
FACS 2005

Component Identification Through Program
Slicing

Nuno F. Rodrigues 1,2

Departamento de Informática
Universidade do Minho

Braga, Portugal

Lúıs S. Barbosa 1,3

Departamento de Informática
Universidade do Minho

Braga, Portugal

Abstract

This paper reports on the development of specific slicing techniques for functional
programs and their use for the identification of possible coherent components from
monolithic code. An associated tool is also introduced. This piece of research is
part of a broader project on program understanding and re-engineering of legacy
code supported by formal methods.

Key words: Program Slicing, Static Analysis, Component
Identification.

1 Introduction

A fundamental problem in system’s re-engineering is the identification of co-
herent units of code providing recurrently used services. Such units, which
are typically organised around a collection of data structures or inter-related
functions, can be wrapped around an interface and made available as software
components in a modular architectural reconstruction of the original system.
Moreover they can then be made available for reuse in different contexts.

This paper proposes the use of software slicing techniques to support such
a component’s identification process. Introduced by Weiser [16,14,15] in the

1 The research reported in this paper is supported by FCT, under contract
POSI/ICHS/44304/2002, in the context of the PURe project.
2 Email: nfr@di.uminho.pt
3 Email: lsb@di.uminho.pt

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Rodrigues and Barbosa

late Seventies, program slicing is a family of techniques for isolating parts of
a program which depend on or are depended upon a specific computational
entity referred to as the slicing criterion. Its potential for service or component
identification is therefore quite obvious. In practice, however, this requires

• A flexible definition of what is understood by a slicing criterion. In fact,
Weiser’s original definition has been re-worked and expanded several times,
leading to the emergence of different methods for defining and computing
program slices. Despite this diversity, most of the methods and correspond-
ing tools target either the imperative or the object oriented paradigms,
where program slices are computed with respect to a variable or a program
statement.

• The ability to extract actual (executable) code fragments.

• And, of course, suitable tool support.

All these issues are addressed in this paper. Our attention, however, is
restricted to functional programs [2]. Such focus is explained not only by the
research context mentioned below, but also because we deliberately want to
take an alternative path to mainstream research on slicing where functional
programming has been largely neglected. Therefore our research questions
include the definition of what a slice is for a functional program, how can
program data be extracted and represented, what would be the most suitable
criteria for component identification from functional monolithic code. There
is another justification for the qualificative functional in our title: the tool
that supports the envisaged approach was entirely developed in Haskell [2].

The context for this research is a broader project on program understanding
and re-engineering of legacy code supported by formal methods. A number
of case-studies in the project deal with functional code, even in the form
of executable specifications 4 . Actually, if forward software engineering can
today be regarded as a lost opportunity for formal methods (with notable
exceptions in areas such as safety-critical and dependable computing), reverse
engineering looks more and more a promising area for their application, due
to the engineering complexity and exponential costs involved. In a situation
in which the only quality certificate of the running software artefact still is
life-cycle endurance, customers and software producers are little prepared to
modify or improve running code. However, faced with so risky a dependence
on legacy software, managers are more and more prepared to spend resources
to increase confidence on — i.e., the level of understanding of — their code.

The paper is organised as follows. Section 2 reviews basic concepts in
program slicing and introduces introduces functional slicing, specifying a new
representation structure — the FDG (Functional Dependence Graph) — and
the slicing operations over it. The corresponding prototype tool (HaSlicer)

4 Specification understanding is not so weird as it may look at first sight. Actually, the
authors became aware of the amount and relevance of legacy specifications in the context
of an industrial partnership on software documentation.

2

Rodrigues and Barbosa

is described in section 3. Section 4 discusses how these techniques and tool
can be used for ’component discovery’ and identification. A small example is
included to illustrate the approach. The paper ends with a small section on
conclusions and future work.

2 Functional Program Slicing

2.1 Program Slicing

Weiser, in [15], defines a program slice S as a reduced executable program ob-
tained from a program P by removing statements, such that S replicates part of
the behaviour of P . A complementary definition characterizes program slices
as fragments of a program that influences specific computational result inside
that program [13]. The computation of a program slice is called program sli-
cing. This process is driven by what is referred to as a slicing criterion, which
is, in most approaches, a pair containing a line number and a variable iden-
tifier. From the user point of view, this represents a point in the code whose
impact she/he wants to inspect in the overall program. From the program
slicer view, the slicing criterion is regarded as the seed from which a program
slice is computed. According to Weiser original definition a slice consists of an
executable sub-program including all statements with some direct or indirect
consequence on the result of the value of the entity selected as the slicing cri-
terion. The concern is to find only the pieces of code that affect a particular
entity in the program.

