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Abstract

This thesis presents research developed towards adaptable and effective opti-
mization of controllers for humanoid robots’ locomotion. It addresses this goal
by combining features of humanoid locomotion and the impact of different envi-
ronments in its dynamics, along with mathematical optimization and statistical
analysis techniques.

Controllers for the locomotion of bipedal robots often face challenges regard-
ing their optimization towards different objectives and different environments.
We propose an architecture that uses the information gathered in an optimiza-
tion/exploration phase to adapt to a terrain with partially unknown characteristics.
In the exploration phase virtual simulations are used to optimize the parameters
of the controller in different terrains. The results of these optimizations are used
to identify the unknown terrain characteristics, and these values are used to se-
lect the best parameters for this particular environment. The approach was tested
in the simulations of an iCub robot on terrains with variable friction, and of the
DARwIn-OP robot in ramps with varying slopes.

This work brings contributions to the problem of choosing the values for the
open parameters of biped locomotion controllers in various situations. Specific is-
sues that are covered relate to: 1) establishing an optimization framework that can
be applied to any controller with open parameters, and which results in both safe
and well performing behaviors; 2) finding locomotion behaviors that are effective
in multiple and distinct environments; 3) adapting the locomotion to environments
with varying characteristics, modeled in previous optimizations.
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Résumé

Cette thèse présente des recherches développées pour une optimisation adapta-
tive et efficace des contrôleurs de locomotion des robots humanöıdes. Elle répond
à cet objectif en combinant les caractéristiques de la locomotion humanöıde et
l’impact de différents environnements dans sa dynamique, ainsi que des techniques
d’optimisation mathématique et d’analyse statistique.

Les contrôleurs pour la locomotion des robots bipèdes font souvent face à des
défis concernant leur optimisation vers différents objectifs et environnements. Nous
proposons une architecture qui utilise les informations recueillies dans une phase
d’optimisation / exploration pour s’adapter à un terrain avec des caractéristiques
partiellement inconnues. Dans la phase d’exploration virtuelle des simulations sont
utilisées pour optimiser les paramètres du contrôleur dans différents terrains. Les
résultats de ces optimisations servent à identifier les caractéristiques inconnues du
terrain et, en conséquence, à sélectionner les meilleurs valeurs des paramètres du
contrôleur pour cet environnement. L’approche a été testée dans les simulations
d’un robot iCub sur terrains avec un frottement variable, et du robot DARwIn-OP
dans des terrains avec des pentes différentes.

Ce travail s’intéresse donc au problème du choix des valeurs des paramètres
des contrôleurs de locomotion bipède dans diverses situations. Les contributions
apportées consistent à : 1) établir un cadre d’optimisation qui peut être appliqué
à n’importe quel contrôleur avec des paramètres ouverts, et qui se traduit par des
comportements à la fois sécurisés et performants ; 2) trouver des comportements
de locomotion efficaces dans des environnements multiples et distincts ; 3) adapter
la locomotion à des environnements aux caractéristiques variables, modélisés dans
optimisations précédentes.
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Resumo

Esta tese apresenta pesquisa desenvolvida no sentido de chegar a uma oti-
mização adaptável e eficaz de controladores para a locomoção de robots huma-
noides. Para atingir este objetivo, são combinadas caracteŕısticas da locomoção
e o impacto que diferentes ambientes têm nas sua dinâmicas, em conjunto com
técnicas de otimização matemática e análise estat́ıstica.

Controladores da locomoção de robots b́ıpedes frequentemente enfrentam de-
safios relacionados com a otimização relativa a diferentes objetivos e ambientes.
Aqui propõe-se uma arquitetura que usa a informação recolhida numa fase de oti-
mização/exploração para adaptar a marcha a um terreno com caracteŕısticas parci-
almente desconhecidas. Na fase de exploração, simulações virtuais são usadas para
otimizar os parâmetros do controlador em terrenos diferentes. Os resultados des-
sas otimizações são usados para identificar as caracteŕısticas do ambiente que são
desconhecidas, e esses valores são usados para selecionar os melhores parâmetros
para esse terreno. Esta abordagem foi testada em simulações de um robot iCub
em terrenos com fricção variável, e de um robot DARwIn-OP em rampas com
diferentes declives.

Este trabalho oferece contribuições relativas ao problema de escolher valores
para os parâmetros de controladores da locomoção de b́ıpedes em várias situações.
Especificamente, cobrem-se questões relacionadas com: 1) estabelecer uma plata-
forma de otimização que pode ser aplicado a qualquer controlador com parâmetros
por definir, e que resulta em marchas seguras, e com bom desempenho; 2) en-
contrar marchas que são eficazes em ambientes múltiplos e distintos; 3) adaptar
a locomoção a terrenos com caracteŕısticas variáveis, modeladas em otimizações
prévias.

vii



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Locomotion controllers adaptation . . . . . . . . . . . . . . . . . . . . . 2
1.3 Goals and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6.1 Conference papers . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Humanoid robot locomotion control 6
2.1 Humanoid robots locomotion . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Characteristics of humanoid locomotion . . . . . . . . . . . . . . 8
2.1.2 Statically and dynamically balanced locomotion . . . . . . . . . 9

2.2 Biped locomotion control strategies . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Control based on dynamic models . . . . . . . . . . . . . . . . . 12
2.2.2 Biologically inspired control . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Biped locomotion controller optimization . . . . . . . . . . . . . 19
2.2.4 Biped locomotion controller adaptation . . . . . . . . . . . . . . 23
2.2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Background 29
3.1 Mathematical optimization . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Evolutionary algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Multi-objective optimization . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Pareto efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 NSGA-II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 SBX and polynomial mutation . . . . . . . . . . . . . . . . . . . 35

4 A general framework for biped locomotion control optimization 41
4.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Exploration framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Selecting the components of the framework . . . . . . . . . . . . . . . . 44

viii



4.3.1 Robot model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.2 Locomotion controller . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.3 Environment variable . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.4 Optimized locomotion features . . . . . . . . . . . . . . . . . . . 46
4.3.5 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.6 Optimization algorithm . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Sensitivity analysis on the environment variable . . . . . . . . . . . . . . 50
4.5 Correlation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5.1 Tuning the optimization setup . . . . . . . . . . . . . . . . . . . 52

5 Optimizing the control of biped locomotion in different conditions 54
5.1 Locomotion control of the iCub on floors with different frictions . . . . . 54

5.1.1 Optimization framework setup . . . . . . . . . . . . . . . . . . . 55
5.1.2 Stage 1: Locomotion control optimization . . . . . . . . . . . . . 57
5.1.3 Stage 1 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1.4 Stage 2: Optimization on floors with different frictions . . . . . . 64
5.1.5 Stage 2 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Controller optimization of the DARwIn-OP on floors with different slopes 71
5.2.1 Optimization framework setup . . . . . . . . . . . . . . . . . . . 71
5.2.2 Stage 1: Preliminary optimization . . . . . . . . . . . . . . . . . 72
5.2.3 Stage 1 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.4 Stage 2: Optimization on floors with different slopes . . . . . . . 79
5.2.5 Stage 2 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Effects of mass and volume changes on the control of a virtual humanoid
robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.1 Optimization framework setup . . . . . . . . . . . . . . . . . . . 91
5.3.2 Locomotion control optimization under different body’s mass and

height values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 An adaptive approach to humanoid locomotion 99
6.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Adaptation framework overview . . . . . . . . . . . . . . . . . . . . . . . 99
6.3 Functions of the adaptation framework . . . . . . . . . . . . . . . . . . . 100

6.3.1 Selection of the solution for the identification process . . . . . . . 103
6.3.2 Identification of the new context . . . . . . . . . . . . . . . . . . 106
6.3.3 Selecting the final solution . . . . . . . . . . . . . . . . . . . . . . 107

ix



7 Humanoid locomotion adaptation to unknown terrain features 111
7.1 Wilcoxon test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.1.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2 Adapting the iCub’s locomotion control to different coefficients of friction112

7.2.1 Adaptation framework setup . . . . . . . . . . . . . . . . . . . . 112
7.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3 Making the DARwIn-OP walk up ramps with different slopes . . . . . . 118
7.3.1 Adaptation framework setup . . . . . . . . . . . . . . . . . . . . 118
7.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8 Summary and perspectives 130
8.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.2 Methodology and contributions . . . . . . . . . . . . . . . . . . . . . . . 131
8.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.4.1 Main advantages and disadvantages . . . . . . . . . . . . . . . . 134
8.4.2 Towards a full-fledged implementation of the adaptation framework135

8.5 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.5.1 Time cost and safety of the adaptation framework . . . . . . . . 136
8.5.2 Adding feedback to the adaptation process . . . . . . . . . . . . 136
8.5.3 Automatization of the exploration phase . . . . . . . . . . . . . . 137
8.5.4 Duration of each trial . . . . . . . . . . . . . . . . . . . . . . . . 137
8.5.5 Optimizing towards multiple context variables . . . . . . . . . . 138
8.5.6 Relation between context values and locomotion features . . . . 138
8.5.7 Optimizing a humanoid for total mass and height . . . . . . . . . 138

Appendices 140

A Description of the robot models used 141
A.1 Description of the iCub model . . . . . . . . . . . . . . . . . . . . . . . . 141
A.2 Description of the XDE-manikin . . . . . . . . . . . . . . . . . . . . . . 141
A.3 Description of the DARwIn-OP model . . . . . . . . . . . . . . . . . . . 144

A.3.1 Webots simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 146
A.3.2 DARwIn-OP physical limits . . . . . . . . . . . . . . . . . . . . . 146

B Dynamics based control with task hierarchy 148
B.1 Control scheme summary . . . . . . . . . . . . . . . . . . . . . . . . . . 148
B.2 Tasks and weights used for the locomotion control of the iCub and the

XDE-manikin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
B.3 Actuation limits constraints . . . . . . . . . . . . . . . . . . . . . . . . . 151

x



C CPG-based control 152
C.1 Control scheme summary . . . . . . . . . . . . . . . . . . . . . . . . . . 152
C.2 Rhythm generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
C.3 Motion primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

C.3.1 Motion primitives parametrization . . . . . . . . . . . . . . . . . 154
C.3.2 List of the CPG controller’s parameters tuned . . . . . . . . . . 155

xi



List of Figures

2.1 Abstract link-segment of a biped locomotion system. . . . . . . . . . . . 7
2.2 Phases of the human locomotion. . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Representation of the linear inverted pendulum model for a humanoid. . 10
2.4 Representation of the support polygon of a biped mechanism in different

support circumstances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Relations between ZMP and CoP for a robot’s foot in locomotion . . . . 11

3.1 Flowchart of the optimization algorithm NSGA-II. . . . . . . . . . . . . 36

4.1 Architecture of the exploration/training framework. . . . . . . . . . . . 43
4.2 Sensitivity analysis towards the terrain variable. . . . . . . . . . . . . . 51

5.1 Screenshot of the iCub in the XDE framework. . . . . . . . . . . . . . . 55
5.2 Architecture of the optimization process for the iCub. . . . . . . . . . . 56
5.3 Distances traveled in the stage 1 iCub optimizations. . . . . . . . . . . . 61
5.4 Torque output in the stage 1 iCub optimizations. . . . . . . . . . . . . . 62
5.5 Number of failed simulations in the stage 1 iCub optimizations. . . . . . 63
5.6 Pareto fronts of the stage 1 iCub optimizations. . . . . . . . . . . . . . . 64
5.7 DARwIn-OP walking up a ramp in a Webots simulation. . . . . . . . . . 72
5.8 Architecture of the optimization process for the DARwIn-OP. . . . . . . 73
5.9 Speeds achieved in the DARwIn-OP preliminary optimization. . . . . . 76
5.10 Torque outputs in the DARwIn-OP preliminary optimization. . . . . . . 77
5.11 Number of failed simulations in the DARwIn-OP preliminary optimization. 78
5.12 XDE-manikin during simulation. . . . . . . . . . . . . . . . . . . . . . . 91
5.13 Architecture of the optimization process for the XDE-manikin. . . . . . 92

6.1 Architecture of the adaptation framework. . . . . . . . . . . . . . . . . . 101

7.1 Identification results for the iCub experiments in floors with different
friction values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Identification results for the DARwIn-OP experiments in ramps with
different slopes (complete dataset). . . . . . . . . . . . . . . . . . . . . . 122

7.3 Identification results for the iCub experiments in floors with different
friction values (reduced dataset). . . . . . . . . . . . . . . . . . . . . . . 125

xii



A.1 Model and kinematic structure of the iCub. . . . . . . . . . . . . . . . . 142
A.2 Model and kinematic structure of the XDE-manikin . . . . . . . . . . . 142
A.3 Model of the DARwIn-OP. . . . . . . . . . . . . . . . . . . . . . . . . . 144
A.4 Kinematic structure of the DARwIn-OP . . . . . . . . . . . . . . . . . . 145

xiii



List of Tables

2.1 Summary of the adaptation works reviewed in Chapter 2. . . . . . . . . 28

5.1 NSGA-II parameters used in Sferesv2. . . . . . . . . . . . . . . . . . . . 55
5.2 Controller parameters optimized in the first stage iCub optimizations. . 57
5.3 Locomotion features optimized for in the first stage iCub optimizations. 59
5.4 Controller parameters optimized in the second stage iCub optimizations. 65
5.5 Locomotion features optimized for in the second stage iCub optimizations. 65
5.6 Performance of the iCub’s locomotion on floors with different frictions. . 67
5.7 Success rates for the iCub sensitivity analysis. . . . . . . . . . . . . . . . 68
5.8 Number of successful solutions for the iCub sensitivity analysis. . . . . . 69
5.9 Highest speeds for the iCub sensitivity analysis. . . . . . . . . . . . . . . 70
5.10 Lowest torque outputs for the iCub sensitivity analysis. . . . . . . . . . 70
5.11 Parameters used in the preliminary optimization of the DARwIn-OP

locomotion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.12 Locomotion features optimized for in the preliminary optimization of the

DARwIn-OP locomotion. . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.13 Results of the correlation analysis conducted on the data from the pre-

liminary optimization of the DARwIn-OP. . . . . . . . . . . . . . . . . . 80
5.14 Results from Table 5.13 with the mean of the respective column sub-

tracted to each cell value. . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.15 Controller parameters optimized in the stage 2 DARwIn-OP optimizations. 81
5.16 Locomotion features optimized for in the stage 2 DARwIn-OP optimiza-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.17 Results for the optimizations of DARwIn-OP’s locomotion on different

slopes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.18 Success rates of the sensitivity analysis in DARwIn-OP’s stage 2 exper-

iments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.19 Pareto fronts sizes for the sensitivity analysis in DARwIn-OP’s stage 2

experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.20 Best speeds for the sensitivity analysis in DARwIn-OP’s stage 2 experi-

ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.21 Best τmean values for the sensitivity analysis in DARwIn-OP’s stage 2

experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xiv



5.22 Parameters optimized in each optimization of the XDE-manikin’s loco-
motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.23 Locomotion features optimized for in each optimization of the XDE-
manikin’s locomotion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.24 Sets of height and mass values used in the XDE-manikin optimizations. 94
5.25 Results for the optimizations of the XDE-manikin’s locomotion for dif-

ferent sized models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1 Set of solutions and behaviors for an example Did dataset. . . . . . . . . 108
6.2 Process of solution selection using the Did from Table 6.1. . . . . . . . . 109

7.1 Wilcoxon test results for the iCub adaptation experiments. . . . . . . . 114
7.2 Performance results for the adaptation phase tests for the iCub. . . . . . 115
7.3 Wilcoxon test results for the DARwIn-OP adaptation experiments (com-

plete dataset). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.4 Wilcoxon test results for the DARwIn-OP adaptation experiments (re-

duced dataset). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.5 Performance results for the adaptation phase tests for the DARwIn-OP

(reduced dataset). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.1 Kinematic structure of the iCub robot. . . . . . . . . . . . . . . . . . . . 143
A.2 Kinematic structure of the XDE-manikin humanoid . . . . . . . . . . . 144
A.3 Kinematic structure of the DARwIn-OP robot. . . . . . . . . . . . . . . 146
A.4 DARwIn-OP’s servos physical configuration. . . . . . . . . . . . . . . . . 147

B.1 Tasks for the control of the iCub’s and XDE-manikin’s locomotion. . . . 150

xv



List of Algorithms

1 Pseudocode for the NSGA-II procedure for the optimization of a given
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Pseudocode for the NSGA-II algorithm crowding distance and parent
selection sub-functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Pseudocode for the NSGA-II algorithm sorting of individuals. . . . . . . 40
4 Locomotion control context adaptation procedure . . . . . . . . . . . . . 102
5 Identification solution selection for the locomotion adaptation. . . . . . 104
6 Sub-functions used in the identification solution selection algorithm. . . 105
7 Context identification algorithm. . . . . . . . . . . . . . . . . . . . . . . 107
8 Final adaptation solution selection algorithm. . . . . . . . . . . . . . . . 110

xvi



Chapter 1

Introduction

This document contains a detailed description of the work developed by the author
in his doctoral studies while integrated in the Adaptive System Behavior Group at
Universidade do Minho and in the Institut des Systèmes Intelligents et de Robotique
at Université Pierre et Marie Curie.

The work addresses the problem of optimizing bipedal robot locomotion controllers,
so that they can adapt to different user specifications, like being faster, or more secure,
and also to different traversed terrains. It does so by incorporating approaches from
multi-objective optimization and sensitivity analysis in a framework that was tested in
locomotion control systems based on Central Pattern Generators, and on model-based
reactive whole-body control formulated as a constrained convex optimization problem.

1.1 Motivation

Locomotion is an essential skill for humanoid robots, and designing its controllers
is difficult (Vukobratovic et al., 1990). Humanoids are under-actuated, free floating
systems, and walking requires creating and breaking unilateral contact between the
feet and the ground (Brogliato, 1996). These characteristics render the dynamics of
locomotion hybrid and nonlinear. Moreover, bipedal robots usually have a high number
of degrees of freedom (DoFs), which allow different body parts to move in relation to
each other. This can add complexity to the task of walking, since it does not uniquely
specify how the limbs must be coordinated in order to achieve the desired displacement
of the robot’s center of mass (CoM) (Westervelt et al., 2007). The task is, then, a
problem with many solutions, and unfeasible solutions (i.e., that make the robot trip
and fall) can be common (Westervelt et al., 2007). In this context, finding a solution
that is “good”, even if it is not optimal, may be difficult without proper tools to
separate the appropriate solutions from the rest (Milutinović and Rosen, 2013). The
variety of possible behaviors can also lead to the need to choose the best performing
ones, exacerbated if there are different performance requirements at different times, or
from different users.

Robot locomotion control approaches contain parameters that can be tuned in
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order to optimize the locomotion towards certain goals. These goals can be varied,
with the robot not falling usually being the most important one, and its speed, energy
consumption, and stability factors being other good examples of what a user may
require from the locomotion of the biped. On top of the locomotion having to respect
these objectives, the terrain in which the robot walks can present certain characteristics
that make it harder to find the best solution for the walking task (Afshar and Ren, 2012;
Voloshina et al., 2013; Kajita and Tani, 1991; McCown-McClintick and Moskowitz,
1998). Walking in a floor with especially high or low roughness, or with a slope, for
instance, can make it harder for the robot to walk. Not only that, but simply changing
the conditions, even when that makes the task easier, usually implies changing the
controller parameters in order to adapt the solution to one that is adequate for the new
terrain.

Given all these variables that can change the relationship between the controller’s
parameters and the resulting locomotion dynamics, as well as changing requirements
from the human users and the complexity of these dynamics, tuning these controllers
can be something hard or impossible to achieve with analytical studies based on mathe-
matical models of the locomotion’s dynamics (Holmes et al., 2006). Modeling is further
complicated by the need to take into account the surrounding environment, which can
be hard to observe and analyze. The alternatives to this analytical approach are to tune
them manually, through experimentation, or to resort to derivative-free optimization
techniques that do not require accurate models of the dynamics. Both these approaches
rely on running the entire system (either through simulations with a model or in the
real robot) to evaluate specific groups of input values. Manual tuning is prohibitive in
terms of time for any controller architecture that contains parameters that can be set
for a continuous number of values, or simply have a high number of open parameters,
since it results

1.2 Locomotion controllers adaptation

There are many works that deal with controller optimization in general, and adaptation
to environment changes in particular. The question is, is there a framework that deals
with this problems in a unified, encompassing way, while needing the least amount of
expert users input for different situations?

