustion chamber. 

6) The high temperatures in the combustion chamber are due to the exothermal oxidation reaction 

of the products formed during the pyrolytic decomposition with oxygen and promote the transfer 

of heat from the flames to the surrounding walls of the heating system (heat exchanger), leaving 

as essential components of the waste gas carbon dioxide (CO2) and water vapor (H2Osteam) and 

a small proportion of unburnt components in the ash. 
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Figure 2.5. Combustion characteristics of wood (Döring, 2013). 

The combustion processes described occurring simultaneously in the various areas of the fuel as a 

function of the local temperature, as the speed of the reaction depends mainly on the size of the fuel 

parts and on the temperature in the furnace (Döring, 2013). 

For automatically fed heating systems, the processes described above takes place in parallel at any 

given time as new fuel is continuously supplied to the combustion chamber and there is already 

degassed fuel in the form of charcoal present and burning. Attempting to reconstruct the 

thermochemical combustion process with respect to the thermal decomposition of the molecular 

structure of the biomass, the irreversible destruction of the first macromolecules begins with the fuel 

being heated within a temperature range of between 150 and 200 oC as described in Figure 2.6. The 

thermal decomposition is depending on the rate of heating and the raw material. The percentages by 

weight of the gaseous decomposition products (such as CO2, H2O, CH4 etc.) released during this 

process are determined by the proportions of cellulose, hemicellulose and lignin specific to the raw 

material. In the case of wood, after it has passed through a temperature range of approximately 320–

340 ºC, about 30% loss in weight can already be registered, reaching a maximum release of gases and 

vapors (breaking down of volatile components) at 400 ºC and also of the breaking down of cellulose, 

which ends at about 450 ºC. The weight loss of biomass is about 70%. Thus, as the biomass is heated 
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further, the remaining lignin is broken down up to a temperature of about 400 ºC, followed by the 

oxidation (combustion) of the charcoal (Döring, 2013). 

 

Figure 2.6. Thermal decomposition of wood as a function of temperature with its cellulose,                               

hemicellulose and lignin components (Döring, 2013). 

2.3.2.2 Biomass combustion systems 

There are three general modes of combustion for most solid fuels including biomass materials as 

described by Loo and Koppejan (2008): 

1. Grate (fixed or moving) combustors, which are generally applied in domestic, and small and 

medium-sized industrial/commercial applications; 

2. Fluidized bed combustors, of the bubbling bed and circulating types, which are commonly used for 

medium-sized industrial/commercial applications and 

3. Pulverized fuel combustors, which are mostly applied in large industrial and utility applications. 

These modes of combustion are rarely used for 100% biomass firing, and the interest is mainly in 

the co-firing of biomass in large coal-fired boilers. 

2.3.3 Parameters influencing biomass combustion 

Amongst variables that influence the combustion behavior of biomass the most important are: grate 

size, excess air, residence time, and primary and secondary air ratio. 

2.3.3.1 Grate size 

Grate size is one of the important parts in the design of a pellet boiler, in order to be thermally efficient 

and with reduced emissions. The main criterion for designing the cross section area of the grate is that 
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it has to be able to devolatilize the fuel at the rate equal to the fuel supply (Ribeiro et al., 2019). The 

authors studied the influence of three different grate sizes in the combustion of the biomass pellets in a 

25 kW boiler. This study shows that the smaller grates would be unbalanced with fuel supply rate 

greater than the combustion rate, while the larger ones showed that the burner was capable to operate 

at any load without being overloaded of pellets. Even though, a reduction on the grate size (cross 

section 135 x 95 mm) with the rectangular shape, obtained a very good CO emission level, while 

overload of burner became an important problem mainly at full load (Ribeiro et al., 2019). Yin et al. 

(2008) states that in the fuel bed, the propagation of the flame fronts determines the releasing of 

volatiles and affects the heat output from a given grate area and the stability of combustion. 

2.3.3.2 Excess air ratio 

The combustion occurs, as the fuel requires the presence of a given amount of air (oxygen). For the 

condition of stoichiometric combustion (where all fuel is burned completely), the excess air ratio )(  

equals to 1 (Hansen et al., 2009). The percentage of excess air in the combustion is another indicator 

of the proportion of air in the mixture and the percentage of air exceeding the stoichiometric amount is 

defined in Eq. (2.11) (Ribeiro, 2012). An optimum excess air ratio is required for each system as stated 

by Burkhard and Russell (2010), where higher excess air ratios will result in a decreased combustion 

temperature and lower excess air ratios will result in inadequate mixing conditions. 

In practice, combustion will always take place with excess air  1 , since it is impossible to achieve 

complete combustion with a stoichiometric amount of air. In Table 2.3 the typical excess air figures are 

shown along with the corresponding oxygen content left in the flue gas (Hansen et al., 2009). In 

addition, the excess air ratio figure is to a great extent dependent on the combustion technology and to 

some extent on the fuel. In wood combustion, the amount of excess air ratio when burning wood pellets 

is typically lower than when combusting wood chips. Hansen et al. (2009) stated that the best 

combustion of wood fuels is attained at an excess air ratio    value between 1.4 and 1.6, while Yin et 

al. (2008) reveal that in the type of grate-firing, the overall excess air for most biomass fuels is normally 

set to 25% or above. 
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Table 2.3. Typical excess air ratio    and the resulting of air content in the flue gas. 

(Hansen et al., 2009). 

 Excess air ratio    O2, dry (%) 

Fireplace, open > 3 > 14 
Wood stove 2.1-2.3 11-12 
District heating, wood chips 1.4-1.6 6-8 
District heating, wood pellets 1.2-1.3 4-5 
Power plant producing heat, wood dust 1.1-1.2 2-3 

2.3.3.3 Residence time 

The correlation between CO burnout and residence time in an ideal stirring reactor is depicted in Figure 

2.7. It shows that the higher the combustion temperature and the oxygen content, the lower the 

residence time necessary to reach high CO burnout rate. The residence time is a function of the 

combustion chamber volume and combustion gas flow, swirl. The design of the combustion chamber 

has to guarantee the high residence times as well at high load operation and to avoid undesirable 

conditions (e.g. dead zones, insufficient mixing, etc.) (Burkhard and Russell, 2010). 

 

Figure 2.7. CO remaining as a function of residence time, combustion temperature and oxygen concentration                     

in an ideal stirring reactor (Leuckel and Roemer, 1979). 

2.3.3.4 Primary and secondary air ratio 

Air staging method is based in the principle that the primary and secondary combustion air is injected 

in clearly separated zones or combustion chambers (Burkhard and Russell, 2010). The design of an air 

supply system for primary air and secondary air, plays a very important role in the efficient and 

complete combustion of biomass (Yin et al., 2008). In this, the primary air is introduced through the 

fuel bed under the grate to promote its devolatilization, and secondary air is supplied above the grate or 

downstream of PA to complete the fuel oxidation (Ribeiro et al., 2019). In addition, the split ratio of 



Chapter 2. Literature review 

 

36 
 

primary air to secondary air tends to be 40/60 in modern grate-fired boilers burning biomass, instead 

of 80/20 in older units (Yin and Li, 2017), as older boilers are troublesome due to the lack of good flow 

measurement devices and monitoring equipment. Meanwhile, modern grate-fired boilers have four key 

elements such as a fuel feeding system, a grate assembly, a secondary air (including over-fire air) 

system and an ash discharge system (Yin et al., 2008). 

2.3.4 Combustion temperature 

Pastre (2002) states that incomplete combustion is mainly the result of low combustion temperatures, 

short residence times, bad mixing conditions with oxygen (or oxygen shortage) or combinations of these 

effects. The combustion temperature is influenced by several parameters such as moisture content 

(Obernberger and Thek, 2010), pellet length (Sikanen and Vilppo, 2012), and excess air ratio (Burkhard 

and Russell, 2010; Loo and Koppejan, 2008). High moisture content will decrease the combustion 

efficiency, the lower heating value and combustion temperature (Obernberger and Thek, 2010). The 

pellet length has also a significant effect on the combustion temperature, as increasing the pellets 

length, the average burning temperature is decreasing up to 31% (Sikanen and Vilppo, 2012). Among 

others parameters, a low combustion temperature results in incomplete combustion (Loo and 

Koppejan, 2008), and unburned fuel will exit through the chimney (Hansen et al., 2009). In addition, 

the necessary combustion temperature, which is approximately 900-1,000 °C, is sustained partly by 

the right design of the combustion chamber relative to the fired amount of wood pellets and partly by 

matching the amount of air to the amount of fuel that is used (Hansen et al., 2009). The theoretical 

combustion temperature as a function of moisture content and excess air ratio is shown in Figure 2.8 

(Burkhard and Russell, 2010). This can be explained by the effectiveness of the fuel and oxygen mixing, 

which is controlled by turbulence in the combustion zone. Whereas the turbulence is primarily 

influenced by the flow velocity of the combustion air. With increasing in the flow velocities, the mixing of 

fuel and air becomes increasingly ideal. This condition again results in lower amounts of air needed for 

the combustion and thus higher combustion temperatures. 
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Figure 2.8. The relationship between the adiabatic combustion temperature and 

the excess air ratio (Nussbaumer, 1989). 

2.3.5 NOx 

Nitrogen oxides (NOx) are a generic term for the sum of all nitrogen based gasses, from NO to NO2. The 

NOx gasses are unwanted because NOx is a greenhouse gas and it contributes to the acidification of 

precipitation (Hansen et al., 2009). In addition, NO and NO2 are the most hazardous of nitrogen oxides 

(ATSDR, 1975). Nitrogen oxides are produced partly during the combustion of fuels with nitrogen 

content (e.g. bio-fuels) and also in the boiler room by the nitrogen that is injected during combustion 

with the combustion air. Hansen et al. (2009) addressed the influence of the design and size of the 

boiler combustion chamber on the emission of nitrogen oxides. It is not possible to give completely 

plain guidelines for the design of boilers with low NOx emission but the main trends are (Hansen et al., 

2009; Burkhard and Russell, 2010): 

 High content of N in the fuel gives increased NOx emissions; 

 High combustion temperatures contribute to high NOx emissions; 

 Conversion of NO to NO2 in the atmosphere; 

 Some NOX may be formed from nitrogen in the air given certain conditions. 

Regarding the thermal route of NOx formation, this can be mitigated by reducing the primary air supply 

to the fuel bed and by recirculation of the exhaust gases back into the combustion chamber in order to 

lower the temperature and the oxygen content. Hansen et al. (2009) discuss the influence of fuel type 

in the NOX emissions in a small scale boiler (Table 2.4). 
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Table 2.4. Typical NOx emission in small scale boiler, normalized by the thermal output. 

(Hansen et al., 2009). 

Fuel Emission (NOx) Unit 
Wood pellet 130-300 mg/MJ 
Straw 130-300 mg/MJ 
Fuel oil 75 mg/MJ 
Natural gas 50-100 mg/MJ 

As stated in the previous section, NOx emissions from biomass increase with increasing N content in 

the fuel and with increasing combustion oxygen concentration (Pastre, 2002). The author referred that 

in line with the fuel nitrogen content, furnace design and operating conditions are significant parameters 

that influence the NOx emissions from boilers. It is also referred that there exists a trade-off between 

NOx emissions and those of unburnt hydrocarbons (UHC) and carbon monoxide. The decrease in the 

excess air ratio or oxygen concentration will result in lower NOx emissions but in increased emissions of 

UHC and CO. In fact, efficiency increases as the excess air ratio decreases until the losses due to 

incomplete combustion become too high. Recently the development of burners and stoves has been 

focused on achieving low emissions of UHC (Pastre, 2002). 

In order to decrease NOx emissions, both primary and secondary methods are used. In a primary 

method, an air staged combustion can be operated, which corresponds to a combustion air at two (or 

three) levels. At the first level (primary air), oxygen deficiency conditions are created such as the 

primarily formed nitrogen compounds can be reduced to molecular nitrogen (N2) if the residence time 

is sufficient. Secondary air (or tertiary air in some cases) is supplied downstream in the furnace after 

the reducing zone to enable complete burnout of hydrocarbons and CO (Pastre, 2002). As secondary 

methods they consist in flue gas cleaning techniques, such as non-catalytic reduction, or selective non-

catalytic reduction. Combined, a maximum 60-95% reduction can be achieved. The secondary methods 

can be applied but usually only for the larger combustion units. Table 2.5 shows the Austrian limiting 

values for emissions defined by ÖNORM EN 303-5 for automatically and manually fed furnaces that are 

fired with solid biomass fuels (Obernberger and Thek, 2010). 

Table 2.5. Emissions limits defined by ÖNORM EN 303-5. 

(Obernberger and Thek, 2010). 

Feed system CO NOx2) OGC Dust Unit 
Manual  1,100 150 80 60 mg/MJ1) 
Automatic 5003) 150 40 60 mg/MJ1) 
Manual4) 2,460 330 180 135 mg/Nm3 
Automatic4) 1,1203) 330 90 135 mg/Nm3 
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where: 1) Relating to LHV of the fuel; 2) Applicable only in wood furnaces; 3) At partial load of 30% 

nominal load the limiting value may be exceeded by 50%; 4) Conversion of mg/MJ to mg/Nm3 

(Obernberger and Thek, 2010), valid for dry flue gas and 10 vol.% O2. 

2.3.6 Ashes 

Ash results from solid biomass combustion and is the remaining mass after all the fuel is completely 

burned. Wood usually has only a few tenths of an ash percent. The temperature affects the formation of 

ash, as typically the ash begins to soften at 1,200 oC and becomes fluid at 1,300 oC, although this 

varies significantly between fuels. Table 2.6 shows ash melting temperature for a wide variety of fuels 

(Pastre, 2002). Ash needs to be well treated in the combustion of solid fuel, in order to minimize 

slagging, fouling, erosion, and corrosion (Borman and Ragland, 1998). Loo and Koppejan (2008) said 

that ash-forming elements are present in biomass as salts, bound in the carbon structure (inherent ash) 

or they are attendant as mineral particles from dirt and clay introduced into the biomass fuel during 

harvest or transport (entrained ash). Thus, the compounds in inherent ash are homogeneously 

dispersed in the fuel and are much more mobile compared to the compounds in entrained ash and, 

therefore, readily volatile and available for reactions in burning char. 

Figure 2.9 shows the mechanisms involved in ash formation in biomass combustion. A fraction of the 

ash forming compounds in the fuel is devolatilized and released to the gas phase, during combustion. 

This depends on the fuel characteristics, the gas atmosphere, and the combustion technology in use 

(Loo and Koppejan, 2008). For example, high combustion temperatures and a reducing atmosphere 

have been reported to enhance the devolatilization of the environmentally relevant heavy metals such as 

Zn, Pb, and Cd. 

Table 2.6. Ash melting temperature for a range of fuels (Pastre, 2002). 

Temperature (oC) Coal Wood 
chips 

Wood 
chips 2 

Pine 
sawdust 

Spruce 
chips 

Wheat 
straw 

Wheat 
straw 2 

Grey 
straw 

Fusion temperature 1,100 1,210 1,144 1,150 1,340 848 1,056 950 
Softening temperature  1,225 1,172 1,180 1,410 956 1,122 1,100 
Hemispherical stage  1,250 1,222 1,200 1,700 1,107 1,161  
Melting point 1,400 1,275 1,300 1,225 1,700 1,241 1,232  

The main elements in the biomass ash are potassium, calcium, sulphur, chlorine, silicon, and 

phosphorus (Magdziarz et al., 2016). Several studies have been conducted in improving the biomass 

combustion in a furnace by minimizing the problem occurring during the combustion due to ashes. 

Amongst the problems caused by the slagging and fouling of ash, include reduced heat transfer, 

corrosion, and erosion, which increased the probability of shutdown for maintenance and cleaning 
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(Fang and Jia, 2012). Reducing the ash formation during the combustion, adding an additive is one 

method beside the fuel mixing and leaching out the problematic elements from fuels before combustion 

(Wang et al., 2012). This study revealed that through the application of additives this will influence the 

chemical binding as the most important route to convert problematic ash elements into high-

temperature stable substances. 

 

Figure 2.9. Ash formation mechanisms in biomass combustion (Haslinger et al., 2004). 

A study on the particle formation mechanisms and the influence of different operating parameters on 

the particle emissions in a wood pellets combustion under fixed-bed conditions was conducted by 

Wiinikka and Gebart (2004). This study describes that the particles released from this combustion are 

formed in three different mechanisms namely coarse fly ash particles m)10( μ  (released by 

mechanical ejection from the fuel bed), submicrometer-sized fly ash particles (produced from the 

vaporization and nucleation of ash minerals) and, submicrometer-sized soot particles (produced from 

incomplete combustion). These different particles are produced from mechanical ejection from the fuel 

bed, the vaporization, and nucleation of ash minerals, and incomplete combustion respectively. 

2.4 Fuel devolatilization 

Devolatilization or volatile release is defined as an early stage occurring upon fuel particle feeding in a 

combustor. Devolatilization is an endothermic step where the heat is needed from the environment. In 

addition, devolatilization can be controlled either thermally, or by particle size and shape (Miccio et al., 

2013). Several parameters related to the devolatilization are presented as follows. 
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2.4.1 Thermogravimetric analysis (TGA) 

Thermogravimetric analysis is a useful tool used to determine the devolatilization rate of material in 

releasing the mass including the volatile matter during the thermal process and its fraction of volatile 

components. The decreasing of mass occurs under controlled conditions and the thermal process is 

taking place, with increasing temperature or time. Based on the mass evolution (Calvo et al., 2014) on 

the TGA curve three stages are identified. In the first phase weight loss takes place due to the moisture 

release (20 to 130 oC). The second stage corresponds to the devolatilization of the hemicellulose and 

cellulose components and their respective ignition (from 160 to 400 oC), and the third – the residual 

lignin decomposition and char formation (from 420 to 600 oC), (Ferreira, 2016; Paulauskas et al., 

2015). The weight losses for the thermal degradation of the biomass constituents including 

hemicellulose, cellulose and lignin components can be seen in Ferreira (2016). The mass loss and DTG 

curves of pine sawdust are depicted in Figure 2.10. From Figure 2.10, it could be explained as follows: 

1) moisture released; 2) maximum heat release; 3) burnout (Indicated by the point immediately before 

reaction ceases, when the rate of weight loss is down to 1%/min) (Ferreira, 2016), 4), 5) and 6) is first, 

second and third region respectively (Yorulmaz and Atimtay, 2009); 7) initial decomposition (referred to 

the beginning of the weight loss and it is defined as the temperature at which the rate of weight loss 

reaches 1%/min after the initial moisture loss peak in the DTG curve); 8) temperature and maximum 

combustion rate at first peak; 9) temperature and maximum combustion rate at the second peak 

(Ferreira, 2016). 

  
Figure 2.10. Mass loss and DTG curves for pine sawdust. 
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2.4.2 Mechanism of devolatilization 

The devolatilization occurs after moisture release (drying) (Miccio et al., 2013) when the temperature 

rises; the solid fuel begins to decompose and releasing volatiles as long as the drying of small fuel 

particle or a zone within the large particle is completed (Borman and Ragland, 1998). The 

devolatilization is referred to as the pyrolysis stage since the volatiles flow out of the solid through the 

pores and external oxygen cannot penetrate into the particle. The rate of devolatilization and pyrolysis 

products depends on the temperature and the type of fuel. 

2.4.3 The influence of variables on devolatilization 

Several variables influence the devolatilization on solid fuel such as temperature, particle size, and 

heating rate. The influence of those parameters on devolatilization was analyzed by using the TGA 

technique. 

2.4.3.1 Influence of temperature 

Temperature is one of the determined parameters on the devolatilization. Increasing in the temperature 

enhance the thermal decomposition of the material. Previous studies revealed that, depending on the 

fuel type, the devolatilization occurs between 180 oC and 360 oC (Ferreira, 2016), including for pine 

wood. Previous study shows that the thermal decomposition of Brassica pellet starts at 150 oC, and 

Poplar pellet starts to decompose at about 225 oC (Granada et al., 2013). In addition, the main 

devolatilization occurs at a maximum rate between 300 and 340 oC, and is mainly completed at about 

400 oC. 

2.4.3.2 Influence of particle size 

The particle size has an influence on the devolatilization rate (Daouk et al., 2015; Harun et al., 2009). 

The study conducted by Daouk et al. (2015) showed that increasing the diameter of pine wood particles 

produces a short delay in the TG and DTG curves. In addition, the result obtained from Harun et al. 

(2009) also shows that increasing the particle size the total degradation, activation energy and pre-

exponential factor decreased in both first and second reaction zones. Boriouchkine et al. (2014) also 

revealed that larger particle size has higher maximum mass loss rate when compared to smaller 

particles with two different wood content: pure spruce wood particles and mostly content of bark 

respectively. In addition, this indicates that samples are comprised of components with different 

reaction kinetics. 
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2.4.3.3 Influence of heating rate 

This technique of applying a heating rate in TG devices is that preheating the sample to a given 

temperature (To) followed by starting the experiment with a fixed nominal heating rate   , as in Eq. 

(2.16) (Ebrahimi-Kahrizsangi and Abbasi, 2008). 

tTT o .                     (2.16) 

Using different heating rates on pine wood particle shows that the duration of devolatilization is shorter 

when compared to drying and char combustion and decreases with the increasing heating rate. During 

the initial decomposition, the temperature is also decreasing with the increased heating rate. While the 

maximum combustion rate is increasing as a result of decreasing of the residence time of the sample in 

the furnace, and thermal decomposition was shifted to a higher magnitude with increasing of heating 

rate. The shift of curves to the right indicated that the weight losses occur at increasing temperatures 

(Garcia-Maraver et al., 2015). 
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3. MATERIALS AND METHODS 

This chapter describes the materials and methods applied throughout the experiment: wood pellets, 

boiler, small scale reactor, and TGA device. The combustion of pellets in a furnace evaluates: 

 Thermogravimetric analysis of wood particles; 

 Mass loss of pellets and the devolatilization of species in wood pellets; 

 The fuel/air supply and the relationship with the fuel bed. 

3.1 Combustion facility 

The schematic diagram of the test facility used in this study is presented in Figure 3.1. It consists of: 

the boiler unit (including heat exchanger pipes, combustion chamber and fuel grate), the ventilator, fuel 

storage, external cooling loop, the gas analyzer unit and computer and the data acquisition unit. The 

fuel is transported from the fuel storage tank by means of screw and is supplied on top of the 

combustion chamber by gravity. The ventilator drafts the air into the combustion chamber by primary 

and secondary air pipes working below atmospheric pressure. A vacuum pump was used to extract a 

sample of exhaust gas into the gas analyzer for measurement purposes. Before entering the vacuum 

pump, the sample was cooled and filtered in order to remove any moisture and particles. The computer 

unit, including a National Instrument data acquisition board, was used to monitor and control all the 

system. Each component of the facility will be explained in the following sections. 
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Figure 3.1. Experimental diagram. 

Notes: 

1. Pellets storage tank. 6. Stack. 10. Water pump. 
2. Feeding motor. 7. Air cooler heat exchanger. 11. Primary air tube. 
3. Feed auger. 8. Expansion vessel. 12. Secondary air tube. 
4. Boiler. 9. Flow meter. 13. Ignition coil. 
5. Ventilator.   

The nominal load of the boiler in this study was set at 20 kW. The boiler is 126.8 cm height and with a 

width of 42.64 cm and 35.1 cm in depth. The combustion chamber is 53 cm in height and with a cross 

section 30 cm x 25.3 cm. The combustion chamber is lined with the slabs of fire clay in order to 

increase the temperature inside the combustion chamber and avoid cold walls that would lower the 

combustion rates and lead to incomplete combustion. Useful heat is transferred to water by means of a 

double pass heat exchanger made up of 20 pipes buried inside the  80 L water tank. Those included: 

14 pipes with 38 cm height, 4 cm diameter, in three rows of 5, 4, and 5 pipes as depicted in Figure 

3.2; and 6 pipes in the back with 90.5 cm height and 4 cm diameter. 
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Figure 3.2. Heat exchanger pipes, bottom view. 

 
Figure 3.3. Boiler unit. 

 1. Primary air tube. 
2. Secondary air pipe. 
3. Fuel inlet. 
4. Ignition coil. 

5. Fire clay slabs. 
6. Grate. 
7. Exhaust. 
8. Heat exchanger. 

The total air flow rate is set by adjusting the ventilator draft and the primary/secondary air split is 

adjusted by throttling the primary air supply. The whole unit is covered by a jacket of rock wool to 

minimize the heat losses to the outside. The grate is installed underneath the combustion chamber and 

lock into place by screws. The grate is covered by the metal box and a sealing material (rock wool) was 

applied in the connection parts to prevent uncontrolled air entrance on those parts during operation. 

The primary air pipe is installed underneath and the secondary air is installed above the grate. The 

ignition coil is in the front of the grate box and the fuel inlet is on the top of the grate. The full scale of 

the boiler is described in Figure 3.3. 