Weiser approach corresponds to what would now be classified as a back-
ward, static slicing method. A dual concept is that of forward slicing in-
troduced by Horwitz et al [5]. In forward slicing one is interested on what
depends on or is affected by the entity selected as the slicing criterion. Note
that combining the two methods also gives interesting results. In particular
the union of a backward to a forward slice for the same criterion n provides
a sort of a selective window over the code highlighting the region relevant for
entity n.

Another duality pops up between static and dynamic slicing. In the first
case only static program information is used, while the second one also con-
siders input values [6,7] leading frequently, due to the extra information used,
to smaller and easier to analyse slices, although with a restricted validity.

Slicing techniques are always based on some form of abstract, graph-based
representation of the program under scrutiny, from which dependence relations
between the entities it manipulates can be identified and extracted. There-
fore, in general, the slicing problem reduces to sub-graph identification with
respect to a particular node. Note, however, that in general slicing can be-
come a highly complex process (e.g., when acting over unstructured control
flow structures or distributed primitives), and even, in some cases undecidable
[12].

3

Rodrigues and Barbosa

2.2 Functional Program Slicing

As mentioned above, mainstream research on program slicing targets imper-
ative languages and, therefore, it is oriented towards particular, well char-
acterised notions of computational variable, program statement and control
flow behaviour. Slicing functional programs requires a different perspective.
Functions, rather program statements, are the basic computational units and
functional composition replaces statement sequencing. Moreover there is no
notion of assignable variable or global state whatsoever. Besides, in modern
functional languages encapsulation constructs, such as Haskell [2] modules or
Ml [4] abstract data types, provide powerful structuring mechanisms which can
not be ignored in program understanding. What are then suitable notions of
slicing for functional programs? More specifically: suitable with respect to
the component identification process? Such is the question set in this section.

2.3 Functional Dependence Graphs

As mentioned above slicing techniques are always based on some kind of de-
pendence graph. Typical such structures are control flow graphs (CFG) and
program dependence graphs (PDG).

For a program P , a CFG is an oriented graph in which each node is as-
sociated with a statement from P and edges represent the corresponding flow
of control between statements. These kind of graphs rely entirely on a precise
notion of program statement and their order of execution inside the program.
Since functional languages are based on expression rather than statements,
CFG’s are not immediately useful in performing static analysis over functional
languages.

A PDG is an oriented graph where the nodes represent different kinds of
entities in the source code, and edges represent different kinds of dependencies.
The entities populating the nodes can represent functions, modules, data-
types, program statements, and other kind of program structures that may
be found in the code. In a PDG there are different sorts of edges (e.g., loop-
carried flow edges, loop-independent flow edges, control dependence edges,
etc) each representing a different kind of dependency between the intervenient
nodes.

Adapting the definition of PDG’s to the functional paradigm, one may
obtain a structure capturing a variety of information that, once combined,
can form the basis of meaningful slicing criteria. This leads to the following
definition.

Definition 1 (Functional Dependence Graph) A Functional Dependence
Graph (FDG) is a directed graph, G = (E, N) where N is a set of nodes and
E ⊆ N × N a set of edges represented as a binary relation between nodes.
A node N = (t, s, d) consists of a node type t, of type NType, a source code
location s, of type SrcLoc and a description d of type Descr.

4

Rodrigues and Barbosa

A source code location is simply an index of the node contents in the actual
source code.

Definition 2 (SrcLoc) The type SrcLoc is a product composed by the source
file name and the line-colunm code coordinates of a particular program ele-
ment, i.e., SrcLoc = SrcF ileName × SrcBgnLine × SrcBgnColumn ×
SrcEndLine× SrcEndColumn.

More interesting is the definition of a node type which captures the inform-
ation diversity mentioned above and is the cornerstone of FDG’s flexibility.