As a couple of examples, both the model-based control from Herdt, Perrin, and
Wieber (2010), and the central pattern generator based control from Liu, Wang, and
Chen (2013) can directly change values like the length or height of each step. This can
be used along with sensory information to adapt to specific obstacles of uneven terrain
at runtime, such as the approach used by Gay (2014), where sensory information is
used to modify the dynamics of a controller.

Kimura, Fukuoka, and Cohen (2007) and Wang et al. (2010) present broader strate-
gies, looking to adapt to different terrain changes. The former design a central pattern
generators based controller to comply with specific necessary conditions for stable dy-
namic walking set by the authors. This makes the approach specific to the controller
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developed. The approach by Wang et al. (2010), representing variables such as external
forces and control torques as probability distributions, is a computationally complex
one that was only applied to a simple four state PD controller.

A more general approach can be found in Cully et al. (2015), which creates a
map of diverse sets of parameters for a given locomotion controller, and uses it t
adapt to environment or robot changes during locomotion. It can be used with any
controller with open parameters, and the adaptation can be done to different context
changes. This framework has problems regarding flexibility, such as using features
that are specific to a robot model, and obtaining a map of solutions that is diverse by
design, which means the optimization might spend too much time with low performing
solutions.

This thesis aims for a framework that is flexible in terms of optimizing for any lo-
comotion controller applied to any bipedal robot. This optimization should be able to
support an adaptation to any context that can be codified as a single valued variable.
The framework will focus on automating each step as well as possible, using the infor-
mation from the optimizations to make decisions on what controller parameters and
locomotion features should be used in different situations. According to the research
done, there is currently no framework that achieves this objectives in their entirety.

1.3 Goals and methods

The main goal of this work is to devise a general solution for the adaptation of biped
locomotion controllers to different environments and different user goals. We aimed to
develop a framework that:

• Can adapt the locomotion to different terrains (e.g. different floor frictions or
slopes).

• Can adapt the locomotion to different user defined objectives (e.g. maximize
speed and/or minimize joint torque).

• Is able to make these adaptations in a minimal amount of time.

• Is not specific to a controller architecture, or a robot model.

• Requires a minimal amount of robot sensors.

The proposed method achieves the required adaptations by analyzing information
related to the relationship between the parameters of a locomotion controller and some
of the locomotion features. This data is acquired by running several simulations (in
the order of several thousands) of the locomotion task of the robot, optimizing the
parameters of the controller towards the desired features (e.g. speed).

In order to conduct the locomotion adaptations in a reasonable amount of time, the
method is separated in two distinct phases: an exploration (or optimization)
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phase, which is longer and done in preparation to the adaptation phase, which
should be quick, taking no more than a couple of minutes.

In the exploration phase thousands of simulations are performed, resulting in a
large amount of information that can be used in the next phase. These simulations
are guided by an optimization algorithm. This algorithm should be one that does not
rely on the derivative of the system’s mathematical function, since there is no access to
it, which typically implies the need for thousands of trials, leading to the necessity of
using a simulated environment to conduct them. This phase also includes a sensitivity
analysis to study how well certain sets of parameters perform in different terrains, and
a correlation analysis to inform on which parameters are more relevant to our intended
locomotion outputs.

In the adaptation phase the robot is put walking in an unknown terrain it has to
adapt to. The locomotion features observed in that terrain are compared to the re-
sults from the exploration phase, and a set of parameters that results in an optimal or
near-optimal behavior is selected. A solution that shows a balance between locomotion
features diversity (making a distinction between different terrains easier) and locomo-
tion safety (choosing a solution that ensures the robot does not fall) is chosen for the
first trial in the unknown terrain. In the second trial, after making an identification
of the terrain parameter, the solution chosen is one that is optimal in this terrain and
meets the user performance requirements (e.g. the highest possible speed).

1.4 Contributions

This work’s contributions relate to the analysis of the effect of changes in the parameters
of different controllers for the locomotion of bipedal robots, as well as the adaptation
capabilities of those controllers to different situations. It addresses the adaptation to
different terrains and different user requirements (relative to the locomotion features).

The effects of changing a controller’s parameters are tested for virtual models of
the iCub (Sandini, Metta, and Vernon, 2007) and the DARwIn-OP (Ha et al., 2011)
robots, as well as a virtual manikin. Optimization procedures in different environments
and robot structures provide insight to how these changes affect the locomotion task.
For the virtual manikin, the outcome of changes in its height and weight, while keeping
its kinematic structure, is analyzed. The iCub and DARwIn-OP virtual models are
tested in floors with varying friction and slope, respectively.

A correlation analysis is proposed, giving insight on the impact that the parameters
of a controller have on the locomotion. It analyzes the statistical covariance between
these parameters and the locomotion features. This information is then used to tune
the optimization procedure by reducing the number of parameters used. Redundant
parameters, and parameters that have low impact in the output, are removed from the
process.

A sensitivity analysis allows for further exploration of the results of the optimiza-
tions, showing how effective some of the solutions are in different conditions. This
process consists in testing solutions in multiple contexts, and analyzing how effective
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they are in terrains they were not optimized for.
An adaptation process for a locomotion controller under different terrain conditions

is outlined. This process also enables adaptation to different user requirements relative
to the optimized locomotion features (e.g. average speed, joints torque output). It
does so by identifying the value of a modeled variable of the terrain, and then choosing
the best set of controller parameters for the environment. It makes these decisions by
considering the information gathered from the optimizations and sensibility analysis
from the previous experiments.

1.5 Outline

After this introduction, Chapter 2 delves into humanoid robots’s locomotion control,
and the problems surrounding its optimization and adaptation to different conditions.
Chapter 3 presents additional background related to the mathematical optimization of
a system, and, more specifically, evolutionary algorithms, as well as a detailed presen-
tation of the nondominated sorting genetic algorithm II (NSGA-II), which was used
in the experiments included further into the document. The first stage of the thesis
overall strategy is presented in Chapter 4, which contains an approach for controller
optimization that is applicable to multiple robots and control strategies. This chapter
also details the possibles components of this framework, as well as proposing a sensitiv-
ity analysis, and a correlation analysis, that provide insight into the process, and help
fine tune it. Chapter 5 shows the setups and results of the application of this optimiza-
tion framework to different robot models, control architectures, and varying terrain
conditions. The second stage of the overall strategy — the adaptation framework —
is presented in Chapter 6, which, building on the previous optimization, details each
function used in the process of identifying the locomotion context, and adapting to it.
This adaptation framework was applied to some of the same setups from the previous
experiments, with the methodology and results shown in Chapter 7. Finally, Chapter
8 presents the main conclusions from the thesis, with focus on the results obtained in
the main experiments, as well as perspectives on future improvements for this work.

1.6 List of publications

1.6.1 Conference papers

• José Pontes, Stéphane Doncieux, Cristina Santos, and Vincent Padois, An adap-
tive approach to humanoid locomotion, Proceedings of the 19th International Con-
ference on CLAWAR 2016.
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Chapter 2

Humanoid robot locomotion

control

Bipedal locomotion is a complex task which control needs to take into account multiple
restrictions and performance criteria. Locomotion controllers in biped robots often face
the challenges of having to adapt themselves to the dynamics of the locomotion, the
reality of the environment surrounding the robot, and the user requirements for the
task. Some controllers are able to take care of some of these aspects to a greater or
less degree, but not all of them in a general way.

The goal of this work is to build a framework that can be used with any humanoid
locomotion controller with open parameters (i.e., parameters whose values are not set)
and that can be used to optimize them towards user requirements, as well as to adapt
them to changes related to the locomotion process, such has changes in the environment,
or in the robot itself.

This chapter outlines the basic characteristics of humanoid locomotion in order to
give context to the most common approaches to its control. In discussing these, we will
highlight how the existence of open parameters in these controllers, and many others,
leads to the possibility of tuning these parameters for better outcomes in an optimiza-
tion process. Afterwards, comes a discussion of some approaches to that process, and
the chapter finishes with a discussion of adaptation to changes in the locomotion task
that are external to the controller (more commonly, terrain changes).

2.1 Humanoid robots locomotion

There are advantages to an humanoid robot mimicking the human body in appearance
and functionality. Humanoid robots can more easily work in environments and with
equipments designed for humans (Kajita et al., 2014), and there is increased empathy
and understanding for closer interaction between humans and robots (Meng and Lee,
2009). Moreover, there is the postulation that natural structures and processes were
evolved towards being closer to optimal in the context of what is possible with a given
structure (Alexander, 1996), and therefore desirable to replicate.
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Figure 2.1: Abstract link-segment of a biped locomotion system. Approximations to
the system’s Center of mass of a robotic system (CoM), and its projection on the
ground (PCoM) are also represented.

Fully understanding and replicating a walking motion in a stable and optimal fash-
ion is a challenge for people in multiple fields, spanning biology, physiology, medicine,
mathematics, and engineering, and its optimization is subject to multiple criteria
(Vukobratovic et al., 1990). Mechanical complexity observed in biological systems
is usually replicated in robots by individually fabricated parts, which are costly in
mass-scale production. Humans share this mechanical complexity, along with biolog-
ical energy storage systems that can achieve torque, response times, and conversion
efficiency that exceed the man-made robotic systems with a similar scale (Siegwart,
Nourbakhsh, and Scaramuzza, 2011). These production related problems are accentu-
ated by the nature of an underactuated system, and the associated nonlinear multibody
dynamics. As such, humanoid locomotion is still unable to match the robustness and
finesse of biological systems.

Because of the challenges in replicating the locomotion of humans, the design of the
humanoid and its control system is usually done with resort to accurate kinematic and
dynamic models. These are usually based on a link-segment model in which parts of the
body are represented as rigid segments of constant length, with their mass concentrated
at their CoM, and are linked by one or more hinge joints. A basic representation of
a humanoid mechanism of this type can be seen in Figure 2.1. Humanoid locomotion
systems have a high number of DoFs, which by itself causes complex dynamics and
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coordinate frame handling. The lack of fixed frames of reference causes these to be
underactuated systems where their interactions with the environment lead to a con-
version of internal joint forces to external reaction forces (Vukobratovic et al., 1990).
This external reaction forces are observed in the contact between the feet and the
ground, which is essential for walking since it can cause the body’s relative position to
be changed (Vukobratovic and Borovac, 2004).

When walking, a humanoid comes in contact with the ground at multiple points, and
these are broken and then recovered in order to generate movement (Wieber, 2002).
This brings versatility to overcome obstacles, but also instability that requires the
robot to be stabilized. The robot can collect information to use in that stabilization,
using sensors that provide feedback about the robot itself, such as gyroscopes and
accelerometers to find the position and the orientation of the robot, and force/torque
sensors to measure the contact forces and torques between the feet and the floor (Kajita
et al., 2014), or sensors that provide feedback of the robot environment, like vision or
sound sensors.

2.1.1 Characteristics of humanoid locomotion

Humans adjust the locomotion pattern for the limbs — the gait — to adapt to differ-
ent walking motions under different circumstances, such as changes in terrain, and to
desired behaviors, including, but not limited to, a target walking velocity (Alexander,
1984). When describing the gait, a stride is a cyclical movement which is usually di-
vided into the stance and swing phases. In the stance phase the foot is on the ground
and can be used as a pivot to push the body forward, while maintaining an upright
posture. In the swing phase the foot comes off the ground to enable the contrary leg
to advance and its foot to enter its stance phase. There is a period between right after
the heel strike of one of the feet and the toe off of the contrary foot where both feet are
on the ground, consisting in a double support phase (Morecki, 1997). A visualization
of these phases can be seen in Figure 2.2. In the double support phase the locomotion
mechanism is a closed kinematic chain, because both ends of the chain (the feet) are
in contact with the ground, while in the single support phase one of the ends has no
anchor, making it a open kinematic chain (Vukobratovic and Borovac, 2004).

The human gait can be quantified with the stride (or step) frequency (the number
of strides taken in unit time), the stride length (the distance traveled in a stride), the
duty factor of a foot (the fraction of time for which the foot is on the ground), and the
relative phase of a foot (the stage of the stride at which the heel strike occurs).

When a humanoid robot is in single support phase, its dynamics can be largely
represented by an inverted pendulum connecting the support foot to the CoM of the
robot (Kajita et al., 2001), referred to as the linear inverted pendulum model (LIMP),
and represented in Figure 2.3. In this analogy, the kinetic energy of a stiff inverted
pendulum being traded in potential energy, and sequentially back into kinetic energy,
is akin to how energy is expended and transformed during a step (Kuo, Donelan,
and Ruina, 2005). This simplification allows the design of a controller with limited
information about its dynamics, such as only knowing the location of its CoM (Kajita
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heel strike heel striketoe offStance Phasesingle support phase Swing Phase
Figure 2.2: Phases of the human locomotion. The stretch of the stance phase that does
not consist of the single support phase is called the double support phase.

et al., 2001).

2.1.2 Statically and dynamically balanced locomotion

Balance in bipedal locomotion can be divided in static balance and dynamic balance.
Static balance is normally characterized by small velocities and accelerations, and is
achieved if the system’s projection of the CoM on the ground is kept in the supporting
area of the feet. During static balance, the projection of the CoM in the ground
corresponds to the center of pressure (CoP) — the point on the ground where all
the ground reaction forces of the system act. Static balance is so referred to because
the robot can stop at any instant and keep its balance. Dynamic balance is only
maintained with continuous movement, and stopping without taking into account the
body’s equilibrium can result in a high risk of falling. In dynamic balance the projection
of the CoM can be placed outside the supporting area of the feet, as long as the CoP of
the mechanism is kept inside it (Nwokah and Hurmuzlu, 2002). The supporting area
of the feet is the support polygon formed by the feet in contact with the ground, which
is a convex hull of the supporting points, as exemplified in Figure 2.4.

The zero moment point (ZMP) is a concept introduced in the context of preserving
the dynamic balance in legged locomotion (Vukobratovic and Borovac, 2004), and
which is related to the CoP. The ZMP is termed as “the point where the influence of
all forces acting on the mechanism can be replaced by one single force” (Vukobratovic
et al., 1990; Vukobratovic and Borovac, 2004). In the single support phase, the dynamic
reaction force and moment produced at the contact of the foot with the ground exist as
a result of the moment and forces produced by the rest of the mechanism. If the point
where this reaction occurs does not produce any moment in the horizontal direction,
the body will not rotate around it, something which could cause the robot to fall. This
is equivalent to the point where the total horizontal inertia and gravity forces equal
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Figure 2.3: Representation of the linear inverted pendulum model for a humanoid. The
support foot displacement (red dashed line) relative to the CoM (black circle labeled
“m”) takes the approximate path (green arrow) of a pendulum.

(a) (b)

Figure 2.4: Representation of the support polygon of a biped mechanism in different
support circumstances. Solid black rectangles represent the feet, while dashed red lines
represent the support polygons. In the case of a single support phase (a), the support
polygon is the area of the supporting foot, while in the double support phase (b) it
is represented by the smallest convex set including all contact points (i.e. the convex
hull).
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Figure 2.5: Relations between ZMP and CoP for a robot’s foot in locomotion: a)
dynamically balanced gait where the reaction forces R are of the same magnitude; b)
unbalanced gait where the point where the sum of the moments is zero is outside the
support polygon, which means there is not a ZMP for the robot, causing it to rotate
about the foot edge with moment M and fall. Image adapted from Vukobratovic and
Borovac (2004).

zero. For these reasons, the point was called the zero moment point. If the force acting
at the CoP balances all forces acting on the mechanism in motion that point is also
the ZMP, which means the CoP and the ZMP coincide on a dynamically balanced gait.
When the balance does not exist, the ZMP also does not exist (i.e. the CoP is outside
the support area) and the mechanism collapses around the foot edge. This relationship
is illustrated in Figure 2.5.

The ZMP criterion, in its original state, is restricted to locomotion in flat ground,
and unbounded tangential friction forces between the feet and the ground, which trans-
lates to a flat friction cone (Dai and Tedrake, 2016).

2.2 Biped locomotion control strategies

The problem of the control of a biped robot can be defined as choosing the proper
inputs to its joints such that the system behaves in the desired fashion. One way
to separate approaches to this problem is relative to the amount of information they
use regarding the dynamic model of the system. One category of approaches uses
precise information regarding dynamic information about the system, including the
mass, the location of center of mass, and the inertia of each segment, as well as the
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whole kinematic structure, which details how each segment is connected by a number
of joints to other segments, forming a tree. The other category of this division uses
little or no information about the system, such as using only its center of mass, or total
momentum (Kajita et al., 2001).

Sections 2.2.1 and 2.2.2 refer to the most prevailing control strategies in these
two categories of approaches, and highlight their general drawbacks regarding open
parameters and consequent optimization towards certain goals. Later sections analyze
works that tackle these optimization possibilities.

2.2.1 Control based on dynamic models

This type of control takes into account the dynamics of the robot, and its interactions
with its environment during locomotion. In this, the robot is considered a multi-body
system modeled with rigid bodies, and applies bounded torque on each joint. It follows
Euler-Lagrange motion equations (Salini, Padois, and Bidaud, 2011),

M(q)q̈ +N(q, q̇)q̇ = g(q) + Jχ(q)
>�, (2.1)

that relates the joint positions q, velocities q̇, and accelerations q̈, to the mass matrix
M(q), the nonlinear effects matrix N(q, q̇), the gravity forces vector g(q) and the gen-
eralized wrench Jacobian Jχ(q), which describes how external forces affect the system
in motion. � is called the action variable, and composed by the vector of contact forces,
and the vector of torque inputs, � = [w>

c , ⌧
>]. The motion equation can be used to

optimize the system towards the torque inputs, the joint accelerations, or the contact
forces (e.g. minimizing the accelerations).

A well-known example of control that uses a dynamic model of the controlled system
is Kajita’s preview control (Kajita et al., 2003). It uses a simplified version of the
locomotion’s dynamics, and not the full whole body dynamics of the system. In preview
control the goal is to have an output that tracks a reference signal, in this case a
trajectory for the ZMP of the system. In this work, they first started by modeling
the dynamics of the locomotion of a biped robot as a 3D linear inverted pendulum.
This model’s purpose is to offer preview of the dynamics of the system that is accurate
enough to enable locomotion, specifically the position of the CoM given the position
of the ZMP, while being simple enough to be reduced to a handful of computationally
inexpensive calculations. The system then generates a CoM trajectory such that the
acceleration of the CoM throughout the locomotion is minimized and the resulting
ZMP follows a given reference trajectory as closely as possible. This trajectory is
then translated into a walking pattern by solving a problem of inverse kinematics.
This approach has the constraint that the footsteps are fixed and impossible to change.
These footsteps need to be predefined by the user, who needs to have enough knowledge
about the environment to define a trajectory that results in a stable gait, and has no
way to adapt to new environments automatically.

Expanding on Kajita’s work, Wieber (2006) proposed what he called a linear model
predictive control (LMPC) scheme, improving on the original ZMP preview control.
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The ZMP equations from the previous work are formalized as a quadratic program
(QP) — a mathematical optimization problem — that, given the tracking of a ZMP
reference trajectory, minimizes the jerks (the derivative of the acceleration) of the CoM
of the robot. The idea of Wieber’s LMPC approach is to execute only a small part of the
trajectory, and then recompute a new trajectory taking into account the current state
of the CoM, allowing therefore for some feedback. The author also added a constraint
to the QP that restricts the reference points of the ZMP to always stay a certain margin
inside the convex hull of the two feet. This scheme was showed to be able to produce a
CoM trajectory and adapt it in the middle of the locomotion after having a mass that
corresponds to 33% of the total mass of the robot hit its trunk. It was not showed,
however, how it would respond to variations of that perturbation (an obstacle for the
feet would be more likely and more impactful), and, more importantly for our work,
if this adaptation allows the robot to automatically adapt to different floor conditions.
The main issue this scheme would have with this kind of adaptation is the fact that
the output of the QP is a trajectory for the CoM: the joint commands are obtained
through inverse kinematics, and if a perturbation to the environment changes the way
the gait of the robot translates into CoM positions there is no way in this predictive
control to account for this.

Later, Diedam et al. (2008) kept building on the LPMC scheme, making it so the
positions of the feet do not have to be decided beforehand by a step planner, and are
instead decided by simply adding new variables to the QP that correspond to the foot
steps occurring over the prediction horizon. They propose to still use a step planner
based on inverse kinematics, but keep complete freedom in the final choice of the step
positions according to the robot stability and mechanical limits. When allowing for
this freedom of choosing step positions, one also needs to make sure they will not
lead to motions impossible to realize because of geometric and kinematic constraints
of the robot (like leg length or joint limits), which was solved by adding inequality
constraints to the QP. The controller’s ability to adapt was tested in a similar way
to the experiments done in Wieber (2006), but managing to recuperate from stronger
perturbations.