The grate applied in this study was of rectangular shape, can be easily changed and three different 

cross sections areas according to the study were used. The grate model is schematically described in 

Figure 3.4, where 1 and 4 are primary and secondary air orifice (4 mm diameter) respectively, 2 is 

primary air orifice on the bottom (3 mm width), 3 is the ignition hole and 5 is secondary air inlet. The 

grate design can be seen in Annex (Figure A.1). 
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Figure 3.4. Grate unit. 

The suction ventilator (working frequency between 0 – 60 Hz) was installed in the exhaust duct to draft 

the air into the grate through primary and secondary air pipes, and also to release the exhaust through 

the stack. The thermal load is removed from the boiler through a cooling loop. In this, a circulating 

pump (maximum flow rate of 500 L/h) drives the cooling water through an air-cooled heat exchanger 

and back to the boiler. The flow rate is controlled by a valve and measured by a calibrated rotameter. 

3.2 Measurement techniques 

To conduct the experimental program, the operating parameters that needed to be determined include 

the excess air, thermal load, the split ratio of primary and secondary air, and the grate area. Also, the 

value of the mass flow rate of air and fuel were determined. 

3.2.1 Flow rate and velocity measurement 

Several measurement devices are applied to measure the flow rate of liquids and gases flowing through 

pipes or ducts such as orifice plate, venturi and nozzle meter. The incompressible steady fluid flow in a 

horizontal pipe of diameter (D) that is constricted to a flow area of diameter (d), is shown in Figure 3.5. 

The mass balance and the Bernoulli equations applied to the flow from section (1) to section (2) can be 

written as in Eq. (3.1) and (3.2) respectively, and in Eq. (3.3). 

Mass balance: 

1 1 1 2 2 2A A                           (3.1) 

When 1 2  , equation 3.1 becomes 1 1 2 2A A   

Bernoulli equation  21 zz  : 

gg

p

gg

p

22

2
22

2
11 





                  (3.2) 
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Combining Eqs. 3.1 and 3.2 and solving for velocity 2v  gives obstruction (with no loss): 

 
 4

21
2

1

2

 




pp
v                    (3.3) 

  being the diameter ratio (d/D). Regarding the flow past the obstruction, where there are some 

pressure losses taking place due to frictional effects, become inevitable. Thus, a correction factor, or 

discharge coefficient (Cd), which is experimentally determined, must be considered. The flow rate 

calculated for obstruction flow meters can be expressed as in Eq. (3.4) (Cengel and Cimbala, 2006). 

 
 4

21
0

.

1

2
.

 




pp
CAQ d                  (3.4) 

where, 4/2
20 dAA  , Cd depends on the   and the Reynolds number, Re. The experimentally 

determined data for Cd, for the flow meter, is expressed in Eq. (3.5) (Cengel and Cimbala, 2006). 

75.0
e

5.2
81.2

d
R

71.91
184.00312.05959.0C

           (3.5) 

Regarding the pressure generating in a pipe or channel, a detector such as a pressure transducer is 

used to record the oscillation in pressure. The manometer or pressure transducer shown in Figure 3.6 

is simply measuring the pressure difference p1 - p2. 

 
Figure 3.5. Flow through a constriction in a pipe. 

 
Figure 3.6. Pressure transducer. 

 

The excess air ratio    applied in this study is set at 1.5, 1.7, and 2.1. In determining the excess air 

ratio, the experiment was conducted to obtain the average value of oxygen on the gas analyzer and the 

reading was introduced into the calculation sheet in the excel file to compute the excess air ratio )( . 

This is calculated in Eqs. (3.6 – 3.8), which is referred to as the stoichiometry condition of pine wood. 

     xyxmxx C  .O%.O%/12/.%O%.O% 2222      (3.6) 

where, 
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     32/162/4/12/ SOHC mxmmmx           (3.7) 

 28/76.3 Nmxy                   (3.8) 

SNOHC %,%,%,%,% mmmmm
 are the mass percentage in the fuel for carbon, hydrogen, oxygen, 

nitrogen, and sulphur respectively, while 2O% is the percentage of oxygen in the flue gas. 

3.2.2 The split ratio of primary and secondary air 

The primary and secondary air flow rates are measured by special made inlet ports. These ports are of 

a bell mouth shape and machined from an aluminum billet. This shape provides a smooth, frictionless 

flow whose pressure drop (monitored by a pressure tapping at the throat) is related to the volumetric 

flow rate by a simple equation (Eq. 3.9). In this equation, the discharge coefficient can be neglected, as 

it is very close to 1. 


 p

dQ



 2

4/2                   (3.9) 

To obtain the best combination of primary and secondary air split ratio within an acceptable pressure 

drop range, the tube diameter of 21 mm and 26 mm were installed on both primary and secondary 

inlet channels respectively. The schematic diagram of the primary and secondary air tubes is present in 

Figure 3.7. The inlet tubes for primary and secondary air were manufactured and calibrated during a 

previous project on the same boiler. Three different split ratio (SR) were selected including 20/80, 

30/70 and 37/63 for every different geometry of the grate and air flow rate applied in this study (Table 

3.1). 

  

Figure 3.7. Primary and secondary air tube. 
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Table 3.1. Study parameters. 

No. 
Power 
(kW) 

Time  Mass fuel 
(kg/h) 

Total mass of air (kg/h) and 𝝀 PA : SA 

on off 1.5 1.7 2.1 
20 : 80 
30 : 70 
37 : 63 

1 10 8 12 2.11 18.52 20.94 25.86 
2 13 7 6 2.74 24.02 27.22 33.62 
3 16 13 6 3.37 29.56 33.50 41.38 

In Table 3.1 the columns with the on/off time refer to the feeding patterns that were defined for each 

one of the desired power levels. 

3.2.3 Fuel mass flow measurement 

To measure the mass flow of fuel (wood pellets), a digital mass scale was used, as shown in Figure 3.8 

with an accuracy of  0.1 kg. The mass flow of fuel is the ratio of the mass difference of wood pellets 

measured over a period of time. The mass flow of fuel was then given by Eq. (3.10).  

t

mm
m fi

f 



.

                   (3.10) 

where, 
.

fm  is fuel mass flow rate, mi is initial mass, mf is final mass, and t  is time at mi and mf. 

 

Figure 3.8. Digital mass scale. 

The thermal load or power selected for this study was set at 10, 13, and 16 kW. This value was 

determined based on the pre-experimental observation and the result obtained from the previous study 

shows that medium power (12 kW) produced less CO emissions (Ribeiro et al., 2013). However, the 

method for setting the power level of the boiler is not based on the direct measurement by the scale as 

explained below. The feeding mechanism was switched on continuously for a large period of time and 

the total mass of pellets was measured by weight difference. In this way, the average value of the pellet 

mass flux was calculated. This value was assumed to determine the length of time that the feeding 

mechanism is set on which is interrupted by more active periods as in a ON/OFF scheme. Based on 

the experiment and the previous study conducted by Ribeiro (2012) shown that the time interval for the 
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power of 20 kW is 20 s ON and 3 s OFF. By regulating the operating time on the LabVIEW program, 

then the desired power can be determined. By recording the parameters including the initial mass and 

final mass of pellets loaded to the boiler, the initial and final time and heating value of wood pellets. 

Theoretically, the power or thermal load (P) is calculated based on the mass of the fuel rate feeding 

)(
.

fdm , the time interval (tON, OFF), the heating value of pellets (LHV) and efficiency   . The example 

of the time interval for 5 s (ON/1) and 3 s (OFF/0) is presented in Figure 3.9. These time intervals are 

introduced into the formulation to obtain the power which is equal to 18.42 kW (Eq. 3.11). This means 

that another 1.58 kW needs to be added to obtain 20 kW, to have the same value with the result 

obtained from the experiment. This occurs as the result of the feed auger is still running when the 

engine is already instructed to stop. 

   .LHV
.

OFFON

ON
fd

tt

t
mP


                (3.11) 

Taking into account tON = 5 s; tOff = 3 s for the measured fuel feeding rate )kg/h46.4(
.

fdm  and 

assuming the LHV = 17,100 kJ/kg the power will be 14.82 kW. 

  kW24.131.
kg

kJ
17100.

35

5
.

h

kg
46.4 


  , then, 13.24 kW + 1.58 kW = 14.82 kW. 

 

Figure 3.9. Time interval for pellet feeding (5 s ON and 3 s OFF). 

3.2.4 Temperature measurement 

The temperature field can be measured by thermocouples, which are pairs of junctions between two 

different metals. A voltage, approximately proportional to the temperature difference between the two 

junctions, is induced known as thermoelectrical effect. Usually, different metal combinations are used 

depending on the temperature range and sensitivity that needs to be acquired (for instance, 

platinum/platinum-rhodium or tungsten/tungsten-molybdenum) (Warnatz et al., 2001). 
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The thermocouple location in the boiler is described in Figure 3.10. The reference numbers described 

on the boiler are recorded in the excel file. The temperature characteristics for some standard 

thermocouple materials shows in Figure 3.11 (Morris and Langari, 2012) and type K thermocouple 

(chromel-alumel) was used to measure the temperature in the grate (see Figure 3.12). The standard of 

thermocouple type can be seen in Annex (Table A.2) (AN107). 

 

Figure 3.10. Thermocouple location on the boiler. 

Legend: 

0. Cold water. 6. T at 25 mm. 12. Water HE top center. 
1. Hot water. 7. Chamber top back. 13. Plain exit right. 
2. Combustion chamber. 8. Chamber top left. 14. Plain exit left. 
3. T exhaust. 9. Water HE outlet. 15. T at 5 mm. 
4. Pellets inlet. 10. T at 60 mm. 16. Ignition. 
5. Chamber top front. 11. T at 15 mm.  
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Figure 3.11. Temperature characteristics for some standard 

thermocouple materials (Morris and Langari, 2012). 

 

 

 

 

 

Figure 3.12. Type K thermocouple installed in 

the fuel bed. 

In this study, the temperature in the fuel bed was measured in four different positions such as 5, 15, 

25 and 60 mm. The thermocouples were introduced from the bottom of the grate as shown in Figure 

3.13. 

 

Figure 3.13. Thermocouple unit. 

3.2.5 Data collection 

After the experimental is terminated, the data were collected and transferred into the excel worksheet 

for subsequent analysis. The data is later organized into tables and graphs to enable the analysis, 

including: 

1) The influence of the grate dimensions, excess air, the thermal load and the split ratio of primary 

and secondary air on the fuel bed temperature, gas emission, boiler efficiency and ashes on the 

grate. 
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2) The influence of the different parameters on the stability of the fuel bed. 

Sample preparation 

All the experiments were carried out with pellets whose properties are fully listed in Annex A (Table A.3). 

The pellet is certified according to the ENPlus standard which is rated as A1 class pellets, (see 

characteristics of A1 class in Annex A (Table A.1)). The most relevant properties are summarized in 

Table 3.2. 

Table 3.2. Properties of pine wood pellets. 

Proximate analysis (wt.%, as received) Ultimate analysis (wt.%, dry ash free) 
Moisture 6.9 Carbon 50.8 
Volatile matter 77.80 Hydrogen 5.39 
Ash 0.6 Nitrogen 1.55 
Fixed carbon 14.70 Sulphur 0.037 
Lower Heating Value (MJ/kg) 17.1 Oxygen 42.22 

3.3 Flue gas analyzer  

The schematic diagram of the flue gas analyzer unit is presented in Figure 3.14. The gas sample is 

extracted from the stack by means of a vacuum pump. Before entering the gas analyzer, the sample is 

cooling down in the heat dissipation loop. In order to prevent the moisture from entering the gas 

analyzer, the water was condensed in the condensation tube. The filter is used to prevent the 

unnecessary particles flowing to the gas analyzer. The gas analyzer is a set of sensors used for the 

measurement of the gases. It contains infrared carbon dioxide and visible spectrum oxygen detectors 

and connects to any PowerLab* data acquisition system or any device that records an analog signal. 

The gas analyzer measures carbon dioxide, oxygen, nitrogen oxides, and carbon monoxide 

concentration according to its specification (ADInstruments). The gas analyzer is show Figure 3.15, and 

the full assembly measurement unit in Figure 3.16. 
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Figure 3.14. Flue gas analyzer scheme. 

Notes: 

1. Flue gas analyzer. 3. Cooling loop. 5. Vacuum pump. 
2. Data acquisition system. 4. Filter. 6. Water inlet. 

 

(a) (b) 

Figure 3.15. (a) Multi-gas analyzer 9000, and (b) NOx gas analyzer. 

Species are measured in a sample diluted with a variable % of oxygen. It is standard procedure to 

normalize that concentration to a fixed dilution of oxygen, which for biomass application is 13% O2. In 

order to correct the concentration of a given species (Xi), diluted to a certain concentration of oxygen in 
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the exhaust gases (%O2) for a reference oxygen level (%O2ref) one follows the conversion equation 

(3.12), (Turns, 2000; Ribeiro, 2012). 

2refmix

2mix
22ref

O%@N

O%@N
O%@XO%@X ii              (3.12) 

where, iX  is the corrected concentration of a given species (ppm), mixN represents the sum of the 

number of moles of all species in the exhaust (kmol), considered here in a dry gas, i.e. an absent of 

water and considering that H2, CO and other pollutants present in the exhaust gases are in negligible 

quantity. The mole fraction of dry corrected to a specific O2 is defined as following (Eq. 3.13). 
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where, dry2,O%  the concentration of O2 in the exhaust (%), xC  and yH  is the proportion of mole 

carbon and hydrogen (kmol). 

 

Figure 3.16. Gas emissions collection unit. 

Before starting the experiment, one should run the calibration of the gas analyzer. The gas analyzer was 

calibrated with a nitrogen-diluted reference gas with concentrations for CO = 5,000 ppm; O2 = 20%, 

CO2 = 10%, while NOx is set at 3,000 ppm. To conduct the calibration of the gas analyzer one can 
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follow the detailed calibration procedure in Annex B. After the calibration of the measurement tools, 

then one can follow the experimental procedure in Annex B to perform the experiment. 

3.4 Data acquisition and control system 

3.4.1 Data acquisition mechanism 

A data acquisition and control system was used to control and monitor the system to work properly. All 

the systems are integrated and programmed in a language of LabVIEW 8.6 to perform the operating 

system. The data acquisition used in this system was developed in the Department of the Mechanical 

Engineering University of Minho. The data acquisition and control system applied in the boiler is made 

up of several instruments including a controller of the National Instruments, a relay rack, and a power 

supply. The schematic diagram of the data acquisition and control system of the boiler is depicted in 

Figure 3.17. The National Instrument control system is composed of various elements as described 

here. 

1) Chassis: Model PXI-1052 which functions as a motherboard, where all the remaining modules 

are connected, and possible to connect up to 4 PXI and 8 SCXI modules. 

2) Controller: Works as a computer on the system using the Windows XP operating system. The 

model is PCI-8105 and based on the processor of Intel Core Duo with 512 MB of RAM and 60 

GB hard drive. 

3) Acquisition board: Consists of a PXI-6259 model board which allows the connection of other 

more specific boards including PCI, PCI Express, PXI, PXI Express, and USB. It has 32 inputs 

and 4 analog outputs with 16 bits and also has 48 inputs/outputs. The board also allows being 

demultiplexing in several more specific modules, such as a thermocouple, analog input, and 

the digital output module. After demultiplexing, the board also provides several functions, which 

emits the output voltage signals variable from 0-10 V DC. In order to be able to be used 

directly, then it was connected to a CB-68LP terminal board.  

4) Thermocouple module: Consists of a specific SCXI-1102 module for reading the thermocouple 

incorporating a cold joint reading. The thermocouple module has 32 channels with a low pass 

filter of 2 Hz per channel and a protector from the highest tension of more than 42 V. This 

module is coupled with a terminal of SCXI-1303 model. 
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5) Analog input module: Consists of SCXI-1100, which provides the input of 32 analog channels of 

10 V. The connections are fitted with the terminal board and paired with the SCXI-1300 

module. 

6) Digital input module: Consists of a model board of SCXI-1162, which provides 32 digital 

channels and also paired with the SCXI-1326 terminal box. 

7) Digital output module: Consists of a model board of SCXI-1163, which provides 32 digital 

channels, with the voltages of between 0 and 5 V which depends on the power supply applied 

from an outside source. This module is also paired with a terminal board of SCXI-1326. 

 

Figure 3.17. Schematic diagram of data acquisition system. 

The main components are integrated as follows: 

1) The relay frame: allows a separate power supply to the various devices operating with a 

230 V AC voltage of the control devices with a voltage of 5 V DC. The relays are activated by 

a voltage of 24 V DC and the National Instruments control system operates at 5 V DC, the relay 

box is also incorporated with a voltage transforming circuit from 5 to 240 V DC. 

2) The power supply: it is used in the system has two direct outputs of 5 and 12 V DC and an 

adjustable output, in this case, it is set to 24 V DC. This source feeds not only the digital output 

board with 5 V DC and the relay box with 24 V DC but also the pressure sensors used in the 

nozzles and in the orifice board that require 5 V DC power. 

3) The control of the fan speed: it was made of an inverter with a programmable frequency. This 

inverter (brand NAIS), has a digital input 0/5 V DC that corresponds to the order of ON-OFF 

and was connected to the SCXI-1163 digital output board. It has a variable input of 0 to 10 V 
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DC that allows the frequency regulation of the motor. This input was connected to the variable 

output of 0-10 V DC available on the board of PXI-6259 through the CB-68LP terminal board. 

4) Data acquisition system. 

3.4.2 LabVIEW 

LabVIEW is an object based programming language created by National Instruments. The program 

logics work on the principle of the data flow, which is treated and manipulated through pre-defined 

blocks of primary functions, which can be edited simultaneously with exit orders. The logic gives this 

language an optimal effect of data acquisition and processing as well as control and automation. The 

application developed for the experimental installation in order to acquire, manipulate, register and 

export the data received from the various transducers and analyzers. Besides, the application also 

allows the boiler to be controlled in a completely “manual mode” or by signals received by transducers, 

namely temperature “automatic mode”. The user interface is simple and allows the experimentalist to 

define the various parameters in the beginning and end of the tests, such as temperature reading, gas 

emissions, amongst others. The temperature reading and the corresponding the thermocouple location 

was presented in Figure 3.10, while other parameters including the gas emissions reading are 

presented in Table 3.3. The reading data are saved automatically and ready to convert into the excel 

sheet for the analysis process. In addition, the LabVIEW is also very useful in order to visualize and 

monitor graphically and in a real-time the parameters investigated during the experiment. The LabVIEW 

8.6 and the user interface are shown Figure 3.18. 

Table 3.3. Parameters reading in data acquisition. 

Channel  Reading parameters 
0 %O2 
1 CO 
2 CO2 
3 NOx 
4 - 
5 - 
6 SA Tube 
7 PA Tube 
8 - 
9 - 
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Figure 3.18. The LabVIEW 8.6 and the user interface. 

3.5 Uncertainty analysis 

The error in a measurement is a result of a difference between the measured value (x) and the true 

value (ASME, 1998). The difference between the two is the total measurement error ( ). There are two 

components of total measurement error: systematic error and random error. Since the measurement 

observation is the combination of the true value of the parameter and the total measurement error, then 

there is an inherent uncertainty in the use of the measurement to represent the true value. The random 

error is the portion of the total measurement error that various in a repeated measurement of the true 

value. The systematic error is the portion of the total measurement error that remains constant in 

repeated measurements of the true value. The uncertainty caused by random errors can be solved by 

repeating the measurements (Oliveira, 2016). The total systematic errors, the elemental systematic 

error can be calibrated out, while those which are negligible, ignored, unknown and whose limits must 

be estimated (ASME, 1998). The schematic example to describe the comparison between random and 

systematic errors by using the target practice board is presented in Figure 3.19. Through the target 

practice board, the random and systematic error can be explained within four scenarios as follows 

(Oliveira, 2016): 

(a) High precision with small systematic error and high accuracy with small random error; 

(b) Low precision with large systematic error and high accuracy with small random error; 

(c) High precision with small systematic error and low accuracy with large random error; 

(d) Low precision with large systematic error and low accuracy with large random error. 
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(a) (b) (c) (d) 

Figure 3.19. Comparison of the random and systematic errors, using the example of target practicing                     
(Oliveira, 2016). 

Regarding the uncertainty due to the random error, since the random of error introduces the variation 

or scatter in repeated measurements of a parameter, the uncertainty may be estimated by inspection of 

the measurement scatter. The population standard deviations )(  is a measure of the scatter about 

the true population mean )(  caused by the random error. Equation 3.14 represents the interval for a 

normal distribution including approximately 95% of the population (ASME, 1998). 

 2                       (3.14) 

Since the sample standard deviation ( xS ) is more accurate for small values of measurement number 

(n), thus it is preferable in comparison to the population standard deviation (Oliveira, 2016). The 

sample standard deviation is calculated by the following equation (Eq. 3.15) (ASME, 1998). 
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where x  is the mean of the individual measurement ix  given by equation 3.16, 
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The estimated standard deviation of the sample mean  
xS  is calculated by equation 3.17, 

n

S
S x

x                       (3.17) 

The uncertainty which is defined as an interval, about the measured include the probability of the true 

value with the interval as given by equation 3.18, 

R = Ux                        (3.18) 
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where U is called uncertainty or error or margin of error in the measurement of x, and for the 

convenience, U is always defined to be positive  Ux   (Taylor, 1997). In terms of uncertainty for a 

95% confidence interval, the uncertainty is calculated through the Standard Deviation of the Mean by an 

expansion factor (B). Factor B is obtained from the t-student distribution table for 95% and using the 

degrees of freedom (df), where df = n – 1 (Oliveira, 2016). The expansion factor (B) is defined in 

equation 3.19. 

BSU X .                      (3.19) 

Then the experimental data can be calculated by two simple rules (see Eq. 3.20) based on the size of n. 

2/)(:52 minmax xxUn                (3.20a) 

BSUn x .:5                   (3.20b) 

In the experimental tests, the random error can be solved by repeating the measurement number in 

which the value of the parameters recorded in the long running boiler. The systematic error of the 

measurements was solved by calibrating the systems or gas analyzer before doing the measurement.  

To know the combustion efficiency, instead of analysing the gaseous and particulate emissions, the 

calculation of the boiler efficiency through a heat exchanger is of a great interest for commercialization 

of the investigated biofuels (Lajili et al., 2015). The boiler efficiency is calculated according to the NF EN 

303-5 standard as conducted by Lajili et al. (2015). 

3.6 Operation system 

Correct knowledge on how to operate the system is an important part before doing any experiment. In 

order to formalize the experimental methodology, a step-by-step procedure sheet was developed as a 

guideline to operate the boiler (see Annex B). The experimental procedure includes calibration of the 

measurement devices, running the system and safety issues. The general information for operating the 

boiler in this study can be explained as follows. 

3.6.1 Feeding procedure 

During the feeding process before the ignition, the thermal load of wood pellets should be set at 

approximately 10 kW and the air flow rate at 9.4 x 10-3 m3/s (23.8 Hz at the controller). While during 

the ignition process, if the accumulation of smoke is observed without combustion then the airflow 

should be gradually increased up to 1.62 x 10-2 m3/s (40 Hz) to initiate the combustion. After the 
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combustion is initiated, set the power to 7 kW and it will require approximately 5 minutes for the 

combustion to reach the a stable state condition before adjusting for the required power. This sequence 

is introduced to avoid the instability of combustion during the start-up phase which can compromise the 

combustion process. 

To initiate the combustion, pellets were supplied to the top of the grate by the auger. The ignition coil 

was installed close to the grate to allow the hot air entering to the grate after passing through the 

ignition coil. The boiler was provided with two-stage air channels including primary and secondary air 

channel. On the primary air channel, most of the air was introduced at the bottom of the grate through 

orifices of rectangular shape (3 mm x 26 mm), and some air was also introduced at the bottom side of 

the grate through orifices of 4 mm diameter. Regarding secondary air flow, orifices with a diameter of 4 

mm were located on the top of the grate, 92 mm above the fuel bed. Meanwhile, the numbers of the 

orifices are determined based on the cross sections area of the grate. 

3.6.2 Measurement condition 

The gas analyzer was used to measure the CO, O2, CO2, and NOx composition, and the CO was 

corrected to 13% of O2. In each experiment, the boiler was running for 4 hours. If instabilities and 

irreversible build up of pellets on the grate were observed the boiler was shut down. The temperatures 

inside the fuel bed were measured in the center of the grate at four different heights. The temperature 

on the hot and cold water pipes was also recorded which enabled to calculate the boiler efficiency. 

3.6.3 Operating conditions for wood pellets combustion 

This section presents the set of operating conditions of the boiler which was used throughout this work. 