Definition 3 (NType) the type of a FDG node is given by the following
enumeration of literals

NType = Nm(module) | Nf(function)

| Ndt(data type) | Nc(constructor)

| Nd(destructor)

Let us explain in some detail the intuition behind these types.

Nodes bearing the Nm (Module) type, represent software modules, which,
from the program analysis point of view, corresponds to the highest level of
abstraction over source code. Note that Haskell has a concrete definition of
module, which makes the identification of Nm nodes straightforward. Modules
encapsulate several program entities, in particular code fragments that give
rise to other FDG nodes. Thus, a Nm node depends on every other node rep-
resenting entities defined inside the module as well as on nodes corresponding
to modules it may import.

Nodes of type Nf represent functions, i.e., abstractions of processes which
transform some kind of input information (eventually void) into an output
(eventually void too). Functions are the building blocks of functional pro-
grams, which in most cases, decorate them with suitable type information,
making extraction simple. More complex is the task of relating a function
node to the nodes corresponding to computational entities in its body — data
type references, other functions or what we shall call below functional state-
ments.

Constructor nodes (Nc) are specially targeted to functional languages with
a precise notion of explicit type constructors (such as the ones associated
to datatype declarations in Haskell). Destructor nodes (Nd) store datatype
selectors, which are dual to constructors, and again specific to the functional
paradigm 5 .

This diversity of nodes in the FDG is interconnected by arcs. In all cases
an edge from a node n1 to a node n2 witnesses a dependence relation of n2 on
n1. The semantics of such a relation, however, depends on the types of both

5 A similar notion may, however, be found in other contexts — e.g., the C selector operator
“.” which retrieves specific fields from a struct construction. Object oriented languages
also have equivalent selector operators.

5

Rodrigues and Barbosa

Target
NType

Source NType’s Edge Semantic

Nm {Nm} Target node imports source node

Nm {Nf , Nc, Nd, Ndt} Source node contains target node definition

Nf {Nst} Statements belong to function definition

Nf {Nc, Nd, Ndt, Nf} Function is using target node functionality

Ndt {Ndt} Source data-type is using target data-type

Ndt {Nc} Data-type is constructed by target node

Ndt {Nd} Data-type is destructed by target node

Table 1
FDG Edge Description

nodes. For example, an edge from a Nf (function) node n1 to a Nm (module)
node n2 means that the module represented by n2 depends on the function
associated to n1, that is, in particular, that the function in n1 is defined inside
the module in n2.

On the other hand, an edge from a node n3 to n4, both of type Nf , witnesses
a dependence of the function in n4 on the one in n3. This means, in particular,
the latter is called by the former. Notice the difference from the Nm, Nf case
where dependence means definition inside the module.

Table 1 introduces the intended semantics of edges with respect to the
types of nodes they connect. Also note that a FDG represents only direct
dependencies. For example there is no node in a FDG to witness the fact that
a module uses a function defined elsewhere. What would be represented in
such a case is a relationship between the external function and the internal
one which calls it. From there the indirect dependence can be retrieved by a
particular slicing criterion.

2.4 The Slicing Process

Program slicing based on Functional Dependence graphs is a five phase process,
as illustrated in figure 1. As expected, the first phase corresponds to the
parsing of the source code, giving origin to an abstract syntax tree (AST)
instance t. This is followed by an abstraction process that extracts the relevant
information from t, constructing a FDG instance g according to the different
types of nodes found.

The third phase is where the actual slicing takes place. Here, given a

6

Rodrigues and Barbosa

Fig. 1. The slicing process

slicing criterion, composed by a node from t and a specific slicing algorithm,
the original FDG g is sliced, originating a subgraph of g which is g′. Notice
that, slicing takes place over the FDG, and that the result is always a subgraph
of the original graph.

The fourth phase, is responsible for pruning AST t, based on the sliced
graph g. At this point, each program entity that is not present in graph g′,
is used to prune the correspondent syntactic entity in t, giving origin to a
subtree t′ of t. Finally, code reconstruction takes place, where the pruned tree
t′ is consumed to generate the sliced program by an inverse process of phase
1.

In [9] a number of what we have called slicing combinators were formally
defined, as operators in the relational calculus [1], on top of which the actual
slicing algorithms, underlying phases three and four above, are implemented.
This provides a basis for an algebra of program slicing, which is, however, out
of the scope of this paper.