Herdt et al. (2010) further improved on this motion generation scheme to allow it to
generate stable walking motions without the use of predefined foot steps. A reference
speed is given to the controller, and according to this speed and the current state of
the robot a foot step placement is decided. Since the position of the CoP no longer
follows a reference trajectory, the feasibility of the motion is obtained by constraining
this position to lie in the middle of the feet positions decided by the algorithm. Later
Herdt, Perrin, and Wieber (2010) improved the model predictive control (MPC) by
adding an algorithm for the control of orientations of the feet and the trunk, allowing
the robot to turn in a safe way, and also adding polygonal constraints on the positions
of the computed feet positions to improve its reliability.

The work from Salini, Padois, and Bidaud (2011) and Salini (2012) uses the same
Linear Quadratic Programming (LQP) optimization approach as the MPC, but it orga-
nizes the problem’s constraints in a hierarchy, and treats them as different tasks to be
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performed with an overall objective. These tasks consists in movements related to the
whole body control of the robot. For the purpose of locomotion, it uses the trajectory
tracking from a version of the ZMP Preview Control (Wieber, 2006) as the one of its
tasks, and adds additional constraints that take into account physical laws of motion,
the robot ’s actuation limits and physical properties of the robot’s environment. This
hierarchical organization provides the ability to numerically change the priority of a
postural task or the trajectory tracking, for example.

The changes to MPC introduced by Herdt et al. (2010) to make it so it only requires
the reference speed as an input (and the dynamic, kinematic, and physical informa-
tion of the robot controlled), causes the steps positions to be automatically selected
with mostly stability in mind. This sometimes results in large oscillations in the sys-
tem’s forward speed in order to maintain the target mean velocity (Herdt, Perrin, and
Wieber, 2010). It also translates in a lack of flexibility in choosing characteristics of
the locomotion like the length, frequency, and width of each step, as well as the duty
factor of the feet. This, in turn, can lead to having less potential to explore diverse
behaviors provided by the controller. These behaviors could result in more optimal
constant speeds or better energy efficiency, for example, with high energy costs being
pointed as a functional shortcoming of MPC in general (Torricelli et al., 2016).

Because of this potential for exploring diverse behaviors, and because MPC is a
robust and well regarded control system, it was chosen to be used in this project’s work
in parameter tuning and locomotion behavior exploration and optimization, leading
then into terrain adaptation. The version of MPC used was that from Wieber (2006),
implemented by Salini, Padois, and Bidaud (2011), since there was easy access to
it and this specific implementation provides control over various parameters of the
locomotion control (as opposed to just a reference speed), while also improving the
locomotion stability by adding posture tasks in addition to the locomotion task. This
control scheme is described in Appendix B.

2.2.2 Biologically inspired control

Since humanoid robots have the goal of mimicking humans in both form and function-
ality, it is natural that people look at them for inspiration in terms of control strategy.
Although they are not restricted to their own category in a definitive way, biological
inspired locomotion control approaches, specifically ones that do not explicitly use the
whole dynamic and kinematic models of the robotic system, can be defined as using a
more abstract model of the locomotion system, or some part of it, that is inspired by
what is observed in humans or other animals.

Models that look to identify and explain the principles behind movement generation
in animals are based on neurophysiologic principles, and, in some animals (including
humans), describe this system as a distributed signal generation and processing, where
the brain performs high-level movement control supported by a feedback system of
sensors such as pressure, force, and intramuscular ones (Katz, 1996; Marder et al.,
2005; Kiehn, 2006; Orlovsky, Deliagina, and Grillner, 1999).
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Central Pattern Generators

The movement generation and control in humans is enacted by neural networks of
the central nervous system. These networks transmit neuromuscular excitatory signals
that travel in the body through action potential propagation in cells (Hodgkin and
Huxley, 1952). They can produce rhythmic pattern outputs when only receiving simple
input commands, without the need of sensory feedback, and are referred to as Central
Pattern Generators (CPGs) (Marder and Bucher, 2001). These findings resulted from
earlier studies (Jones, Tansey, and Stuart, 2011) that replaced the view that locomotion
behavior resulted from consecutive muscle sensor reflexes chained together (Clower,
1998). It is believed there is a CPG unit for each limb, which are in turn composed
by smaller circuits that control one muscle group of extensors and flexors of a limb
(Grillner, 2011).

Although sensory feedback is not required for CPGs to produce the motion patterns,
it can be used to adapt movements dynamically to changes in environment (Grillner,
2006). Signals from low-level sensors can be combined with the high-level brain signals
that activate the CPGs in order to achieve different motor outputs by selecting differ-
ent rhythmic patterns, and modulating the amplitude and frequency of burst signals
(Rossignol, Dubuc, and Gossard, 2006), with increased stimulus resulting in higher
frequency of the network rhythm. This modulation is fundamental for keeping coor-
dination between body movements, since changing the phase of the signals changes
the timing with each movement operates — the unit CPGs must be coordinated in
different ways in order to generate a different activation pattern. It also can change the
duration of step phases, their structure, and the transition between them (Rossignol,
Dubuc, and Gossard, 2006).

Very frequently the control based on CPGs will present a rhythm generation layer,
which serves as a temporal reference for a pattern generation layer. Such is the case
with the implementation from Matos (2013),

�̇i = ! + k sin(�i � �o + ⇡). (2.2)

This results in �i being an increasing periodic signal that is used as the phase of the leg
i, with rate !. �o is the phase of leg o, kept in a desired relationship with the oscillator
for i. The coupling strength can be controlled with k. The pattern generation uses
the periodic signal to control motion patterns encoded as a set of non-linear dynamical
equations with well-defined attractor dynamics, which can be smoothly regulated in
regard to their amplitudes, frequencies, and pattern offsets,

żj,i = ↵(Oj,i � zj,i) +
X

f(zj,i,�i, �̇i). (2.3)

The position zj,i of joint j from leg i is generated according to the current phase of
the leg, �i. The offset attractor Oj,i is a position the equations converges to if ↵ > 0.
Here, each function f defines a motion primitive, whose sum is used as the final output
trajectory for the robot’s joints.
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Control based on CPGs

In his review, Ijspeert (2008) highlights the notion that CPGs usually have a significant
problem with regards to parameters tuning. He notes that one of the problems to
overcome in their design is the learning and optimization used to fit the sometimes
dozens of parameters that shape the outputs of nonlinear dynamical systems to the
desired waveforms. The waveforms themselves also have to be decided upon, and the
way they translate into joint trajectories, and then to the robot’s locomotion, is also
not always apparent.

CPG models are frequently used in the control of biped locomotion. Most of these
implementations involve sets of coupled nonlinear oscillators implemented with coupled
differential equations that produce stable limit cycles — isolated periodic solutions, that
are, in this case, attractive towards neighboring solutions. The phase of the oscillators
can be used to control rhythmic nominal trajectories and to achieve interlimb coordi-
nation (Ijspeert, 2008). Taga, Yamaguchi, and Shimizu (1991) used coupled oscillators
to model a neural rhythm generator, given the oscillatory dynamics of both the gen-
erator and the musculo-skeletal system the authors used. The coupling also allows for
entrainment between those two systems, meaning they have the same period of oper-
ation. This framework, as many CPG based approaches which will be discussed here,
has many open parameters, such as a nonspecific one that controls gait patterns, ones
controlling feedback to the system, and also parameters related to the interconnection
between unit systems. These last ones were set manually in a way that modulates
amplitudes and relative frequencies to produce specific joint motions, which may or
may not be optimal. It is not clear whether the parameters related to feedback were
set manually or optimized in some kind of way.

A later revision to Taga’s control scheme came with the objective of making the
model of the musculo-skeletal system step over visible obstacles (Taga, 1998). The
rhythm generator was combined with a discrete movement generator that, receiving
visual information regarding the obstacle, modifies the gait pattern. This generator
uses modification signals whose amplitudes are controlled by different parameters, and
have to be adjusted to produce smooth and coordinated changes in the gait. The author
also noted that choosing appropriate values of these parameters and ones that control
step length is important for obstacle clearing, but does not clarify how that choice is
made. Additionally, there are parameters that determine the strength of the torque.
In short, both the original control framework and its revision have open parameters
that affect the behavior of the locomotion task and do not have a straightforward way
to be tuned toward objective optimization or even basic, stable locomotion.

A few years later, Aoi and Tsuchiya (2005) developed a system using nonlinear
oscillators to setup the rhythm of a trajectory generator. Their phases can be reset,
and nominal trajectories can be modified by sensory feedback related to robot posture
and motion. The ratio between the durations of the stance phase and the step cycle,
angular velocities, and trajectory parameters need to be set. These parameters are
tuned depending on fixed environmental situations and choice of nominal speed, in a
manual way.
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Gen Endo et al. (2005) also developed a control system based on a CPG model, this
one consisting of neural oscillators that use posture and feet reaction forces feedback
to stabilize the locomotion. The parameters of these oscillators were manually tuned,
and feedback related coefficients where obtained empirically through “numerical simu-
lations and hardware implementation”. In the paper, the authors mentioned wanting
to address these optimization issues with a learning framework. In a related study,
Morimoto et al. (2006) used coupled oscillators to adjust the phase of nominal joint
trajectories. The phase of inverted pendulum dynamics used for stepping and walking
is adjusted according to the position and velocity of the CoP, and this adjustment
functions as modulation of joint trajectories. The system uses an objective function to
find a linear feedback controller that maximizes its components, but the functions itself
has parameters that need to be set. Additionally, joint trajectories are modulated by
amplitude parameters, and phases, frequencies, and coupling constants also need to be
tuned.

In Aoi and Tsuchiya (2011) the authors conducted a local stability analysis of a
locomotion control system in a study that also encompasses parameter tuning. The
system uses nonlinear oscillators with a stable limit cycle to generate joint motions.
Phase-resetting using foot-contact information modulates the oscillator’s phase, which,
in turn, modulates its amplitude. A gain parameter controls the strength of these
interactions that results in stable movement, and is therefore an important one to
tune to achieve smooth locomotion. They analyzed the effect this parameter had
in stability through numerical analysis to determine the values that lead to optimal
stability. They also investigated the effects of feedback parameters and observed that
for a large range the joint trajectory errors and the ratio between horizontal and vertical
ground reactions forces remained small. The numerical analysis is specific to this system
and robot model tested, and it makes assumptions about their dynamics. Furthermore,
these optimizations show that there are indeed ranges of parameters that show better
results and stability, hence reinforcing the notion that their optimization is of interest.

Motion Primitives

Ijspeert et al. (2013) presented a review on modeling the attractor behaviors of non-
linear dynamical systems by using statistical learning techniques. They developed a
model of learnable nonlinear attractor systems that is able to encode both rhythmic
and discrete movements by using the concept of motor primitives, which consist of a
modular approach to movement generation where it results from the combination of
different stable motions. They call this system dynamic movement primitives (DMPs),
because they see these attractor systems as “building blocks that can be used and
modulated in real time for generating complex movements”. The DMPs can encode,
for example, trajectories that are directly fed to each joint, or kinematic trajectories
that are transformed with inverse kinematics to joint trajectories (Kuppuswamy and
Alessandro, 2011; Hiratsuka et al., 2016). The authors highlighted how their proposed
system is a more general approach to attractor systems modeling, since it uses the same
form of representation for different applications, while relying on machine learning to
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adjust the model to observed data. They also note the design of spatial coupling terms
is a “research topic by itself” and the choice for these variables are “critical” and often
need to be altered according to different objectives. Furthermore, they point out that
optimization approaches can be used to tune the open parameters of the dynamic sys-
tems model, despite their approach being flexible and applicable to a broad range of
control problems.

As an example of the optimization of the open parameters of these types of systems,
Schaal, Mohajerian, and Ijspeert (2007) combined the self-organizational approach of
systems based on nonlinear differential equations with the principle of optimizing a
control task to general principles such as minimizing trajectory errors or maximizing
speed. Part of the work deals with learning and optimization with DMPs, where they
used supervised and reinforcement learning (discussed in Section 2.2.3) to find the
weights of a function used to shape the desired trajectory of the nonlinear dynamic
system. The learning approaches involved shaping the trajectory to a desired one,
which requires a way to obtain a suitable trajectory for every situation to be used
as an adaptation tool. Parameter optimization was done by minimizing some of the
terms, or combinations of terms, of the DMP equations. This effectively allows to
shape the trajectory to some desired optima (like minimum torque change), as long as
that feature is represented in the DMP itself, which means optimizing for features not
included in the equations is not possible with this approach.

Matsubara, Hyon, and Morimoto (2011) introduced a framework where DMPs are
encoded as parametric trajectories which can be learned from multiple demonstrations.
Common factors from these demonstrations are extracted and shape the trajectories,
which parametric nature allows for scalability and generalization towards different ap-
plications and environments. The scalability is encoded in a “style” parameter that
represents different motions (e.g. different walking styles), and many different styles
can be gathered from the learning process, with intermediate values resulting in in-
terpolated functions. This adds a way to synthesize the open parameters and allow
for faster and easier optimization by tuning the style parameter, but also reduces the
flexibility that multiple parameters would provide.

Hauser et al. (2011) approach the problem of linear balance control in a bipedal
robot by using movements generated through linear superposition of a few “stereotyp-
ical combinations of simultaneous movements of many joints”, referred to as kinematic
synergies (KS). They based this concept on observations done on biological organisms,
proposing they use these synergies to reduce the high dimensionality of their action
space when walking. They postulate that “no special tuning of the controller param-
eters” is required in order to maintain the robot balance, since this occurs for a wide
range of these variables. One KS is controlled by only one parameter and affects mul-
tiple joints, therefore reducing the control space. The KSs are obtained offline using
calculations based on the kinematic model and masses of the robot, and fixed during
control. The control system was tested for multiple combinations of feedback control
parameters and different values of the length and mass of the robot. Although the
results show low tracking errors for these combinations, they also show that some of
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them are indeed better at reducing error, and others at achieving a greater range of
length and mass with which they can successfully track the desired joint trajectories.
This variability and trade-off shown by the results give credence to the notion that
some kind of optimization for the process is desirable.

With coupled dynamic oscillators a lot of their parameters are chosen in a analytic
fashion, in order to achieve limit cycles or coordination through phase manipulation.
It is not always clear if these characteristics are optimal for the locomotion process,
and, in most cases, there are parameters that are chosen manually, or with a basic
linear search, which may ignore controllers that produce potentially faster or more
energy efficient behaviors. Choosing a specific set of joint trajectories (Taga, 1998) is
usually based on broad leg and body movements during the locomotion, without great
specificity or evidence of these producing optimal behaviors. In some cases parameters
are chosen specifically to adapt to certain environmental characteristics, or locomotion
features such as nominal speed (Aoi and Tsuchiya, 2005), but in a case by case basis
and without an automated and consistent method.

2.2.3 Biped locomotion controller optimization

The previous sections explored some issues related to the stability and efficiency to-
wards certain objectives present in multiple locomotion control approaches in general,
and specifically biped locomotion frameworks. We also noted that differences in be-
havior that can bring greater stability, speed, or energy efficiency, for example, may be
achieved by tuning some of the parameters of the control system.

Although these issues were mentioned or looked into to be solved in some of the
works discussed in the previous sections, they were not their main focus. This section
explores approaches that focus on optimization of biped locomotion controllers towards
different goals.

Analytical supported optimization

One way to approach controller optimization is by supporting it with analytical studies
of the dynamic of the robot’s locomotion. In specific cases, where the complexity of
the interactions between the systems in relation to the desired process to be optimized
is low enough, this approach may be the most suitable in terms of time expenditure.

As an example of an analytical approach, Panne, Fiume, and Vranesic (1992) pre-
sented a controller for the locomotion of a planar model of a biped robot that models
its dynamics, the current state of the robot, and information from the environment
to calculate a vector of inputs to the robot’s joints. The solutions obtained from this
analysis are in the form of a lookup table with the control solution corresponding to a
specific space-state of the task.

In a more recent example, Wang et al. (2012) presented a 3D model of a humanoid
robot that contains muscolotendon models in each leg, with biologically motivated
control laws. The parameters of the controllers are set by minimizing a biological
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model of metabolic energy expenditure while satisfying a number of locomotion task
terms.

Zheng and Yamane (2011) worked on a analytic approach to the optimization and
control of a biped walking on a rolling cylinder. The biped is simulated as a simplified
linear model, and a collision model was derived, consisting of the cylinder and two
legs. With a balance controller coupled with the collision model, the motion of the
biped is uniquely determined by the initial state of the system. The robot can be
made to achieve a cyclic gait by optimizing the initial state with a cost function with
a constraint on the desired average rolling velocity.

In other situations, the control framework has parameters that control aspects of the
locomotion behavior in an intuitive and direct manner. Lee and Ryoo (2014) proposed
a tuning system for a ZMP based control scheme that takes advantage of the fact that
quantities like feet positions offsets and the step period can be directly controlled.

Analytical approaches conclusions

Although applicable in the right conditions, analytical studies of models of the robots
and their environments can be ineffective because of the complexity of these systems
and the interaction between them, as pointed out by Slatton et al. (2008). They are not
good as universal approaches, due to the fact that they usually are controller specific or
even robot specific, or need a significant amount of work to adapt to different models. In
a survey of the modeling and control of bipedal robots, Hurmuzlu, Génot, and Brogliato
(2001) postulated that a concise and sufficiently general theoretical analysis framework
that allows one to take into account hybrid dynamics when designing controllers was
still missing.

Derivative-free optimization

When an analytic approach is impractical, an empirical trial and error approach might
be effective. The information needed for the optimization of the controllers’ parame-
ters may be gathered by experimentation that provides information for derivative-free
optimization methods. These need dozens, or sometimes thousands of evaluations to
reach acceptable solutions, which is generally only feasible by using a simulation of
the robot’s locomotion that can be sped up relative to real time, and possibly ran in
parallel to other simulations.

Evolutionary algorithms

Some examples of these methods employed in robotics control optimization are evolu-
tionary algorithms (EAs), which are inspired by biological evolution. Examples of EA
approaches are genetic algorithms (GAs), the covariance matrix adaptation evolution
strategy (CMA-ES), and particle swarm optimization (PSO). GAs (Mitchel, 1998) are
optimization methods based on a search heuristic that mimics the process of natural
selection. They use a set of candidate solutions that is evolved through several gener-
ations. The CMA-ES method (Hansen, 2006), also part of evolutionary computation,
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updates the covariance matrix that represents dependencies between the variables of
the new candidate solutions of the evolution. PSO (Kennedy and Eberhart, 1995)
also uses a population of candidate solutions (a swarm of particles), which in this case
is moved around a search space towards better solutions according to the particle’s
position and velocity.

Rodrigues et al. (1996) used a GA to obtain a desired trajectory for a biped’s CoM.
They find the necessary torques of each joint of the model by optimizing input com-
mands to the joints directly. This is an example of an approach that uses optimization
intrinsically in its control, since it outputs the torque trajectories, instead of using this
optimization to change the controller’s behavior by tuning its parameters.

Wu and Popović (2010) described a framework for the optimization of a biped
locomotion controller that uses a model based approach with dynamics informed step
planning, similar to the approaches described in Section 2.2.1. The parameters of the
footstep planner are tuned in an offline optimization towards different goal trajectories,
using a black-box CMA-ES evolution strategy. This approach is controller specific,
and needs different optimizations for each trajectory. The controller includes online
adaptation to slope and height changes, but the information about these obstacles is
directly fed back, without there being any kind of sensor information involved.

Working with dynamical systems encoding, Kieboom (2009) proposed a method
to design a locomotion framework independently of the type of robot. Part of the
methods involves using PSO algorithms to evolve a gait encoded into a CPG network,
using the mean walked distance as the fitness function. The author attributes part of
the success of the method to user top-down decisions on parameter constraints that
minimize the parameter space and make this type of optimization algorithms faster
and more reliable.

Paul and Bongard (2001) approached the controller optimization of a biped robot
problem from a mechanical design standpoint, by changing the mass distribution of a
physics simulated 5-link biped robot along with the evolution of the neural controller
using a GA. This approach of combining mechanical design with controller optimization
proved to be useful in this particular work, where the overall optimization results were
better than those of a GA evolution of the controller parameters alone.