It includes the thermal load, excess air (EA), grate area (GA), and the primary/secondary split ratio (SR) 

applied. This boiler has the minimum and maximum thermal load in the range of 7 – 20 kW (Ribeiro et 

al., 2013). When operating the boiler at maximum thermal load (20 kW), the boiler should be operated 

with the excess air ratio > 1.4 otherwise the fuel will be overload as the consumption of wood pellets is 

lower than fuel flow rate. On the other hand, at a lower thermal load (7 kW) the boiler should be 

operated with the excess air ratio above 1.7; otherwise, the fuel cannot be burned well, yielding high 

levels of smoke. In addition, this condition will create condensation in the chimney as a result of the low 

temperature in the exhaust gases which is below to dew point. The set of thermal loads applied in this 

study is presented in Table 3.4. 
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Specially designed air pipes are included in the boiler to provide the primary air through the grate to 

promote the devolatilization of fuel (Ribeiro et al., 2019), and maintain the char combustion while the 

secondary air on the top for the purpose of efficient mixing with volatile gases to complete the fuel 

oxidation. With this combination, the minimum and maximum SR for primary to secondary air is 11/89 

and 37/63 respectively. At lower SR, less air supply on the primary section will slow down the burning 

process (Ribeiro et al., 2019), which results in poor combustion. 

Regarding the grate area, this boiler is manufactured with rectangular shape grate fitting, where the 

cross-section area can be changed. The larger grate section area is 120 x 120 mm and the height can 

be adjusted between 50 - 70 mm, but the optimum grate height should be around 60 mm. Three 

different sizes (cross section area) were applied in this experiment, which will be described later. 

Table 3.4. Thermal load. 

 
Excess air (%) 

Thermal load (kW) 
10 13 16 

50 a,b,c a,b,c a,b,c 
70 a,b,c a,b,c a,b,c 
110 a,b,c a,b,c a,b,c 

Notes: a = SR 20/80; b = SR 30/70; c = SR 37/63. 

3.7 TGA device 

To observe the thermal decomposition of pine wood, the TGA technique was performed in Laboratory of 

Metallurgy of the University of Minho. The TA Instruments SDT 2960 simultaneous DSC-TGA instrument 

is presented in Figure 3.20. In the TGA test, different parameters can be assessed to investigate the 

thermal decomposition of the biomass material such as particle size, material, heating rate, flow rate, 

and diluting gas. To conduct the TGA test the wood pellets were milled into dust and sieved into 

different batches, according to the particle size desired. The temperature in the TGA test was set to a 

maximum of 750 oC, as at this range (above 700 oC) fuel samples display similar behavior regardless 

of the diluting gas (Yuzbasi and Selçuk, 2011). In differential scanning calorimetry (DSC) measurement, 

the reading temperature was measured based on the temperature difference between the empty cup 

(reference cup) and the cup with the samples (sample cup). Thus, a difference in heat flow between the 

sample cup and reference cup is measured using thermocouples in the balance arms. The SDT 2960 

provides differential thermal analysis data with the high T  sensitivity (0.001 oC) and allows the 

detection of small endothermic and exothermic transitions, the results being expressed either in oC or 

Vμ . As far as the TGA is concerned, weight is measured by a taut-band meter movement by using an 
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infrared light-emitting diode source and a pair of photo-sensitive diodes. The taut-band meter movement 

is located at the rear of each balance arm to measure the weight change of the sample 

(www.artisantg.com). 

 

Figure 3.20. DSC-TGA device unit. 

3.7.1 Experimental procedure 

From this TGA data, the kinetics reaction of the pellets was calculated by using the change in the extent 

of reaction   . Meanwhile, the rate of the chemical reaction (k) is calculated by applying an Arrhenius 

equation (Ferreira, 2016). Then, the kinetic properties of biomass fuels under non-isothermal conditions 

are calculated by applying the Coast-Redfern equation (Ebrahimi-Kahrizsangi and Abbasi, 2008) which 

is an integral method and involves the thermal degradation mechanism as described in Aboulkas and 

Harfi (2008). The schematic diagram of the procedure followed in the TGA experiment is depicted in 

Figure 3.21. 

 

Figure 3.21. TGA experiments procedure. 
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3.7.2 Sample preparation 

Regarding the TGA experiment, 6 mm diameter wood pellets were milled into dust by means of a 

hammer and a knife mill. The knife mill, with a sieve limit of 2 mm of diameter has a processing 

capacity between 0.2 to 50 kg/h and a power of 1.5 kW (Ferreira, 2016), is presented in Figure 3.22. 

 

Figure 3.22. Knife mill device. 

Once milled, the ground dust passed through a sieving device with the vibration unit to separate the 

wood particles, as presented in Figure 3.23. The resulting batches were organized into three different 

classes: < 0.063 mm, 0.125 – 0.25 mm and > 1 mm. Figure 3.24 shows a sample of the original 

pellets and the three size classes resulting from the milling/sieving operation. The properties are listed 

in Table 3.2. 

 

Figure 3.23. Calibrated sieving machine and vibration unit. 
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Figure 3.24. Pellets and pine wood particles. 

3.7.3 Operating conditions for TGA experiment 

To conduct the TGA analysis for the various particle sizes, air flow and heating rates were determined. 

Three particle sizes including smaller than 0.063 mm, 0.125 - 0.25 mm and larger than 1 mm were 

used with a heating rate of 5, 10, 20 and 51 ºC/min. In addition, heating rates of 101 and 243 oC/min 

were applied but only for particle size between 0.125 - 0.25 mm. In this set of experiments, the air flow 

rate was always maintained at 100 mL/min. Besides, air flow rates of 10, 50, 100 and 150 mL/min 

were also applied for the three different classes of particle size and the heating rate was maintained at 

10 ºC/min. Pine wood particles with the initial mass of approximately 6 mg were used. This TGA device 

can be operated up to a maximum temperature of 1,500 oC, and a heating rate up to approximately 

250 ºC/min. The size of the particles are limited to 6 mm, the sample weight to 50 mg and the air flow 

rate to 150 mL/min. Before introducing the sample, the equipment was set to the desired value. The 

device was running as the setting conditions applied and terminated automatically as the sample is fully 

combusted. In addition, the duration of the experiment depends on the heating rate and diluting 

temperature applied, as the heating rate increased a shorter time is required for the combustion to be 

completed. 
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3.8 Mass loss experiments 

To conduct the mass loss and elemental analysis in order to understand the behavior of wood pellets 

combustion, a small scale reactor was used. This experiment was conducted mostly in the Laboratory 

of Foundry where the reactor was located. A preliminary set of experiments was carried out at the 

Energy and Fluids Laboratory by using a reactor with a temperature range limited up to 250 oC (see 

Figure 3.25 (a1)) with a setting of 144, 191, and 225 oC. This set of experiments was developed as a 

test basis for the experimental procedure. The second set of experiments was carried out in a small 

scale reactor with a thermal capacity of 1.36 kW and a temperature range up to 1,150 oC. The testing 

temperatures were defined at 264, 351, 444, 541, 650 and 734 oC. This reactor is 100 mm diameter, 

170 mm height (see Figure 3.25 (a2)); the cup is 30 mm diameter and 33 mm height (see Figure 3.25 

(b)), and scale with 10 mg accuracy as shown in Figure 3.25 (c). 

 
 

 

(b) 

 

(a1) (a2) (c) 

Figure 3.25. (a) The small scale reactor, (b) Cup, and (c) Scale. 

3.8.1 Experimental procedure 

To understand the mass loss of the burning pellets, a small holding cup was used in the experiments. 

Before conducting the mass loss experiment, the cup was preheated for a period of time, until its 

temperature was uniform. By applying the transient lump capacity equation one could assess the 

adequacy of the preheating stage. To compare the experimental data with the transient equation 
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calculation, then the thermocouple was attached to the surface of the holding cup. From this test it 

could be concluded that the time required for the cup to reach its equilibrium temperature is 15 

minutes. Once this condition was attained, one could proceed with the mass loss experiment. 

After a series of preliminary tests, the procedure converged to the following steps (see Figure 3.26). 

1. Set up the desired temperature. To set the desired temperature one needs to measure the 

actual internal temperature instead of the scale reading. By introducing the thermocouple into 

the reactor with the data logger, the correct temperature can be obtained. 

2. Preheat the reactor. Start preheating the reactor for the experiment. 

3. Prepare the sample. To obtain the weight of the sample, the scale with 10 mg accuracy was 

used. 

4. Introduce the sample. After 15 minutes of the preheating time, introduce the sample into the 

reactor. 

To obtain the accuracy result then the test was conducted for 3 times for one piece of data.  

The holding cup was the subject of a series of tests in order to ensure that it had no influence upon the 

results. The selected design consisted of a light stainless steel mesh that combined lightness and an 

“open” structure to enable the fast response of the sample inside the reactor. 

After the test is terminated, the sample with the cup is weighted. The mass loss was obtained from the 

difference between the cup with the sample and the empty cup weighted at approximately 7 minutes 

after the preheat state. 

3.8.2 Elemental analysis of pellets 

At selected times, the sample was removed from the reactor and rapidly cooled down. Then the 

elemental analysis was conducted to the solid sample in order to understand the devolatilization of the 

pellets. The elemental analysis was determined at different temperature and time as applied for the 

mass loss experiment. The elemental analysis was carried out in CVR (Centro para a Valorização de 

Resíduos) Guimarães, using a CHN/CHNS Carbon/Hydrogen/Nitrogen/Sulfur/Oxygen determinators. 

To ensure reproducibility this elemental analysis the sample is prepared with the same method as for 

the mass loss experiment. Figure 3.26 describes the experiments procedure for mass loss and 

elemental analysis. 
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Figure 3.26. Experimental diagram of mass loss and elemental analysis. 

3.8.3 Temperature profile of the pellets 

To understand the temperature profile of the pellets during the pellets burning, then the single pellet 

experiment can be implemented. Pellets with a diameter of 6 mm were drilled along its axis (orifice 

1.35 mm) and a Type K thermocouple (1.25 mm) was introduced through the pellet to measure its 

core temperature. From this experiment, the temperature profile in the center of a wood pellet can be 

obtained and compared with the analytical profile for different heating using a simple model for 1D 

transient conduction in a cylinder (Cengel, 2002). The reactor used to conduct this experiment is 

depicted in Figure 3.25 (a1). 

3.8.4 Moisture content of pellets 

The mass loss of dry and wet pellets can also be conducted as a function of time and temperature. To 

remove the moisture content, then the pellets were placed in the reactor (Figure 3.25 (a1)) at a 

constant controllable temperature. The moisture content of the pellets can be observed by measuring 

the mass loss at a different times such as 1, 12, 24 and 208 hours at 105 oC. The moisture content 

value is recorded when it reaches the constant value with the minimum time applied. To conduct the 

experiment, first set the internal temperature of the reactor at 105 oC for a period of 24 hours. This 

procedure is in accordance with standard  SS 18 71 20 (Hansen et al., 2009). 

3.8.5 Sample preparation 

The pine wood pellets with 6 mm diameter, 12 - 15 mm length, 2.08 – 3.94 g weight and in each test 

three pellets were used. The samples were weighted once before the test was started. The properties of 

pine wood pellets were presented in Table 3.2, and they are fairly uniform from a large batch supplied 

by the manufacturer, as it is a certified product. In developing the elemental analysis there are several 
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methods used in sample preparation including Gel Capsule method, Thin Foil method, Manual 

preparation and using the Foiler. The Manual method was followed (Leco, 2007): 

1. Place the sample cup holder on the balance. 

2. Place foil into the sample cup holder and tare the balance. 

3. Remove the foil and the sample cup holder from balance and add sample to foil. 

4. Place the sample cup holder and foil on the balance and weigh. 

5. Remove the foil from the sample cup holder twist to seal. 

Enter the mass in the spreadsheet or automatically by pressing print on the balance.   
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4. TGA ANALYSIS OF PINE WOOD PARTICLES 

This chapter discusses the thermal decomposition and kinetics of pine wood particles using the TGA 

technique. Several parameters were evaluated in this study including the heating rate, air flow rate, and 

particle sizes. The properties of pine wood pellets used in this study were previously presented in Table 

3.2. 

4.1 Test conditions 

In conducting the TGA tests, a wide combination of air flow and heating rates was applied. From the 

batches selected by sieving (see section 3.7.2) three particle sizes were tested: smaller than 0.063 

mm, in the range 0.125 - 0.25 mm and larger than 1 mm. In this way a broad band of the sizes could 

be evaluated. Regarding the heating rate, four levels were selected for all the samples: 5, 10, 20 and 

51 ºC/min. In addition, heating rates of 101 and 243 oC/min were applied for the middle particle size 

(0.125 - 0.25 mm). This represent, the upper limit that could be tested with the present apparatus. In 

this set of experiments the air flow rate was maintained at 100 mL/min. Besides, air flow rates of 10, 

50, 100 and 150 mL/min were applied for the three different classes of particle size while the heating 

rate was kept at 10 ºC/min. Each sample had an initial mass of approximately 6 mg. 

4.2 Thermal decomposition of pine wood particles 

The TGA and the derivative thermogravimetric curve (DTG) profiles directly obtained during the 

experiments enable the identification of various key temperatures, such as: initial decomposition (Tid), 

peak (Tmax) and burnout (Tb) temperatures. Tid corresponds to the beginning of the weight loss and it 

is defined as the temperature at which the rate of weight loss reaches 1%/min after the initial moisture 

loss peak in the DTG profile. Tmax is the point at which the maximum reaction rate occurs. Tb is 

identified when the last peak comes to the end and the temperature at which the sample is completely 

oxidized. It is taken as the point immediately before reaction ceases, when the rate of weight loss is 

down to 1%/min (Ferreira, 2016; Yuzbasi and Selçuk, 2011). The ignition temperature (Ti) is obtained 

by applying the TG-DTG tangent methods (Magalhães et al., 2017; Li et al., 2006). Furthermore, these 

experiments enable the identification of the combustion rate and the heat released at different 

temperatures and times. All this information allows characterizing the thermal decomposition of the 

pine wood samples. From the mass loss rate data, the ignition index (D) and combustion index (S) are 

obtained through Eqs. 4.1 and 4.2 respectively (Vamvuka and Sfakiotakis, 2011). 
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maxR  is the maximum combustion rate, tmr and ti is the time that corresponds to maximum combustion 

rate and the ignition time that corresponds to ignition temperature Ti respectively. 
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max           (4.2) 

where Ra is the average mass loss rate and Tb is the burnout temperature. 

4.2.1 Influence of the heating rate 

Figures 4.1, 4.2 and 4.3 (a), dashed lines, allows to identify the three different stages of biomass 

combustion: moisture loss, volatile matter loss, and char residue loss. This section discusses the 

thermal decomposition of pine wood particles using the TGA analysis. The weight loss (%), specific heat 

flow (W/g) and rate of mass loss (%/min) for the different particle size at various heating and air flow 

rates were examined. The weight loss and heat flow data are grouped in the same figure on the l.h.s. In 

it, the dashed line represents the mass loss and the solid line refers to the heat flow. The graph on the 

r.h.s. refers to the rate of mass loss. The colors in both graphs are matched. Following the procedure 

described above, the data obtained at various heating rates for the three particle sizes are summarized 

in Tables C.1 through C.3 (see Annex C). These data include the most relevant variables that identify 

the various transitions occurring during the couplet combustion of biomass. It is possible to observe 

that the heating rate affects the weight loss curves. The figures also include a horizontal line at the 

moisture content of the samples  %7 . As can be observed in the Figures 4.1, 4.2 and 4.3 (b) that, 

the thermal decomposition, for all particle sizes examined, starts at approximately 260 ºC for low 

heating rates and, at 211 ºC for high heating rates, see Tables C.1, C.2 and C.3. Therefore, as the 

heating rate increases, the initial decomposition temperature decreases. This can be explained that, at 

low heating rates (< 10 oC/min), the initial decomposition starts at a higher temperature because the 

heating release was taking place at a slower rate and allows enough time for water to be removed 

completely from the sample. But at higher heating rates (> 20 oC/min), the initial decomposition starts 

at a lower temperature because as the faster heating there is not enough time for the moisture to be 

fully removed from the sample; the drying phase is controlled by the water diffusion inside the biomass 

structure. This was indicated by the mass loss of the sample that is below 7% after the initial 

decomposition. A major loss of mass follows, where the main devolatilization occurs with a maximum 

combustion rate between 319 to 365 ºC for particles smaller than 0.063 mm, 321 to 401 ºC for 
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particles between 0.125 and 0.25 mm and, 321 to 369 for particles larger than 1 mm. From these 

figures, it can be seen that, as the particle size and the heating rate increase, the maximum 

combustion rate increases although, the effect of the heating rate is much stronger. This condition 

could be a result of the total time of the sample in the furnace which decreases with increasing heating 

rate. 

 
(a) 

  
(b) 

Figure 4.1. (a) Weight loss and heat flow, and (b) Rate of mass loss (particles smaller than 0.063 mm). 

The data show that the heat flow increases with the heating rate, which according to Kok and Özgür 

(2013) is due to thermal lag. During the thermal decomposition, it is possible to identify two different 

exothermic reaction regions. The first region is associated with the combustion of light volatile matters 

which provides the reactivity to biomass fuels, while the second region is associated with the 

combustion of char (Kok and Özgür, 2013). Consequently, heat, in general, is released between 

approximately 300 ºC and 500 ºC, reaching the highest value in the vicinity of 450 ºC, for all pine wood 

particles analyzed at lower heating rates (5, 10 and 20 ºC/min). However, for higher heating rates, as 

is the case at 243 ºC/min, the temperature range is higher reaching 700 ºC and the highest value 

close to 680 ºC. This is due to the higher thermal gradient inside the particles, and then the char 

combustion is completed later at a higher temperature. 

Therefore, according to the DTG curves, as depicted in Figures 4.1, 4.2 and 4.3 (b), when the heating 

rate is increased, the thermal decomposition was shifted to a higher magnitude. The reason for these 

shifts is due to different heat transfer and kinetic rates, delaying the sample decomposition. In addition, 

the intensity of degassing and the thickness of the gas cushion around the particle increase and may 

temporarily slow down the heat flux inside the particle (Kluska et al., 2019). 
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(a) 

 
(b) 

Figure 4.2. (a) Weight loss and heat flow, and (b) Rate of mass loss (particles between 0.125 - 0.25 mm). 

Another effect is that heat transfer is not as effective and efficient at slower heating rates and, therefore, 

the minimum heat required for cracking of the particles is reached later, at higher temperatures (Mani 

et al., 2010). Conversely, at lower heating rates, the heating of the pine wood samples occurs more 

slowly, yielding a more effective heat transfer to the inside of the particles and, as a consequence, the 

cracking takes place more efficiently. 

The heat flow increases with the higher heating rate and the temperature at which the maximum heat 

flow occurs shift to the higher value which corresponds to the char combustion stage where the volatiles 

are almost completely oxidized. 

Figures 4.1, 4.2 and 4.3 (b) describe the peak temperature for the various heating rates applied. The 

lower the peak temperature the easier the ignition of the pine wood particles will be. The combustion 

reactivity is proportional to the height of the DTG peak so that it is clear that higher heating rates 

correspond to the most reactive of combustion. 

In Figures 4.2 and 4.3 (a) (for particles of medium and large sizes), at high heating rates, only one peak 

is visible. This is because at a high heating rate the heat release was very high, the material reaches a 

given temperature in a shorter time and the thermal decomposition starts earlier than at a low heating 

rate (Kluska et al., 2019), as indicated by the initial decomposition temperature (see Table C.1 – C.3). 

For example at a heating rate of 243 oC/min, combustion is completed in less than 4 minutes. It is also 

observed that, as the heating rate increases, there is a shift to higher temperatures for the initiation of 

decomposition process (Kluska et al., 2019). In addition, this increase in temperature is independent of 

the particle size which suggests that temperature gradients inside the sample push the initiation of the 

decomposition to higher temperatures. This is because at a high heating rate the yield of volatile 

materials was higher and it occurs during the first stage of volatiles combustion while it delayed the 

-200

-100

0

100

200

300

400

500

600

700

800

900

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800

H
e

at
 f

lo
w

 (
W

/g
) 

W
e

ig
h

t 
(%

) 

Temperature (°C) 

5 °C/min
10 °C/min
20 °C/min
51 °C/min
101 °C/min
243 °C/min
Moisture

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800

-D
T

G
 (

%
/m

in
) 

Temperature (°C) 

5 °C/min
10 °C/min
20 °C/min
51 °C/min
101 °C/min
243 °C/min



Chapter 4. TGA analysis of pine wood particles 

 

76 
 

thermal degradation process (Vamvuka and Sfakiotakis, 2011), due to the increase in thermal gradient 

inside the sample at a higher heating rate. This is indicated by the value of the ignition and burnout 

temperatures (Table C.1 – C.3) that shifted to the higher values. This observation is in agreement with 

the work by Vamvuka and Sfakiotakis (2011) and Kok and Özgür (2013). Shen et al. (2009) stated that 

a high heating rate will not give sufficient time for heat to be transferred to the center of the particle and 

leave a high-temperature gradient within the particle. In addition, increase the heating rate increases 

the residue at the end of the experiments as revealed by Mani et al. (2010). This feature is not 

observed in the present work which shows that there is no consistent trend as far as the heating rate is 

concerned. 

 
(a) 

 
(b) 

Figure 4.3. (a) Weight loss and heat flow, and (b) Rate of mass loss (particles larger than 1 mm). 

It is important to note that this trend was observed for all particle sizes. Meanwhile, the remaining mass 

(the mass that is observed based on the heating rate and temperature applied) (Table C.1 – C.3) shows 

a different trend or inconsistent behavior which may be influenced by the uncertainty either from the 

instruments or random selection of the testing sample from the bulk of the material (see Figure 4.4 for 

particle 0.125 – 0.25 mm). Figure 4.4 also presents the combustion characteristic referred to Table 

C.2, which indicates that the parameters such as the initial decomposition temperature (see Figure 4.4 

(a)) and burnout time tends to decrease as increasing of the heating rate compared to the other 

parameters applied (see Figure 4.4 (b)). Such behavior is also observed for other particle sizes: < 0.063 

mm and >1 mm. Figure 4.4 (b) also shows that when increasing the heating rate, there is limited for 

the heating rate that may be due to the thermal gradient. Since the composition of the sample which 

may be varied with either more ash or volatile compositions. This condition may also be observed for 

different air flow rates (Table C.6 – C.8), (in Annex C), after the burnout time the remaining mass show 

an inconsistent pattern. One would expect that once the combustion is completed only the ashes were 
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present. However one may observe that the data shows a wide variation and also, not a clear trend 

(Figure 4.4 (c)). This may be due to either from the selection of the testing sample or uncertainty in the 

instruments as stated before. To verify the randomness hypothesis, three tests with the same 

conditions at 10 oC/min, 100 mL/min and middle particle size range (0.125 and 0.25 mm) were 

conducted (see Figure 4.5). The figure obviously shows the different values of the remaining mass 

obtained as an indication of the effect of the randomness in the sample. One has also to refer that all 

other parameters (included in Table C.2) were verified. This observation may point to the hypothesis of 

sample randomness. 
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(c) (d) 

Figure 4.4. The combustion behavior test at different heating rates for particles between 0.125 – 0.25 mm:                      

(a) Max. comb. rate and temperature at various conditions, (b) Max. heat release and burning time,                                                         

(c) Remaining mass, and (d) Heat release. 

 
Figure 4.5. The remaining mass of the three tests in the same condition with middle particles size. 

Mass loss through the conversion process was calculated on the basis of three different stages that are 

defined by the characteristic temperatures identified in the TGA curve (Magalhães et al., 2017). While 

the first stage refers to the decomposition of the fuels before ignition, the second stage is associated 

with the main combustion stage, and the third stage concerns char combustion. The mass loss in the 

first stage was calculated between the initial decomposition (Tid) and to the ignition temperature (Ti). 

The second stage is bounded by the first peak after moisture release in DTG curves. The third stage 

corresponds up to the temperature of the second peak in DTG curves. The mass losses in such three 

stages at different heating rates and particle sizes are presented in Table C.4 (see Annex C). This shows 

that the total mass loss increases with increasing heating rate as the amount of lignin that is converted 

into char is reduced. This observation is in agreement with the results presented by Hoekstra et al. 
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(2012). The value of mass loss in the first stage indicates that at a high heating rate the mass loss is 

higher than at a low heating rate for all particles. Table C.4 shows that most of the mass loss occurs in 

the second stage which accounts for approximately 50% of the total mass loss. This corresponds to the 

combustion of light volatile matters (Kok and Özgür, 2013). 