3 The HaSlicer Prototype

HaSlicer 6 is a prototype of a slicer for functional programs entirely written
in Haskell built as a proof-of-concept for the ideas discussed in the previous
section. Both forward, backward and forward dependency slicing are covered.

6 The prototype is available for testing at http://wiki.di.uminho.pt/wiki/bin/view/Nuno

7

Rodrigues and Barbosa

Node Color Node Type

Nm

Nf

Ndt

Nc

Nd

Table 2
FDG Edge Codes

In general the prototype implements the above mentioned slicing combinators
[9] and addresses two other issues fundamental to component identification:
the definition of the extraction process from source code and the incorporation
of a visual interface over the generated FDG to support user interaction.
Although its current version accepts only Haskell code, plug-ins for other
functional languages as well as for the Vdm-Sl metalanguage [3] are currently
under development.

Figure 2 shows two snapshots of the prototype working over a small Haskell

program. Screenshot 2 (a), shows the visualization of the entire FDG loaded in
the tool. Notice that the differently coloured nodes indicate different program
entity types according to Table 2.

Figure 2.(a) reproduces the subgraph resulted from performing slice over
one of the nodes of the graph from 2.(b). Once a slice has been computed,
the user may retrieve the corresponding code. The whole process can also be
undone or launched again with different criteria or object files.

4 Component Discovery and Identification

4.1 Two Approaches

There are basically two ways in which slicing techniques, and the HaSlicer
tool, can be used in the process of component identification: either as a sup-
port procedure for manual component identification or as a ’discovery’ pro-
cedure in which the whole system is searched for possible loci of services, and
therefore potential components. In this section both approaches are briefly
discussed.

The first approach deals with manual component identification guided by
analysing and slicing some representation of the legacy code. In this context,
the FDG seems to provide a suitable representation model. Through its ana-
lysis, the software architect can easily identify all the dependencies between

8

Rodrigues and Barbosa

(a) (b)

Fig. 2. Slicing with HaSlicer

the code entities and look for certain architectural patterns and/or undesired
dependencies in the graph.

One of the most interesting operations in this category is component iden-
tification by service. The idea is to isolate a component that implements a
specific service of the overall system. The process starts in a top-down way,
looking for the top level functions that characterise the desired service. Once
these functions are found, forward dependency slicing is applied starting from
the corresponding FDG nodes. These produces a series of sliced files (one
per top level function), that have to be merged together in order to build
the desired component. Note that a forward dependency slice collects all the
program entities which each top level function requires to operate correctly.
Thus, by merging all the forward dependency slices corresponding to a par-
ticular service one gets the least (derived) program that implements it.

This process leads to the identification of a new component which, besides
being reusable in other contexts, will typically be part of the (modular) re-
construction of the original legacy system. But in what direction should such
system be reorganized to use the identified service as an independent com-
ponent? This would require an operation upon the FDG which is, in a sense,
dual to slicing. It consists of extracting every program entity from the system,
but for ones already collected in the computed slices. Such operation, which
is, at present, only partially supported by HaSlicer, produces typically a
program which cannot be immediately executed, but may be transformed in
that direction. This amounts basically to identify potential broken function
calls in the original code and re-direct them to the new component’s services.

The second use of slicing mentioned in the beginning of this section under
the designation of ’component discovery’ relies on slicing techniques for the
automatic isolation of possible components. In our experience this was found

9

Rodrigues and Barbosa

particularly useful at early stages of component identification. Such proced-
ures, however, must be used carefully, since they may lead to the identification
of both false positives and false negatives. This means that there might be
good candidates for components which are not found as well as situations in
which several possible components are identified which turn out to lack any
practical or operational interest.

To use an automatic component ’discovery’ procedure, one must first un-
derstand what to look for, since there is no universal way of stating which
characteristics correspond to a potential software component. Thus, one has
to look for components by indirect means, that certainly include the identific-
ation of certain characteristics that components usually bear, but also some
filtering criteria.

A typical characteristic that is worthwhile to look for concerns the organiz-
ation of a bunch of functions around a common data type structure. Therefore
a possible criteria for component ’discovery’ is based on the data types defined
on the original code. The idea is to take each data type and isolate both the
data type and every program entity in the system that depends on it. Such
an operation can be accomplished by performing a backward slicing starting
from each data type node in the FDG.