Bayesian optimization

Another derivative-free approach is Bayesian optimization, which is applied to black-
box functions by modeling it as a group of random distributions and using priors that
incorporate the information gathered from past data to make assumptions for future
evaluations. The model selects points of the function to sample, which are then used
to update the posterior distribution of the function (Mockus, 1989).

Calandra et al. (2016) evaluated Bayesian optimization approaches to automatic
gait optimization. They highlighted the efficiency of the method in using past interac-
tions, and the subsequently fewer number of interactions with the model or real robot
needed to reach desirable behavior.

Working with this idea that a small number of experiments is a requirement when
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working with a real robot, Hemker et al. (2009) proposed an optimization scheme for
the walking speed of a humanoid robot that uses a surrogate function of the locomotion
process. The surrogate is a way to measure the outcome of the locomotion by measuring
an outcome of its model instead. The surrogate is started with a prior given by a
slow but stable walking motion, and is then sequentially updated. In these updates,
points are sampled by varying the parameters’ values by a certain percentage, and then
evaluating the maximum value of the surrogate function after taking those samples into
account. The process is stopped after a desired threshold is attained. The optimization
was applied to the parameters of a trajectory generator with low dimensional inputs.

Reinforcement learning

Reinforcement learning (RL) is a trial-and-error type of machine learning where an
agent’s behavior is optimized by making it act in a way that maximizes its rewards.
In biped locomotion control, the agent, being the control framework, can, for instance,
try to create a controller that maximizes an expected total return, expressed in the
form of a function. The RL algorithm defines the behavior of the control framework
with a policy. Although good for non-linear optimizations, RL approaches are difficult
to apply to robot control in general, due to the usually high-dimensional action spaces
and continuous state natures of the problem, and, consequently, the high number of
trials required to reach a good policy (Kober and Peters, 2012).

Fujiki et al. (2012) used RL to improve the stability of a locomotion control system
of a biped walking in a split belt treadmill. The system consists of nonlinear oscillators
with phase resetting, and they use RL with the relative phase between the leg oscillators
as a cost function they look to minimize. Controlling the interlimb coordination is
important for the feasibility of the motion, but this approach is not geared towards
optimizing performance features.

Authors from a study (Morimoto et al., 2007) mentioned in Section 2.2.2 proposed
an improvement on the control system that uses locomotion dynamics approximated
with RL. A Gaussian process (GP) is used to approximate the dynamics of the loco-
motion. A GP is a statistical model used to estimate a probability distribution for a
target function, and is defined by given mean and covariance functions. RL was used to
affect the GP model towards better performance in the tasks of stepping and walking,
given that the approximated dynamics modulate the amplitude of sinusoidal patterns
produced by dynamic oscillators. Modulating a relationship between approximated
dynamics (here using an inverted pendulum model) and sinusoidal patterns can work,
if the approximation is accurate enough. It, however, causes a loss of flexibility by re-
stricting some of the control parameters to that relationship, and leaving others to be
tuned manually. Additionally, a reward function that contains only one value doesn’t
provide choice between controllers optimized towards different sets of objectives.

22



Derivative-free approaches conclusions

Derivative-free approaches are more broadly applicable than analytical approaches to
biped locomotion control, although they may lose effectiveness for more specific appli-
cations, as well as require dozens or thousands of trials for data collection. They can be
used in any control framework that is parameterized in components that affect the lo-
comotion behavior, and can be setup in a more or less universal way if the performance
indicators they use are appropriate for multiple humanoids and situations, which is
feasible when working with a specific type of robot (bipedal), and a specific type of
task (locomotion). Some methods, such as RL, require specific representations of the
parameters tuned and the performance(s) evaluated (such as policies and rewards),
that may need to vary for different control approaches. This blurs the line between
some derivative-free approaches and analytical ones, which in general represent a trade-
off between universality of application and efficient in time (given that the analytical
approach is not too complex) and effectiveness in performance (if the derivative-free
approach does not achieve an optimal result) (Michalewicz and Fogel, 2004).

2.2.4 Biped locomotion controller adaptation

Besides tuning a humanoid locomotion controller towards optimizing certain objec-
tives, adaptation to different terrains (or other changes outside the robotic system)
is also desirable. Some control frameworks specifically tackle this problem, usually
implementing ways to adapt to specific terrain changes (e.g. different slopes).

As with optimization approaches in the previous section, some adaptation ap-
proaches were touched on throughout this chapter, but in this one we give them greater
focus.

Adaptation to slope changes

Like the optimization towards different objectives, solutions for the adaptation required
by terrain changes vary in their complexity and approach. As an early example of a
simple way to adapt to an often tackled terrain change, Panne, Fiume, and Vranesic
(1992) introduced adaptation to arbitrary slope values by using linear interpolation
between control tables to generate a control solution. This approach is dependent on a
linear relationship between changes in both the control solution and the slope the robot
is intended to walk on, or at least one close enough to still provide stable locomotion.

Using a more advanced approach to the slope changes issue, Liu, Wang, and Chen
(2013) proposed a CPG based control system that outputs a CoM trajectory that can
then be mapped from the workspace to a joint space. The system is setup in a way
that the biped’s step length, step height, and the duration periods of the swinging
and supporting phases of the legs can be adjusted in real time. They showcase this
adaptation capability to adapt to changes on the environment by having the robot
move in sloped terrain and using its body attitude to determine its step length, and
maintain stability. While this approach works, it is specifically designed to adapt
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to slope changes, and a more general approach can make more extensive use of the
controller’s ability to change these locomotion features.

Adaptation to uneven terrain

Some approaches focus on terrain with sudden height changes, such as steps, as opposed
to changes in slopes. Hopkins, Hong, and Leonessa (2014) developed a framework for
humanoid locomotion adaptable to uneven terrain. Their control based on a linear
transformation of the CoM state allows for variable CoM trajectories during stepping
on terrain with variable height. The control system uses a nominal CoM trajectory,
and its dynamics, to find admissible trajectories given desired references for the ZMP,
and assumes the desired step positions are provided by a high level footstep planner.
This approach includes the height changes in the CoM trajectories, rather than using
feedback to obtain the information, making it not applicable to situations where the
changes are not known beforehand.

In the context of using vision to aid legged locomotion on difficult terrain, Gay
(2014) applied a mapping between sensory information and modifications to the dy-
namics of a CPG controller, which were learned using a neural network. They applied
this approach to a biped balancing in a moving platform and quadruped walking in
uneven terrain. The main downside to this approach is it being specific to this CPG
controller because of how the feedback is mapped to the changes in the controller.

Adaptation applicable to different terrain changes

Kimura, Fukuoka, and Cohen (2007) approached the problem of walking in irregular
terrain using a more complex and broad strategy, looking to adapt to different types of
terrain changes. They designed the control system to comply with expected necessary
conditions for uneven terrain. It consists of a CPG system with responses and reflexes
related to muscles that are modeled as PD-controllers at the robot’s joints. They
proposed the necessary conditions for stable dynamic walking on irregular terrain,
and designed the responses and reflexes of the control system to comply with these
conditions. They successfully tested the control system both in an indoor and in an
outdoor, natural environment. This approach is dependent on a careful design of the
robot, and the reflexes system entrainment with the CPG. The fact that it is applied to
a quadruped, in itself, implies the need for great changes in order to use it in a bidepal
robot.

In a similarly broad type of adaptation approach, Wang et al. (2010) developed a
method that optimizes locomotion controllers for robustness to a general class of uncer-
tainties. The method represents variables such as external forces and control torques
as probability distributions, which, together with a controller and the locomotion’s
dynamics, define the probability distribution of single motions. A return function is
then used to score the quality of a given motion, which is used to optimize a con-
troller by maximizing its expected return. The flexibility of the adaptation scheme was
demonstrated by applying it to different situations, such as external disturbances and a
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slippery surface. The authors noted that some adaptations appear unnatural, and their
method was only applied to a simple four state PD controller — optimization for more
complex ones may become more difficult, since they use dynamics of the locomotion
for the expected returns.

To conclude, we highlight a framework that applies a broad approach to both the
problems of optimization and adaptation to changes in the locomotion process. The
multi-dimensional archive of phenotypic elites (MAP-Elites) (Mouret and Clune, 2015)
is a search algorithm that produces a map which is by design diverse on the feature
space. An intelligent trial and error algorithm (Cully et al., 2015) that uses the in-
formation from MAP-Elites is then used to conduct experiments with the objective of
discovering a compensatory behavior that works in spite of the damage to a robot. It
optimizes the control parameters without sensory feedback, or feedback from quantities
internal to the controller, making this approach more general than the previous ones,
allowing it to be implemented in different controllers, robots, and contexts without
being to be fundamentally changed. The drawback is the loss of adaptability to these
very specific situations that other works are focused on.

2.2.5 Conclusions

This section provided a literature review focused on works that cover the aspects of
humanoid locomotion control identified in Chapter 1 as central to this work: 1) Con-
trollers have open parameters that can be optimized towards different goals; 2) There
are multiple optimization approaches, with different advantages and disadvantages; 3)
These parameters can also be tuned to adapt to different environmental changes.

The reviewed papers were discussed with the above points in mind, and also taking
into account the fact this thesis is looking for an approach that is universal in terms of
its application towards different controllers, objectives, and environment changes.

The possibility and need for controller optimization

The model predictive control scheme introduced by Kajita et al. (2003), and further
developed by Wieber (2006), Diedam et al. (2008), and Herdt, Perrin, and Wieber
(2010), produces a parameterized locomotion trajectory, defined by quantities such as
the length or duration of each step. Changing the precision of the preview dynamics,
or the optimization of the state vector (e.g. the joints’ accelerations), can change
the outcome of the locomotion, but usually in a less impactful way than changes to
the trajectory parameters. The task based approach introduced by Salini, Padois,
and Bidaud (2011) further expands the possibilities for optimization, since it adds the
possibility to give more or less weight to the CoM trajectory from the predictive control,
or a posture task, for example.

Rhythm generators, usually based on biological inspired approaches, tend to have a
different relationship between their parameters and the locomotion behavior. Instead of
directly changing the height or width of a step, modulation of CPG signals change the
way different patterns combine to produce joints’ outputs, or a locomotion trajectory
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(Rossignol, Dubuc, and Gossard, 2006). There are multiple parameters that affect
multiple patterns, and the behavior produced by their combination can be hard to
predict. These factors make the optimization of these parameters complicated, as
noted by Ijspeert (2008).

Taga (1998) implemented a visual feedback system in a rhythm generator, but pa-
rameters affecting the feedback signals, and the steps length, have to be tuned. Aoi
and Tsuchiya (2005) presented a rhythmic trajectory generator that contains (man-
ually tuned) parameters that control the duration of the stance and swing phases of
locomotion, as well as angular velocities. The same is true for Gen Endo et al. (2005),
who manually tuned some of the parameters of their CPG, mentioning their intention
to address the optimization issues with a learning framework.

In Aoi and Tsuchiya (2011), a study on the tuning of feedback parameters of a
system of nonlinear oscillators showed that, for some of the ranges tested, the observed
locomotion was more stable. Hauser et al. (2011) used a system with superimposition
of different joint movements, which parameters were tuned by testing for multiple
combinations of feedback control parameters and the length and mass of the robot.
The results show that some of these combinations are better for reducing the trajectory
error, while some values of the feedback parameters are better at successful tracking
trajectories for a greater range of length and mass values.

This section of the review covered very distinct control approaches, which, to a
lesser or greater degree, all show the same general point: differences in locomotion
behavior, which can result in greater stability, speed, or energy efficiency, for example,
may be achieved by tuning some of the parameters of the control system.

Optimization approaches

After establishing the need for the optimization of these controllers, the review focused
on some of the usual approaches to this problematic.

Analytical studies of the system’s dynamics can be ineffective because of their
complexity (Slatton et al., 2008). They usually are controller, or robot, specific, or
need a significant amount of work to adapt to different models.

Derivative-free optimization can provide an alternative approach that does not need
a mathematical model to be applied. It can be used in more general ways (i.e., not
controller/robot specific), but usually need more time to obtain good results. These
usually can be used in any control framework that contains open parameters. Some
of these approaches, such as reinforcement learning, require specific representations of
variables optimized and objectives optimized for, which may vary for different control
approaches.

Adaptation approaches

Besides optimizations towards different locomotion features, these controllers can also
be adapted to suit environment changes, such as changes to the terrain or the robot
model.
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A common terrain change is encountering different slopes. Panne, Fiume, and
Vranesic (1992) introduced adaptation to arbitrary slope values by using a linear in-
terpolation approach that assumes a linear relationship between changes in both the
control solution and the slope the robot is intended to walk on. Liu, Wang, and Chen
(2013) proposed a CPG based control system that can change values like the length
or height of a step in real time, using body attitude as feedback to adapt to slope
changes. These approach work for this specific problem, but are not general towards
other adaptations.

Another common problem appears with uneven terrains (i.e., showing variable
height). These tend to have the same problem with lack of flexibility. Hopkins, Hong,
and Leonessa (2014) developed a control system that uses nominal CoM trajectories
to find admissible steps given desired references for the zero moment point. The con-
troller adapts to height changes in the terrain by incorporating them in the predefined
CoM trajectory. Gay (2014) used sensory information to modify the dynamics of a
CPG controller. This can be applied to adaptation to walking in uneven, but is con-
troller specific, and also objective/adaptation specific because these are dependent on
the sensors used.

Using a more general approach, Cully et al. (2015) create a map of solutions diverse
towards different locomotion features, and then use it to adapt to terrain or robot
changes during the locomotion process.

Overview of each paper’s features

Table 2.1 shows an overview of the papers reviewed on sections 2.2.3 and 2.2.4, taking
into account which of the required features highlighted on Chapter 1 they present.

The approach from Cully et al. (2015) is the one that gets closer to the design
requirements introduced previously. This approach can be used with any controller
with open parameters, and adapt to different environment changes. It does, however,
have some problems in this context.

The map of solutions is dependent on defining features that may need to be spe-
cific to the robot beforehand (e.g. duty factor of each leg in a hexapod), and ob-
taining a diverse map may not be ideal, since it intentionally spends time obtain-
ing possibly low performing solutions. In the adaptation process, the environment
changes are not encoded in variables, which makes it more flexible, but also requires
the Bayesian optimization to re-learn the relation between features and performance.
This relation may be too complicated to represent with Gaussian processes, or to much
time/computational expensive.
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Table 2.1: Summary of the works reviewed in this chapter, highlighting relevant features.
“Controller optimization” provides a small description of the optimization approach, “objec-
tives” lists the optimization objectives, “adaptation” the types of adaptation the framework
allows for, and “controller independent” lists whether the approach is applicable to any con-
troller with open parameters. If the approach is applicable to any optimization objective, or
adaptable to any terrain/robot change that can be measured during locomotion, the corre-
sponding column will list “any”. Cells where a feature is absent are marked as “-”.

Paper reference
Controller
optimization

Objectives Adaptation
Controller
independent

(Panne, Fiume, and

Vranesic, 1992)

Linear interpolation - Slope -

(Wang et al., 2012)
Biological model Metabolic energy - -

energy minimization expenditure

(Zheng and Yamane,

2011)

Collision and Speed - -
balance models

(Lee and Ryoo, 2014)
ZMP parameters Any - -
manual tuning

(Rodrigues et al.,

1996)

GA applied to Any - Yes
joint torques

(Wu and Popović,

2010)

CMA-ES applied to Trajectory Slope and -
step planner uneven terrain

(Kieboom, 2009)
PSO applied to Any External Yes
CPG network forces

(Paul and Bongard,

2001)

Changes to robot’s Any - -
mass distribution

(Hemker et al., 2009)
Bayesian optimization Any - -
of trajectory generator

(Fujiki et al., 2012)
RL applied to Interlimb Walking on -

nonlinear oscillators coordination splitbelt treadmill

(Morimoto et al.,

2007)

RL applied to Speed - -
a GP model of dynamics

(Liu, Wang, and

Chen, 2013)

Automatic adaptation of - Slope -
steps characteristics

(Hopkins, Hong, and

Leonessa, 2014)

Automatic adaptation of - Uneven -
CoM trajectory terrain

(Gay, 2014)
Sensory information - Moving -

affecting CPG dynamics platform

(Kimura, Fukuoka,

and Cohen, 2007)

Design of CPG - Uneven -
with modeled muscles terrain

(Wang et al., 2010)
Probably distributions of - Any -

different forces

(Cully et al., 2015)
Bayesian optimization of Any Any Yes
solution-features relations

28



Chapter 3

Background

Optimizing the locomotion control of a robot can be done by treating the system
as something that converts numerical inputs (the parameters of the controller, and
context variables) into numerical outputs (the features of locomotion). Mathematical
optimization can then be applied to that system, resulting in finding the solutions (sets
of parameters) that allow the robot to walk with the best performance possible.

This chapter introduces the concept of mathematical optimization, and focuses on
metaheuristics — procedures that provide good solutions in the absence of a complete
representation of the system, or in the case of limited computation capacity. The topic
of optimizing towards multiple objectives is also covered, since multiple locomotion
features are considered in this work. These features are used as optimization objectives.

One specific optimization algorithm was used throughout the entire work - the
non-dominated sorting genetic algorithm II (NSGA-II). A detailed description of this
procedure is included along with the concepts of evolutionary algorithms, which NSGA-
II is a part of, and Pareto efficiency, which is important for multi-objective optimization.

3.1 Mathematical optimization

When presented with a system that can be controlled through variable quantities, one
can select the inputs x that produced a given output f(x), with f being the function
that represents the relationship between the input and output of the system.

The function f may represent a cost or performance function that we want to
optimize, either by maximizing or minimizing its output, which is done by changing
its inputs. These inputs, in the context of this work, will be referred to as controller
parameters. This process looks for x⇤, which is the set of parameters that either
maximizes (f(x⇤) � f(x), for all possible x), or minimizes (f(x⇤)  f(x), for all
possible x) the output.

If there is an analytical representation of f , the output can be calculated. Further-
more, the derivative of the function, if it exists, can also be calculated, which gives
information related to how the output of the system is affected by small changes to the
parameters. If one can determine when the derivative is null, this information can be
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used to find optima (maximum or minimum values) of the function. It cannot be used,
however, to distinguish between local and global optima.

In some situations, an exact derivative of the function is hard or impossible to ob-
tain. When there is no analytical representation of f available, or it is hard to calculate,
the outputs of the system can only be observed, and not calculated 1. An alternative
in this situation would be to manually compute the derivative of the function, and
use it to find the optima. This is the approach used in the gradient descent (to find
a minimum), and gradient ascent (to find a maximum) methods (Snyman, 2005). A
problem with this approach is that measures of the output are discontinuous, and are
often affected by noise, which makes it more difficult to use (Amaran et al., 2016).
These issues mean that the optimization process cannot be conducted in the straight-
forward way of using the information provided by the mathematical representation of
the function and its derivatives.

3.1.1 Metaheuristics

When finding an optimal value is not possible, due to lack of an exact derivative or
other constraints (e.g., high computational demand), an alternative approach is to use
metaheuristics. These are procedures that do not find exact solutions, but instead look
for ones that are “good”, albeit not optimal. They use few observations about the
inputs and respective outputs of the function to make assumptions about the whole
system.

A heuristic is an approach to problem solving that finds approximate solutions
in a faster way than exact methods. A metaheuristic is a procedure that is used
to select a heuristic that may lead to a good solution in an optimization problem,
i.e. it guides the search process (Deb, 2001). Metaheuristics are usually faster than an
algorithm providing an exact solution (Adekanmbi and Green, 2015; Rios and Sahinidis,
2013), but they do not guarantee a convergence towards the global optimum. Many of
the algorithms in this category use stochastic optimization, which generates and uses
random variables, meaning randomness may affect the optimization process.

Exact methods usually require specific formulations of the optimization problem,
such as objective functions expressed as linear functions of key variables. Due to the
fact they are defined in general terms, metaheuristic algorithms can be adapted to
optimization problems which are allowed enough computation time, and can offer a
good solution reasonably fast (Talbi, 2009).

Classes and examples of metaheuristics algorithms

The goal of metaheuristic algorithms is to find the best possible solutions to an op-
timization problem. They use an encoding of a solution that can be stored in a pre-
dictable way, and manipulated with different mathematical operators. The general
process in these optimizations is to evaluate potential solutions, and change them with

1As an example, a humanoid robot walks with a speed that can be measured, but not always
calculated beforehand with high precision.
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different operations, in order to find different solutions (Glover and Kochenberger,
2003).