Following the procedure previously described the ignition (D) and combustion (S) indexes are 

summarized in Table C.5 (see Annex C), for different heating rates. The results show that the ignition 

index is correlated with the ignition temperature. The better ignition performance was observed at a 

higher ignition index, for all particles sizes. The value of the combustion index also follows a similar 

trend (see Figure 4.6 (a, b)), where the value increases with the heating rate for all particle sizes. The 

figures also show that there is no significant effect of the particle sizes on the ignition and combustion 

indexes. 
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(b) 

Figure 4.6. Combustion parameters of the pine wood particles at different heating rates: (a) Ignition index, and                  

(b) Combustion index. 

4.2.2 Influence of air flow rate 

Figures 4.7, 4.8 and 4.9 show the weight loss (%), heat flow (W/g) and the rate of mass loss (%/min) 

for the three pine wood particle sizes examined at four different air flow rates (10, 50, 100 and 150 

mL/min), the heating rate was set at 10 oC/min. 

The dashed lines in Figure 4.7 (a), show the weight loss for particles smaller than 0.063 mm. It is 

possible to see that the mass loss plot have a similar behavior at different air flow rates. However, after 

the devolatilization stage, there are differences in mass loss rate. In this way, with middle air flow rates, 

50 and 100 mL/min, the mass loss occurred earlier when compared with other air flow rates. These 

differences can be seen in the DTG curves in Figure 4.7 (b) in the second peak for the 100 mL/min air 

flow rate. Therefore, at 100 mL/min, during the char combustion, the mass loss increased and, 

consequently, in the heat flow curve (continuous line in Figure 4.7 (a)), it is possible to see that more 

heat was released at 100 mL/min during the devolatilization and char combustion stages. For particles 

between 0.125 and 0.25 mm similar results were obtained (Figure 4.8). However, during char 

combustion, the mass loss is independent of the air flow rate, as can be seen in Figure 4.8 (b) and, the 

heat flow decreases significantly when compared with the results presented previously at 100 mL/min. 

Furthermore, as can be seen in Figure 4.8 (a), a higher heat flow was observed at 100 mL/min. 
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(a) 

 
(b) 

Figure 4.7. (a) Weight loss and heat flow, and (b) Rate of mass loss (particles smaller than 0.063 mm). 

Figure 4.9 presents the results of the experimental data for the particles larger than 1 mm. As can be 

seen in Figure 4.9 (a), at 10 and 100 mL/min the mass loss during the drying process occurred earlier 

and, during devolatilization and char combustion the mass is slower at 150 mL/min. 

 
(a) 

 
(b) 

Figure 4.8. (a) Weight loss and heat flow, and (b) Rate of mass loss (particles between 0.125 and 0.25 mm). 

Figure 4.9 (b) shows, at the second peak, a trend similar to that observed for particles below 0.063 mm 

in diameter. However, the second peak occurred at 100 mL/min but also at 10 mL/min and 150 

mL/min. 
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(a) 

 
(b) 

Figure 4.9. (a) Weight loss and heat flow, and (b) Rate of mass loss (particles larger than 1 mm). 

Consequently, the heat flow (Fig. 4.9 (a)) displays a higher value at the second peak for 10, 100 and 

150 mL/min. It should be noted that although the maximum heat flow peak is higher in the case of 

particles smaller than 0.063 mm at 100 mL/min, more heat was released in the experiments with 

particles greater than 1 mm, for various air flow rate in this study except at 50 mL/min. Therefore, as 

could be expected, more energy is released with increasing the particle size at different air flow rates. 

Following the procedure described earlier in this chapter, the main thermal parameters from the TGA 

curve are summarized in Table C.6 through C.8 (see Annex C), depending upon the particle size. From 

these results, it can be said that there is a negligible influence of the air flow rate on the thermal 

decomposition of the biomass particles. The main devolatilization occurs at a maximum combustion 

rate between 328 to 332 ºC for particles smaller than 0.063 mm, 332 to 334 ºC for particles between 

0.125 - 0.25 mm and, 330 to 335 ºC for particles larger than 1 mm. In this value, it can be seen that, 

as the particles size and the air flow rates increase, the maximum combustion rate increases slightly. 

This may result from the surface area of the particle, where an increase in surface area of the particles 

minimizes mass and heat transfer limitations and improves conversion efficiency (Manouchehrinejad et 

al., 2018). 

Another feature is that for a heating rate of 10 oC/min the air flow rate has no influence on the 

relationship between the moisture release temperature and the initial decomposition temperature. That 

is, at this heating rate the drying stage is fully completed before the devolatilization commences. Only at 

very high flow rates the temperatures converge (see Table C.6 – C.8). In fact, the influence of the gas 

flow rate is negligible as depicted in Figure 4.10 for most of the variables of interest, taking the data 

with the particles with a diameter between 0.125 and 0.25 mm. Figure 4.10 (b) shows that the burnout 

time is almost constant for different air flow rates, but the MHr is increasing with air flow rates and then 
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significantly decreasing at 150 mL/min. This indicates that the heat release is higher at 50 and 100 

mL/min for different air flow rates (see Figure 4.10 (d)), the same behavior being observed for particles 

< 0.063 mm and > 1mm. 

 
(a) 

    
(b) 

  
(c) (d) 

Figure 4.10. The combustion behavior test at different air flow rates for particles between 0.125 – 0.25 mm:                    

(a) Max. comb. rate and temperature at various conditions, (b) Max. heat release and burning time,                                                         

(c) Remaining mass, and (d) Heat release. 
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Again, the remaining mass shows (Fig. 4.10 (c)) a wide variability that is not consistent with the 

composition of biomass. Following the procedure applied above for the mass loss calculation in the 

three different stages, the influence of air flow rate and particle size is presented in Table C.9 (see 

Annex C). It shows, that the mass loss in the first, second and third stage for all particles is between 

7.62 - 9.16%, 46.25 - 53.40%, 28.87 - 36.56 respectively. The total mass loss for three particles size 

indicates that higher mass loss and lower residues were obtained for an air flow rate of 50 mL/min. 

While the total mass losses and unaccounted substances (the mass difference between the total mass 

loss and ash with 100% that is observed within the three stages) are between 85.63 - 98.23% and 1.17 

- 13.77% respectively. 

Table C.10 (see Annex C) presents the different air flow rates on combustion parameters of the pine 

wood particles. The results show that for different air flow rates the value for the ignition index (D) and 

combustion index (S) on the ignition temperatures were observed with no consistent trend (see Figure 

4.11). This trend indicates that different air flow rates have no significant contribution to ignition 

performance. 

 

Figure 4.11. Combustion parameters of the pine wood particles at different air flow rates. 

4.2.3 Influence of particle size 

Figure 4.12 – 4.15 shows the influence of particle size for various heating rates while the air flow rate is 

kept at 100 mL/min. The figures show the mass loss (dashed lines) and heat flow (solid lines). Overall 
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the influence of the particle size is of small magnitude. The mass loss for three different particles size 

has the same behavior, even though the mass loss for small particles (< 0.063 mm) occurs earlier 

compared to the middle and larger particles size. This result is in agreement with that obtained by 

Neves et al. (2011). The amount of char produced by small particles (< 0.063) tends to be lower when 

compared with middle size and larger particles. However, at a certain heating rate (such as 20 oC/min, 

see Table C.4), (in Annex C), the middle and larger particles size have the lower residues. This 

condition indicates that particles may contain components with different reaction kinetics as suggested 

by Boriouchkine et al. (2014). The heat flow for three different particles in Figure 4.12 (a) – 4.15 (a) 

shows that for a heating rate at 5 oC/min the middle and larger particles have a high heating release, 

but the opposite was observed for the heating rate of 10 oC/min. In addition, the small particles release 

heat earlier or at a lower temperature than the larger sizes. During the experiment, the heat release for 

three different particles size at a low heating rate (< 10 oC/min) is between 300 oC and 500 oC while 

for the high heating rate (> 20 oC/min) is between 320 oC and 580 oC. This indicates that at a high 

heating rate the heat release was taking place later and at a higher temperature due to the sample 

inertia. Figure 4.12 (b) – 4.15 (b) show DTG for three different particles size at every heating rate. It is 

observed that at a low heating rate (5 oC/min), the mass loss rate was more uniform both in the 

second and third stage combustion compared to that observed at a heating rate above 10 oC/min. This 

condition shows that for different particles size, at a lower heating rate the combustion is more efficient 

than at a higher heating rate. 

 
(a) 

 
 (b) 

Figure 4.12. (a) Weight loss and heat flow, and (b) Rate of mass loss (for heating: 5 oC/min). 
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(a) 

 
 (b) 

Figure 4.13. (a) Weight loss and heat flow, and (b) Rate of mass loss (for heating: 10 oC/min). 

 
(a) 

 
 (b) 

Figure 4.14. (a) Weight loss and heat flow, and (b) Rate of mass loss (for heating: 20 oC/min). 

 
(a) 

 
 (b) 

Figure 4.15. (a) Weight loss and heat flow, and (b) Rate of mass loss (for heating: 51 oC/min). 
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Figure 4.16 presents the combustion characteristic for different particle sizes at 10 oC/min and 100 

mL/min. Figure 4.16 (a) shows that except for MCR for the 1st and 2nd peaks all the parameters are 

lower for the smaller particle and have an almost constant value for the middle and larger particle sizes. 

The MCR at 2nd peak (Figure 4.16 (a)) and MHr (Figure 4.16 (b)) tend to have the same behavior. The 

remaining mass (Figure 4.16 (c)) shows the same pattern for the different heating and air flow rates. 

The heat release (Figure 4.16 (d)) for different particle sizes shows inconsistent behavior which may 

indicate that there is no influence of the particle sizes on the amount of heat release. 
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(c) (d) 

Figure 4.16. The combustion behavior test at different particle sizes for the heating rate 10 oC/min and air flow rate        

100 mL/min: (a) Max. comb. rate and temperature at various conditions, (b) Max. heat release and burning time,                    

(c) Remaining mass, and (d) Heat release. 

4.3 Kinetic analysis of pine wood particles 

From the TGA data the kinetic parameters can be derived using the 1st order Coats-Redfern equation 

(Ebrahimi-Kahrizsangi and Abbasi, 2008) as described by Eqs. (4.3, 4.4 and 4.5). For the calculation of 

the thermal kinetics, the Coatse-Redfern equation is an appropriate method to be applied (Garcia-

Maraver et al., 2015; Wang et al., 2012). The kinetics of the solid reactions is calculated by using the 

change in the extent of reaction ( ) given by Eq. (4.3), (Ebrahimi-Kahrizsangi and Abbasi, 2008): 

fi

ti

mm

mm




                     (4.3) 

where mi is the initial mass, mt is sample mass at time t, and mf  is the mass at the end of the reaction. 

The rate of the chemical reaction k is given by an Arrhenius type equation (Eq. 4.4): 
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where E is the activation energy (kJ/mol), T is the absolute temperature (K), R is the universal gas 

constant (kJ/kmol.K), and A is the pre-exponential factor (min-1). In order to calculate the kinetic 

properties of biomass fuels under non-isothermal conditions, the Coast-Redfern equation is applied. 

This is an integral method and involves the thermal degradation mechanism as described by Aboulkas 

and Harfi (2008) through Equation (4.5): 
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where   is the heating rate (K/min). According to Eq. (4.5), a plot of the term in left side versus 1/T 

corresponds to a straight line in a –ln plot whose slope is –E/R and an intercepts at  EAR /ln , from 

which the values of E and A can be obtained. Figure 4.17 depicts the application of the method for one 

case. This method can be applied seperately to either the second or the third stages (defined by the 

first temperature and second temperature peaks respectively) or to the overall temperature range 

(Ferreira, 2016). In defining the combustion stages several authors have different procedures. 

Magalhães et al. (2017) considered three stages with the first stage defined between the initial 

decomposition and ignition temperature, and the second and third stages are characterized by the first 

and second peak release. Moisture release stage is not considered. Mani et al. (2010) followed by 

Daouk et al. (2015), and Ferreira (2016) amongst others considered three stages including 

dehydration, volatile combustion, and char combustion. Shen et al. (2009) considered two different 

stages to define the kinetic model which includes a first stage and second stages associated to solid 

combustion (char and gas), and char combustion (gas and ash) respectively. The kinetic analysis 

procedure applied in this study followed the method used by Mani et al. (2010). In this study, the linear 

correlation factor shows a good result mostly for the second and third stages (R2 > 0.90), while for the 

total combustion the fitting is poorer (R2 < 0.85) for more data examined. 

 

Figure 4.17. Kinetic parameter for three different stages at particle size is 0.063 mm, HR is 5 oC/min, and             

the air flow rate is 100 mL/min. 
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4.3.1 Influence of the heating rate 

Table C.11 – C.13 (see Annex C) present the kinetic parameters for the combustion of pine wood 

particles at different heating rates for particles < 0.063 mm, 0.125 - 0.25 mm, and > 1 mm 

respectively. 

Figure 4.18 shows that the value for activation energy for three different particle sizes at different 

heating rates have the same behavior. The value for activation energy in the second stage decreases 

with increasing heating rate. In the third stage, the activation energy tends to decrease and oscillate 

with an increase in the heating rate. While in overall combustion the activation energy slightly decreases 

with an increase in the heating rate, which can be seen more clearly for particles < 0.125 and 0.25 

mm. As stated by Mani et al. (2010) that at a lower heating rate the heat transfer is more effective and 

efficient, and it provides better heat transfer inside the particle (Mishra and Mohanty, 2018). In 

addition, the higher activation energy indicates a slower reactivity (Garcia-Maraver et al., 2015). Dhyani 

et al. (2018) also stated that a higher value of activation energy indicated the presence of strong 

chemical bonding in the chemical species, and inversely. This condition is observed for all different 

particle sizes. While in the overall combustion the activation energy for particles size 0.125 - 0.25 mm 

at the highest heating rate (243 oC/min) the activation energy is lower than others, which is associated 

with the highest reactivity. 
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(b) 

 
(c) 

Figure 4.18. Activation energy vs heating rates for particles: (a) < 0.063 mm, (b) 0.125 - 0.25 mm, and (c) > 1 mm. 

4.3.2 Influence of the air flow rate 
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presented in Figure 4.19. It shows that the value for activation energy for three different particle sizes at 

different air flow rates presents the same behavior. The value of activation energy in the second stage 

and overall combustion is not too much different. In the third stage for different particle sizes, the 

activation energy does not show a clear trend. In addition, only the smallest of the particles show an 

activation energy that is significantly different from the other sizes, for the 2nd and 3rd stages, although 

the influence on the overall value is negligible. From the data it is observed that in the 2nd stage (early 

step of devolatilization at lower temperature) the smaller particles are the most reactive while the large 

ones exhibit the highest activation energy. As the presence of lignin is associated with lower 

decomposition rates (Burhenne et al., 2013) one expects that a fine grinding of biomass may break the 

larger molecules of lignin and, so, contribute to a higher reactivity. Harun et al. (2009) stated that less 

collision occurs by increasing the particle sizes and therefore slower reaction will take place thus 

causing the thermal degradation characteristics and kinetic parameters to decrease regardless of the 

reaction zones. 

 

Figure 4.19. Activation energy vs air flow rates for particles: (a) < 0.063 mm (size 1), (b) 0.125 - 0.25 mm (size 2), and    

(c) > 1 mm (size 3). 
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stages as can be seen for middle size particles, this result is similar with the result obtained by Shen et 

al. (2009). The influence of particles size on the combustion reactivity at different air flow rates show 

almost the same behavior, where the reactivity is slightly constant for each stage. 

  
(a) 

 

(b) 

 
  (c) 

Figure 4.20. Activation energy vs heating rates for three particles size: (a) < 2nd stage, (b) 3rd stage, and                           

(c) Total combustion.
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5. MASS LOSS AND ELEMENTAL ANALYSIS OF PINE WOOD PELLETS IN A 

SMALL SCALE REACTOR 

This chapter discusses the mass loss of wood pellets performed in a small scale reactor designed to 

investigate the influence of temperature in the devolatilization of wood pellets. This investigation is 

based on the determination of mass loss and composition as a function of time. In this way one can 

obtain information of the devolatilization process in a commercial grade fuel. 

5.1 Test conditions 

The experimental apparatus and procedure were previously described (see Chapter 3, section 3.8). 

Basically, a pellet sample was heated on a constant temperature environment and, at specific time 

intervals, the sample mass loss and the elemental composition (based on the proximate and ultimate 

analysis) were measured. The data were obtained at different ambient temperatures: 264, 351, 444, 

541, 650 and 734 oC and at time intervals of 30, 60, 120, 180, 240, 300, 600, 900, 1,200 and 

3,600 s. The properties of pine wood pellets used in this study were presented in Table 3.2. 

A preliminary set of experiments was carried out on an alternative test facility, whose temperature was 

limited to a maximum of 250 oC. Although the scope of such experiments is limited, they provided the 

basis for fine tuning the procedure. The methods and results are detailed in Annex D. 

5.2 Results and discussion 

5.2.1 Mass loss of wood pellets 

The mass loss of wood pellets was calculated as the difference of the initial mass and final mass (Eq. 

5.1). 

fil mmm                      (5.1) 

where ml  is a mass loss, mi is the initial sample mass, mf is the final mass of the sample. 

The mass loss as a function of time and temperature is presented in Figure 5.1. The temperature 

reported is the actual temperature inside the reactor, because it was observed a gap between the set 

up and actual temperatures. The horizontal dotted line, at 84.7%, represents the percentage of volatile 

matter for the pine wood pellets, on wet basis (see Table 3.2). 
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Figure 5.1. Mass loss of wood pellets vs time at temperature 264 – 734 oC. 

The data plotted show that the mass loss increases for any specific temperature; the higher the 

temperature, the faster the pellets volatilize. The results also show that most of the devolatilization 

occurs in the first 5 minutes of the process, depending on the temperature. For very low temperature 

(264 oC) the mass loss occurs at a very slow rate, as the experiment was extended for over one hour. 

In any case this temperature is above the one that defines the initial decomposition of biomass (204 – 

261 oC) (including hemicellulose and lignin), as shown in Chapter 4. This observation is in agreement 

with the TGA tests which have shown that the reaction kinetics is very slow at such low temperatures. 
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Because this stabilization is in the range of 7 – 8%, it suggests that the drying process is independent of 
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For the highest temperatures (650 – 734 oC) it is observed that most of the volatile matter is released 
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In order to investigate the influence of the initial moisture of the pellets and the transition between the 

drying and devolatilization phases, a set of tests was carried out with dry pellets. The experiments were 

limited to the initial 240 s of the process and the results are presented in Figure 5.2. From the data one 

may observe that the initial mass loss is due to the moisture release as the rate of mass is higher for 
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wet pellets than that for dry pellets. Water diffusion is more effective which is more evident for low 

temperature (low heat rate). In fact for the lowest temperature (264 oC) the dry pellets do not lose any 

mass at all in the initial 240 s. Because this temperature is above initial decomposition temperature, 

the fuel volatiles will eventually be released as one can conclude from the data represented in Figure 

5.1. As the pellet is brought into higher temperature, the fuel volatiles are released and the presence of 

water inside the pellet structure delays the fuel devolatilization due to the phase change enthalpy. With 

the temperature increase (and so the heat rate), the fuel devolatilization (mass loss observed in dry 

pellets) increases at a higher rate, and earlier in the process. For the highest testing temperatures the 

temperature rise is so fast (high heat rate) that dry pellets appear to devolatize faster than wet pellets 

even in the initial stages of reaction. Because of the sampling procedure, at 30 s (1st data point) we are 

not able to capture the initial moisture release from the biomass. This observation is in agreement with 

the results obtained with the TGA. Eventually in the long run all the samples (wet and dry) converge for 

the same rate of mass loss as all the moisture should have been released by this time. 

 
Figure 5.2. Mass loss of dry and wet pellets. 

The temperature range between 400 – 700 oC includes the primary and secondary pyrolysis where 

volatile gases are released including water, tar, permanent gas, and char, while the range of 700 – 800 

oC is referred as the gasification phase (Neves et al., 2011). 

5.2.2 Elemental analysis of wood pellets 

The structure of biomass is composed of Cellulose (cell walls of biomass material), (C6H10O5)n which 

represents 40 to 45%; Hemicellulose ((C5H8O4)n abundant in SO4, Cl, NO3 and Si (OH)4) represents 20 
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to 35% of the dry weight of wood and Lignin (C11H12O4)n representing 15 to 30% of the dry weight of 

wood (Borman and Ragland, 1998). The elemental analysis was conducted over time at different 

temperatures. By applying the same test for the mass loss experiment, then the result of the elemental 

analysis can be obtained. Figure 5.3 presents the preliminary test to observe the behavior of the 

elemental composition during the combustion of wood pellets in a small scale reactor with the 

temperature range of 1,150 oC, in order to determine the time length required for the other samples. 
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(b) 

Figure 5.3. Elemental analysis of wood pellets at T = 650 oC: (a) in percentage, and (b) in gram. 

For each data point in the relationship between the mass loss and temperature, the composition of the 

remaining fuel was determined in terms of volatiles (C, H, N, O), fixed Carbon and ash. The results are 

presented in Figure 5.3 as a mass ratio (a) and as the total mass (b). The data in Figure 5.3 (b) shows 

that the volatile matter is released in a very short time (at this temperature within the initial 4 – 5 min) 

while the ratio of fixed Carbon and ash steadily increases and, later in the oxidation process, constitutes 

most of the remaining matter Figure 5.3 (a). After about 5 minutes there are no significant changes in 

the gas composition which means that only the char combustion is taking place. It is also observed that 

the rate of conversion for the volatile is similar for all compounds, although Nitrogen shows a higher 

rate of conversion. 

After approximately 10 min, it is observed a steady reduction of volatiles which, on the long run, 

approaches zero coupled with a much slow oxidation of fixed Carbon. The ash content remains 

approximately constant, within the accuracy of the instrumentation. 

Because the mass loss occurs in the early stage, all subsequent tests are analyzed for that period. 

Figures 5.4 through 5.9 depict the influence of temperature in the devolatilization process. In these, the 

time scale was adjusted according to the total reaction time in order to highlight the initial 

decomposition phase. As mentioned, the tests were carried out at 264, 351, 444, 541, 650 and 734 

oC. 
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From the data, it can be concluded that the rate of mass loss increases with the temperature. This 

increase in the reaction kinetics coefficient is in agreement with the results obtained with TGA. In all, 

the pattern is similar to that described above: the volatiles are released at a similar rate although 

Nitrogen shows a higher diffusion coefficient. Looking at the data on a mass basis, it is observed that 

the mass of fixed Carbon increases during the initial devolatilization phase before its subsequent 

oxidation in the later stages of the devolatilization. This suggests that there is Carbon diffusion from the 

volatile fraction to the fixed fraction. This mechanism occurs over a period of time that is inversely 

proportional to the testing temperature. Taking into consideration that the heating rate is dependent 

upon the testing temperature one may postulate that the diffusion between the volatile and fixed 

fractions of Carbon occurs at low temperature. Also, it can be concluded that this time is directly 

correlated with the devolatilization of other volatiles, such as O, N and H. Taking as an example, a 

temperature of 444 oC (see Fig. 5.6) the maximum mass of fixed Carbon occurs at approximately 240 

s which is the time frame for the nearly complete devolatilization of the volatile matter occuring at the 

same time. This is observed for all the other test conditions. This time is correlated with the testing 

temperature in Figure 5.10. where dT is the temperature difference between the reactor and the initial 

temperature. The data also suggests that the time for Carbon migrating to the fixed fraction tends to 

level off at high heating rates. 
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(b) 

Figure 5.4. Elemental analysis of wood pellets at T = 264 oC: (a) in percentage, and (b) in gram. 

 

(a) 

 

(b) 

Figure 5.5. Elemental analysis of wood pellets at T = 351 oC: (a) in percentage, and (b) in gram. 
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(a) 

 

(b) 

Figure 5.6. Elemental analysis of wood pellets at T = 444 oC: (a) in percentage, and (b) in gram. 
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(b) 

Figure 5.7. Elemental analysis of wood pellets at T = 541 oC: (a) in percentage, and (b) in gram. 

 
(a) 

 
(b) 

Figure 5.8. Elemental analysis of wood pellets at T = 650 oC: (a) in percentage, and (b) in gram. 
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(a) 

 
(b) 

Figure 5.9. Elemental analysis of wood pellets at T = 734 oC: (a) in percentage, and (b) in gram. 