A second well known characteristic, identified by the object-orientation
community, relates to the fact that ’interesting’ components typically present
a low level of coupling and a high level of cohesion[18]. Briefly, coupling is a
metric to assess how mutually dependable two components are, i.e., it tries
to measure how much a change in one component affects other components
in a system. On the other hand, cohesion measures how internally related
are the functions of a specific component. Generally, in a component with a
low cohesion degree errors and undesirable behaviour are difficult to detect.
In practice if its functions are weakly related errors may ’hide’ themselves in
seldom used areas and remain invisible to testing for some time.

The conjunction of these two metrics leads to a ’discovery’ criteria which
uses the FDG to look for specific clusters of functions, i.e., sets of strongly
related functions, with reduced dependencies on any other program entity
outside this set. Such function clusters cannot be identified by program slicing
techniques, but the FDG is still very useful in determining this clusters. In fact
these kind of metrics can be computed on top of the information represented
in the FDG. The HaSlicer tool, in particular, compute their combined value
through

Coupling(G, f) ,]{(x, y) | ∃x, y. yGx ∧ x ∈ f ∧ y 6∈ f} (1)

Cohesion(G, f) ,]{(x, y) | ∃x, y. yGx ∧ x ∈ f ∧ y ∈ f} (2)

CCAnalysis(G) , {(Coupling(G, f), Cohesion(G, f)) | ∀f ∈ PF} (3)

where G is a FDG and F a set of functions under scrutiny. Depending on how
liberal or strict one wants the component discovery criteria to be, different

10

Rodrigues and Barbosa

Fig. 3. FDG for the Toy Bank Account System

acceptance limits for coupling and cohesion can be used. This will define
what clusters will be considered as loci of potential components. Once such
clusters are identified, the process continues by applying forward dependency
slicing on every function in the cluster and merging the resulting code.

4.2 A Toy Example

To illustrate the use of slicing for component identification, consider the
Haskell code for a toy bank account system, shown in Appendix A. The
corresponding FDG, as computed by HaSlicer is depicted in Figure 3.

If one tries to apply an automatic component ’discovery’ method to this
code, based, for example, in the combined cohesion-coupling metric, the num-
ber of cases to consider soon becomes very large. This occurs because the
algorithm iterates powerset over the set of functions. Nevertheless, a simple
filter based on both coupling, cohesion and cardinality of the sets under ana-
lysis largely decreases the number of cases to consider. The idea is to tune the
’discovery’ engine to look for high cohesion values combine with both a low
value of coupling and, what is most important, a reduced number of elements
in the set being analysed. The results of applying such a filter to the example
at hands are reproduced in Table 3.

Clearly, two components have been identified (corresponding to the gray
area of the FDG in Figure 3): a component for handling Client information
and another one for managing Accounts data. As mentioned above, the pro-
cess would continue by applying forward dependency slicing over the nodes
corresponding to the functions in the identified sets, followed by slice merging.

11

Rodrigues and Barbosa

Functions’ Clusters Coh Cou

getAccAmount findAcc existsAcc insertAcc updateAcc removeAcc 7 0

getCltName findClt existsClt insertClt updateClt removeClt 7 0

Table 3
Cohesion and Coupling Metric for Example 3

5 Related Work

The FDG definition used in our approach is closely related to the notion
of Program Dependence Graph defined by Ottenstein and Ottenstein in [8],
though we have specialized the graph to face the functional paradigm and
introduced new semantics to the node relations.

Our methodology for component identification is based on the ideias first
presented by Schwanke et al [11] [10], where design principles like coupling
and cohesion are used to identify highly cohesive modules. Here we diverge
from the existing approaches, by making use of the lazy properties of Haskell

in order to obtain answers in an acceptable time.

A second difference between our approach to component identification and
other techniques, which are usually included in the boarder discipline of soft-
ware clustering [17], is that we are working with functional languages with no
aggregation units other then the module itself. In contrast to this, most of
the software clustering algorithms are oriented to the OO paradigm, and as
a consequence, they are often based on the notion of class which is itself an
aggregation construct. Thus, we have to cope with a much smaller granularity
of programming units to modularize.