There are many different metaheuristics algorithms, varying in their approach and
applicability. Three classes can be distinguished, differentiated by the way they ma-
nipulate solutions: local search metaheuristics, that make changes to a single solution
through multiple iterations; constructive metaheuristics, which iteratively construct
solutions from constituting elements (e.g. a real number at a time); population based
metaheuristics, which work with multiple solutions simultaneously, and combine them
into new ones. These classes are not the only way to distinguish between the various
methods in this field, and these algorithms can combine approaches from each class
(Glover and Kochenberger, 2003).

Local search metaheuristics

When solving computationally expensive optimization problems, local search can be
a preferred approach for the task. This is a metaheuristic approach to the gradient
descent algorithm, where the search will move from solution to solution in a space of
candidate solutions that is obtained by applying small changes to them. Since it only
needs to store information related to the small area being explored, local search can
lessen the negative impact in memory and time of computationally intensive problems
(Glover and Kochenberger, 2003).

An example of such an algorithm is the hill climbing algorithm (Russell, Norvig, and
Davis, 2010), which starts with a random solution, and incrementally makes changes
to it until a better one cannot be found. A single element of the solution is changed at
a time, and any solution that produces a better result is kept.

A more complex approach, called simulated annealing (SA) (Khachaturyan et al.,
1981; Kirkpatrick, Gelatt, and Vecchi, 1983), mimics the annealing process of a crys-
talline solid in its movements to find different solutions. In each iteration, a random
solution is selected from the neighborhood of the current one. This neighborhood is
defined as the set of solutions that can be reached by making a single move to the cur-
rent one. A probability of being selected is attributed to the selected solution, which
depends on the performance of the solution, but also on the temperature of the pro-
cess, which cools down with passing iterations, making it less likely for the solution to
change significantly, or at all.

Constructive metaheuristics

Constructive metaheuristics have a distinctive way of obtaining new solution than
both local search and population based approaches. These solutions are iteratively
constructed from their parts, instead of being altered versions of former, complete,
solutions. A local search after the construction phase is often used to improve the
quality of the initial solution (Glover and Kochenberger, 2003).

An example of such algorithms is the ant colony optimization (ACO) technique
(Dorigo, Maniezzo, and Colorni, 1996). This term refers to constructive metaheuristics

31



that build solutions by mimicking the paths ants follow when looking for food. When
returning from successful foraging, ants return to their colony while leaving behind
pheromones, which are used by other ants to find the same food source. This behavior
can be mimicked by an algorithm by using a parameter called the pheromone level.
The algorithm runs multiple agents (ants) in parallel, each looking to construct a
solution. Once this is achieved, the pheromone level of each element of the solutions is
update, with better solutions being allocated more pheromones. When the process of
solution construction is repeated, elements from well performing solutions will tend to
be selected more often.

Population-based metaheuristics

Population-based metaheuristics can be used when optimizing a function with several
local optima, or when finding a global optimum is especially important. These algo-
rithms find new solutions by selecting and combining solutions from the current set
(called population), therefore creating a new one. They usually look for solutions over
a vaster search space, making it more likely to find a global optimum (Rios and Sahini-
dis, 2013). Some of these techniques are based on local search approaches, although
they perform a global search.

Particle swarm optimization (PSO) is a population-based metaheuristic that treats
its population of candidate solutions as a swarm of particles, that are moved around
the search-space of the optimization by applying formulae to the particles’ positions
and velocities (Kennedy and Eberhart, 1995). Evolutionary algorithms (EAs) are a
vast group of metaheuristics that use mechanisms observed in the field of biological
evolution to affect its population of candidate solutions.

All of these approaches have their own advantages and disadvantages, and the choice
of application is largely dependent on the type of function one wants to optimize, as well
as how precise and/or diverse one wants the final solution, or collection of solutions, to
be (Eiben and Smith, 2003). Throughout the rest of this chapter, and also throughout
the rest of this dissertation, the focus will go towards EAs, due to their more extensive
use in multi-objective optimization.

3.2 Evolutionary algorithms

EAs involve techniques that are inspired by biological evolution, which main aspects
are variation (through mutation and recombination), and selection (Eiben and Smith,
2003). They are a population-based type of metaheuristic optimization algorithms.
EAs look for approximate solutions, and do not make assumptions about the fitness
landscape, making them good candidates for optimizing complex problems that are
dependent on multiple variables, such as biped locomotion (Eaton, 2015).

EAs can be separated into multiple types, differing in the way their encode so-
lutions, and what the particular biological inspiration for that algorithm is. Genetic
algorithms (GAs) are inspired in the process of natural selection, and represent solu-
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tions in the form of strings of numbers. They use selection, mutation, and crossover
to optimize the solutions. Evolution strategies (ES) use these same types of genetic
operators, with different selection processes, and usually self-adaptive mutation rates.
They encode solutions as vectors of real numbers . Other examples of solution encoding
are representing the genomes as computer programs (called genetic programming), and
as artificial neural networks (in an approach called neuroevolution) (Eiben and Smith,
2003).

The general steps taken in an EA (Eiben and Smith, 2003) are as follows. First,
an initial population of individuals is randomly generated; this is the first generation.
A fitness value is assigned to each individual solution, after evaluating them using the
function to be optimized. The fitness is a value that translates how well an individual is
suited to solve the optimization problem. In each generation, the individuals with the
best fitness values are selected as the parents of the next generation. These are used to
breed through crossover and mutation, leading to new individuals. A crossover takes
multiple parent solutions and produces a child from them, while a mutation alters one
or more values of a single solution in order to generate a new one. These new individuals
are evaluated to find their fitness, and the least fit individuals from the population are
replaced, if they show worse performance. This process is repeated for a set number of
generations, or when an acceptable group of solutions is reached.

3.2.1 Multi-objective optimization

The optimization and adaptation problems tackled in the course of this document use
multiple optimization objectives, with f(x) being represented by multiple values, rather
than a single one.

This approach is useful when optimizing humanoid locomotion, since optimizing for
speed only, for instance, could cause the system to be unstable, or energy inefficient.
As discussed in the previous chapter, this task is very complex and hard to optimize,
and optimizing various aspects of the system simultaneously is crucial.

Optimizing a function towards multiple objectives requires a way of making deci-
sions about the performance value (referred to as fitness) of each solution, since the
output is represented by multiple values, and not a single one that can directly be
compared to the fitness of another solution (Miettinen, 1998). One way to deal with
this is the scalarization approach, which transforms multi-objective problems into a
single-objective problem using a weighted sum of the fitness values (Jahn, 1985).

Because of the possibility of not finding a solution that simultaneously optimizes
each objective, the concept of Pareto efficiency (presented in Section 3.2.2) is used in
the performance evaluation of each solution. The scalarization approach reformulates
the problem in a way that guarantees that the optimal solutions for the new single-
objective optimization are Pareto optimal for the multi-objective optimization (Jahn,
1985).
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3.2.2 Pareto efficiency

When optimizing for multiple objectives, a set of solutions is selected based on the
concept of Pareto optimality (Deb, 2001; Tomoiagă et al., 2013) (named after Vilfredo
Pareto). A solution is considered Pareto optimal, or nondominated, if there are no
other solutions which corresponding outcomes are all better in value than, or equal
to, those of said solution. In other words, a solution x0 is said to dominate another
solution x00 if:

1. x0 is not worse than x00 in any of the function objectives;

2. x0 is strictly better than x00 with respect to at least one objective.

The set of nondominated solutions of the entire search space can be referred to as
the Pareto front.

Pareto front definition

In the context of this work, a Pareto front is a set of solutions x that are all Pareto
efficient towards the different outcomes from f(x). These outcomes are a group of
behavioral features b = b1, b2, . . . (such as speed or torque output). These solutions
show trade-offs between their performance towards these different features. A better
performance can be expressed by a higher or lower value, depending on the feature.

3.3 NSGA-II

The nondominated sorting genetic algorithm II (NSGA-II) (Deb et al., 2002) is a multi-
objective optimization EA that is based on the Pareto dominance relation. This second
version of the algorithm improved its sorting algorithm, incorporated the concept of
elitism, and dropped the requirement for a sharing parameter to be chosen a priori.

In each generation, the population is sorted in different fronts, or sets, according to
the concept of non-domination (see Section 3.2.2). The first front includes the solutions
that are non-dominant for the overall population, but dominate the solutions outside
this set. The solutions for the second front are non-dominant between each other, are
dominated by the solutions from the first front, and dominate the solutions from all
the other fronts. This pattern is observed until the last front, which solutions are non-
dominant between themselves, but are dominated by all the other solutions. Individuals
from different fronts are assigned a different value of fitness (or ranks), with the ones
from the first front having a rank of 1 (the best value), the ones in the second a rank
of 2, an so on.

Each individual also has a crowding distance value associated, which measures how
far it is from its set’s neighbors. This value is the average Euclidean distance between
the individual and the two nearest points to it, along the direction of each of the
optimization objectives. The crowding distances comparisons are done only between
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individuals in the same set. Larger crowding distances will promote diversity in the
solution space of the population.

After sorting the population and calculating the crowding distances, individuals are
selected for mutation and crossover. These will act as parents of new individuals, that
will belong to the next generation. The selection is based, first, on the rank of the
individual (i.e. the front it belongs to), and then on their crowding distances, where
larger values are preferred. A binary tournament selection is used to decide which
parents are matched for a comparison (Blickle and Thiele, 1996): two individuals are
randomly selected each time, and the most adequate between them is selected as a
parent.

Both the crossover and mutation operations results in a population partially com-
posed of new solutions. The genetic operators used in the crossover and mutation phase
are the simulated binary crossover (SBX) (Beyer and Deb, 2001), and the polynomial
mutation (Raghuwanshi and Kakde, 2004). These operators are detailed in the next
section.

The offspring solutions are then evaluated, and new fronts for the next generation
of the population are created by choosing the individuals with the best fitness, both
from the previous generation and the offspring solutions. Subsequent fronts are gen-
erated until the size of the population reaches the value selected by the user for the
optimization process.

Algorithms 1, 2, and 3 show the main procedure of the NSGA-II optimization pro-
cess, as well as some of its sub-functions. The next section details the SBX and poly-
nomial mutation genetic operators. Figure 3.1 shows a flowchart of the optimization
process.

3.3.1 SBX and polynomial mutation

SBX simulates the binary crossover observed in nature,

c1,k =
1

2
[(1� �k)p1,k + (1 + �k)p2,k], (3.1)

c2,k =
1

2
[(1 + �k)p1,k + (1� �k)p2,k]. (3.2)

Here ci,k is the kth component of the ith child, pi,k the kth component of the selected
parent, and �k (� 0) a sample from a random number generator with the density

p(�) =
1

2
(⌘c + 1)�ηc , if 0  �  1, (3.3)

p(�) =
1

2
(⌘c + 1)

1

�ηc+2 , if � > 1. (3.4)

Here ⌘c is the distribution index for crossover, which determines how well spread the
children are from their parents.

The polynomial mutation is encoded as

ck = pk + (pu
k � pl

k)�k, (3.5)
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StartInitialize populationEvaluate individuals’ fitnessSelect parents based on crowding and non-domination Crossover and mutationEvaluate offspring fitnessSize of population reached?Rank individualsRank parents and childrenMax generation reached?Yes NoYes NoOutput
Figure 3.1: Flowchart of the optimization algorithm NSGA-II. Adapted from (Chang,
Bouzarkouna, and Devegowda, 2015).
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where ck is the child individual, pk the parent, and pu
k and pl

k are the upper and
lower bounds on the parent k component. �k is a small variation, calculated from a
polynomial distribution

�k = 2(rk)
1

ηm+1 � 1, if rk < 0.5 (3.6)

�k = 1� [2(1� rk)]
1

ηm+1 , if rk � 0.5. (3.7)

rk is a random number between (0,1) with uniform sampling, and ⌘m is a mutation
distribution index.
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Algorithm 1 Pseudocode for the NSGA-II (Deb et al., 2002) procedure for the optimization of a given
function. N is the population size, nr generations the number of generations the optimization should run for,
and Rmutation and Rcrossover, the rates, or probabilities, of mutation and crossover. Adapted from (Brownlee,
2011).

procedure Function Optimization(N , nr generations, Rmutation, Rcrossover)
P  initialize population(N)
fitnessP  evaluate population(P ) . Evaluates individuals against the objective function.
P  non dominated sort(P , fitnessP )
P (d)  calculate crowding distances(P )
selected parents  select parents(P , P (d))
children  crossover and mutation(selected parents, Rmutation, Rcrossover)
for nr generations do

children fitness  evaluate population(children)
union  merge(P , children)
F  non dominated sort(union) . F is a collection of Pareto fronts.
parents  ;
FL  ; . FL is the last front of the sorting.
for each Fi in F do . Fronts are added to the next parents.

if size(parents) + size(Fi) > N then . Is the population size exceeded?
FL  Fi . This is the last front added.
break . Stop adding fronts.

else
parents  merge(parents, Fi) . Merge front with the next parents.

end if
end for
if size(parents) < N then . If N not reached, add solutions from FL

FL  Sort by rank and distance(FL) . Put the best ranked solutions first.
for i 1 to N� size(FL) do . Add solutions until N reached.

parents  merge(parents, Pi)
end for

end if
parents(d)  calculate crowding distances(parents)
selected parents  select parents(parents, parents(d))
P  children
children  crossover and mutation(selected parents, Rmutation, Rcrossover)

end for
return children

end procedure
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Algorithm 2 Pseudocode for the NSGA-II algorithm sub-functions for calculating crowding distances,
and the parent selection process (Deb et al., 2002), both used in the main procedure.

function calculate crowding distances(P )
for each Fi in F do

n size(Fi) . n is the number of individuals in F .
for j  1 to n do . j indexes an individual of Fi.

Fi(dj) 0 . distance for individual j in front Fi.
end for
for each objective function m do

I  sort(Fi, m) . Sort individuals from Fi based on objective m a.
I(d1) 1 . Assign infinite distance for boundary values
I(dn) 1 . for each individual in Fi.
for k  2 to n do . k indexes a population individual.

I(dk) I(dk) +
I(k+1).m−I(k−1).m

fmax
m

−fmin
m

. fmax
m is the max. value of the mth objective function.

. I(k).m is the value of the mth objective function on the kth individual in I.
end for

end for
end for

end function
function select parents(parents, parents(d)) selected parents  ;

for i = 1 to size(parents)/2 do . Binary tournament selection process.
Randomly select p, q, from remaining parents
if rankp < rankq then

selected parents  selected parents [ q
Remove q from parents

else if rankp > rankq then
selected parents  selected parents [ p
Remove p from parents

else . rankp = rankq
if parents(dp) > parents(dq) then . A larger crowding distance indicates a less desirable

individual.
selected parents  selected parents [ q
Remove q from parents

else
selected parents  selected parents [ p
Remove p from parents

end if
end if

end for
return selected parents

end function

aThis is equivalent to sorting the individuals based on features of locomotion, in the context of this work.

39



Algorithm 3 Pseudocode for the NSGA-II algorithm non-dominated sorting of individuals (Deb
et al., 2002), used in the main procedure.

function non dominated sort(P , fitnessP )
for each individual p in P do

Sp  ; . Set of all the individuals dominated by p.
np  0 . Number of individuals that dominate p.
for each individual q in P do

if p dominates q then
Sp  Sp [ q

else
np  np + 1

end if
end for
if np = 0 then . No individuals dominate p.

rankp  1 . p belongs to the first front.
F1  F1 [ p . Add p to front 1.

end if
i 1 . i is a front counter.
while Fi is not empty do

Q ; . Set to store the individuals for Fi+1

for each p in Fi do . Cycle through the individuals in the current front.
for each q in Sp do . Check the individuals dominated by p.

nq  nq � 1 . p is no longer accounted for.
if nq = 0 then . q is no longer dominated by any individual.

rankq = i+ 1 . No subsequent fronts would dominate q.
Q Q [ q . q belongs to Fi+1.

end if
end for

end for
i i+ 1 . Increment the front counter.
Fi  Q

end while
end for

end function
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Chapter 4

A general framework for biped

locomotion control optimization

In this chapter a framework for the optimization of humanoid locomotion controllers is
proposed. It can be applied to any controller with open parameters, and any humanoid
robot that can achieve locomotion through its control. The method should be able
to optimize towards different locomotion features (e.g. speed, stability measures),
and towards different environment changes, such as terrain changes or alterations to
the robot itself. Finally, it should be able to automatically select the more relevant
parameters to optimize, in order to make the process faster and more efficient.

The framework is based on derivative-free optimization. This choice is based on the
fact that the task itself is complicated, which makes a model’s derivative hard to obtain.
Chapter 2 explored the complex dynamics of locomotion, and changes in the robot and
its environment that lead to this issue. Furthermore, obtaining the necessary derivative
information for every controller and robot is unfeasible, which is a requirement for this
framework, since it is intended to be applicable to any combination of humanoid robot
and locomotion controller with open parameters.

This chapter begins by delineating the overall problem and related mathematical
notation, then describes the general approach used to tackle it, and follow that by
specifying each component of the framework, as well as considering the options avail-
able to perform each task. After that, an approach for a sensitivity analysis on the
environment parameter is described, along with a correlation analysis that can be used
to choose the most appropriate parameters to tune from a larger list.

4.1 Problem definition

Consider a humanoid locomotion controller with open parameters, i.e., parameters
whose values are not set. Each set of values for these parameters are a tentative
solution x for the task of walking, that, when applied to the control of a robot, will
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result in observed behavioral features of the locomotion b (e.g. speed, applied torque),

b = f(x). (4.1)

f being the mathematical function between the inputs (x = x1,x2, . . .) and the outputs
(b = b1, b2, . . .). These solutions can also be evaluated in terrains with some of their
characteristics modeled by parameters (e.g. friction, slope) ✓,

b = f(x,✓). (4.2)

The goal is to find the solution x⇤ that results in the best possible value that can
be found for one of the observed features (e.g b1, the locomotion speed). When
multiple features are considered, we try to find the set of solutions X ⇤ that result in
the best values for these features. When a solution that results in the best values for
every feature simultaneously cannot be found, the goal is to obtain one that results
in varying degrees of performance trade-off (e.g. trading speed for energy efficiency).
Different values of ✓ will affect the outputs of the system, and, consequently, the best
solutions found in these optimizations.

4.2 Exploration framework

When applying derivative-free optimization to this problem, several trials with different
controller parameters and, possibly, terrains or other environmental changes need to be
conducted. This process, which is referred to as the exploration phase (or the training
phase, in the larger context of the adaptation framework), leads to obtaining a set of
the solutions used, Xt, which is associated with a set of the environment parameters,
Θt, and a set of the behavioral features, Bt,

Bt = {f(x,✓) | x 2 Xt,✓ 2 Θt}, (4.3)

that resulted from the training simulations of those solutions x on the terrain defined
by the chosen ✓. These results are stored in a dataset Dt,

Dt = {Xt,Θt,Bt}, (4.4)

which will be called the training dataset, in the context of the overall adaptation
approach.

From this dataset, one can select a single solution that maximizes (e.g. speed),
or minimizes (e.g. torque output), a given behavioral feature. To select solutions that
are optimal towards multiple features, the concept of Pareto optimality (see chapter 3)
can be used. The set of solutions that are all Pareto optimal can be referred to as the
Pareto front, and this dataset as DPf. Figure 4.1 shows an overview of this optimization
approach.
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Locomotion controller Environment variable valuesRobot modelOptimization algorithmLocomotion control virtual simulation
x

b (outputs)Dt Pareto frontselection
DPf

Optimization cycle
θData aggregator

Figure 4.1: Architecture of the exploration/training framework. The robot model and
the environment, along with a control structure defined by its open parameters being
tuned (x), are fed to the virtual simulation of the locomotion process. The optimization
algorithm selects a set of parameters values that will be tested, taking into account the
optimization of the features (b) received from the virtual simulation at the end of each
trial. This is a cyclic process, which is ended by the optimization algorithm after
a certain number of trials, or when certain conditions for the optimization are met.
The process can be repeated for different values of the environment variable (✓). The
different solutions x, resulting features b, and environment values ✓ are aggregated into
a single set. The end result is the dataset Dt defined in Equation 4.4.
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4.3 Selecting the components of the framework

The proposed framework is intended to be as general as possible in terms of accepting
which control architecture will be optimized (and its corresponding parameters), the
locomotion behavioral features optimized for, the humanoid robot being controlled,
the terrain/environment aspect modeled, the program used to simulate the locomotion
trials, and, to some extent, the optimization algorithm. These have to work with each
other in a compatible manner. During the course of this section the possibilities of
choice for each of these components will be discussed, as well as highlighted the ones
that were part of the experiments conducted.