Obviously, the total Carbon will decrease with time as it is being oxidized. This is observed in Figure 

5.11 where the total mass of Carbon is made dimensionless with the initial mass of Carbon. It shows 

that the mass loss of Carbon at different temperatures changes with the time. This change corresponds 

to the initial loss of some low molecular weight of Carbon compounds present in the biomass 

(extractives) as well as thermal decomposition of hemicellulose, lignin and at a higher temperatures of 

the cellulose. According to Yeo et al. (2019), these compounds start to decompose at 320 K and 

undergo several different stages and temperature ranges. The decomposition of hemicellulose, cellulose 

and lignin starts at a temperature between 500 - 600, 575 - 700, and 320 – 1,100 K respectively. The 

decomposition of these compounds is dependent on the temperature and residence time. When the 

temperature or residence time increases, the carbonaceous structure is more stable also undergoing 

bond cracking and subsequent mass loss observed at a slower rate. Madzaki et al. (2016) also stated 

that the high volatile matter content of the biochar is due to the decomposition of cellulose, 
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hemicellulose and lignin. Therefore the data suggests that some of the Carbon released from 

hemicellulose and lignin is fixed into the cellulose structure. Figure 5.11 also shows that at 264 oC the 

total mass of carbon is increasing in early stages. This may be explained as for short residence time 

dehydration reactions takes place, which contributes to the elimination of oxygen and hydrogen in 

particular. For the higher temperatures this effect is not noticeable as it is compensated by the faster 

elimination of fixed carbon. 

The data for species concentration in the sample, presented as a fraction of sample mass, as shown in 

Figure 5.4 (a) through 5.9 (a), depicts the variation in concentration resulting from the species diffusion 

out of the biomass. Therefore some are expected to increase in concentration if their rate of 

volatilization is lower than others. However, if one looks at the actual mass (Figure 5.4 (b) through 5.9 

(b)) it is observed that H and O show an increase in the total mass present in the sample in the early 

stages of the devolatilization process, once the only source of Oxygen and Hydrogen is the moisture of 

biomass. Our hypothesis is that during the drying phase the O and H from the water are integrated into 

the O and H in the biomass. The time scale for the H and O is the same; that is, the maximum mass 

occurs at approximately the same time. In fact, the maximum in O and H mass occurs within the time 

frame of the drying phase (see Figure 5.2). 

In order to prove this hypothesis, a complementary set of tests was developed. In this, the tests were 

conducted at 264 oC and limited in time for the initial 4 min of the devolatilization process. The 

samples were removed from water moisture by drying them according to standard  SS 18 71 20 

(Hansen et al., 2009). The results are presented in Figure 5.12 in terms of species concentration (a) 

and on a mass basis (b). The analysis was limited to O and H. The results clearly show that with the dry 

pellets the mass of H and O always decreases which validates the hypothesis that in the drying phase 

some of the O and H is transferred from the water to the biomass structure. 
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Figure 5.10. Fixed Carbon profile at different temperature during the combustion. 

 
Figure 5.11. Carbon ratio for different temperature. 
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(a) 

 
(b) 

Figure 5.12. O2 and H2 concentration of dry pellets for the temperature of 264 oC at 30 s and 4 min                                

((a) in percentage, and (b) in gram).

0

1

2

3

4

5

6

7

20

40

60

80

100

120

0 50 100 150 200 250

H
2 

(%
) 

O
2  

(%
) 

Time (s) 

O2 H2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250

H
2 

(g
) 

O
2 

(g
) 

Time (s) 

O2 H2



Chapter 6. Emissions and temperatures measurement in a fixed bed combustor 

 

107 
 

6. EMISSIONS AND TEMPERATURE MEASUREMENT IN A FIXED BED 

COMBUSTOR 

This chapter describes the combustion characteristics of pine wood pellets in a 20 kW boiler. This boiler 

is installed in the laboratory of Heat and Fluids, School of Engineering at the University of Minho. 

Different parameters were studied including Power, grate area (GA), excess air (EA), and split ratio of 

primary and secondary air (SR). Pine wood pellets with 6 mm diameter were used, whose properties 

are the same as presented in Table 3.2. Several parameters were measured and determined, which 

include: emissions (CO, CO2, O2, and NOx); fuel bed temperature; thermal efficiency; the ashes 

agglomeration and combustion instability were also observed. The Taguchi method (TM) was applied to 

plan the experimental program, with the parameters investigated in this study, which includes: GA, SR, 

thermal load (Power), and EA. In the Taguchi method, the analysis of variance (ANOVA) was used to 

analyze the experimental results. This chapter begins with a general overview of the experimental 

results and finishes with a statistical analysis based on the TM application. 

6.1 Test conditions 

In the experimental analysis, several parameters are recorded and calculated including gas emissions, 

fuel bed temperature, thermal efficiency, bottom ashes, and combustion instability (see Chapter 3). The 

efficiency of the boiler was calculated based on the temperature difference of the cold and hot water in 

the inlet and outlet of the heat exchanger. 

To conduct the experimental analysis several parameters need to be determined including excess air 

ratio in three levels (1.5, 1.7, and 2.1), thermal load/Power (10, 13, and 16 kW), air split ratio in three 

levels as well (20/80, 30/70, and 37/63), and three different grate areas (see Table 6.3). The 

determination of the parameters is presented below: 

6.1.1 Excess air 

By running the boiler and recording the value of the oxygen on the gas analyzer, the value of excess air 

can be obtained, see Eq. (3.6 – 3.8), (section 3.2.1). This procedure was used by various authors such 

as Wang et al. (2015) - excess air 1.0-1.3; Ribeiro (2012) - excess air 1.9, 2.3, and 2.7. The result of 

the reading based on the oxygen percentage is presented in Table 6.1. 
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Table 6.1. O2 content and excess air coefficient. 

O2 (%)   

6.52 - 7.42 1.45 - 1.54 
8.29 - 8.99 1.65 - 1.74 

9.67 – 10.23 1.85 - 1.94 
10.78 - 11.24 2.05 - 2.14 
11.26 - 11.68 2.15 - 2.24 

6.1.2 Thermal load calculation 

The thermal load (P) is calculated based on the different mass flow rate of pellets during the 

experiment, as presented in the following equation: 

(kW)LHV.
.

fmP                     (6.1) 

where P is Power (kW), fm
.

 is fuel mass flow rate (kg/s) and LHV is a lower heating value of fuel 

(kJ/kg). 

The stoichiometric air fuel ratio (AFRstoic) for the wood pellets combustion in this study is 5.85, which 

obtained based on the chemical composition of the pine wood, as presented in Table 6.2. 

Table 6.2. Chemical composition of pine wood pellets. 

 C H O N S 
Mass percentage (%) 50.80% 5.39% 42.22% 1.55% 0.037% 

Molar mass (kg/kmol) 12 1 16 14 32 
 a b c d e 

Mole (kmol) 4.23 5.39 2.64 0.11 0.001 

The calculation for the stoichiometric air fuel ratio (AFRstoic) is as follows. 

Wood combustion: 

  222222 NSOOH
2

CON3.76OSNOHC ye
b

axedcba   

where a, b, c, d, and e relate to the moles´ fraction of each constituent of the fuel knowable by 

elemental chemical analyzes. 

kmol26.4
24

 e
cb

ax  

    kmol08.162/11.076.3  xy  
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Mass of air for 100 kg of fuel (ma) 

    kg58528x76.33226.4M76.3M
22 NO  xma  

Stoichiometric air fuel ratio (AFRstoic) 

Air fuel ratio is given by: 

fa
stoicstoic

stoic /kgkg85.5
100

AFR 
















 a

f

a m

m

m
 

When we apply the excess air coefficient   , the air mass flow rate is calculated. For example for 50% 

excess air ),5.1(   the AFRreal is: 

78.85.1x 85.5.AFRAFR stoicreal    

For a thermal load of kg/h).11.2(,kW10
.

fm  The air flow rate is calculated by ,AFR. real

..

fa mm   

which yields kg/h.53.18
.

am  

To set a specific value for the thermal load a calibration procedure was implemented in which the 

feeding mechanism was set at a varying on-off pattern and the corresponding mass flow rate was 

determined by measuring the mass of pellets over a period of time, assuming a LHV of 17,100 kJ/kg. 

In this way, the thermal loads were set to 10, 13, and 16 kW. 

6.1.3 Split ratio 

The split ratio of primary and secondary air in this study was set to 20/80, 30/70, and 37/63. While 

Yin et al. (2008) revealed that the value of the split ratio of primary and secondary air tends to be 

40/60 in modern grate fired boilers burning biomass and 80/20 in older units. (Ribeiro, 2012) also 

applied three different split ratio including 10/90, 30/70, and 50/50. 

6.1.4 Grate size 

Three different grates of rectangular shape were tested in this study as presented in Table 6.3. Ribeiro 

et al. (2019), in a boiler of similar configuration, has applied three different grate size (cross section 

area): 135 x 135, 135 x 115, and 135 x 95 mm. 
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Table 6.3. Grate area. 

No. Size (mm x mm) h (mm) 
1 90 x 75 

61 2 115 x 75 
3 115 x 96 

Height, h, represents the distance from the grate surface to the top of the grate. 

6.2 Experimental plan 

As mentioned the Taguchi method was applied in this project. The Taguchi method is a method 

developed to optimize the process of engineering experimentation. This method was developed as a 

response to minimizing the expenditure of resources in the production processes. It is also very 

important in resolving the quality issues as well (Roy, 2010), and was of great impact in the 

development of the Japanese industry. In analyzing the experimental results, the data obtained are 

treated according to an analysis of variance/ANOVA (Ferreira, 2008) and one obtain one or more from 

the following three objectives: (1) determine the trend of influence of factors and interactions under 

study, (2) identify the significant factors and their relative influences on the variability of results and, (3) 

establish the best or the optimum condition for a product or a process, along with an estimate of 

contribution of individual factors and a prediction of expected response under the optimum conditions 

(Roy, 2010). The application of Taguchi method in the planning of experimental projects makes it 

possible to significantly reduce the amount of tests, and to evaluate the influence of several parameters 

considered in a particular process (Ferreira, 2008). In addition, it also allows to confirm the importance 

and relative weight of each parameter in a particular response or outcome expected. 

In the Taguchi method, multiple parameters (factors) and several values of these parameters (factor 

levels) are arranged according to standard orthogonal arrays, enabling a dramatic decrease in full-

factorial trial experiments (Liu et al., 2019). As described by Ferreira (2008) there are three phases in 

applying the method: 1) selection of factors and eventual interaction; 2) planning of the experiment; 3) 

analysis and interpretation of the results. In addition, to allow the evaluation of the influence of each 

parameter, it is important to emphasize that for the experimental plan at least 3 levels should be 

applied for each parameter in the study. With this experimental plan, then the test plan matrix to be 

used is the orthogonal matrix L27, which consists of 27 experiments and 13 columns. 
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6.2.1 Levels 

In this study, four parameters including grate area (GA), the split ratio of primary and secondary air 

(SR), thermal load (Power), and excess air (EA) were considered to be the most dominant in the 

combustion of wood pellets in a boiler rated at 20 kW thermal. In order to reduce the time and 

experimental effort, the Taguchi method was applied to develop experimental planning. In this 

experiment, the values of the parameters and three different levels for each parameter were selected as 

presented in Table 6.4. 

Table 6.4. Factor and Level of the experimental plan, using the Taguchi method. 

Factor 

Level 

1 2 3 

A Power (kW) 10 13 16 

B Excess air (%) 50 70 110 

C Grate area (mm2) 90 x 75 115 x 75 115 x 96 

D Split ratio (P/S) 20/80 30/70 37/63 

Grate height 61 (mm) 

As shown in Table 6.4, 4 parameters with 3 levels were used for each variable, then by applying the 

Taguchi method, the number of experiment runs is 27. The Notation of a Taguchi orthogonal array can 

be written as L27 (313). In this notation 27 is the number of the experimental runs, 3 is the number of 

levels and 13 is the number of experimental factors. Furthermore, the L27 matrix with 13 columns can 

be used for the study of 7 factors and three interactions, where each interaction requires two columns 

(see Table 6.5) (Ferreira, 2008). Then, these values were introduced into an excel file to obtain the 

relationship between the variables. 
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Table 6.5. Matrix L27, with indication parameter (1, 2, 5, 10), interaction (3, 4, 6, 7, 8, 11), and independent (9, 12, 13) 

(Ferreira, 2008). 

Test 
Power (kW) EA (%)  GA 

(mm2) 
  SR  

A B AxB C AXC BxC e D BxC e e 
1 2 3 4 5 6 7 8 9 10 11 12 13 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 2 2 2 2 2 2 2 2 2 
3 1 1 1 1 3 3 3 3 3 3 3 3 3 
4 1 2 2 2 1 1 1 2 2 2 3 3 3 
5 1 2 2 2 2 2 2 3 3 3 1 1 1 
6 1 2 2 2 3 3 3 1 1 1 2 2 2 
7 1 3 3 3 1 1 1 3 3 3 2 2 2 
8 1 3 3 3 2 2 2 1 1 1 3 3 3 
9 1 3 3 3 3 3 3 2 2 2 1 1 1 
10 2 1 2 3 1 2 3 1 2 3 1 2 3 
11 2 1 2 3 2 3 1 2 3 1 2 3 1 
12 2 1 2 3 3 1 2 3 1 2 3 1 2 
13 2 2 3 1 1 2 3 2 3 1 3 1 2 
14 2 2 3 1 2 3 1 3 1 2 1 2 3 
15 2 2 3 1 3 1 2 1 2 3 2 3 1 
16 2 3 1 2 1 2 3 3 1 2 2 3 1 
17 2 3 1 2 2 3 1 1 2 3 3 1 2 
18 2 3 1 2 3 1 2 2 3 1 1 2 3 
19 3 1 3 2 1 3 2 1 3 2 1 3 2 
20 3 1 3 2 2 1 3 2 1 3 2 1 3 
21 3 1 3 2 3 2 1 3 2 1 3 2 1 
22 3 2 1 3 1 3 2 2 1 3 3 2 1 
23 3 2 1 3 2 1 3 3 2 1 1 1 2 
24 3 2 1 3 3 2 1 1 3 2 2 3 3 
25 3 3 2 1 1 3 2 3 2 1 2 1 3 
26 3 3 2 1 2 1 3 1 3 2 3 2 1 
27 3 3 2 1 3 2 1 2 1 3 1 3 2 

6.2.2 Plan of tests 

From the experiments, several parameters are recorded including the gas emissions (CO, NOx, O2, and 

CO2), and the temperature of the fuel bed measured at four different positions (5, 15, 25 and 60 mm 

from the bottom) in the center of the fuel bed. The experimental data and experimental figures are 

presented in Annex E (Table E.1 and Figure E.1). In a combustion process, the parameter that better 

describes the combustion quality is the CO emission. Meanwhile, during the long run combustion, as 

the CO value could fluctuate and increasing significantly with the fuel bed (FB) rise, then the CO 

considered in this study is recorded before the occurrence of those instabilities in the FB. 

According to Ferreira (2008), for the optimization process, the deviation to the optimal value depends 

on the dispersion of results. Thus, the analysis of variance (ANOVA) is based on the mean and variance 

of each test. ANOVA provides the dispersion present in a specific set of data, identifying their origins 

and evaluating the contribution of each data to the total dispersion. This method allows us to test the 

significance of the effects relatively to the random error, also known as noise. The combustion 

procedure used in this study, follows the experimental procedure described above and used for all tests. 
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As mentioned, the response parameter used was the concentration of CO, corrected for 13% O2, and 

the temperature measured at four different heights inside the fuel bed: 5, 15, 25, and 60 mm. 

The data obtained from the experiment was transformed into a signal-to-noise ratio (S/N) to measure 

the deviation of quality of parameters from the desired values. The S/N ratio is always < 0. A higher 

value ratio corresponds to a better quality characteristic of the parameter observed (Babu et al., 2014); 

the values close to zero indicating the best conditions (Thanakiatkrai and Welch, 2011). In the Taguchi 

method, three types of characteristic performance are selected in the analysis, include the-larger-the-

better, the-smaller-the-better, and the-nominal-the-better (on-target-better) (Liu et al., 2019; 

Thanakiatkrai and Welch, 2011). In the analysis of variance for CO, the calculation for signal/noise was 

selected the small-the-better (see Eq. 6.2) and for temperature was the-nominal-the-better (see Eq. 6.3) 

(Ferreira, 2008). 







  22

log10/ xXNS                  (6.2) 

 2log10/ xNS                    (6.3) 

where X  is the average value of the data and 2
x  is variance. The final plan of experiments and value 

of responses, according to the Taguchi method is presented in Table 6.6. 
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6.3 Combustion of wood pellets 

This section presents the ignition condition, the emission characteristics, the thermal efficiency, 

instability, and the ash formation and agglomeration. 

6.3.1 Ignition conditions 

The ignition process is accomplished by a 37 W electrical resistance. The ignition takes about 7–9 

minutes, depending on several conditions such as thermal load, ambient temperature, primary air flow 

rate, and grate area. Ribeiro et al. (2019) stated that the ignition rate in pellet fuel bed is a function of 

the PA supply rate. In this study, for ignition purposes, the thermal load of wood pellets should be set at 

approximately 10 kW and the air flow rate need to be set at 9.4 x 10-3 m3/s. For smaller grates (for 

example 90 mm x 75 mm), the thermal load of wood pellets needs to be reduced and can be set at 

approximately 7.36 kW at the same air flow rate. 

The relationship of ignition rate and fuel supply, and PA mass flow rate through the GA is presented in 

Figure 6.1, with the maximum ignition rate of 0.08 kg/m2.s (Ribeiro et al., 2019; Ronnback et al., 

2001). It presents the overall combustion with the maximum fuel supply of approximately 13 kW based 

on the Ronnback et al. calculation (Ronnback et al., 2001). It relates the combustion rate with the 

primary air flux. Both these quantities are based on the grate area. The data are organized accordingly 

to the power level of the boiler. It clearly suggests that for most of the conditions tested the grate is 

small for the fuel flux. The condition is more evident for the higher power levels that were tested. 

 

Figure 6.1. Specific ignition rate and fuel supply for three different GA as function of the PA mass flow. 
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6.3.2 Emission characteristics 

Emissions were measured automatically at the chimney by a “Multi gas analyzer 9000” (CO, O2, and 

CO2), and NOx by “NOx gas analyzer” (see Chapter 3). 

The volatile fuels from the bed combustion are assumed to be light hydrocarbons (modelled as 

methane), heavy hydrocarbon (tar modelled as CxHy), carbon monoxide (CO) and hydrogen (H2). In 

addition, the effluent gases also include: H2O and N2 (Klason and Bai, 2007). 

Figure 6.2 shows, as an example, the gas emissions during a run at 13 kW with the excess air of 70%, 

the P/S split ratio of 37/63 and a grate area 115 mm x 96 mm, referred as test number 15 (TN15). 

The input parameter and the average value of gas emission and temperature in the fuel bed recorded 

are presented in Table 6.7 and Table 6.8. The rising of fuel bed means that the feeding rate of wood 

pellets is unbalanced by the mass loss rate. This leads to the fuel bed increasing gradually up to 60 

mm or, overflowing the grate. After the fuel bed rising, the combustion becomes unstable which is 

followed by an increase in CO emissions. The thermal efficiency of the boiler obtained for TN15 was 

91.77%, with the cold and hot water temperature on heat exchanger being 36 oC and 68 oC 

respectively. As shown in Figure 6.2 all gases were measured continuously, except for NOx that was 

measured within about 12 – 15 minutes during the test. In this study, the emissions fluctuate due to 

the several conditions such as temperature, the gas residence time (ratio of volume of the combustion 

chamber/gas flow), turbulence and excess air, which are decisive for the optimization of the 

combustion process (Kraiem et al., 2016). 

 
Figure 6.2. Gas emissions profiles for TN15. 
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Table 6.7. The input parameter for TN15. 

Parameter  Value 
T ambient (°C) 19 
Fuel flow rate (kg/h) 2.75 
Primary air flow rate (m3/h) 8.11 
Secondary air flow rate (m3/h) 14.06 

Table 6.8. The experimental data for TN15. 

Parameter Before FB rising 
After FB 
rising 

Overall Tfb (°C) 

O2   8.29 % 627 (5 mm) 
CO (13% O2) 262 ppm 427 ppm 390 ppm 913 (15 mm) 

NOx   70 ppm 866 (25 mm) 
CO2   12.93 % 542 (60 mm) 

6.3.3 The thermal efficiency 

The boiler efficiency is calculated according to the NF EN 303-5 standard as follows Eq. (6.4) (Lajili et 

al., 2015): 

100.
i

n
b P

P
                     (6.4) 

nP = wm
.

.Cw. wT                    (6.5) 

LHV.
.

fi mP                      (6.6) 

where, b  is the boiler efficiency (%), nP  is the nominal useful boiler power (kW), iP  is the power input 

(kW), wm
.

 is the water mass flow rate (kg.s-1), Cw pwC  is the heat capacity of water (kJ.kg-1.K-1), wT  

is the difference temperature of water in the exchanger (K) and 
.

fm is the fuel mass flow rate (kg.s-1). 

Figure 6.3 shows the thermal efficiency obtained for the different conditions of the combustion. This 

experiment shows that the thermal efficiency is always above 60%. For tests TN13, TN15, TN20 and 

TN24, the efficiency was above 90% as presented in Table 6.9. 
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Figure 6.3. The efficiency obtained for each test. 

From the data it appears that on average the efficiency tends to occur at the lowest power level (runs 1 

through 9) particularly for low SR. 

Table 6.9. Highest thermal efficiency experiments. 

 TN15 TN13 TN20 TN24 
Power (kW) 13 13 16 16 

EA (%) 70 70 50 70 
GA (mm2) 115 x 96 90 x 75 115 x 75 115 x 96 
SR 37/63 20/80 37/63 30/70 
O2 (%) 8.29 8.33 6.39 8.44 
CO before FB rising 262 109 190 267 

CO after FB rising 427 262 212 325 
CO average 390 252 204 302 
NOx (ppm) 70 73.3 69.92 38.8 
CO2 (%) 12.93 14.39 14.65 12.28 
ɳ (%) 91.77 91.57 91.32 90.2 

Figure 6.4 shows the relationship between GA and thermal efficiency at different Power, SR, and EA. 

Figure 6.4 (a) shows that at 10 kW with 50% of EA (EA1) the efficiency was higher for the combination 

of middle GA (GA2) with middle SR (SR2), the same behavior for 70% of middle EA (EA2) with the 

combination of GA2 with higher SR (SR3). For 110% of EA (EA3), the thermal efficiency was higher for 

the combination of smaller GA (GA1) with SR3, and larger GA (GA3) with middle SR (SR2). Figure 6.4 

(a) shows that at lower Power, the best combination of the parameter is either EA3-GA1-SR3 or EA3-
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GA3-SR2 in order to produce higher combustion efficiency. This means that at a lower Power requires a 

higher EA during the combustion of wood pellets. As in fact, lower Power produce lower devolatilization 

rate, then higher EA requires to burn up the fuel; the opposite may be observed for higher Power levels 

(see Figure 6.4 (c)). 

Figure 6.4 (b) shows that at 13 kW with 50% of EA the thermal efficiency was higher for the 

combination of smaller GA (GA1) with SR3, and larger GA (GA3) with middle SR (SR2). The same 

behavior was observed for 70% of EA (EA2) referred to the combination of GA1 with lower SR (SR1) and 

GA3 with higher SR (SR3). For 110% of EA, the thermal efficiency was slightly higher referred for GA1 

and GA2, with the combination of GA1 with SR2 and GA2 with SR3 respectively. Figure 6.4 (b) shows 

that at middle Power, the best combination of the parameter is either EA2-GA1-SR1 or EA2-GA3-SR3 in 

order to produce the highest combustion efficiency. 

Figure 6.4 (c) shows that at 16 kW with different SR and 50% of EA, the thermal efficiency was higher at 

middle GA with the combination of GA2 and SR3, the same behavior for 110% of EA (EA3) with the 

combination of GA2 with middle SR (SR2). For 70% of EA, the thermal efficiency was higher for the 

combination of GA3 with SR2. Figure 6.4 (c) shows that the best combination of the parameter is EA1-

GA2-SR3. This means that at a higher Power, a lower EA and middle GA with higher SR are suitable to 

produce higher combustion efficiency. From the figures the higher efficiency (above 90%) is obtained for 

three different GA. The data indicates that an efficient combustion can be obtained with any grate, 

providing the operational parameters (EA, SR) are properly adjusted for any specific power level, which 

is in line with the result obtained from Verma et al. (2013). Higher efficiencies cannot be obtained at 

higher EA due to stuck losses, as stated by Serrano et al. (2013) that the excess air in the boiler 

reduces the boiler efficiency. The high efficiency could be related to the low CO emission during 

combustion (Arranz et al., 2015). 
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(c) 

Figure 6.4. Relationship between efficiency and GA with different EA and SR: (a) At 10 kW, (b) At 13 kW, and (c) At 16 kW. 

6.3.4 Combustion instability 

During the course of the various tests, it was observed that instabilities could occur over long runs. 