6 Conclusions and Future Work

Under the overall motto of functional slicing, the aim of this paper was two-
fold. On the one hand a specific dependence graph structure, the FDG, was
introduced as the core graph structure for functional slicing and a corres-
ponding prototype developed. On the other hand it was shown how slicing
techniques can be used to identify software components from (functional) leg-
acy code, either as a support tool for the working software architect or in an
automatic way in a process of component ’discovery’. The latter is particu-
larly useful as an architecture understanding technique in the earlier phases
of the re-engineering process.

What makes FDG a suitable structure for our purpose is the introduction
of an ontology of node types and differentiated edge semantics. This makes
possible to capture in a single structure the different levels of abstraction a
program may possess. This way a FDG captures not only high level views

12

Rodrigues and Barbosa

of a software project (e.g., how modules or data-types are related), but also
low level views (down to relations between functional statements inside func-
tion’s bodies, not discussed here but see [9]). Moreover, as different program
abstraction levels are stored in a single structure, it becomes easy to jump
across views according to the analyst needs. Finally, notice that the FDG
structure is flexible enough to be easily adapted to other programming lan-
guages and paradigms.

An area of future research is the adaptation of graph clustering techniques,
already available in the literature, to the discovery of components over FDG in-
stances. Concerning this aspect, we have already carried out some experiences
with adjacency matrixes algorithms which point to a significant reduction in
the time to compute component candidates.

As mentioned in the Introduction, this research is part of a broader agenda.
In such a context, current work includes:

• The generalization of slicing techniques to the software architecture level,
in order to make them applicable, not only to architectural specifications
(as in [19]), but also to the source code level of large heterogeneous software
systems, i.e. systems that have been programmed in multiple languages and
consists of many thousands of lines of code.

• The research on the interplay between component identification based on
slicing, as discussed in this paper, and other analysis techniques (such as,
e.g., type reconstruction) also based on graph analysis.

References

[1] R. C. Backhouse and P. F. Hoogendijk. Elements of a relational theory of
datatypes. In B. Möller, H. Partsch, and S. Schuman, editors, Formal Program
Development, pages 7–42. Springer Lect. Notes Comp. Sci. (755), 1993.

[2] R. Bird. “Functional Programming Using Haskell”. Series in Computer Science.
Prentice-Hall International, 1998.

[3] J. Fitzgerald and P. G. Larsen. “Modelling Systems: Pratical Tools and
Techniques in Software Development”. Cambridge University Press, 1998.

[4] R. Harper and K. Mitchell. Introduction to standard mla. Technical Report,
University of Edimburgh, 1986.

[5] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. In PLDI ’88: Proceedings of the ACM SIGPLAN 1988 Conf. on
Programming Usage, Design and Implementation, pages 35–46. ACM Press,
1988.

[6] B. Korel and J. Laski. Dynamic program slicing. Inf. Process. Lett., 29(3):155–
163, 1988.

13

Rodrigues and Barbosa

[7] B. Korel and J. Laski. Dynamic slicing of computer programs. J. Syst. Softw.,
13(3):187–195, 1990.

[8] K. J. Ottenstein and L. M. Ottenstein. The program dependence graph in
a software development environment. In SDE 1: Proceedings of the first
ACM SIGSOFT/SIGPLAN software engineering posium on Practical software
development environments, pages 177–184. ACM Press, 1984.

[9] N. Rodrigues. A basis for slicing functional programs. Technical report, PURe
Project Report, DI-CCTC, U. Minho, 2005.

[10] R. W. Schwanke. An intelligent tool for re-engineering software modularity.
In ICSE ’91: Proceedings of the 13th international conference on Software
engineering, pages 83–92, Los Alamitos, CA, USA, 1991. IEEE Computer
Society Press.

[11] R. W. Schwanke and S. J. Hanson. Using neural networks to modularize
software. Mach. Learn., 15(2):137–168, 1994.

[12] A. M. Sloane and J. Holdsworth. Beyond traditional program slicing. In the
International Symposium on Software Testing and Analysis, pages 180–186, San
Diego, CA, 1996. ACM Press.

[13] F. Tip. A survey of program slicing techniques. Journal of programming
languages, 3:121–189, 1995.