4.3.1 Robot model

This framework is intended to be applied to a humanoid robot, generally having a head,
a torso, two arms, and two legs. Some of these robots may only have the lower or upper
part of the body, and since this is intended to be used in the optimization of bipedal
locomotion only the former are applicable. From an implementation standpoint, the
robot must be compatible with the locomotion controller, and a model must be available
or constructed for the simulator.

The robots used in this work were models of the iCub and DARwIn-OP robots,
and a virtual robot called the XDE-manikin. All of them are bipedal, and described
in Appendix A.

4.3.2 Locomotion controller

Any humanoid locomotion controller should be applicable, as long as it has open pa-
rameters that need to, or can, be tuned. Sections 2.2.1 and 2.2.2 contain discussions
on some of the most relevant control approaches in this context, and highlight how
common it is for them to have open parameters.

In the situations where there are parameters that can be tuned, the question be-
comes whether they affect the locomotion behavior in a way that is meaningful for the
user. Some controllers, like the dynamics based one used with the iCub and the XDE-
manikin robots, described in Appendix B, have open parameters that directly correlate
to locomotion characteristics, such as controlling each step’s length, or its height. When
using other controllers, such as the CPG based one applied to the DARwIn-OP robot
(see Appendix C), the parameters affect the locomotion outcome in ways that are hard
or impossible to predict without conducting experiments.

The optimization framework presented collects thousands of outcomes of different
solutions (parameter sets), providing the necessary information to analyze the effect of
these parameters in the locomotion aspects one is interested in. A concrete way to do
this analysis was developed and is formalized in Section 4.5.
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4.3.3 Environment variable

The variables that would be interesting, or useful, to model and optimize for are the
ones that most impact the locomotion behavior and/or are harder to adapt to via other
methods. These can be properties of the terrain the humanoid is walking on, or of the
robot itself, for example.

In a given terrain, a robot’s foot can exert a given amount of horizontal friction on
the floor, before it causes the robot to slip. The value that represents that threshold is
a common and potentially impactful variable (Kajita et al., 2004; Hobon, Elyaaqoubi,
and Abba, 2013) that affects the locomotion process of every biped. The coefficient
of friction (CoF) — the ratio between the tangential (ftc) and normal (fnc) forces
acting on the contact points of the feet with the ground — serves as a measure of a
limit for when this potential displacement can start to occur,

CoF =
ftc
fnc

. (4.5)

As discussed in Chapters 1 and 2, what happens during the contact of a biped robot
with the floor is both instrumental to cause the movement of the system, and dangerous
for its stability, if not done with the necessary precautions. The horizontal forces that
can be applied to the contact points differ from floor to floor, and that affects the
behavior one can achieve.

Another important property is the slope of the terrain when walking up, or down,
a ramp (B et al., 2012; Dong, Zhao, and Zhang, 2011). It affects the way the robot has
to direct its whole body, which changes its attitude, and, consequently, its stability.
This constrains the possible length of each step, and may easily lead to a fall.

One last possible terrain related property to model is its impedance — a measure
of its resistance to motion. In many simulations the floor is considered as a completely
rigid body, but allowing it to be temporarily deformable, even to a small extent, would
lead to changes in the way the impact of the robot’s feet with the ground affects the
robot, and consequently the locomotion process.

A usual approach to terrain changes or obstacles in biped locomotion research is to
make the controller adaptable to uneven terrain (Morisawa et al., 2014; Asif and Iqbal,
2011; Manko, 1992) (other works were discussed in Section 2.2.4). This can include
terrain with obstacles, terrain with smoother or rougher patches, or sudden height
or slope changes, for example. Adaptation of a control framework to this situation
tends to be more complex and perception related, requiring ways to deal with multiple
sub-problems whose solutions may vary for different control approaches. We do not
look to adapt to these specific situations, and this framework is not appropriate for it.
Variables like a CoF or the slope are more universally present and impactful.

Changes that come from the robot itself could also be encapsulated by an environ-
ment variable. In Chapter 5, for instance, optimizations were conducted for the same
robot model, but with varying height and mass values, and the body proportions being
kept intact. Cully et al. (2015) proposed an adaptation framework that they applied
to a hexapod robot with a damaged leg.
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Exploring the way these changes affect the humanoid’s locomotion can provide
insight to what degree they require the need for different control approaches. These can
be needed to maintain or optimize the task performance observed before the changes.

4.3.4 Optimized locomotion features

The features of locomotion that are defined, and used as optimization objectives, need
to be chosen with the user requirements and robot stability in mind. They should
be common to the largest amount of bipedal robots possible (as in the possibility of
measuring them), and relevant, either in terms of performance, or stability. Ideally,
they should use no sensors, or common ones (i.e. feet sensors as opposed to vision).
Performance oriented features such as speed can be combined with criteria directed for
stability, such as the position of the system’s CoP.

Performance indicators

When it comes to performance, some of the most common needs are greater speeds
and energy efficiency. Energy can be linked to the torque output of the robot’s joints
throughout the locomotion task, and some measure of this as a single value, such as
the total torque output,

τtotal =

tf
Z

0

⌧>

t ⌧ t dt, (4.6)

or its average,

τmean =
h

tf

tf
X

t=0

⌧ t⌧ t. (4.7)

Here tf refers to the total duration of the simulation, ⌧ t is a vector containing the
current torque of every joint at a given time t, and h is the time step of the simulation.
Any of these calculated quantities can be minimized to promote lower energy usage.

The overall error of the locomotion trajectory can also be measured as a total
throughout the simulation process, or as an average,

errormean =
h

tf
⇥

tf
X

t=0

distance(trajectoryt, robot positiont). (4.8)

Here distance(.) is the Euclidean distance between the 3D points trajectoryt, and
robot positiont, which are the robot’s pretended location according to the locomotion
trajectory, and its actual location, at time t. This feature can be used to promote
both stability and performance. When walking in a straight line the trajectory error is
complementary to the speed, since deviations from that path will decrease the distance
achieved in that direction. It can promote stability by lowering lateral overextensions of
the CoM that can cause balances issues, which are ideally not present in the trajectory.
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Stability

Stability related criteria can be any measure that optimize the locomotion towards
balanced movement and, fundamentally, the robot not falling. Representing a fall as a
binary variable may not be ideal for the optimization algorithm, but adding a penalty
for some of the objectives in the case one occurs can discourage the algorithm from
exploring similar solutions, since these types of algorithms do not focus on the solutions
that show bad results.

Indicators related to the friction between the contact points and the ground can
be measured with the use of force sensors on the feet. As previously discussed in this
chapter, the ratio between the tangential and normal contact forces can be used to
evaluate the risk of slipping due to lack of friction. Minimizing these tangential forces,
or just trying to keep them from reaching a certain threshold, can increase the overall
stability of the task (Hurmuzlu, Génot, and Brogliato, 2004; Zhou et al., 2013).

The position of the center of pressure is important for dynamic balance, as discussed
in Section 2.1.1. Indicators that help keep the CoP in the support polygon of the biped
are therefore useful. Simply minimizing its distance to the center of the polygon is
an option, but this may also keep the robot from using behaviors that are riskier but
more efficient towards performance indicators. Instead minimizing the time spent by
the CoP outside the support polygon, without care of its distance from the edges, can
allow for higher speeds, for example, but it comes with the possible downside of lower
stability.

Asymmetries in human and humanoid locomotion are generally linked to irregular,
and perhaps inefficient, patterns (Hyon and Emura, 2005; Handžić and Reed, 2015).
The time spent by each foot in the ground in relation to the total time for the locomotion
can be referred to as the duty factors. Having similar values of duty factor for both feet
is observed in symmetric gaits. The difference between those duty factors can, therefore,
be a useful quantity to minimize. On the other hand, some studies suggest there may be
performance benefits and even a biological basis for asymmetrical locomotion patterns.
Gregg et al. (2011) suggested that asymmetric high-speed gaits can be more stable than
symmetric gaits when certain changes in the environment are observed. In another
study Gregg, Dhaher, and Lynch (2011), they discuss the hypothesis that, in human
and humanoid locomotion, each leg may have different overall roles, such as support
and propulsion, resulting in functional asymmetry.

This possibility of the chosen indicator (minimizing the difference between duty
factors) not being appropriate to a better performing locomotion process, can happen
with any feature. One way to solve this would be to address them individually, carefully
researching and analyzing the implications of optimizing towards a given behavior.
Ideally, especially for this framework, one would have a way to measure how an indicator
affects the task outcome, regardless of what that indicator measures, or what it is being
maximized, or minimized. This can be achieved by applying the correlation analysis
procedure described in Section 4.4.
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4.3.5 Simulator

A physics based simulation of the locomotion process is necessary to speed up the
process of optimization, which requires thousands of simulations to acquire a repertoire
large enough to support meaningful analysis of the effects of each parameter, and
the adaptation process introduced later. The simulator also needs to support the
implementation of the controller and the robot model, as well as the modeling of the
intended environmental parameters.

When choosing which simulators to use during a project like this, availability, price,
and the time required to learn how to work with the tools are important aspects.
The iCub and the XDE-manikin were simulated using XDE, a simulator developed by
CEA-LIST (Merlhiot et al., 2012) that enables the simulation and control of physically
interacting mechanisms. XDE is not an open source engine, but it was available at one
of the research laboratories this work was developed in, ISIR. There was also a model
of the iCub available in the toolkit, as well as an implementation of the dynamics
based control system used along with it. For similar reasons, the Webots simulator
(Michel, 2004) was used to work on the DARwIn-OP experiments. It is a commercial
robot simulator developed by Cyberbotics, often used for research purposes, and it
uses the Open Dynamics Engine (ODE) (ODE Wiki) for 3D rigid body dynamics. It
was available in the other research laboratory this worked was developed in (ASBG),
and includes a model of the DARwIn-OP robot, in addition to ASBG possessing an
implementation of the CPG based locomotion controller that was adapted for our
experiments.

4.3.6 Optimization algorithm

The optimization framework is intended to be as broad as possible, which means the
optimization algorithm should not rely in any analytical support such as derivative
information, since that would be case specific to different controllers and robots. Ad-
ditionally, the algorithm should also support multi-objective optimization. This will
lead to greater flexibility when it comes to users’ requirements towards the locomotion
process, since one would be able to choose between prioritizing different features. A
multi-objective optimization would also result in a repertoire of solutions with greater
potential to perform well in different terrains, and, consequently, to adapt to them.

Evolution strategies and evolutionary algorithms

Some of the most popular derivative-free optimization approaches are evolution strate-
gies (ES), such as the covariance matrix adaptation evolution strategy (CMA-ES), and
evolutionary algorithms (EA), such as genetic algorithms (GAs). Both belong to the
overall field of evolutionary computation, and are based on biological evolution. These
use algorithms that are based in multiple generations of a population of a set of so-
lutions, referred in this context as the parent solutions. These parent solutions are
mutated and combined to create new solutions. Some of the population individuals
are then selected, based on their fitness towards an objective function value, to become
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the parents in the next generation of the population. This ideally leads, over various
generations, to individuals with better and better fitness values. Section 3.2 provides
more details into EAs.

CMA-ES (Hansen, 2006) updates the covariance matrix that represents the depen-
dencies between the variables of the distribution that represents a candidate solution.
Igel, Hansen, and Roth (2007) proposed a multi-objective CMA-ES, highlighting that
it shows invariance properties that imply uniform performance on a class of objective
functions.

Another example of a multi-objective EA (MOEA) is the non-dominated sorting
genetic algorithm II (NSGA-II) (Deb et al., 2002) that improves a population of candi-
date solutions to a Pareto front. It was designed to alleviate the issues of computational
complexity and the lack of elitism that this type of algorithms usually possesses. Elitism
consists in keeping a small group of the fittest candidates unchanged into the next gen-
eration, which can prevent losing good solutions and speed up the optimization process
(Zitzler, Deb, and Thiele, 2000). NSGA-II also does not require the need to specify a
sharing parameter, which is used as a way to ensure diversity in a population, provid-
ing an alternative to the problematic. Deb, Mohan, and Mishra (2005) approached the
problem of the trade-off between having a converged and well-distributed Pareto front,
and the computational time of the optimization. They proposed a MOEA intended
to be a compromise between convergence near the Pareto front, diversity of solutions,
and computational time, and named it ✏-MOEA, because of its ✏-dominance concept.
A solution dominating relative to another one has to perform better than it in every
objective, and ✏-dominance (Laumanns et al., 2002) guarantees that the difference be-
tween those solutions is of a factor of at least ✏, thereby promoting diversity in the
population.

Particle Swarm Optimization

Particle swarm optimization (PSO) (Kennedy and Eberhart, 1995), similarly to EAs,
uses a population of candidate solutions (a swarm of particles), which are moved around
a search space towards better solutions according to the particle’s position and velocity.
The particle’s movement is informed by both its local best known position and the
best known position in the whole search-space. Dai, Wang, and Ye (2015) proposed a
multi-objective PSO algorithm with the diversity of solutions in mind. Their approach
decomposes the objective space of the problem in a set of sub-regions, which are then
made to have a solution to maintain diversity. They compared it to, among other
algorithms, NSGA-II, finding it to be better in terms of convergence and diversity.

MAP-Elites

Considering the problematic of balancing reaching optimal solutions with the diversity
observed in the Pareto front, an algorithm can be mostly concerned with the former,
to the point of being considered a search algorithm. Such is the case of the multi-
dimensional archive of phenotypic elites (MAP-Elites) (Mouret and Clune, 2015), that
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produces a repertoire of solutions intended to be diverse in the feature space (e.g.
speed, torque output). The dimensions of variation of the feature space can be defined
by the user, and the algorithm illuminates high performing solutions in that space,
allowing one to better understand the relation between some of those features and
selected performance criteria.

Software implementation: Sferesv2

Also important in the choice of an optimization algorithm is how easy it is to be
implemented, and how easy to use that implementation is. During this work we used
Sferesv2 (Mouret and Doncieux, 2010), a high-performing and lightweight evolutionary
computation framework written in C++. It contains implementations of multiple EAs,
both for single and multi-objective optimization.

4.4 Sensitivity analysis on the environment variable

In the subject of optimizing in a given environment/context, a particular issue is know-
ing if solutions optimal in that context extrapolate well to other terrains. That is, if
those solutions will result in good performances in contexts different from the ones they
were optimized for. To gather insight regarding this hypothesis, a sensitivity analysis
can be conducted. It has the purpose of analyzing how the uncertainty caused by vary-
ing the environment variables affects the behavior of solutions that were found optimal,
or near-optimal, in a specific environment.

A schematic of the sensitivity analysis process can be seen in Figure 4.2. From the
exploration phase, various datasets are obtained Dt1 ,Dt2 ...Dtn , one for each n values
of terrain parameters tested (Θt = {✓1,✓2...✓n}). From each dataset, the Pareto front
is extracted (DPf1 ,DPf2 ...DPfn), and the solutions from these are then combined into
one single list XPfall . The next step is to test all the solutions from XPfall in different
terrain parameters Θs (which could simply be equal to Θt, or extend this set) in order
to obtain a dataset that can be used for the sensitivity analysis. This is defined as
Ds = {XPfall ,Θt,Bs}, with Bs = {f(x,✓) | x 2 XPfall ,✓ 2 Θs}.

Each Pareto front of solutions contained in the dataset Ds can then be analyzed in
relation to indicators such as their average success rate across all environments tested,
or the overall averages of each performance indicator. These indicators are useful in
understanding how much the change in environment changes the performance of the
sets of solutions.

4.5 Correlation analysis

Information about the effect the tuned parameters have in the outcome of the selected
locomotion features, and the correlation they have between themselves, can give the
user important insight when it comes to select the controller parameters (used as opti-
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Selection of solutionsLocomotion control virtual simulation Locomotion controllerRobot modelDs(output)Θs

Figure 4.2: Schematic of the process of sensitivity analysis towards the terrain vari-
able. The exploration framework is shown in Figure 4.1. The robot model, locomotion
controller, and the locomotion control virtual simulation are the same used in the ex-
ploration process. From the Pareto fronts datasets (DPf), all the solutions optimal in
the previous optimizations are extracted (XPfall). These solutions are then used to con-
figure the locomotion controllers tested for all the context values in Θs. The behaviors
observed in these trials are collected together with these last tests in the sensitivity
dataset, Ds.
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mization inputs) that should be used in later optimizations. Parameters that result in
controller with very low impact in the speed of the robot, for example, can be discarded.

This correlation analysis consists in calculating, for each parameter, its correlation
with the other parameters and with each locomotion feature (the optimization objec-
tives). On top of this, the coefficient of variation (cv) of each parameter were also
determined. This coefficient is defined as

cv =
�

µ
⇥ 100%, (4.9)

where � is the standard deviation of the given parameter distribution, and µ is its
mean, and is used as a measure of the dispersion of the parameters. Correlations are
calculated with the Pearson product-moment correlation coefficients (Pearson, 1895),
and measure the correlation between two variables. They are defined as

Rij =
Cij

p

Cii ⇥ Cjj

, (4.10)

where C is the covariance matrix, and Cij represents the covariance between the vari-
ables with indexes i and j, which measures how much these variables change together.
Cij represents the variance of the variable when i = j. A value of 1 or -1 for this co-
efficient means there is a linear correlation between the variables, positive or negative.
A value of 0 means there is no correlation.

4.5.1 Tuning the optimization setup

The results of this analysis can be used to decide which parameters and features are
used in later optimization processes. The way these are applied depends on a variety of
factors related to the user’s requirements, such as how many parameters one wants to
keep in the optimization process, how valued some of the features are as performance
indicators, and the weight given to the correlation between parameters, objectives, and
between both of these.

The number of parameters may be reduced to a predetermined number, with the
threshold for choosing them being set accordingly, or the threshold can be predeter-
mined, with the number of parameters remaining depending on how many of them
respect it. The features, or optimization objectives, may also be filtered according to
this analysis. Some of these are considered performance indicators, such as the speed of
locomotion, and the correlation of other features with these can indicate their impact
in the optimization process. The performance indicators themselves are desirable to
keep, since they represent the requirements for the task being optimized.

The analysis calculates the correlation between all the parameters and features of
the optimizations, but only a few values are used in the decision stage. The average
between a parameter and the performance indicators, for example, can give insight in
which parameters have a greater effect in the locomotion performance. The average
correlation between a given parameter and the rest of the parameters is also important.
Parameters that show a good correlation between each other may be superfluous to the
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optimization process, since they are changed at similar rates. This can be further
explored by looking at each parameters’ correlation with the performance indicators.
If those values are similar, they may serve a similar role in the locomotion process,
and therefore be redundant in the process. A balance between the weight given to the
parameters effect on the performance indicators and this potential redundancy must
be decided on, in order to make decisions that result in a faster and more efficient
optimization.
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Chapter 5

Optimizing the control of biped

locomotion in different conditions

This chapter details the experiments regarding the optimization of locomotion con-
troller’s in different conditions, applying the framework presented in Section 4.2 and
shown in Figure 4.1.

The experiments conducted are the optimization of the locomotion control of a
model of the iCub robot in floors with different frictions, a virtual manikin humanoid
with different sets of height and mass combinations, and a model of the DARwIn-OP
robot on floors with different slopes.

These experiments have a similar setup. The optimization algorithm NSGA-II is
used to tune the locomotion controllers in different conditions, using different param-
eters as optimization inputs, and different locomotion features as optimization objec-
tives. These are repeated in different contexts, and a sensitivity analysis can be con-
ducted to analyze how different contexts result in different behaviors when using the
same controller solutions. Additionally, a correlation analysis can be used to gather in-
formation about the effect different parameters have in the locomotion features, which
can be used to tune the optimization setup towards more efficiency.

5.1 Locomotion control of the iCub on floors with differ-

ent frictions

The experiments presented in this section are optimizations of a locomotion controller
applied to an iCub model. This controller is based on dynamics modeling, and uses a
hierarchy based task system. At different stages, experiments with different purposes
are conducted in this context. In the first stage, different sets of parameters are tuned
towards different objectives, in order to explore the best setup for optimizing towards
the performance criteria. Afterwards, the optimization process is extended to cover
floors with different values of friction, resulting in multiple optimal sets of solutions,
one toward each terrain optimized for. Finally, a sensitivity analysis is conducted on
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Figure 5.1: Screenshot of the iCub during simulation in the XDE framework.

these last sets of results, in which the performance of solutions optimized for one friction
value is evaluated in other terrains, which these solutions are not optimized for.