These were identified with a sudden rise in the fuel bed height that would lead to an increase in 

emissions and, ultimately, to a collapse of the combustion. This is a reason why boiler manufactures 

introduced a control strategy that, periodically, clean the fuel bed. Table 6.10 presents the experimental 

and a qualitative assessment of the combustion behavior for the 27 tests. In the table tav,ins is average 

time (moment) when the instability starts to occur and trun is the running time duration of the test. The 

data in Table 6.10 shows that the majority of the experiments experienced instability which is indicated 

by the fuel bed rising and increasing in the CO emissions. The instability occurs as an indication of the 

poor combination of the parameters applied which result in a high CO concentration as referred to TN1 

and TN3. The instability is mostly linked of the fuel bed rising which may be a consequence of the lower 

combustion rate (accumulation of unburned pellets on the grate). The instability may also occur as a 

result of the poor combination of the parameters applied which is referred mostly to the GA. 
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The instability may be identified in some cases from a phenomenon such as noise, the increasing of CO 

emissions, and the increasing of the fuel bed which can be observed directly or from the increasing of 

the temperature at 60 mm above the fuel bed. The noise occurs as a result of vortex generation 

(associated with a higher pressure drop) and oscillation in the air flow rate. This may result from the 

accumulation of pellets on the grate which blocks the primary air entrance or also a larger GA that may 

create a low velocity of the primary air flow through the grate. Yazdanpanah et al. (2011) stated that the 

pressure drop is caused by pellet size, geometry of container cross-section, and air flow rate. The 

authors revealed that pressure drop increases with the air flow rate and smaller wood pellet. Regarding 

the geometry of the container cross-section, Ray et al. (2004) stated that the pressure drop increases 

with a packed fill versus a loose fill. 

Condensation is an indication of the dropping of the exhaust temperature (the profile of the exhaust 

temperature can be seen in Annex E (Figure E.1)), even though, among those experiments, TN9 and 

TN20 are considered as stable combustion examples since there was no indication of the instability 

during the 4 hours running (see Figure 6.5). This is an indication of the good combination parameters 

applied in this study. In general, from the instability data and the result data, one can conclude that the 

middle size grate is the optimum grate. Meanwhile, Figure 6.6 (a) shows that after the fuel bed rising 

(as indicated by the temperature profile in 60 mm) the experiment was terminated because the 

instability was very high, which is coupled with a sharp increase of CO. However, as illustrated by Figure 

6.6 (b) one test was extended for 4 hours because the system shifted to another stable condition. 

The instability of exhaust temperature can result from poor combustion in the grate that produces low 

temperature (see Figure 6.6 (a)). However, the increasing of the exhaust temperature may relate to the 

higher air flow rate (higher EA) that may expel more heat to the exhaust pipe (see Figure 6.7 (a)). The 

same condition may also be obtained for SR, as increasing the SR contributes to the increasing of the 

exhaust temperature (e.g. see Figure 6.7 (b) test at 70% of EA and at a middle SR). 

  
(a) 

 

0

20

40

60

80

100

120

140

0

200

400

600

800

1,000

1,200

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000

Te
x

 (
°C

) 

Te
m

p
er

at
u

re
 (

°C
) 

Time (s) 

T@60 mm

T@25 mm

T@15 mm

T@5 mm

Tex

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

0

5

10

15

20

25

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000

C
O

, 
N

O
x 

(p
p

m
) 

O
2,

 C
O

2 
(%

) 

Time (s) 

O₂ (%) 

CO₂ (%) 

CO@13%O₂ 

NOx (ppm)



Chapter 6. Emissions and temperatures measurement in a fixed bed combustor 

 

123 
 

  
(b) 

Figure 6.5. Temperature and emissions profiles for (a) TN9, and (b) TN20. 

  
(a) 

  
(b) 

Figure 6.6. Temperature and emissions profiles for (a) TN11, and (b) TN8. 
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(a) (b) 

Figure 6.7. Temperature profiles for (a) TN25, and (b) TN14. 

Figure 6.8 shows that the shorter the instability time (tav,ins), the earlier the instability was observed and 

when tav,ins = trun means there is no instability (fuel bed rising) during the combustion of the wood 

pellets (e.g. TN9, TN20, and TN27). Figure 6.8 (a, b, and c) show that in a certain combination of 

Power, EA and GA create an early instability, such as a small GA with a middle or higher Power and a 

lower EA (e.g. TN10 and TN19). Meanwhile, the SR ratio has no significant influence on the instability 

since the same trend was observed for different SR. 

 
(a) 
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(d) 

Figure 6.8. Combustion characteristics on the instability.
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6.3.5 Ashes formation and agglomeration 

Subsequently to each experimental run, the ashes were collected from the bottom of the grate. A high 

resolution frame was collected, and the ImageJ software was used to measure the size of the 

aggregated ashes. They were measured based on the larger size of its agglomeration. Generally 

speaking, ash formation and agglomeration depends upon the burner and fuel types (Öhman et al., 

2004). It was observed that the agglomeration of the ashes occurred when the boiler was operated at a 

high load and high-temperature condition (Roy et al., 2013). Dibdiakova et al. (2015) reveal that the 

chemical composition of the ashes from the combustion of a pine tree contains mostly Ca, K, Mg, Mn, 

P, and Si, and the melting process of the ashes started in the temperature range of 930-965 oC. For 

red pine, the ash deformation temperatures are over 1,100 oC (Fang and Jia, 2012). In addition, the 

remaining mass as fixed Carbon and ashes or unburned substances after the combustion of these 

wood pellets is about 3%. 

The size of the ashes agglomeration is presented in Annex E (Figure E.2). This study revealed that, 

besides several conditions mentioned before that have an influence on the ashes agglomeration, the 

duration of the combustion is also determinant for the agglomeration of the ashes. For example, the 

combustion of pine wood pellets with TN2 (10 kW, EA 50%, and SR 30/70) with a duration time of 

5,500 s has almost no agglomeration above 3 mm in size, but only show their sintering. The degree of 

sintering is mostly an effect of the composition of the fuel ash (Öhman et al., 2004). Moreover, when 

the time of the combustion is less than 5,500 s, the ashes agglomeration is less than 10 mm in size. 

Incidentally, the largest size of the ashes agglomeration was referred to TN26 (16 kW, EA 110%, and SR 

30/70) which is 59 mm and the duration time is 14,400 s ( 4 h). 

Figure 6.9 (a-d) shows that from the parameters applied (P, EA, GA, and SR) the middle and higher 

level tend to increase the ash accumulation size. The high fuel bed temperature and long running time 

have also increased the ash accumulation size (see Fig. 6.9 (e, f)). The large residence time (longer 

running of the boiler) of wood pellet combustion also produces more ashes agglomeration. These 

conditions indicate that the agglomeration of the ashes is as a function of time and temperature. In 

addition, Ribeiro et al. (2014) also stated that the ash agglomeration is mostly related to the changing 

of the chemical elements ratio due to vaporization of the more volatile species. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6.9. Combustion characteristics on the ashes. 

6.4 CO emissions 

CO is a key indicator of the combustion quality. The influence of different conditions on CO emissions is 

presented as follows. 

6.4.1 Overview of CO emissions 

CO emissions during the test presents a fluctuated behavior, which can be caused by the intermittent 

feeding system (screw conveyor). During the feeding process fresh wood pellets drop on the combusting 

bed, causes a sudden heating of the particles and a sharp reduction of the temperature of the 

surrounding fuel and produce a high amount of CO (Gómez et al., 2016). The high CO emission also 
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indicates imperfect combustion conditions and poor energy efficiency and are caused by inadequate 

mixing of air and combustible gases, a too short residence time at sufficiently high temperature, high 

moisture content (Olsson, 2006a; Ravichandran, 2013) or poor furnace design (Ravichandran, 2013). 

At high loads and low excess oxygen there are mixing limitations that will increase the CO emissions. 

On the other hand higher excess oxygen and lower load result in more CO emissions as gas 

temperature decreases (Roy et al., 2013). Very low and high burn rates will also increase CO emission 

factors (Fachinger et al., 2017). According to Serrano et al. (2013) the CO emissions decrease with EA 

and SA. Overall, the CO emission ranged between 109 and 1,042 ppm. The lowest CO emissions were 

measured before the fuel bed rising: is 109, 110 and 111 ppm with thermal efficiency 91.57%, 87.08%, 

and 86.65% referred to TN13, TN10, and TN23 respectively. The lowest CO emission and higher 

efficiency obtained indicated the good combination of the parameters observed (A2-B2-C1-D1). 

6.4.2 ANOVA analysis of CO emissions 

The S/N indices are determined for each response value analyzed in this study. The mean values of the 

S/N indices for each of the three levels of each parameter or interaction on CO are presented in Table 

6.11. The last line of each table shows the maximum value of the difference between the averages of 

the indices for each of the parameters. These results evaluate the relative weight of influence of each 

parameter on the response value. 

Based on the analysis of Table 6.11 it is verified that the split ratio (SR) index (parameter D, dif. = 5.56) 

has the highest contribution to CO reduction, followed by parameter A (Power, dif. = 5.16), the 

interaction of parameters Power and EA (dif. = 3.12), parameter C (GA, dif. = 2.91) and parameter B 

(EA, dif = 2.60). There is a parameter that was not identified, whose influence is higher than that of the 

interaction of parameters Power and EA, GA, and EA. This indication is supported by the value of the 

left-hand column of the SR value. This result may show the influence of parameters that were not 

considered but make some significant contribution to the process. 

Table 6.12 presents the analysis based only on the mean values of the CO concentration 

for each parameter. The data confirms the trend observed by the analysis of the S/N indices, on how to 

minimize the response value. The data show that the most important is SR with the difference about 

207 ppm, followed by Power at 194 ppm, and other unidentified parameters (column 10 is identified as 

“e”) at 144 ppm. 
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Figure 6.10 shows the dependence of the response with the different parameters, for the various levels 

of analysis. These data allow to observe the evolution through the three levels for each one of the 

parameters in the CO concentration. Figure 6.10 (a) shows that at a medium Power (13 kW) CO 

emission is the lowest observed for the three power levels. Meanwhile, Figure 6.10 (b, c, and d) show 

that the CO emission is lower at the lower level of the parameter applied and increases with the 

increasing of the EA, GA, and SR respectively. This means that increasing those parameters create 

more unburned substances that contribute to the CO emission. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.10. Individual influence of factors on the response (CO). 

Figure 6.11 presents the interaction between all parameters on CO. From these graphs, we can identify 

that there is an important interaction between middle Power and lower EA (Figure 6.11 (a)), and 

between middle Power and lower GA (Figure 6.11 (b)). Based on Figure 6.11 and the value of 
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maximum differences between levels on CO (Table 6.11), then the best combination to reduce the 

variance (more stable and best result) is A2-B1-C1-D1. 

 
(a) 

 
(b) 

 
(c) 

Figure 6.11. Indices of interaction between factors on CO. 

In the analysis of variance (ANOVA) the F test (ratio between the variance of a parameter and the 

variance of the error) is used (Table 6.13). When F and the level of confidence become sufficiently high 

(confidence = 1 – risk ( ):  is also referred to as level of significance, representing the probability 

(or risk) of accepting that the effect or interaction is significant, when this hypothesis is false), it can be 

said that two variances are considered to be different. This means that the variance associated with this 

(factor) is statistically different from the error variance, i.e.: the influence of this parameter in the 

response is significant. To determine whether an F value of two variances are statistically high, one 

should consider: the level of confidence required, the degrees of freedom associated with the variance 

of the sample in the numerator and the degrees of freedom (df) associated with the sample variance in 

the denominator. The value of F critical is then compared with the F value of a ratio of sample 

variances. The analysis of variance is a more objective and quantifiable test, allowing conclusions which 
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are not possible with the simple analysis of the means or S/N indices. Table 6.14 presents the 

statistical calculation of the F critical according to the level of risk   (1%, 5%, and 10%), for the final 

configuration of Table 6.13. This method of analysis was previously applied by Ferreira (2008). 

Table 6.13. ANOVA worksheet for CO. 

ANOVA 

P EA  GA    SR   
Error calculation 

1 2 3 & 4 5 6 & 7 8 & 11 9 10 12 13 

A B AxB C AxC BxC e D e e 
error 
exp. 

Total 

df 2 2 4 2 4 4 2 2 2 2 22 26 

sq 121.14 35.84 73.10 49.06 60.09 36.08 50.35 163.76 3.74 27.84 336.09 620.99 

var 60.57 17.92 18.28 24.53 15.02 9.02 25.18 81.88 1.87 13.92 15.28 23.88 

pool n s s s s s s n s s n  

F 3.96       5.36     

sq’ 90.59       133.20   397.20 620.99 

% 14.59       21.45   63.96 100.00 

In Table 6.13 only the parameters that contribute significantly to the reduction of CO concentration are 

identified. After applying the analysis of variance, from Table 6.13 it is verified that the F value 

associated to parameter D (SR), is higher than the critical value for the confidence index (risk   = 

0.05) but less than   = 0.01, calculated for the same number of degrees of freedom (df = 2). From 

these results, we can conclude that, with a confidence index greater than 95%, it can be stated that the 

SR intensity contributes about 21% for the reduction of CO concentration. It is the same condition, for 

the F value associated with Power, which is higher than the value for   = 0.05. This means that the 

confidence index is the same as the previous parameter referred to the SR. Then, it can be said that, 

with a confidence index of over 95%, the influence of Power contributes about 15% for the reduction of 

CO concentration. 

Table 6.13 allows us to conclude that the main effect comes from the SR followed by Power (A). 

However, the value associated with the experimental error is 63.96%. This value is indeed significant 

and deserves careful consideration, as it has a dimension to mask the influence of the most significant 

parameters. In practice, this error can be the result of several factors: important parameter not 

considered in the study, unsuitability of the chosen levels, misadjust with the level of factors, and any 

deficiency in the control of the chosen parameters or instabilities in the operation as stated by Ferreira 

(2008). 
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Table 6.14. ANOVA F critic calculation for CO. 

F critic 
 Degree of freedom 

Nominator 2 4 

Denominator 22 22 

    

0.10 2.56 2.22 

0.05 3.44 2.82 

0.01 5.72 4.31 

6.5 Temperature in fuel bed 

6.5.1 Temperature profile in fuel bed 

The temperature profile (Fig. 6.12) was measured for the same experimental setting TN15, presented 

before (Fig. 6.2). The temperature measurements during the test showed a fluctuating behavior as a 

consequence of the feeding system (Fig. 6.12). When the feeding is taking place, the fresh wood pellets 

come into contact with the thermocouples thus causing the decreasing of the temperature (Daouk et 

al., 2017). Average temperature measurement in fuel bed indicated that the highest temperature was 

observed at 15 mm followed by 25 mm, 5 and 60 mm in height. These values indicated that the 

highest combustion rate was taking place in a layer between 15 and 25 mm from the bottom. At 5 mm, 

which is close to the bottom of the grate, the temperature was low as a result of fresh air supply into 

the grate. In addition, the low temperature at 60 mm indicates that in that region there was a mixing of 

devolatilization material with secondary air entering above the grate. 

 
Figure 6.12. Temperature profiles for TN15. 
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Figure 6.13 presents the temperature profile for experiment TN17. The temperature profile, especially 

at 60 mm shows that there are two different equilibrium conditions. The first equilibrium did take place 

at time < 5,400 s and the second equilibrium started at t > 9,000 s. The equilibrium occurs when the 

feeding rate of wood pellets is equal to the mass loss rate. While, the slope of the temperature profile at 

60 mm, starting within 5,000 – 7,000 s, is the condition where the fuel bed was rising. The fuel bed 

was rising because the feeding rate of wood pellets being higher than the mass loss rate. This 

phenomenon occurs as a result of the cross sectional area of the grate, the thermal load, and the 

excess air applied. A combination of such factors will cause the feeding rate of wood pellets being 

higher than mass loss rate, which starts the accumulation of wood pellets on the grate and increases 

the thickness of the fuel bed. 

 
Figure 6.13. Temperature profiles for TN17. 

6.5.2 Temperature profile after the shut off of the boiler 

The temperature profile in Figure 6.14 was measured at 13 kW, with the excess air of 50%, and a 

primary and secondary air split ratio of 37/63, with the grate area 90 mm x 75 mm (TN10), (the figure 

on the r.h.s. is a magnificence of that on the l.h.s.). This temperature profile was observed after the fuel 

feeding was stopped. During this period, the pellets were burned and reached the highest temperature 

of 1,284 oC at 25 mm. This temperature peak was achieved as the result of the combination of two 

things: low excess air (lower oxygen and condition close to stoichiometry) and stopping of fuel supply 

(Roy et al., 2013). In fact, cutting off the fresh supply of fuel, removes a heat sink in the combustion 
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bed, which combined with the heat release of the existing fuel, leads the temperature surge. This can 

be indicated by the lower exhaust gas temperature (see Figure 6.15) for TN10 and TN12 which is more 

visible. The lower excess air (EA) will minimize the thermal losses by the stack (Ribeiro et al., 2019). 

Another reason is, when the feeding was stopped, the combustion rate reached the maximum rate 

causing the devolatilization and heat release to increase, and the thermal decompositions were shifted 

to the higher magnitude. 

  
Figure 6.14. Temperature profiles for TN10. 

  
(a) (b) 

Figure 6.15. Temperature profiles for (a) TN10, and (b) TN12. 

Moreover, the heating up of the particle occurs at a faster rate which enhanced the combustion 

temperature during this period (Silva et al., 2018). According to Vicente et al. (2016), a high 

temperature in the fuel bed is related to rich fuel mixture conditions. 

6.5.3 ANOVA analysis on temperature 

The mean values of the S/N indices for each of the three levels of each parameter or interaction on fuel 

bed temperature are presented in Table 6.15 – 6.18. The last line of each table shows the maximum 
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value of the difference between the averages of the indices for each of the parameters. These results 

evaluate the relative weight of influence of each parameter on the response value. 

Table 6.15 – 6.18 present the mean value of S/N index and the maximum difference between levels on 

the temperature at a different height in fuel bed. For temperature at 5 mm, it is verified that excess air 

(EA) has the highest contribution to increasing of temperature, followed by a Power, SR, and the 

interaction of parameters Power and EA, and parameter GA. For temperature at 15 mm the highest 

contribution is the interaction of parameters EA and GA, SR, and one unidentified parameter (column 

10) followed by another unidentified parameter (column 14), the interaction of Power and EA, and 

Power and GA. For temperature at 25 mm the highest contribution is from the parameter SR, followed 

by interaction of parameters Power and EA, GA, the interaction of Power and GA, and two unidentified 

parameters (column 13 and 10). For temperature at 60 mm, the highest contribution is from 

parameter SR, followed by interaction of parameters Power and EA, GA, one unidentified parameter 

(column 13), and the interaction of EA and GA. 
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The temperature behavior on the fuel bed at 5, 15, 25, and 60 mm is presented here. Table 6.19 (a-d) 

presents the analysis based only on the mean values of temperature at 5, 15, 25, and 60 mm observed 

for each parameter. 

 Behavior of the fuel bed temperature at 5 mm 

Figure 6.16 shows the evolution of S/N for temperature with the different parameters, for the various 

levels of analysis at 5 mm. The temperature decreases as Power increases which may result from the 

accumulation of wood pellets at higher Power. The parameters EA and GA have almost the same 

behavior, which shows that lower levels yield higher temperatures. This means that at higher EA and GA 

provided more air into the grate that may reduce the temperature. For SR, the higher temperature was 

observed at middle SR. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.16. Individual influence of factors on the temperature at 5 mm. 
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Figure 6.17 presents the interaction between all parameters for the temperature at 5 mm. From these 

graphs, we can identify that there is an important interaction between lower Power and lower EA (Figure 

6.17 (a)), and between lower power and lower GA (Figure 6.17 (b)). Based on Figure 6.17 and the 

value of maximum differences between levels on temperature (Table 6.15), then the best combination 

to reduce the variance (more stable and best result) is A1-B1-C1-D2. 

 
(a) 

 
(b) 

 
(c) 

Figure 6.17. Indices of interaction between factors (T at 5 mm). 

Table 6.21 presents the statistical calculation of the F critical according to the level of risk   (1%, 5%, 

and 10%), for the final configuration of Table 6.20. 
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Table 6.20. ANOVA worksheet for the temperature at 5 mm. 

ANOVA 

P EA  GA    SR   
Error calculation 

1 2 3 & 4 5 6 & 7 8 & 11 9 10 12 13 

A B AxB C AxC BxC e D e e 
error 
exp. 

Total 

df 2 2 4 2 4 4 2 2 2 2 20 26 

sq 82.68 96.86 59.83 45.39 20.76 34.80 2.57 71.08 26.11 1.71 191.17 441.79 

var 41.34 48.43 14.96 22.70 5.19 8.70 1.28 35.54 13.06 0.85 9.56 16.99 

pool n n s s s s s n s s n  

F 4.32 5.07      3.72     

sq’ 63.56 77.74      51.96   248.52 441.79 

% 14.39 17.60      11.76   56.25 100.00 

After applying the analysis of variance, from Table 6.20 it is verified that except for GA, the F value 

associated to all parameters (Power, EA, and SR) is higher than the critical value for the confidence 

index (risk   = 0.05), calculated for the same number of degrees of freedom (df = 2). This means that 

with a confidence greater than 95%, the Power, EA, and SR contribute to change in temperature at 5 

mm about 14%, 18%, and 12% respectively. Table 6.20 allows us to conclude that the main effect 

parameter is the EA, Power, and SR respectively. The value associated with the experimental error is 

56%. 

Table 6.21. ANOVA F critic calculation for the temperature at 5 mm. 

F critic 

 Degree of freedom 

Nominator 2 4 

Denominator 20 20 

    

0.10 2.59 2.25 

0.05 3.49 2.87 

0.01 5.85 4.43 

 Behavior of the fuel bed temperature at 15 mm 

Figure 6.18 shows the evolution of S/N for temperature with the different parameters, for the various 

levels of analysis at 15 mm. It presents a similar behavior, where the higher temperature is observed at 

the middle level, but the opposite occurs for the EA. Meanwhile, the temperature decreases with the 

increasing of GA. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.18. Individual influence of factors on the temperature at 15 mm. 

Figure 6.19 presents the interaction between all parameters for the temperature at 15 mm. From these 

graphs, one can identify a strong interaction between middle Power and lower EA (Figure 6.19 (a)), and 

between middle Power and lower GA (Figure 6.19 (b)). Based on Figure 6.19 and the value of 

maximum differences between levels on temperature (Table 6.16), the best combination to reduce the 

variance is A2-B1-C1-D2. 
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(a) 

 
(b) 

 
(c) 

Figure 6.19. Indices of interaction between factors (T at 15 mm). 

Table 6.23 presents the statistical calculation of the F critical according to the level of risk   (1%, 5%, 

and 10%), for the final configuration of Table 6.22. 

Table 6.22. ANOVA worksheet for the temperature at 15 mm. 

ANOVA 

P EA  GA    SR   
Error calculation 

1 2 3 & 4 5 6 & 7 8 & 11 9 10 12 13 

A B AxB C AxC BxC e D e e error exp. Total 

df 2 2 4 2 4 4 2 2 2 2 26 26 

sq 26.46 25.55 50.77 13.48 36.10 98.48 78.36 84.93 20.69 65.89 500.69 500.69 

var 13.23 12.77 12.69 6.74 9.02 24.62 39.18 42.47 10.35 32.94 19.26 19.26 

pool s s s s s s s s s s n  

F             

sq’           500.69 500.69 

%           100.00 100.00 

After applying the analysis of variance, from Table 6.22 it is verified that there is no significant influence 

of the parameters observed on the temperature at 15 mm, for .05.0  
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Table 6.23. ANOVA F critic calculation for the temperature at 15 mm. 

F critic 
 Degree of freedom 

Nominator 2 4 

Denominator 26 26 

    

0.10 2.52 2.17 

0.05 3.37 2.74 

0.01 5.53 4.14 

 Behavior of the fuel bed temperature at 25 mm 

Figure 6.20 presents the evolution of S/N for temperature with the different parameters, for the various 

levels of analysis at 25 mm. It shows that the higher temperature is observed at middle Power. For 

parameters, EA, GA, and SR, the temperature tends to decrease with the increasing of the parameters 

observed, but the SR has the most significant influence. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.20. Individual influence of factors on the temperature at 25 mm. 
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Figure 6.21 presents the interaction between all parameters for the temperature at 25 mm. From these 

graphs, we can identify that there is an important interaction between middle Power and lower EA 

(Figure 6.21 (a)), and between middle Power and lower GA (Figure 6.21 (b)). Based on Figure 6.21 and 

the value of maximum differences between levels on temperature (Table 6.17), the best combination to 

reduce the variance is A2-B1-C1-D1. 

 
(a) 

 
(b) 

 
(c) 

Figure 6.21. Indices of interaction between factors (T at 25 mm). 
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Table 6.24. ANOVA worksheet for the temperature at 25 mm. 