[14] M. Weiser. Program Slices: Formal, Psychological and Practical Investigatios
of an Automatic Program Abstraction Methods. PhD thesis, University of
Michigan, An Arbor, 1979.

[15] M. Weiser. Programmers use slices when debugging. Commun. ACM,
25(7):446–452, 1982.

[16] M. Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):352–357, 1984.

[17] T. A. Wiggerts. Using clustering algorithms in legacy systems remodularization.
In WCRE ’97: Proceedings of the Fourth Working Conference on Reverse
Engineering (WCRE ’97), page 33, Washington, DC, USA, 1997. IEEE
Computer Society.

[18] E. Yourdon and L. Constantine. “Structured Design: Fundamentals of a
Discipline of Computer Program and Systems Design”. Prentice-Hall, 1979.

[19] J. Zhao. Applying slicing technique to software architectures. In Proc. of 4th
IEEE International Conferencei on Engineering of Complex Computer Systems,
pages 87–98, August 1998.

A Toy Bank Account System

module Slicing where

import Mpi

14

Rodrigues and Barbosa

data System = Sys { clients :: [Client],

accounts :: [Account] } deriving Show

data Client = Clt { cltid :: CltId,

name :: CltName } deriving Show

data Account = Acc { accid :: AccId,

amount :: Amount } deriving Show

type CltId = Int

type CltName = String

type AccId = Int

type Amount = Double

initClts :: [((CltId, CltName), (AccId, Amount))] -> System

initClts = (uncurry Sys) . split (map ((uncurry Clt) . fst))

(map ((uncurry Acc) . snd))

findClt :: CltId -> System -> Maybe Client

findClt cid sys =

if (existsClt cid sys) then Just . head . filter ((cid ==) . cltid) . clients $ sys

else Nothing

findAcc :: AccId -> System -> Maybe Account

findAcc acid sys =

if (existsAcc acid sys) then Just . head . filter ((acid ==) . accid) . accounts $ sys

else Nothing

existsClt :: CltId -> System -> Bool

existsClt cid = elem cid . map cltid . clients

existsAcc :: AccId -> System -> Bool

existsAcc acid = elem acid . map accid . accounts

insertClt :: (CltId, CltName) -> System -> System

insertClt (cid, cname) (Sys clts accs) =

if (existsClt cid (Sys clts accs)) then error "Client ID already exists!"

else Sys ((Clt cid cname) : clts) accs

insertAcc :: (AccId, Amount) -> System -> System

insertAcc (acid, amount) (Sys clts accs) =

if (existsAcc acid (Sys clts accs)) then error "Account ID already exists!"

else Sys clts ((Acc acid amount) : accs)

removeClt :: CltId -> System -> System

removeClt cid (Sys clts accs) =

if (existsClt cid (Sys clts accs)) then Sys (filter ((cid /=) . cltid) clts) accs

else Sys clts accs

removeAcc :: AccId -> System -> System

removeAcc acid (Sys clts accs) =

if (existsAcc acid (Sys clts accs)) then Sys clts (filter ((acid /=) . accid) accs)

else Sys clts accs

updateClt :: (CltId, CltName) -> System -> System

updateClt (cid, cname) sys =

if (existsClt cid sys) then insertClt (cid, cname) . removeClt cid $ sys

else insertClt (cid, cname) sys

updateAcc :: (AccId, Amount) -> System -> System

updateAcc (acid, amount) sys =

if (existsAcc acid sys) then insertAcc (acid, amount) . removeAcc acid $ sys

else insertAcc (acid, amount) sys

getCltName :: CltId -> System -> Maybe CltName

getCltName cid sys = case findClt cid sys of

15

Rodrigues and Barbosa

Just clt -> Just . name $ clt

Nothing -> Nothing

getAccAmount :: AccId -> System -> Maybe Amount

getAccAmount acid sys = case findAcc acid sys of

Just acc -> Just . amount $ acc

Nothing -> Nothing

16

	Introduction
	Functional Program Slicing
	Program Slicing
	Functional Program Slicing
	Functional Dependence Graphs
	The Slicing Process

	The HaSlicer Prototype
	Component Discovery and Identification
	Two Approaches
	A Toy Example

	Related Work
	Conclusions and Future Work
	References
	Toy Bank Account System