5.1.1 Optimization framework setup

The robot model involved in these experiments is the iCub, a humanoid robot with
dimensions similar to those of a 3.5 years old child (Parmiggiani et al., 2012), described
in Appendix A, Section A.1. The controller used is the dynamics based controller from
Salini described in Appendix B, and the trials were simulated in XDE (described in Sec-
tion 4.3.5). Control parameters are tuned towards multiple locomotion features, with
the optimization being conducted by a state of the art EA called NSGA-II, described
in Section 4.3.6, included in the evolutionary computation C++ framework Sferesv2
(Mouret and Doncieux, 2010). Figure 5.1 shows the model of the iCub and the floor
used in the XDE simulations, while Figure 5.2 shows a scheme of the optimization
setup used in the iCub’s trials.

Table 5.1: Values used for the NSGA-II parameters used in the Sferesv2 evolutionary
computation framework.

Parameter Value

Mutation type Polynomial
Crossover type SBX
Mutation rate 0.1
Crossover rate 0.5
⌘m 15.0
⌘c 10.0
Population size 100
Number of generations 100
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θ

Figure 5.2: Architecture of the optimization process for the iCub. x is the vector of values for
the parameters being optimized, b is the vector of locomotion features results from a trial, ✓ is
the context variable, and Dt and Dpf are datasets containing all the data from the optimizations,
and only the data related to the Pareto fronts of the optimizations, respectively. Refer to Figure
4.1 for a description of the framework.

Table 5.1 shows the values used for the NSGA-II related parameters in all of the
experiments with the iCub. The mutations serve to maintain genetic diversity, and, in
this case, a polynomial distribution is used to perturb the solutions from generation
to generation (Deb, 2001). In crossover, multiple parent solutions are used to produce
a child solution for a new generation. SBX, or the simulated binary crossover (Deb,
2001), simulates the exchange between solutions as an exchange of bits between binary
coded floating point numbers, without actually having to use a binary representation.
Having a higher mutation rate usually promotes exploration of new solutions, while a
higher crossover rate tends to have the algorithm converge to specific good solutions,
in what is called exploitation (Črepinšek, Liu, and Mernik, 2013). A trade-off between
these behaviors must be sought, in order to avoid the search to spread too much with
exploration, and not find good solutions, or, on the other side, an early convergence to
local optima with too much exploitation, making it less likely to find global optima.
⌘m is a parameter related to the polynomial mutation, with smaller values resulting in
stronger mutations. Similarly, ⌘c is related to SBX, and a larger value creates solutions
closer to the parents, with smaller values creating more distant solutions.

Experiments that optimize the control both for a single type of terrain and for
terrains with different friction coefficients are described ahead. These are referred to
as the stage 1 and stage 2 experiments. In stage 1, three separate tests are conducted,
which are referred to as 1-A, 1-B, and 1-C.
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5.1.2 Stage 1: Locomotion control optimization

These optimizations were performed in the same terrain, with the iCub being optimized
to walk forward, in a straight line, for 20 s. NSGA-II runs for 100 generations, with
a population size of 100, resulting in 10000 trials. The tests differ on the parameters
tuned and the locomotion features optimized for. Runs which ended with a physics
or/and controller failure, resulting in a robot fall and/or explosion 1 where given fitness
penalties of 0 m/s for the mean speed, and 99999 N2.m2 for the joint torque output
indicator. This last number only needs to be higher than the highest values of torque
output observed, keeping it out of the Pareto front.

Parameters

The parameters involved in the optimization process (see Table 5.2) were the length
of the robot’s steps, their width, their height, their duration, the ratio between the
duration of the single and double support phases, and two ZMP related parameters:
RonQ, and the ZMP horizon. RonQ is a computational related quantity that controls
the ratio between the tracking of the control vector and the tracking of the state vector.
The ZMP horizon is the time horizon of the prediction made by the ZMP dynamics
simplification used to preview the state of the ZMP and the CoM of the system. All
seven of these parameters were tuned in stage 1-A, with RonQ being dropped in the
later stages.

Table 5.2: Range of values used for the parameters involved in each optimization process
of the first stage of the iCub optimization. Empty cells signal that the respective
parameter was not tuned in that experiment.

Parameter’s range

Parameter 1-A 1-B 1-C

Step length (m) 0.07 - 0.15 0.07 - 0.138 0.07 - 0.138
Step width (m) 0.04 - 0.15 0.05 - 0.10 0.05 - 0.10
Step height (m) 0.003 - 0.037 0.005 - 0.0395 0.005 - 0.0395
Step duration (s) 0.5 - 3.5 0.5 - 3.0 0.5 - 3.0
Step phase ratio 0.5 - 0.95 0.525 - 0.94 0.525 - 0.94
ZMP horizon 1.025 - 2.0 1.025 - 2.0 1.025 - 2.0
RonQ 0 - 0.00027 — —

Performance related locomotion features

The locomotion features optimized for in 1-A are the mean speed (vmean, maximized)
of the robot and a torque indicator (minimized) that consists in the sum of all the

1Here explosion refers to a simulator physics’ failure where all the robot’s parts rapidly separate
from each other, projected in different directions.
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squared torque output throughout the locomotion,

τtotal =

tf
Z

0

⌧>

t ⇥ ⌧ t dt, (5.1)

with ⌧ t being the vector of joint torque outputs at time t, and tf the total time of the
experiment (20 s). These two indicators are also the performance indicators for all the
experiments of the first stage.

Experiment 1-B stability related locomotion features

In experiment 1-B two locomotion features are added: the maximum observed ratio
between the tangential forces and normal forces acting in each of the four contact
points for each foot. These are referred to as the left and right friction ratio (frl, frr)
indicators (both minimized),

fr = max
⇣ ftci
fnci

, 8i 2 1, 2, 3, 4
⌘

. (5.2)

The function max() returns the maximum value of its inputs, ftci is the tangential
component of the contact force at contact point i, and fnci its normal component.
These measurements refer to the maximums of the entire locomotion trial.

Experiment 1-C stability related locomotion features

For experiment 1-C, these two last features are removed, with two new being added:
another indicator related to the friction ratio (global mean f.r. indicator), and the
mean trajectory error of the ZMP reference of the controller.

The global f.r. indicator consists on the average observed ratio between the tan-
gential forces and normal forces acting in each of the four contact points of both feet
(as opposed to only one of them),

frglobal =
1

8
⇥
⇣ ftci
fnci

, 8i 2 1, 2, ...8
⌘

. (5.3)

This average is applied to every feet sensors’ measurement in the simulation.
The mean trajectory error is computed as follows,

emean =
h

tf
⇥

tf
X

t=0

distance(trajectoryt, robot positiont), (5.4)

where distance(.) is the Euclidean distance between the three-dimensional points
trajectoryt and robot positiont, which are the robot’s pretended location according
to the locomotion trajectory and its actual location, at time t.
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Overall setup

Adding these new features to experiments 1-B was done with the intent of bringing
more stability to the explored behaviors, which in turn could result in more trials that
completed the 20 seconds of simulation and possibly reach higher speeds, while not
being discarded because the robot fell down. Further experimenting with this approach
in 1-C was done by combining the two indicators from 1-B and adding another stability
related measure (the average trajectory error).

Table 5.2 shows the parameters used in each of the experiments, as well as the range
of values used for the NSGA-II optimization. These ranges were selected with, first,
consideration of the physical limits of the robot with variables such as the step length,
and then manual experimentation of multiple values for each parameter to determine at
what point they would cause the locomotion to fail. The ranges were further adjusted
in the 1-B and 1-C experiments with the data gathered from the previous ones, by
eliminating the values that resulted in failures in every trial. Table 5.3 shows the
features optimized for in the optimization in each experiment.

Table 5.3: Locomotion features involved in each optimization process of the first stage
of the iCub experiments, along with the best value reached for them. This translates in
the maximum value for the mean speed, and the minimum for the rest of the features.
Empty cells signal that the respective feature was not an objective of optimization in
that experiment.

Best value

Feature 1-A 1-B 1-C

vmean (m/s) 0.2129 0.2997 0.2741
τtotal (N

2.m2.s) 5800 7440 6748
frl — 0.2554 —
frr — 0.2461 —
frglobal — — 0.0048
trajectory emean — — 0.002854

5.1.3 Stage 1 results

Figures 5.3, and 5.4 show the average, maximum, and minimum values of the per-
formance indicators reached in each generation of the optimizations of the first stage,
for the cases where the robot did not fall. Table 5.3 shows the best values for each
indicator for all experiments.

Comparing results from the three different setups

Overall, the best values for the speed and torque indicators are reached around the 20
and 30 generations into the NSGA-II optimization. Each experiment shows a trade-off
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in achieving the highest speed and the lowest torque output, with 1-B reaching the
highest speed overall and the highest torque output, 1-C showing intermediate results,
and 1-A the lowest speed and torque output.

Comparing the obtained speeds with literature

The only reference we found to a speed value reached in an iCub experiment in a com-
parable context was in Ibanez, Bidaud, and Padois (2014), where they use a reference
speed of 0.20 m/s, while using the same LQP controller from Salini, Padois, and Bidaud
(2011) used in this work, with the simulation running in the Arboris-python simulator
(Arboris-python). Another, more recent, work (Hu et al., 2016) performed experiments
using different classic control techniques (e.g. ZMP, position control) in a version of
the iCub without arms and head. These reached a speed of 0.037 m/s in level ground.

Effects of adding stability measures as optimization objectives

Adding the stability measures in 1-B and 1-C seems to have lead to more cases where
the robot completed the trial without falling, allowing for behaviors that reach the full
20 seconds of the trials while still maintaining speeds that would cause it to fall in 1-A.
This is supported by the higher number of failures registered in 1-A comparatively to
1-B and 1-C, as one can observe in Figure 5.5. A higher number of failures in a given
generation is not necessarily unwanted, since exploring riskier behavior can lead to ones
with higher speeds, while still being stable, but, taking into account the failure of the
optimization of 1-A to obtain these behaviors, one can infer that this was not the case
in that particular situation.

Regarding the fact that adding the stability measures in 1-B and 1-C resulted in
worse results for the optimal values of the torque output indicator, one possibility is
that this is caused by the focus on the stability measures, on top of the speed indicator.
This can lead to more stable and/or fast behaviors that are not ideal to produce low
torque outputs, which are instead traded-off for the other features.

Comparing the Pareto fronts of the three different setups

Figure 5.6 shows the Pareto fronts of the stage 1 optimizations, when only considering
the mean speed and torque related indicators. These reinforce the notion that the
three optimizations resulted in sets that show a trade-off between speed an torque
output. 1-A shows low values of torque output not reached by the other sets, and
1-C shows high values of speed that 1-B does not reach, while also showing a higher
concentration of solutions around the top side of the plot that is not present in either
of the other sets. Although not optimal in either of the extremes, 1-B still shows a
stretch of solutions that are optimal around the middle section of the conjunction of
the Pareto fronts (highlighted in the figure). This set of solutions could still be useful
if one was looking for the balance of mean speed and torque output that they provide,
as oppose to focusing exclusively in one of the indicators.
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(a)

(b)

(c)

Figure 5.3: Maximum, average, and minimum speed for the simulations performed
in each generation of the iCub optimization for stages 1-A (a), 1-B (b), and 1-C (c).
Failed trials, where the robot fell, are not considered here.
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(a)

(b)

(c)

Figure 5.4: Maximum, average, and minimum values for the torque indicator for the
simulations performed in each generation of the iCub optimization for stages 1-A (a),
1-B (b), and 1-C (c). Failed trials, where the robot fell, are not considered here.
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(a)

(b)

(c)

Figure 5.5: Number of failed simulations in each generation of the iCub optimization
for stages 1-A (a), 1-B (b), and 1-C (c). A trial is considered a failures if the robot fell
before completing the 20 seconds of the simulation, at which point it was stopped.

63



6000 8000 10000 12000 14000joint torque indicator (N^2.m^2.s)0.050.100.150.200.250.30mean speed (m/s) 1-A1-B1-C
Figure 5.6: Pareto fronts of the stage 1 optimizations, relative to the mean speed and
torque indicator objectives. These only consider successful trials, where the robot did
not fall. A rectangle highlights an area where the Pareto front from 1-C has the optimal
set of solutions.

5.1.4 Stage 2: Optimization on floors with different frictions

The setup for this optimization is very similar to the first one, with NSGA-II running
a population of 100 individuals for 100 generations, and a forward walk for 20 s being
the behavior optimized for. The penalties for the performance indicators in the case of
the robot falling were maintained at 0 m/s for the mean speed and 99999 (N2.m2) for
the torque output indicator. This setup was repeated for floors with different values
of coefficient of friction (CoF), which is the value the physics simulation uses as the
maximum value the ratio between the horizontal (tangential) and vertical (normal)
forces acting on each of the feet’s contact points can reach before the robot starts to
fall,

ftc  fnc ⇥ CoF. (5.5)

This coefficient of friction is simulated with the Coulomb model of friction (see
Appendix B) (Beer, Johnston, and Mazurek, 2013). The 10000 trials were repeated for
different values of the floor’s CoF: 0.05, 0.10, 0.25, 0.50, 0.75, 1.00, 1.25, and 1.50.

The parameters utilized were the same as described in Section 5.1.2, with the ex-
ception of the addition of the controller’s restriction on the ratio between the normal
and tangential components on the forces acting on the contact points between the feet
and the ground, described in Appendix B. Higher values of this parameter result in an
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Table 5.4: Range of values used for the parameters involved in the optimization process
of the second stage of the iCub optimization.

Parameter Parameter’s range

Step length (m) 0.07 - 0.138
Step width (m) 0.05 - 0.10
Step height (m) 0.05 - 0.0395
Step duration (s) 0.5 - 3.0
Step phase ratio 0.525 - 0.94
ZMP horizon 1.025 - 2.0
Controller’s CoF 0.05 - 2.0

Table 5.5: Locomotion features involved in the optimization process of the second stage
of the iCub optimization.

Feature

vmean (m/s)
τtotal (N

2.m2.s)
frglobal
trajectory emean

increased risk of the robot slipping and falling. This parameter will be referred to as
the controller’s coefficient of friction. The features optimized for were the same as in
stage 1-C.

Table 5.4 shows the parameters used in the optimizations, as well as the range of
values given to NSGA-II. The ranges used were those of past experiments from stage 1
(see Table 5.2), with the exception of the new parameter, the controller’s CoF, whose
range was selected in order to encompass the range of the floor’s CoF the optimization
were done in, with some margin given for the maximum value. Table 5.5 shows the
features optimized for in the optimizations.

Sensitivity analysis setup

A sensitivity analysis was conducted with the results from the optimizations. The
process is the one described in Section 4.4, with the solutions from the various Pareto
fronts being tested for a set of different CoF values. The values tested were: 0.05, 0.1,
0.25, 0.5, 0.75, 1.0, 1.25, and 1.5 (the same used in the previous optimizations).

5.1.5 Stage 2 results

Table 5.6 shows the best values included in the Pareto front of each of the optimizations
from stage 2, as well as their size.
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Impact of low values of CoF

Lower values of the CoF allow for smaller tangential forces on the contact points before
the robot starts to slip, which translates in restricting the robot to safer behavior,
otherwise it would fall and its fitness would be penalized. The only clear situation
where this affected the best vmean obtained was for a CoF of 0.05, where the best value
is clearly lower than the rest.

Comparing optimal performances for different CoFs

Other than the 0.05 CoF case, every optimization seems to have reached comparable
values, with the exceptions of 0.25 and 1.25 CoF, who had lower, and very close, optimal
speeds. The most simple explanation for this occurrence is that these optimizations
never had the mutations that allowed to reach these types of solutions. Both these
optimizations may have been stuck in similar behaviors, seeing as their performance
values are very close, although they belong to trials in different terrains. Tuning the
exploration vs exploitation trade-off could help these situations, or it may be the case
that this setup is the best overall, but these just occur as a consequence of NSGA-II’s
stochastic nature.

Effects of the CoF in the size of the Pareto fronts

The size of the Pareto fronts when filtered down for speeds above 0.23 m/s expectedly
increases with higher values of CoF, with exceptions of 0.25, and 1.25, matching the
lower maximum values of speed, and the proposed explanation. Interestingly, the
values for the minimum ZMP trajectory error seem to generally increase with the
CoF. This could be attributed either to these higher friction surfaces restraining the
movement in a way that can prevent the robot from getting its center of pressure to
the intended location in time, or it could simply be that the differences in these values
is not significant enough to necessarily have a cause that greatly affects the behavior
of the locomotion towards speed or stability. A similar case can be made for the values
of minimum torque output, which do not seem to be affected by the CoF changes, and
do not show a trend that matches with the outliers of 0.25 and 1.25.

As reference, 0.25 is a very low value of CoF, 0.47 is the CoF for aluminum and
steel surfaces moving relative to each other, 0.42 to 0.62 for two steel surfaces, and 1.4
(a high, unlikely, value) for two aluminum surfaces (Coefficients Of Friction).

Overall, these optimizations seem to reach values similar to those of stage 1-C,
which had a very similar setup, for a CoF of 1.5. The question that should now be
posed is if these optimal behaviors for different CoF are reached with different solutions,
or if there are solutions that result in optimal behaviors for every situation.

Sensitivity analysis

The success rates of each Pareto front of solutions in different terrains, differentiated
by their value of floor CoF, can be seen in Table 5.7.
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Table 5.6: Results for the optimizations of the iCubs locomotion control on floors with
different frictions. The table shows the best values for the vmean, torque output, average
f.r., and average trajectory error indicators for the Pareto front of solutions of those
experiments, which are, for the vmean, the maximum values, and the minimum values
for the other indicators. The table also shows the size of those Pareto fronts, and their
size when the solution with vmean under 0.23 m/s are removed.

Best values P.f. size
(speed >
0.23 m/s)

Floor’s vmean τtotal Mean Trajectory P.f.
CoF (m/s) (N2.m2) frglobal emean (m) size

0.05 0.2384 6429 0.0075 0.0016 123 4
0.10 0.2732 7008 0.0047 0.0019 116 21
0.25 0.2543 6722 0.0048 0.0019 126 6
0.50 0.2735 6673 0.0049 0.0024 123 14
0.75 0.2736 6693 0.0052 0.0021 128 18
1.00 0.2732 6986 0.0050 0.0026 120 23
1.25 0.2541 6617 0.0049 0.0025 124 8
1.50 0.2735 6774 0.0049 0.0032 122 31

Trials in lower values CoFs as the cause for lower success rates

As expected, the Pareto fronts relative to a particular CoF showed no failed simulations
when tested on terrains with that particular friction. Pareto fronts that resulted from
optimizations in lower values of CoF show a higher average success rate across all floors.
This is due to lower success rates for trials on floors with lower CoF than those they
were optimized for, with most fronts having very low percentage of success for 0.05.
These results are expected, since lower values of CoF lead to a constrain in the normal
forces the robot can sustain in its contact points with the ground without falling.

Trials in higher values of CoFs tend to perform better

Pareto fronts optimized tend to perform better in floors with higher values of CoF
than those they were optimized for, opposed to the ones with lower values of CoF. This
trend is not universal and the differences in success rate are not very high.

Is there a solution capable of performing well in all cases?

One of the questions this analysis was meant to answer, is if there are sets of solutions
that can perform ideally for every value of CoF tested, and therefore make the other
sets useless. The front for 0.05 shows a success rate higher than 90 % for almost all of
the CoF values, but this is still not ideal, and this question must be pursued further
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Table 5.7: Success rates of the sensitivity analysis of the Pareto fronts of solutions
for stage 2 of the iCub experiments. These are the ratios between the number of
simulations where the robot did not fall, and the total number of simulations for that
category. The last column shows the average of each row. The best success rate for
each CoF tested, and the best average, are bolded.