ANOVA 

P EA  GA    SR   

Error calculation 
1 2 3 & 4 5 6 & 7 

8 & 
11 

9 10 12 13 

A B AxB C AxC BxC e D e e 
error 
exp. 

Total 

df 2 2 4 2 4 4 2 2 2 2 24 26 

sq 32.70 19.80 202.88 184.40 94.17 48.08 70.46 289.84 94.74 34.30 781.51 1071.35 

var 16.35 9.90 50.72 92.20 23.54 12.02 35.23 144.92 47.37 17.15 32.56 41.21 

pool s s s s s s s n s s n  

F        4.45     

sq’        224.71   846.64 1071.35 

%        20.97   79.03 100.00 

After applying the analysis of variance, from Table 6.24 it is verified that the F value associated to 

parameter D (SR), is higher than the critical value for the higher confidence index (risk   = 0.05), 

calculated for the same number of degrees of freedom (df = 2). This means that, with a confidence 

index greater than 95%, it can be stated that the SR intensity contributes about 21% for the temperature 

variation at 25 mm. Table 6.24 allows us to conclude that the main effect parameter is the SR. The 

value associated with the experimental error is 79%. 

Table 6.25. ANOVA F critic calculation for the temperature at 25 mm. 

F critic 
 Degree of freedom 

Nominator 2 4 

Denominator 24 24 

    

0.10 2.54 2.19 

0.05 3.40 2.78 

0.01 5.61 4.22 

 Behavior of the fuel bed temperature at 60 mm 

Figure 6.22 shows the evolution of S/N for temperature with the different parameters, for the various 

levels of analysis at 60 mm. It shows that a higher temperature is observed at a lower Power. The 

temperature decreases with the increasing of EA. The GA and SR have the same behavior, where the 

temperature increases with the increasing of those parameters. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.22. Individual influence of factors on the temperature at 60 mm. 

Figure 6.23 presents the interaction between all parameters for the temperature at 60 mm. From these 

graphs, we can identify that there is an important interaction between lower Power and lower EA (Figure 

6.23 (a)), and between lower Power and higher GA (Figure 6.23 (b)). Based on Figure 6.23 and the 

value of maximum differences between levels on temperature (Table 6.18), the best combination to 

reduce the variance is A1-B1-C3-D3. 
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(a) 

 
(b) 

 
(c) 

Figure 6.23. Indices of interaction between factors (T at 60 mm). 

Table 6.27 presents the statistical calculation of the F critical according to the level of risk   (1%, 5%, 

and 10%), for the final configuration of Table 6.26. 

Table 6.26. ANOVA worksheet for the temperature at 60 mm. 

ANOVA 

P EA  GA    SR   
Error calculation 

1 2 3 & 4 5 6 & 7 8 & 11 9 10 12 13 

A B AxB C AxC BxC e D e e error exp. Total 

df 2 2 4 2 4 4 2 2 2 2 10 26 

sq 40.03 3.61 124.45 114.92 27.68 75.84 7.85 127.37 87.84 6.60 45.75 616.20 

var 20.02 1.80 31.11 57.46 6.92 18.96 3.93 63.68 43.92 3.30 4.57 23.70 

pool n s n n s n s n n s n  
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sq’ 30.88  106.15 105.77  57.54  118.22 78.69  118.95 616.20 

% 5.01  17.23 17.16  9.34  19.18 12.77  19.30 100.00 

After applying the analysis of variance, from Table 6.26 it is verified that the F value associated to the 

parameters GA, SR, and one unidentified parameter (column 10) is higher than the critical value for the 

higher confidence index (risk   = 0.01), and F value is above the critical value for the confidence index 
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(risk   = 0.05) to Power, the interaction of Power and EA, and interaction of EA and GA, calculated for 

the same number of degrees of freedom (df = 2). This means that, with a confidence greater than 99%, 

the GA, SR, and one unidentified parameter (column 10) contribute to change in temperature at 60 mm 

about 17%, 19%, and 13% respectively. For the Power, the interaction of Power and EA, and interaction 

of EA and GA, with a confidence greater than 95% it contributes about 5%, 17%, and 9% respectively. 

Meanwhile, the value associated with the experimental error is 19%. 

Table 6.27. ANOVA F critic calculation for the temperature at 60 mm. 

F critic 
 Degree of freedom 

Nominator 2 4 

Denominator 10 10 

    

0.10 2.92 2.61 

0.05 4.10 3.48 

0.01 7.56 5.99 

From the best combination of the parameters influencing CO and temperature, one can identify that the 

only parameter that gives the lowest variance at the same level is the EA, which is at the first level (B1). 

Considering that the most important temperature is the one in the core of the fuel bed (at 15 and 25 

mm), the best combination to reduce variance is A2-B1-C1 which gives the best result for 15 and 25 

mm. In addition, the D parameter (SR) should be at level 2 (D2) for h = 15 mm and level 1 (D1) for h = 

25 mm. From the description above the best combination for CO is the same that reduces the variance 

of temperature at 25 mm height in the core of fuel and is representative of the whole burning process 

of wood pellets in this boiler. 

The parameters that influence the mean value can be different from those who influence the variance, 

and the Taguchi method helps to identify those parameters. The parameters that may change the mean 

value of temperature at a different height (see Table 6.19) include: at 5 mm is SR and GA 

C);52.6 andC1.55( οοT  at 15 mm is Power );C4.108( οT  at 25 mm is Power and GA 

C)102( οT  and at 60 mm is GA and Power C).110.3 andC9.142( οοT  Other parameters that 

could influence but were not identified (indicated by the high value of error) might be pellets 

specification and volume of the combustion chamber. 

Table 6.28 presents the overall influences of the parameters applied in this study on the temperature at 

a different height. The data show that the most influencing parameter on the temperature at different 

height is the SR which is contributing to about 12%, 21%, and 19% at 5, 25, and 60 mm respectively. 
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The second parameter influencing the temperature is Power, which contributes approximately 14% and 

5% at 5 and 60 mm. 

Table 6.28. The overall influences of the parameters on fuel bed temperature. 

Height 
(mm) 

P EA  GA    SR   

1 2 3 & 4 5 6 & 7 8 & 11 9 10 12 13 

A B AxB C AxC BxC e D e e 

5 14.39% 17.60%      11.76%   

15           

25        20.97%   

60 5.01%  17.23% 17.16%  9.34%  19.18% 12.77%  

 The results based on the best combination parameters according to ANOVA analysis. 

Regarding the ANOVA analysis, it was concluded that the best combination parameters for CO and the 

temperature in the core of the fuel bed (referred to 25 mm) have the same combination parameters. 

The results of this test are presented in Figure 6.24 and the mean value of CO and temperature are 

presented in Table 6.29. Figure 6.24 shows that the test run for less than 4,500 s has a consequence 

of the fuel bed rising which was followed by the high concentration of CO. Thus the results show this is 

not a stable condition. This may be caused by the high error from the experiments and also by 

unidentified parameters which were not considered in the tests such as the size of the combustion 

chamber and type of biomass fuel. The combustion chamber size may influence on the heat radiation 

and convection from the wall. Ahn and Jang (2018) stated that an increase in the aspect ratio of the 

combustion chamber contributes to complete combustion. While the different heating value of the 

biomass fuel may influence the behavior of the combustion including the temperature, particle, and tar 

as revealed by Buchmayr et al. (2015), Mediavilla et al. (2009). According to Buchmayr et al. (2015), 

the heating value of the volatiles leaving the fuel bed is strongly dependent on fuel moisture and 

primary air ratio. If temperature and particle are increasing with the primary air ratio and for biomass 

with low fuel moisture, then a high heating value product is generated. 
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Figure 6.24. Temperature and emissions profiles for A2–B1–C1–D1. 

Table 6.29. Mean value and variance of the best combination parameters (A2-B1-C1-D1). 

 CO 
(ppm) 

Temperature (oC) 

5 mm 15 mm 25 mm 60 mm 

Mean value 237 699 939 916 800 

Variance 152 101 353 251 1,390 
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7. CLOSURE 

7.1 Conclusions 

This chapter presents the main conclusions that can be drawn from the work developed over the course 

of this project including the: mass loss and kinetic analysis using TGA techniques; mass loss and 

elemental analysis in a small scale reactor; emissions and temperature measurement in a fixed bed 

combustor. 

 The combustion experiments were carried out in a purpose built boiler with the capability to 

control the fuel rate and primary/secondary air split. 

 A small reactor was developed and an experimental procedure devised to investigate the 

devolatilization process of pine wood pellets under controllable conditions. 

 TGA analysis shows that the thermal decomposition for all the particle sizes examined, starts at 

a higher temperature for low heating rates and the opposite was obtained at a higher heating 

rate. The maximum combustion rate increase with the particle size and the heating rate, but 

the heating rate has a stronger influence. The heat flow also increases with the heating rate. In 

addition, at a higher heating rate (243 ºC/min), the combustion took place in a very short time. 

The results also revealed that there is no significant influence of air flow rate. The ignition and 

burnout temperatures, ignition and combustion indexes increase with the heating rate. 

 The activation energy decreases with increasing heating rate, and the highest reactivity is 

observed at higher heating rates. There is no significant influence of the air flow rate on the 

kinetic parameters of wood particles combustion. The middle and small size particles have 

higher reactivity which increases with the heating rate. 

 The mass losses increase for any specific temperature and the higher the temperature, the 

faster the pellets volatilize. Devolatilization occurs at a very slow rate for low temperatures. The 

maximum mass loss obtained at the highest temperature (650 and 734 oC), for 1 hour test, 

leveled off at about 97% with the remaining substances include fixed carbon and ashes being 

about 3%. Mass loss of dry pellets increases with the temperature and at a higher temperature, 

the dry pellets devolatilize faster than wet pellets. 

 The elemental results show that the volatile matter is released in the early stages while the ratio 

of fixed carbon and ash steadily increases. The rate of conversion for the volatile is similar for 

all compounds, though Nitrogen shows a higher rate of conversion. The mass of fixed carbon 
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increases due to the Carbon diffusion from the volatile fraction. The decomposition of these 

compounds is dependent on the temperature and residence time applied. 

 The total Carbon decreases with time as it is being oxidized and the species concentration in 

the sample is expected to increase in concentration if their rate of volatilization is lower than 

others. The results for dry pellets show that the mass of H and O always decrease which 

indicates that in the drying phase some of the O and H is transferred from the water to the 

biomass structure. In addition, the decomposition of biomass is related to hemicellulose, 

cellulose and lignin, which starts at different temperatures and stages. 

 The lowest CO emission obtained in this study measured before the fuel bed rising, was 109 

ppm with thermal efficiency of 91.57%. From the Taguchi plan of experiments, the split ratio 

(SR) contributes 21.45% to CO reduction, followed by power with 14.59%. The data show that 

the medium power (13 kW) has the highest efficiency or lowest CO emissions than at both 

lower (10 kW) and higher power (16 kW). The EA, GA, and SR have the same tendency on the 

efficiency and CO emissions, where at a lower and middle value of those parameters has 

higher efficiency. The parameter that gives the lowest variance at the same level is the EA at 

the first level or a lower EA. 

 The temperature magnitude in fuel bed on the average values indicated that the highest 

temperature was observed at 15 mm followed by 25, 5 and 60 mm in height. The most 

important parameter contributing to the fuel bed temperature is the SR and Power. 

 This study revealed that the ashes agglomerations were influenced by the duration of the 

combustion and the temperature of the fuel bed. The largest size of the ashes agglomeration 

was referred to TN26 (16 kW, EA 110%, and SR 30/70) which is 59 mm and the duration time 

is 14,400 s ( 4 h). 

 The instability during the combustion occurs since the fuel bed rising as the accumulation of 

the unburned wood pellets on the grate caused the slow combustion rate and pressure drop, 

which creates noise and disturbances. Instability creates poor combustion resulting in a rise of 

CO and possible condensation in the boiler. 
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7.2 Future work 

The development of the present work opened a few lines of opportunities that are worth pursuing in the 

near future. In brief: 

 The results show that the influence of the grate size is not yet properly addressed and other 

sizes (and, possibly, different configurations) could be investigated. 

 The size of the combustion chamber is a variable that, based on the ANOVA analysis, appears 

to be of the utmost relevance. One possible development would be the investigation of the 

influence of the combustion chamber size on the performance of the boiler. 

 The analysis of mass loss and devolatilization of pellets can be applied to other materials (such 

as waste biomass from agriculture or forestry) or commercial fuels such as wood chips. 

 The data presented in this thesis refers to air as the ambient atmosphere. It would be worth 

investigating the use of an inert atmosphere in order to analyze separately the influence of 

temperature. 

 The data regarding the mass loss and devolatilization of pellets could be extended and 

correlated with time and temperature in order to build sub models as a gas phase input to be 

used in the CFD modeling of boilers. 
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ANNEXES 

A. Biomass characteristics and experimental auxiliary 

This section presents the biomass characteristic and biomass standard for different classes, the 

thermocouple standardization nomenclature and grate design. 

Table A.1. Threshold values of the most important pellet parameters based on ISO 17225-2                                  

(European Pellet Council, 2015). 

Property Unit 
ENplus 

A1 
ENplus A2 

ENplus 
B 

Testing 
Standard 11) 

Diameter mm 18or16   ISO 17829 

Length mm )440L15.3   ISO 17829 

Moisture  w-% 2) 10  ISO 18134 

Ash  w-% 3) 7.0  2.1  0.2  ISO 18122 

Mechanical Durability w-% 2) )50.98  )55.97  ISO 17831-1 

Fines (< 3,15 mm) w-% 2) )5.0(0.1 )7)6   ISO 18846 

Temperature of pellets oC )840   

Net Calorific Value kWh/kg 2) )96.4  ISO 18125 

Bulk Density kg/m3 2) 750BD600   ISO 17828 

Additives w-% 2) )102  - 

-Nitrogen w-% 3) 3.0  5.0  0.1  ISO 16948 

Sulfur w-% 3) 04.0  05.0  ISO 16994 

Chlorine w-% 3) 02.0  03.0  ISO 16994 
Ash Deformation 
Temperature 1) 

oC 1200  1100  CEN/TC 
15370-1 

Arsenic mg/kg 2) 1  ISO 16968 

Cadmium mg/kg 3) 5.0  ISO 16968 

Chromium mg/kg 3) 10  ISO 16968 

Copper mg/kg 3) 10  ISO 16968 

Lead mg/kg 3) 10  ISO 16968 

Mercury mg/kg 3) 1.0  ISO 16968 

Nickel mg/kg 3) 10  ISO 16968 

Zinc mg/kg 3) 100  ISO 16968 
1)   ash is produced at 815 oC. 

2) as received. 

3) dry basis. 

4)  a maximum of 1% of the pellets may be longer than 40 mm, no pellets longer than 45 mm are 

allowed. 

5) at the loading point of the transport unit (truck, vessel) at the production site. 
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6)   at factory gate or when loading truck for deliveries to end-users (Part Load Delivery and Full Load 

Delivery). 

7) at factory gate, when filling pellet bags or sealed Big Bags. 

8)  at the last loading point for truck deliveries to end-users (Part Load Delivery and Full Load Delivery). 

9)   equal   16.5 MJ/kg as received. 

10) the amount of additives in production shall be limited to 1.8 w-%, the amount of post-production 

additives (e.g. coating oils) shall be limited to 0.2 w-% of the pellets. 

11) As long as the mentioned ISO standards are not published, analyses shall be performed according to 

related CEN standards. 

Table A.2. Standard thermocouple types (AN107). 

Type Materials* Typical Range (oC) 
T1, 2 Copper (Cu) vs Constantan -270 to 400 
J1, 3 Iron (Fe) vs Constantan -210 to 1,200 
K Chromel vs Alumel -270 to 1,370 
E Chromel vs Constantan -270 to 1,000 
S (Pt-10%Rh) vs Pt -50 to 1,768 
B (Pt-13% Rh) vs (Pt-6%Rh) 0 to 1,820 
R (Pt-13%Rh) vs Pt -50 to 1,768 
N (Ni-Cr-Si) vs (Ni-Si-Mg) -270 to 1,300 

 

* Material definitions: 

 Constantan, alloy of Nickel (Ni) - Copper (Cu) 

 Chromel, alloy of Nickel (Ni) - Chromium (Cr) 

 Alumel, alloy of Nickel (Ni) and Aluminum (Al) 

 Magnesium (Mg), base element 

 Platinum (Pt), base element 

 Nickel (Ni) a base element 

 Silicon (Si), a base element 

 Chromium (Cr), a base element 

 Iron (Fe), a base element 

 Rhodium (Rh), a base element 
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Notes 

1. Both the L and U Type thermocouples are defined by DIN Standard 43710; however, they are not 

as frequently used in new installations as the more popular T and J Type thermocouple standards. 

2. The U Type thermocouple is similar to the popular standard T Type. 

3. The L Type thermocouple is similar to the popular standard J Type. 

Table A.3. Physical and chemical properties of wood pellets. 

Element Value Unit 

Moisture content 6.9 % 

Ash content at 800 oC 0.6 % 

Volatile matter at 550 oC 77.80 % 

Lower heating value 17.1 (MJ/kg) 

Nitrogen 1.55 % dry base 

Carbon 50.9 % dry base 

Hydrogen 5.39 % dry base 

Oxygen 42.22 % dry base 

Sulfur 0.037 % dry base 

Bulk Density 0.598 (g/cm3) 

Cl 0.001 % 

Cr 0.004 % 

Cu 0.002 % 

Mn 0.011 % 

Ni 0.004 % 

Al 0.033 % 

Fe 0.023 % 

K 0.067 % 

Na 0.01 % 

Si 0.043 % 

P 0.014 % 

Ti 0.002 % 

Mg 0.058 % 

Ca 0.097 % 

Zn 0.001 % 
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Figure A.1. Grate design. 

 

where:  

h = Height of grate = 61 mm.  

c = Length bottom of grate (mm). 

d = Width bottom of grate (mm). 

Cross section area, A = c x d. 
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B. Experimental procedure 

In order to safely and repeatable operate the test facility it is recommended that a sequence of steps 

are followed by the operator. These involve verification, calibration of the gas analyzer, experimental and 

turn off phases. 

B.1 Verification of the boiler 

1. Turn on the computer. 

2. Turn on the ventilator and cooling loop ventilator. 

3. Open the program/acquisition and click on “Run program”. 

4. Turn on the power supply. 

5. Select the acquisition control and select start manual and check all the devices to make sure 

they are working properly by introducing the frequency of the ventilator to   20 Hz. 

6. The water pump runs automatically and check if the water flow rate is between 400-600 L/h (

  500 L/h). 

7. If the water pump is properly working, then turn off acquisition and close the program to clean 

all the previous data. 

B.2 Calibration of gas analyzer 

1. Turn on the vacuum pump. 

2. Turn on the gas analyzer, switch to sample mode and wait  10-15 minutes before proceeding 

to calibration. 

3. For the calibration and operation purposes of multi-gas analyzer (CO, CO2, O2 and NOx): 

3.1 Check if the sample flow rate within the minimum and maximum range on the digital flow 

meter in the gas analyzer display. Adjust the by-pass valve on gas conditioning circuit if 

necessary. 

3.2 Open all the gas bottles and press the “CAL” button on all displays and wait until it 

finishes. Press the “ZERO” button to check the zero value on the gas analyzer. Press the 

“SPAN” button on all displays to check gas concentration at bottle (e.g. for CO =   5,000 

ppm, O2 = 20%, CO2 = 10% and NOx = 3,000 ppm. Pay attention to gas analyzer SPAN 

scale). If there’s some drift on Zero and Span values, repeat calibration. After finish click 

on “SAMP” to turn to sample mode and start reading. Close all the bottles except Nitrogen 

bottle, that should be always on during the operation 
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4. For the calibration and operation purposes of NOx analyzer: 

4.1 Turn on the dedicated vacuum pump and ionizer, 

4.2 In the heating device, adjust the collecting pipe temperature for a value above exhaust 

gases temperature, to prevent condensation, 

4.3 For calibration, open NOx, O2 and N2 calibration bottles. Follow procedure number 3. 

5. For NOx analyzer, N2 and O2 bottles should remain open during all the operation. 

B.3 Experimental phase 

1. Turn on the water in the cooling system of the gas analyzer. 

2. Plug in the scale to the mains supply. 

3. Open the program/acquisition and click on “Run program”. 

3.1 Select the parameters in canais analógicos (0-9). 

3.2 Select the parameters in termopares (e.g: 0-16). Depends on the number of 

thermocouples installed. 

3.3 Adjust the ignition time to start after 95 s. 

3.4 Adjust the initial feeding start from low feeding (exp. 4 on, 8 off) after the combustion is 

stabilized start with the mass flow rate required for feeding. 

3.5 Adjust the temperature for turn off the ignition (110 ºC). 

3.6 Adjust the temperature for automatic feeding ( 100 ºC), after the combustion is taking 

place but no pellets is supplied, then decrease the feeding temperature (reduce to 60 

ºC). 

3.7 Adjust water pump On/Off temperatures. Set 5 ºC/4 ºC to keep it always turned on. 

3.8 Introduce the initial and feeding flow rate to 23.8 Hz. 

3.9 Run the acquisition on “modo automático”. 

4. Once the combustion starts then introduce the real data for the experiment. 

5. For safety issues during the test, follow the safety issues (see B.5). 

6. After finishing the experiment, shut down the equipment by following the “turn off procedure” 

(see B.4). 

B.4 Turn off procedure 

1. Select the manual mode. 

2. Press the manual/forçar manual and set the ventilator value to 20–30 Hz. 
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3. Wait until water temperature falls to below 40 ºC then stop the acquisition (acquisition + finalize 

acquisition + save data). 

4. Turn off the vacuum pump. 

5. Stop the gas analyzer, press the stop buttons. 

6. Leave the nitrogen bottle opened for purging purposes, wait until the display shows the purging 

is complete and close the nitrogen bottle. 

7. Turn off the power supply. 

8. Turn off the computer. 

9. Turn off the water. 

B.5 Safety issues 

1. In manual mode check if all devices are working properly. 

2. In case of failing the ignition indicated by high intensive of smoke with no flame, then increase 

the fan velocity to provide more air to start the combustion. 

3. Check always the water pump if the water flow rate value is constant between 400-600 L/h ( 

500 L/h). 

4. Continuously check if the temperature of water in the boiler (see in water temperature section) 

does not exceed 70 ºC; if so then click the force manual, turn off the pellets motor, and let the 

ventilator (30–35 Hz) and water pump running until water temperature falls below 40 ºC, then 

shut down the system (follow section turn off procedure). 

5. Make sure the cooler is working. 

6. Wear goggles all the time. 
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C. TGA data 

C.1 Data for different heating rate  

Table C.1. Ignition, peak and burnout temperatures and maximum combustion rates at different heating rates for the 

particles < 0.063 mm. 

Parameter 
Heating rate (oC/min) 

5 10 20 51 
Moisture release Temp. (oC) 183 87 244 234 
Initial decomposition Temp. (oC) 252 239 231 211 
Ignition Temp. (oC) 270 280 295 304 
1st peak Temp. (oC) 319 328 347 365 
2nd peak Temp. (oC) 443 451 449 462 
Burnout Temp. (oC) 458 456 481 529 
Burnout time (min.) 87 44 23 11 
Max. comb. rate (%/min.) at 1st peak  -6.40 -13.34 -22.64 -53.23 
Max. comb. rate (%/min.) at 2nd peak -2.12 -27.06 -30.07 -26.57 
Max. heat release (W/g) at DSC 9.63 151.26 198.45 296.99 
Temp. at max. heat release (oC) at DSC 327 456 465 488 
Remaining mass (%) 1.69 2.27 5.61 0.1 
Heat released (  J) 97.5 378 362 543 

Table C.2. Ignition, peak and burnout temperatures and maximum combustion rates at different heating rates for the 

particles 0.125-0.25 mm. 

Parameter 
Heating rate (oC/min) 

5 10 20 51 101 243 
Moisture release Temp. (oC) 176 205 257 271 279 290 
Initial decomposition Temp. (oC) 260 250 239 233 206 204 
Ignition Temp. (oC) 280 290 300 314 329 330 
1st peak Temp. (oC) 321 332 350 371 386 401 
2nd peak Temp. (oC) 456 472 484 503 516 553 
Burnout Temp. (oC) 473 492 523 559 600 688 
Burnout time (min.) 90 47 25 11 6 4 
Max. comb. rate (%/min.) at 1st peak  -6.30 -12.07 -23.07 -53.09 -103.1 -213.45 
Max. comb. rate (%/min.) at 2nd peak -2.09 -4.01 -7.38 -14.43 -22.75 -25.10 
Max. heat release (W/g) at DSC 11.28 53.63 83.87 247.21 380.65 772.39 
Temp. at max. heat release (oC) at DSC 333 476 495 528 540 658 
Remaining mass (%) 0.16 3.84 1.55 4.84 5.12 2.79 
Heat released (  J) 118 230 235 418 640 2618 
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Table C.3. Ignition, peak and burnout temperatures and maximum combustion rates at different heating rates for the 

particles >1 mm. 

Parameter 
Heating rate (oC/min) 

5 10 20 51 
Moisture release Temp. (oC) 100 94 261 272 
Initial decomposition Temp. (oC) 261 251 244 232 
Ignition Temp. (oC) 283 290 301 318 
1st peak Temp. (oC) 321 330 350 369 
2nd peak Temp. (oC) 458 466 478 442 
Burnout Temp. (oC) 475 483 523 533 
Burnout time (min.) 91 47 25 11 
Max. comb. rate (%/min.) at 1st peak  -6.38 -12.87 -23.88 -60.21 
Max. comb. rate (%/min.) at 2nd peak -2.45 -17.05 -20.42 -23.63 
Max. heat release (W/g) at DSC 10.34 91.79 150.39 240.11 
Temp. at max. heat release (oC) at DSC 461 473 480 522 
Remaining mass (%) 0.57 0.93 0.75 0.49 
Heat released (  J) 53.2 449 367 499 
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C.2 Data for different air flow rate 

Table C.6. Ignition, peak and burnout temperatures and maximum combustion rates at different air flow rates for the 

particles < 0.063 mm. 

Parameter Air flow rate (mL/min) 
10 50 100 150 

Moisture release Temp. (oC) 226 110 87 231 
Initial decomposition Temp. (oC) 242 242 239 242 
Ignition Temp. (oC) 282 283 280 282 
1st peak Temp. (oC) 332 331 328 332 
2nd peak Temp. (oC) 460 461 451 460 
Burnout Temp. (oC) 476 474 456 473 
Burnout time (min.) 45 46 44 45 
Max. comb. rate (%/min.) at 1st peak  -12.58 -13.39 -13.34 -12.63 
Max. comb. rate (%/min.) at 2nd peak -5.13 -5.89 -27.06 -5.79 
Max. heat release (W/g) at DSC 47.31 51.49 151.26 46.09 
Temp. at max. heat release (oC) at DSC 463 463 456 461 
Remaining mass (%) 3.37 3.32 2.27 4.34 
Heat released (  J) 210 225 378 175 

 

Table C.7. Ignition, peak and burnout temperatures and maximum combustion rates at different air flow rates for the 

particles 0.125 – 0.25 mm. 

Parameter Air flow rate (mL/min) 
10 50 100 150 

Moisture release Temp. (oC) 235 237 205 263 
Initial decomposition Temp. (oC) 250 248 250 250 
Ignition Temp. (oC) 293 290 290 291 
1st peak Temp. (oC) 334 334 332 334 
2nd peak Temp. (oC) 474 471 472 476 
Burnout Temp. (oC) 499 498 492 497 
Burnout time (min.) 47 47 47 47 
Max. comb. rate (%/min.) at 1st peak  -12.30 -13.73 -12.07 -12.27 
Max. comb. rate (%/min.) at 2nd peak -3.95 -4.39 -4.01 -4.15 
Max. heat release (W/g) at DSC 34.14 42.24 53.63 36.7 
Temp. at max. heat release (oC) at DSC 478 479 476 480 
Remaining mass (%) 0.60 6.92 3.84 4.32 
Heat released (  J) 177 232 230 179 
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Table C.8. Ignition, peak and burnout temperatures and maximum combustion rates at different air flow rates for the 

particles > 1 mm. 

Parameter Air flow rate (mL/min) 
10 50 100 150 

Moisture release Temp. (oC) 105 220 94 242 
Initial decomposition Temp. (oC) 251 251 251 251 
Ignition Temp. (oC) 292 290 290 290 
1st peak Temp. (oC) 334 335 330 334 
2nd peak Temp. (oC) 456 476 466 475 
Burnout Temp. (oC) 498 495 483 485 
Burnout time (min.) 49 47 47 47 
Max. comb. rate (%/min.) at 1st peak  -12.61 -12.02 -12.87 -11.86 
Max. comb. rate (%/min.) at 2nd peak -21.46 -5.63 -17.05 -16.49 
Max. heat release (W/g) at DSC 91.86 57.06 91.79 93.96 
Temp. at max. heat release (oC) at DSC 461 479 473 478 
Remaining mass (%) 2.14 3.98 0.93 5.58 
Heat released (  J) 216 247 449 162,905 
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C.3 Kinetic analysis data for different heating rate 

Table C.11. Estimated kinetic parameters for the combustion of pine wood particles at different heating rates (particles 

smaller than 0.063 mm). 

  (oC/min) E (kJ/mol) A (min-1) T (oC) R2 

2nd stage 
5 124.12 8.42E+11 252 - 370 0.9373 
10 118.96 2.72E+11 239 - 370 0.9566 
20 99.90 2.85E+09 231 - 390 0.9937 
51 93.55 5.52E+08 211 - 410 0.9749 

3rd stage 
5 190.02 1.81E+15 370 - 458 0.9175 
10 186.52 7.95E+14 370 - 456 0.8959 
20 229.02 6.05E+17 390 - 481 0.9549 
51 186.91 1.30E+14 410 - 529 0.9596 

Global combustion 
5 64.36 8.32E+05 252 - 458 0.8234 
10 68.30 1.71E+06 239 - 456 0.8534 
20 66.06 8.23E+05 231 - 481 0.9444 
51 66.19 6.18E+05 211 - 529 0.9453 

Table C.12. Estimated kinetic parameters for the combustion of pine wood particles at different heating rates (particles 

between 0.125 and 0.25 mm). 

  

(oC/min) 
E (kJ/mol) A (min-1) T (oC) R2 

2nd stage 
5 136.64 9.63E+12 260 - 370 0.9408 
10 125.27 6.88E+11 250 - 380 0.9544 
20 116.03 6.95E+10 239 - 390 0.966 
51 108.42 8.46E+09 233 - 415 0.9733 

101 96.75 6.05E+08 206 - 430 0.9899 
243 79.52 1.07E+07 204 - 510 0.9969 

3rd stage 
5 162.37 8.75E+12 370 - 473 0.9149 
10 159.40 2.96E+12 380 - 492 0.9246 
20 145.35 1.33E+11 390 - 523 0.9361 
51 147.41 8.03E+10 415 - 559 0.9351 

101 130.80 3.67E+09 430 - 600 0.9373 
243 141.41 2.32E+09 510 - 688 0.9374 

Global combustion 
5 62.78 4.77E+05 260 - 473 0.8072 
10 63.68 4.71E+05 250 - 492 0.8413 
20 64.06 3.73E+05 239 - 523 0.881 
51 65.29 3.48E+05 233 - 559 0.9038 

101 64.57 2.76E+05 206 - 600 0.94 
243 52.40 2.00E+04 204 - 688 0.9251 
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Table C.13. Estimated kinetic parameters for the combustion of pine wood particles at different heating rates (particles 

larger than 1 mm). 

  (oC/min) E (kJ/mol) A (min-1) T (oC) R2 

2nd stage 
5 136.06 8.09E+12 261 - 372 0.9388 
10 127.06 9.83E+11 251 - 380 0.9577 
20 119.22 1.17E+11 244 - 395 0.968 
51 112.29 1.97E+10 232 - 410 0.976 

3rd stage 
5 164.24 1.06E+13 372 - 475 0.9139 
10 172.42 3.24E+13 380 - 483 0.9252 
20 165.87 4.23E+12 395 - 523 0.9515 
51 162.88 1.73E+12 410 - 533 0.9321 

Global combustion 
5 62.05 3.92E+05 261 - 475 0.7981 
10 66.24 8.11E+05 251 - 483 0.8454 
20 66.71 6.08E+05 244 - 523 0.8877 
51 71.42 1.33E+06 232 - 533 0.9152 

C.4 Kinetic analysis data for different air flow rate 

Table C.14. Estimated kinetic parameters for the combustion of pine wood particles at different air flow rates (particles 

smaller than 0.063 mm). 

.

Qa  (mL/min) E (kJ/mol) A (min-1) T (oC) R2 

2nd stage 
10 115.64 1.04E+11 242 - 380 0.9544 
50 115.99 1.13E+11 242 - 380 0.9546 
100 118.96 2.72E+11 239 - 370 0.9566 
150 116.06 1.15E+11 242 - 380 0.9541 

3rd stage 
10 187.99 6.46E+14 380 - 476 0.9271 
50 191.19 1.16E+15 380 - 474 0.9263 
100 186.52 7.95E+14 370 - 456 0.8959 
150 192.98 1.61E+15 380 - 473 0.9257 

Global combustion 
10 66.19 9.45E+05 242 - 476 0.8651 
50 66.50 1.02E+06 242 - 474 0.8635 
100 68.30 1.71E+06 239 - 456 0.8534 
150 66.62 1.05E+06 242 - 473 0.8621 

 

 



Annex C. TGA data 

 

185 
 

Table C.15. Estimated kinetic parameters for the combustion of pine wood particles at different air flow rates (particles 

between 0.125 and 0.25 mm). 

.

Qa  (mL/min E (kJ/mol) A (min-1) T (oC) R2 

2nd stage 
10 125.89 7.38E+11 250 - 380 0.9571 
50 125.22 6.52E+11 248 - 380 0.9579 
100 125.27 6.88E+11 250 - 380 0.9544 
150 125.87 7.38E+11 250 - 380 0.9574 

3rd stage 
10 153.17 9.03E+11 380 - 499 0.9243 
50 153.05 8.82E+11 380 - 498 0.9227 
100 159.40 2.96E+12 380 - 492 0.9246 
150 154.02 1.04E+12 380 - 497 0.9232 

Global combustion 
10 63.40 4.15E+05 250 - 499 0.8472 
50 63.46 4.23E+05 248 - 498 0.8469 
100 63.68 4.71E+05 250 - 492 0.8413 
150 63.42 4.17E+05 250 - 497 0.8459 

Table C.16. Estimated kinetic parameters for the combustion of pine wood particles at different air flow rates (particles  

larger than 1 mm). 

.

Qa  mL/min) E (kJ/mol) A (min-1) T (oC) R2 

2nd stage 
10 127.42 9.90E+11 251 - 380 0.9588 
50 127.35 9.51E+11 251 - 380 0.9563 
100 127.06 9.83E+11 251 - 380 0.9577 
150 126.66 8.77E+11 251 - 380 0.9588 

3rd stage 
10 161.62 4.10E+12 380 - 498 0.9375 
50 157.59 1.86E+12 380 - 495 0.922 
100 172.42 3.24E+13 380 - 483 0.9252 
150 169.30 1.64E+13 380 - 485 0.9173 

Global combustion 
10 64.90 5.57E+05 251 - 498 0.8559 
50 64.47 4.84E+05 251 - 495 0.846 
100 66.24 8.11E+05 251 - 483 0.8454 
150 65.32 6.33E+05 251 - 485 0.8426 
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D. Preliminary set up for mass loss of wood pellets 

This section reports a set of preliminary starts carried out to validate the methodology. 

D.1 Mass loss 

In order to assess the feasibility to measure the mass loss and the devolatilization rate of the various 

components that make up the biomass, a preliminary set of experiments was developed in an existing 

oven. The results were of no practical significance to the purpose of this thesis but gave a reliable 

indication of the procedure. 

The tests were performed at a set of temperature within the operating range of the oven, below 250 oC, 

as detailed in Table D.1. In addition, for each temperature, the time was set at the values detailed in 

Table D.1. 

Table D.1. Time and temperature for the preliminary test. 

Temperature (°C) Time (s) 
144 

120 300 600 
 

1,800 191 
225 

In addition, a thermocouple was inserted longitudinally into a single thermocouple in order to record the 

temperature variation during the experiments. 

For the samples at 225 oC, the elemental analysis (Carbon, Nitrogen, and Hydrogen) was performed at 

10 minute and 5 hours. The experimental and modelling result with exponential equation and, the mass 

loss difference between the experimental and modelling are presented in Figure D.1 and Table D.2 

respectively. The mass losses during the thermal treatment at different temperatures in Figure D.1 

shows that the mass losses increased as the period of the heating time is increased up to  6 minutes 

at constant temperature. This condition is observed for all the temperatures tested and the highest 

temperature observed released the highest mass losses. The mass losses increase from 2-10% is due 

to the moisture content reducing and the initiation of volatile release. As mentioned in Arshanitsa et al. 

(2016) in the temperature range of 150-160 oC the moisture content from pellets is removed without 

any other volatiles' formation. The correlation coefficient (R2) in Figure D.1 is > 0.75; the mass loss 

difference for experimental and modelling in Table D.2 is not significantly different, then the natural 

logarithm equation is appropriate to apply for this experiment. 
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Figure D.1. Mass loss of wood pellets for experimental and modelling at temperature: 144, 191 and 225 oC. 

Table D.2. Mass loss difference between experimental and modelling. 

Time (s) 
dmloss (%). 

T = 144 °C T = 191 °C T = 225 °C 
120 -25.09 -20.26 -12.88 
300 4.74 13.69 10.85 
600 14.58 6.19 2.21 

1,800 -9.18 -7.70 -4.24 

D.2 Elemental analysis 

In the elemental analysis, two different times (10 min and 5 hours) and one constant temperature (225 

oC) for heating the pellets were applied. Besides evaluation of the chemical composition including 

Nitrogen, Carbon, and Hydrogen, and mass losses were also considered. The mass losses data are 

presented in Table D.3 and the elemental analysis data are presented in Table D.4. Table D.3 shows 

the mass losses during the heating up of the wood pellets for 10 minutes and 5 hours at 225 oC. The 

mass losses during 10 minutes of study are 9.45% which is indicated as the removal of the moisture 

content and some volatiles matter, as the water content of pellets was 6.9%. 

Table D.3. Mass loss at T = 225 oC. 

Time Mass loss (%) 
10 min 9.45 
5 hours 20.48 

y (144 °C) = 2.2856ln(x) - 7.6582 
R² = 0.889 

y (191 °C) = 1.5791ln(x) - 1.5767 
R² = 0.7498 

y (225 °C) = 1.7497ln(x) - 2.0029 
R² = 0.8745 

0

2

4

6

8

10

12

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

M
a

s
s

 l
o

ss
 (

%
) 

Time (s) 

T(exp) = 144 °C T(exp) = 191 °C T(exp) = 225 °C

T(ln) = 144 °C T(ln) = 191 °C T(ln) = 225 °C



Annex D. Preliminary set up for mass loss of wood pellets 

 

188 
 

The nitrogen content in wood pellets for 10 min is 0.10% which is smaller than 5 hours of heating, 

0.18%. Even though the Carbon and Hydrogen content for 10 minutes is higher than 5 hours, 54.50% 

and 50.10% for Carbon and 6.87 and 6.07% for Hydrogen respectively. These results indicated that the 

heating up of wood pellets at constant temperature and different time will produce less Nitrogen and 

more Carbon and Hydrogen for a short period of time. The elemental analysis of pine and beech wood 

under torrefied conditions at increasing temperature indicate the increase of the Carbon content while 

decreasing the Hydrogen and the Oxygen contents (Melkior et al., 2017). 

Table D.4. Elemental analysis at T = 225 oC. 

Parameter Initial concentration t = 10 min t = 5 hours 
Carbon (%) 50.8 54.50 50.10 

Hydrogen (%) 5.39 6.87 6.07 
Nitrogen (%) 1.55 0.10 0.18 

D.3 Transient behavior of pellets 

The mass loss of wood pellet was conducted in a small scale reactor, and the pellet was introduced into 

a small cup. Before introducing the sample the small cup was preheated to obtain the thermal 

equilibrium by applying the equation from the transient model (Eq. D.1) (Cengel, 2002), and with two 

different cups material (Carbon and stainless steel), then the result is presented in Figure D.2. 

t
VC

hA

i

p

s

e
TT

TtT 




 

)(

                  (D.1) 

where T(t) is the temperature of a body at time t (s), T  is the ambient temperature (K), Ti is initial 

temperature, h is the convection heat transfer coefficient (W/m2.K), V is volume (m3), Cp is a specific 

heat (kJ/kg.K) and As is surface area (m2). 
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Figure D.2. Temperature profile for CS and HSS cup. 

To observe the temperature profile in the center (r = 0) of the pellet, the simple model for 1D transient 

conduction in a cylinder was applied (Eq. D.2) (Cengel, 2002). 

2
10

0, 1cyl
i

T T
A e

T T
  


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 


                (D.2) 

where A1 and 1  is constants and are functions of the Bi number and the zeroth-order Bessel function 

of the first kind, J0.   is dimensionless time and cyl,0  the dimensionless temperature.  

Figure D.3 presents the experimental study of the temperature profile in the center and on the surface 

of the wood pellet at different heating temperatures in a reactor with a temperature range of up to 250 

oC. The temperature profiles at the surface and in the center of the wood pellet agree with the analytical 

study conducted by Gómez et al. (2015). The large temperature gradient between the surface and the 

center of the wood pellet is due to the low thermal conductivity and diffusivity of the biomass materials 

(Salema and Afzal, 2015). Kumar et al. (2008) modelled the temperature profile at 683 K on wood 

cylinder and revealed that the surface temperature attains the bulk temperature after a significant 

length of time, which suggests that the external heat transfer resistance cannot be neglected for this 

analysis. It was also shown that the distance between the two, the temperature always lies between the 

center and the surface temperature. Meanwhile, the peak temperature shown by the inner points is the 

largest for the center point, which corresponds to the temperature at 225 oC in Figure D.3. 
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Figure D.3. Temperature profile on the center (r = 0) and surface (r = 3 mm) of wood pellets (experiment). 

The result of the simulated temperature profile of a wood cylinder of 0.010 m radius conducted by 

Kumar et al. (2008) shows that when a particle is introduced into the reactor, the surface gets heated 

up fast and its temperature rises depending on the convective heat transfer coefficient and radiative 

effect. Besides, the center shows a temperature lag due to additional diffusive heat transfer resistance 

inside the particle. The highest temperature on the outside diameter of wood pellets results in fastest 

temperature equilibrium compared to the center temperature profile. 

Figure D.4 presents the temperature profile in the center for both experimental data and the model 

predictions. The prediction and experimental analysis on the center of the pellets was also conducted by 

Kumar et al. (2008) at a bulk temperature of 643 K. For the model prediction in this study, the heat 

transfer coefficient applied was 10 W/m2.K. The temperature in the center corresponds to the result 

obtained by Kumar et al. (2008) and Paulauskas et al. (2015). Paulauskas et al. (2015) revealed that 

the heating temperature and chemical processes inside the wood pellet influenced the center 

temperature profile and as the temperature increases the profile changes become more intensive. 
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Figure D.4. Temperature profile at in the center of the pellet (r = 0). 
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E. Experimental data 
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Figure E.1. Experimental results. 
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No. Temperature profile Emission profile 
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No. Temperature profile Emission profile 
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No. Temperature profile Emission profile 
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No. Temperature profile Emission profile 
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No. Temperature profile Emission profile 
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Figure E.2. The ashes agglomeration data. 

No. P (kW) EA (%) 
GA 

(mm2) 
SR d (mm) Figure Time (s) Observation 

TN1 10 50 90 x 75 20/80 7 

 

  

4,500 

The large ash 
agglomeration 
is 7 mm, and 

the residue are 
composed of 
some ashes 
and char. 

TN2 10 50 115 x 75 30/70 3 

 

 

5,500 

The large ash 
agglomeration 
is 3 mm, and 

the residue are 
composed of 
some ashes 
and char. 

TN3 10 50 115 x 96 37/63 10 

 

 

4,600 

The large ash 
agglomeration 
is 10 mm, and 
the residue are 
composed of 
some ashes 

and with 
almost no char. 

TN4 10 70 90 x 75 30/70 6 5,500 

The large ash 
agglomeration 
is 6 mm, and 

the residue are 
composed of 
some ashes 
and char. 

TN5 10 70 115 x 75 37/63 

 
 
 
 
 
 
 
 

17 
 
 
 
 
 
 
 
 

  
 
 
 

  
 
 
 
 

9,000 

The large ash 
agglomeration 
is 17 mm, and 
the residue are 
composed of 
some ashes 

and with 
almost no char. 
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No. P (kW) EA (%) 
GA 

(mm2) 
SR d (mm) Figure Time (s) Observation 

 

TN6 10 70 115 x 96 20/80 3 

 

 

6,000 

The large ash 
agglomeration 
is 3 mm, and 

the residue are 
composed of 
some ashes 
and char. 

TN7 10 110 90 x 75 37/63 17 

  

14,400 

The large ash 
agglomeration 
is 17 mm, and 
the residue are 
composed of 
some ashes 

and few char. 

TN8 10 110 115 x 75 20/80 4 

 

 

14,400 

The large ash 
agglomeration 
is 4 mm, and 

the residue are 
composed of 
some ashes 
and char. 

TN9 10 110 115 x 96 30/70 47 

 

 

14,400 

The large ash 
agglomeration 
is 47 mm, and 
the residue are 
composed of 
some ashes 
and char. 

TN10 13 50 90 x 75 37/63 7 

 

5,000 

The large ash 
agglomeration 
is 7 mm, and 

the residue are 
composed of 
some ashes 

and with 
almost no char. 
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No. P (kW) EA (%) 
GA 

(mm2) 
SR d (mm) Figure Time (s) Observation 

TN11 13 50 115 x 75 20/80 10 

  

5,600 

The large ash 
agglomeration 
is 10 mm, and 
the residue are 
composed of 
some ashes 

and few char. 

TN12 13 50 115 x 96 30/70 6 

   

14,400 

The large ash 
agglomeration 
is 6 mm, and 

the residue are 
composed of 
some ashes 

and few char. 

TN13 13 70 90 x 75 20/80 7 

 

 

10,000 

The large ash 
agglomeration 
is 7 mm, and 

the residue are 
composed of 
some ashes 

and few char. 

TN14 13 70 115 x 75 30/70 23 

  

12,000 

The large ash 
agglomeration 
is 23 mm, and 
the residue are 
composed of 
some ashes 
and char. 

TN15 13 70 115 x 96 37/63 

 
 
 
 
 
 

 
28 

 
 
 
 
 
 
 
 

 
 
 

  
 
 
 

14,400 

The large ash 
agglomeration 
is 28 mm, and 
the residue are 
composed of 
some ashes 

and with 
almost no char. 
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No. P (kW) EA (%) 
GA 

(mm2) 
SR d (mm) Figure Time (s) Observation 

 

TN16 13 110 90 x 75 30/70 28 

 

 

7,500 

The large ash 
agglomeration 
is 28 mm, and 
the residue are 
composed of 
some ashes 

and few char. 

TN17 13 110 115 x 75 37/63 20 

 

14,400 

The large ash 
agglomeration 
is 20 mm, and 
the residue are 
composed of 
some ashes 

and few char. 

TN18 13 110 115 x 96 20/80 12 

 

14,400 

The large ash 
agglomeration 
is 12 mm, and 
the residue are 
composed of 
some ashes 

and few char. 

TN19 16 50 90 x 75 30/70 12 

 

 

6,000 

The large ash 
agglomeration 
is 12 mm, and 
the residue are 
composed of 
some ashes 

and few char. 

TN20 16 50 115 x 75 37/63 32 

  

14,400 

The large ash 
agglomeration 
is 32 mm, and 
the residue are 
composed of 
some ashes 

and few char. 
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No. P (kW) EA (%) 
GA 

(mm2) 
SR d (mm) Figure Time (s) Observation 

TN21 16 50 115 x 96 20/80 20 14,400 

The large ash 
agglomeration 
is 20 mm, and 
the residue are 
composed of 
some ashes 

and with 
almost no char. 

TN22 16 70 90 x 75 37/63 25 8,000 

The large ash 
agglomeration 
is 25 mm, and 
the residue are 
composed of 
some ashes 

and with 
almost no char. 

TN23 16 70 115 x 75 20/80 24 

 

 

11,000 

The large ash 
agglomeration 
is 24 mm, and 
the residue are 
composed of 
some ashes 

and with 
almost no char. 

TN24 16 70 115 x 96 30/70 17 

 

14,400 

The large ash 
agglomeration 
is 17 mm, and 
the residue are 
composed of 
some ashes 

and few char. 

TN25 16 110 90 x 75 20/80 10 

   

6,000 

The large ash 
agglomeration 
is 10 mm, and 
the residue are 
composed of 
some ashes 

and few char. 
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No. P (kW) EA (%) 
GA 

(mm2) 
SR d (mm) Figure Time (s) Observation 

TN26 16 110 115 x 75 30/70 59 

 

14,400 

The large ash 
agglomeration 
is 59 mm, and 
the residue are 
composed of 
some ashes 

and with 
almost no char. 

TN27 16 110 115 x 96 37/63 10 

 

14,400 

The large ash 
agglomeration 
is 10 mm, and 
the residue are 
composed of 
some ashes 

and with 
almost no char. 

 
 

 

 