Pareto CoF the Pareto front solutions were tested on, Average
front and respective success rates (%) (%)

0.05 0.1 0.25 0.5 0.75 1.0 1.25 1.5

0.05 100.00 93.50 93.50 94.31 89.43 92.68 93.50 92.68 93.70
0.1 17.24 100.00 96.55 96.55 96.55 96.55 94.83 95.69 86.75
0.25 3.97 54.76 100.00 95.24 93.65 94.44 96.83 94.44 79.17
0.5 2.44 46.34 78.05 100.00 94.31 94.31 94.31 93.50 75.41
0.75 1.56 27.34 67.97 89.06 100.00 98.44 99.22 97.66 72.66
1.0 1.67 47.50 72.50 91.67 92.50 100.00 93.33 93.33 74.06
1.25 5.65 44.35 80.65 88.71 95.16 97.58 100.00 94.35 75.81
1.5 0.0 14.75 64.75 88.52 90.98 93.44 97.54 100.00 68.75

by inspecting whether these solutions also reach optimal values for the performance
indicators.

Table 5.8 shows the number of successful solutions from each front in the different
terrains. Given that the size of the fronts are similar, and the trend these results show
is very similar to the previous table, it serves as an indication that the analysis of the
success rates is not affected by certain Pareto fronts having a small number of solutions.

Comparison of the speed performances of the different fronts

Table 5.9 shows the best speed values each Pareto front achieved in the sensitivity
analysis. Five out of the eight fronts show the best speed for the CoF they were
optimized for, although in two of these cases they are not the only set with the best
value. In general, the sets corresponding to higher CoF are better performing, achieving
high mean speeds across the CoF values above the ones they were optimized for, with
a threshold of about 0.2735 m/s above a CoF of 0.25.

Solutions achieve higher speeds in the floors they were optimized for

Similarly to the case of the success rates, the solutions for each set did not perform well
when it came to values of CoF they were not optimized for. This is especially true in
regard to the floor with 0.05 CoF, where other Pareto fronts have clearly worse results.
There are two outliers to these trends, the fronts for CoF of 0.25 and 1.25, which were
discussed in the previous section. These results bring the insight that the solutions of
these two sets, not being optimal for their respective CoFs, also do not perform above
that value in other floors. Conversely, other sets of solutions perform better than those
for a CoF of 0.25 and 1.25, with mean speeds very close to the maximum observed.
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Table 5.8: Number of successful solutions from each Pareto front for stage 2 of the iCub
experiments. The last column shows the average of each row. The highest number of
solutions for each CoF tested, and the best average, are bolded.

Pareto CoF the Pareto front solutions were tested on, Average
front and respective number of successful solutions

0.05 0.1 0.25 0.5 0.75 1.0 1.25 1.5

0.05 123 115 115 116 110 114 115 114 115.25
0.1 20 116 112 112 112 112 110 111 100.625
0.25 5 69 126 120 118 119 122 119 99.75
0.5 3 57 96 123 116 116 116 115 92.75
0.75 2 35 87 114 128 126 127 125 93
1.0 2 57 87 110 111 120 112 112 88.875
1.25 7 55 100 110 118 121 124 117 94
1.5 0 18 79 108 111 114 119 122 83.875

This means that some of these behaviors can perform well in multiple floors, which is
an interesting result for the adaptation phase of the framework.

Comparison of the torque performances of the different fronts

Table 5.10 shows the lowest values of total torque output each Pareto front achieved in
the sensitivity analysis. Similarly to the mean speed results, five out of the eight pareto
fronts have the best performance for the CoF they were optimized for. Unlike those
results, there are not tied best values for a specific floor, and it also does not exist a clear
bottleneck for performance, like the value 0.2735 m/s. The trend of solutions optimized
for higher CoFs performing better than the rest for relatively high values remains
here, as well as the relative poor performances for lower CoFs, especially for 0.05.
Interestingly, the Pareto front for 1.25 has the best value in four cases. This matches
the fact that it got the lowest total torque output result of all the optimizations (see
Table 5.6), and is in juxtaposition with the fact it did not find at least one locomotion
behavior that reached the high values of vmean observed in other fronts.

5.1.6 Conclusions

These are the main conclusions taken from the experiments related to the iCub, that
were drawn from the results discussed in sections 5.1.3 and 5.1.5.

• The optimization process was successful in improving, at least in part, the per-
formance indicators of the locomotion.

– The best speed values for this combination of robot and controller (around
0.2997 m/s) were higher than those found in literature (around 0.20 m/s).
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Table 5.9: Highest speeds obtained in the sensitivity analysis of the Pareto fronts of
solutions for stage 2 of the iCub experiments. The last column shows the average of
each row. The best speed value for each CoF tested, and the best average, are bolded.

Pareto CoF the Pareto front solutions were tested on, Average
front and respective maximum speed obtained (m/s) (m/s)

0.05 0.1 0.25 0.5 0.75 1.0 1.25 1.5

0.05 0.2384 0.2383 0.2382 0.2381 0.2383 0.2382 0.2381 0.2382 0.2382
0.1 0.1643 0.2731 0.2729 0.2729 0.2729 0.2729 0.2730 0.2729 0.2593
0.25 0.2011 0.2383 0.2543 0.2540 0.2541 0.2540 0.2541 0.2540 0.2455
0.5 0.1872 0.2674 0.2673 0.2735 0.2734 0.2735 0.2735 0.2735 0.2612
0.75 0.1272 0.2259 0.2619 0.2735 0.2735 0.2735 0.2736 0.2735 0.2478
1.0 0.1542 0.2575 0.2573 0.2731 0.2731 0.2731 0.2731 0.2731 0.2543
1.25 0.1746 0.2428 0.2542 0.2540 0.2541 0.2540 0.2542 0.2540 0.2427
1.5 — 0.1477 0.2577 0.2735 0.2734 0.2735 0.2734 0.2735 0.2216

Table 5.10: Lowest total torque output values obtained in the sensitivity analysis of the
Pareto fronts of solutions for stage 2 of the iCub experiments. The last column shows
the average of each row. The best value for each CoF tested, and the best average, are
bolded.

Pareto CoF the Pareto front solutions were tested on, Average
front and respective minimum τtotal obtained (N2.m2) (N2.m2)

0.05 0.1 0.25 0.5 0.75 1.0 1.25 1.5

0.05 6444 7221 7476 7428 7388 7452 7452 7480 7293
0.1 7057 7036 7096 7141 7127 7122 7131 7149 7107
0.25 9207 7385 6727 6716 6897 6914 6667 6681 7149
0.5 9393 7639 7230 6663 6756 6870 6721 6724 7250
0.75 8689 7475 6786 6740 6699 6691 6701 6703 7060
1.0 9274 7178 7172 6962 7027 6994 6997 7024 7329
1.25 8218 7265 7123 6920 6604 6623 6653 6629 7004
1.5 — 7476 6835 6742 6662 6754 6789 6774 7178
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• Changing the parameters optimized, and the optimization objectives, lead to
trade-offs for the best values of the performance indicators.

• Using stability measures as optimization objectives can lead to a reduction in the
number of failures, and an increase of the maximum speeds achieved, but also an
increase in the minimum torque outputs.

• The number of generations chosen for the optimizations seems to be enough for
the process to develop properly, and it could be reduced in order to save time.

• Changes in the floor friction can limit the performance values that can be achieved.

• The data supports that optimizations from stage 2 that did not reach expected
performance values were affected by the stochastic nature of NSGA-II, rather
than being limited by the floor’s CoF.

• There is a need to optimize the locomotion control towards different environ-
ments/terrains.

5.2 Controller optimization of the DARwIn-OP on floors

with different slopes

This section describes the experiments conducted with the DARwIn-OP model when
controlled by a CPG system, for the exploration/training phase of the framework.
These were optimizations of the locomotion control of the robot, achieved by tuning
the parameters of the controller. These experiments were conducted in two stages. In
the first stage a preliminary experiment was done in order to choose the parameters and
features of the optimization out of a larger initial list. This allows to shorten the time
spent on later optimizations, without negative impact in the resulting performance,
making them more efficient. In the second stage, the optimization setup decided on
which information gathered from the first stage was used to tune the locomotion be-
havior in floors with ramps with different slopes. A sensitivity analysis was conducted
on the results of this last trials, in which the performance of solutions optimized for
one slope was evaluated in other terrains, for which the solutions were not tuned.

5.2.1 Optimization framework setup

The experiments were conducted in a model of the DARwIn-OP robot, described in
Appendix A, Section A.3. The controller used for the robot’s description was a CPG
based controller, described in Appendix C, with the simulations being ran in the Webots
simulator, briefly described in Section 4.3.5, and in a context relative to the DARwIn-
OP in Section A.3. The control parameters, that change the characteristics of motion
primitives to affect the overall locomotion behaviors, were tuned towards multiple ob-
jectives by using the evolutionary computation C++ framework Sferesv2 (Mouret and
Doncieux, 2010). Figure 5.7 shows the model of DARwIn-OP while walking up one
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Figure 5.7: Screenshot of the DARwIn-OP walking up a ramp in a Webots simulation.

of the ramps tested for in the Webots simulations. Figure 5.8 shows a scheme of the
optimization setup used in these experiments.

The NSGA-II parameters were the same ones used in the iCub experiments, shown
in Table 5.1. Section 5.1.1 includes a brief discussion about how these variables affect
the optimization process. The number of solutions in the population and the number
of generations of the EA were the only values altered, and only in the first stage of the
experiments.

A preliminary experiment was conducted, with the intent of analyzing the effect of
the parameters and the locomotion features in the final performance indicators, and
with that choose a setup for later optimizations based on fewer variables. This is what
is referred to as stage 1 for these group of trials. In stage 2, the locomotion control was
optimized for ramps with different slopes.

5.2.2 Stage 1: Preliminary optimization

The first optimization of the behavior provided by the CPG controller on the locomotion
of the DARwIn-OP was done with the objective of tuning the parameters optimized
and the objectives optimized for in such a way that the overall goals would be achieved.

The general goal of the whole optimization process is to obtain a repertoire of differ-
ent behaviors, that will then be used to enable adaptation to different floor conditions.
Since this adaptation is for a straight, forward walk, that is the motion that will be op-
timized for here. The duration of each trial is 20 seconds. The optimization is done by
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CPG controller with motion primitives DARwIn-OP modelNSGA-IIWebots simulator
x

b (outputs)Dt Pareto frontselection
DPf

Optimization cycle Data aggregator Ramp slope
θ

Figure 5.8: Architecture of the optimization process for the DARwIn-OP. x is the vector of
values for the parameters being optimized, b is the vector of locomotion features results from
a trial, ✓ is the context variable, and Dt and Dpf are datasets containing all the data from the
optimizations, and only the data related to the Pareto fronts of the optimizations, respectively.
Refer to Figure 4.1 for a description of the framework.

NSGA-II (Deb et al., 2002), using its implementation in the evolutionary computation
framework Sferesv2 (Mouret and Doncieux, 2010).

Parameters

The parameters used in this first optimization where the ones described in Section
C.3.2 of Appendix C, and listed in Table 5.11. This leads to an optimization with
twenty parameters, which would be too many, considering the time already spent in
thousands of simulations in the iCub section for only six or seven parameters. For this
reason, an optimization with a larger population and number of generations than the
previous work was conducted, with a population of 200 solutions and 200 generations
of evolution.

Locomotion features

Four optimization objectives were used: two performance related objectives, and two
stability related ones, listed in Table 5.12. These are not the same ones used in the
iCub experiments, for two reasons: 1) experimenting with different features can provide
more information about which ones are more appropriate in different situations; 2) the
stability measures were specific targeted at compensating for problems with the CPG
controller.
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Table 5.11: Reference indexes and minimum and maximum values for the parameters
used in the preliminary optimization of the DARwIn-OP.

Parameter Index Minimum Maximum

↵ 1 0.01 10
T (s) 2 0.1 1.5
Abalancing,hip 3 0 25
Abalancing,ankle 4 0 22
Aflexion,hip 5 0 80
Aflexion,knee 6 0 44
Aflexion,ankle,h 7 0 44
Aflexion,ankle,k 8 0 44
Acompass,hip 9 0 15
Acompass,ankle 10 0 12
Ayield,knee 11 0 17
Ayield,ankle 12 0 5
Ohip,yaw 13 -180 180
Ohip,pitch 14 -40 5
Oknee,pitch 15 30 55
Oankle,pich 16 13 27
Ohip,roll 17 -67 10
Oankle,roll 18 -38 9
�flexion,hip 19 0.01 1.0
�flexion,knee 20 0.01 1.0

Table 5.12: Locomotion features involved in the preliminary optimization of the
DARwIn-OP locomotion control.

Feature

vmean (m/s)
τmean (N2.m2.s)
∆df

CoP to support polygon distance (m)
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Performance related features

The performance objectives used were the mean speed of the robot on the sagittal
plane, vmean, and the mean sum of the squares of the torque values of all of the robot’s
joints, given by

τmean =
h

tf
⇥

tf
X

t=0

⌧ t ⇥ ⌧ t. (5.6)

where h is the duration of a time step in the simulation, tf is the total duration of the
simulation, and ⌧ t is a vector containing the torque of every joint at simulation time t.

Stability related features

The stability objectives used were the difference between the duty factors of each foot,
∆df, and the mean distance from the center of pressure (CoP) of the feet to the center
of the support polygon of the robot.

The duty factor is defined as the ratio between the time the foot spends in contact
with the floor and the total time of the locomotion task. The difference is then

∆df = abs(dfl � dfr), (5.7)

where abs() is a function returning the absolute value of the input, and dfl and dfr are
the duty factors of each foot.

The CoP was calculated using the feedback from the four force sensors in each of
the robot’s feet. The support polygon is determined by in which of the three situations
the robot is in: 1) the left foot is supporting the robot (the support polygon is the
surface of the foot contacting the ground); 2) the right foot is supporting the robot; 3)
both feet are supporting the robot (the support polygon is similar to the one observed
in Figure 2.4 b)).

Overall setup

The speed related objective was maximized, while the other three were minimized.
Simulations in which the robot fell, detected as the biped’s waist going below a certain
height, were stopped before the 20 s were over, and the mean speed vmean was given a
fitness penalty that scales with time,

penalty = 1� t

tf
, (5.8)

vmean = �1⇥ penalty⇥ vpenalty. (5.9)

The penalty is the factor weighting how much of the vpenalty value will be used as
fitness, going from 0 when the robot completes the 20 s of simulation, to 1 if the robot
could fall immediately. The value of vpenalty used was 1.0 m/s.

Table 5.11 also shows the minimum and maximum values used in the optimization
for each parameter. These values were determined by running simulations with default
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parameter values taken from the work where the controller is described in Matos (2013);
Matos and Santos (2014), and changing the value of a single parameter multiple times.
The range of values of each parameter that did not cause the locomotion to fail (i.e.
making the robot fall) were used in the EA optimization.

Correlation analysis

Using twenty parameters in the EA optimization requires a high number of generations
with a large population. A smaller number of tuned parameters can lead to a more
focused optimization, that results in better results in less time (Davidor, 1991).

In order to choose which parameters will be kept for the next optimization, a corre-
lation analysis was conducted on the preliminary results. This procedure is described
in Section 4.5.

5.2.3 Stage 1 results

The evolution of the performance related objectives results, for the simulations where
the robot did not fall, throughout the 200 generations of the EA optimization, is shown
on Figures 5.9 and 5.10.

Figure 5.9: Maximum, average, and minimum values for the mean speed of the suc-
cessful simulations throughout the 200 generations of the preliminary DARwIn-OP
optimization.
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Figure 5.10: Maximum, average, and minimum values for the mean of the total torque
output of the successful simulations throughout the 200 generations of the preliminary
DARwIn-OP optimization.

Performance values achieved in the preliminary optimization

The optimization aimed at maximizing speed, and minimizing torque. Given this, a
strictly increasing maximum speed can be observed, as well as a generally decreasing
τmean minimum. The biggest increases in performance occurred in the first 30 or so
generations of the optimization, although smaller improvements can be seen in later
generations.

How the way the CPG controller works can result in very low speeds

Negative values of mean speed are observed due to the fact that some solutions cause
the robot to move backwards slightly. This happens with this controller, and not with
the one used in the iCub optimizations, because it is based on motion primitives fed to
each joint that can be modulated to produce such an effect. The combination of all the
joint trajectories can lead to different types of robot orientation and general walking
direction, and that is defined by the parameters of the controller. The dynamics based
controller works in such a way that the trajectory set for each foot will be followed to
at least a certain extent. This trajectory is defined at the beginning of the simulation,
and is not affected by the parameters tuned.
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Figure 5.11: Number of failed locomotion attempts throughout the 200 generations of
the preliminary DARwIn-OP optimization.

Comparing the obtained speeds with literature

To give context to the values of speed achieved, we have as comparison a couple of
similar works achieving a speed of 0.10 m/s. Ha, Tamura, and Asama (2011) reached
this number with a CPG based control of a DARwIn-OP model in simulation. Later,
Oliveira et al. (2013) applied a multi-objective optimization with NSGA-II to the same
CPG based controller used in the experiments with the DARwIn-OP (Matos and San-
tos, 2012), also in simulation, resulting in the same performance.

Discussing the number of failed simulations observed

Figure 5.11 shows the number of simulations where the locomotion failed in each gen-
eration. The number of failed simulations increasing does not necessarily mean the
optimization is ineffective, since riskier behavior that can lead to higher performances
can also lead to more failed attempts. As long as the number of failures is not exces-
sively high, with around 130 out of the 200 being acceptable, that should not pose a
problem.

Correlation analysis

Table 5.13 contains the results of the correlation analysis conducted by determining
the measures detailed above. These results can be used to decide on which parameters
(optimization inputs) and locomotion features (optimization objectives) to remove from
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further stages, making the optimizations faster and more efficient. To this end, a direct
comparison of each parameter’s variation and correlation with each other is helpful.
Table 5.14 shows a comparison of each value from Table 5.13 to its mean in the entire
parameter population (the mean of each column).

Clarifying the importance of negative correlation values

Negative correlations are also desirable, since they only mean that the parameter should
be decreased, and not increased, in order to obtain a better result. Because of this, only
the absolute values were considered when calculating the mean and subtracting it to
each cell. Positive values indicate higher variations or correlation than the population
mean, with lower having the opposite indication. In this instance, negative values are
undesirable, since they indicate the correlation is worse than the mean.

The correlation between parameters

Having a higher coefficient of variation means the optimization algorithm varied its
value more frequently, indicating that it had incentive to do so, and is therefore de-
sirable. The Pearson correlation coefficient in relation to other parameters should be
as low as possible, since if two parameters have a very high correlation there is not
much point to keep both of them in the optimization. On the other hand, having high
correlation with the optimization objectives is important, particularly with the perfor-
mance indicators (vmean and τmean). A high correlation with the success measure is
also desirable.

The choice of parameters for the next optimizations

Seven parameters were selected, shown in Table 5.15, from the initial twenty that
showed the overall best results according to the guidelines set above. The choice is very
clear in this situation, at least for six of those, since Ayield,knee shows only slightly
above average correlation with the objectives and the success indicator, although the
objectives where it performs best are the performance indicators. The process of deci-
sion can be automatized by assigning a weight for each of the columns of Table 5.14,
and adding them into a single value.

5.2.4 Stage 2: Optimization on floors with different slopes

The CPG controller was optimized for floors that presented different slopes, via the
addition of ramps. The setup for these optimizations is similar to the one for the
preliminary optimization in Section 5.2.2. The differences are exposed ahead.

Parameters

The parameters tuned in these optimizations were the ones highlighted in the discussion
of the correlation analysis from Section 5.2.2, and listed in Table 5.15. Similarly to what
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Table 5.13: Results of the correlation analysis conducted on the data from the pre-
liminary optimization of the DARwIn-OP. The indexes are the ones listed in Table
5.11. The table includes the coefficient of variation for each parameter, the average of
the Pearson correlation coefficients between each parameter and the rest of them, the
mean of the Pearson correlation coefficients between each parameter and the optimiza-
tion objectives, and the correlation coefficient with the success state of the simulation
(1 if the robot did not fall during the simulation, 0 otherwise). Parameters highlighted
in further analysis are bolded.

Pearson correlation coefficients

Index cv Parameters Objectives vmean τmean ∆df CoP Success
average average

1 43.35% 0.2386 0.1443 0.2553 -0.0149 0.0922 -0.0936 0.2652
2 42.70% 0.1211 0.3661 0.3757 -0.3661 0.2544 0.4520 0.3823
3 55.38% 0.1853 0.0887 -0.1209 0.0774 -0.0941 -0.0271 -0.1242
4 66.63% 0.1525 0.1606 0.2575 -0.0534 0.1010 0.1379 0.2532
5 61.38% 0.1328 0.1222 0.1103 -0.1604 0.1210 0.1213 0.0979
6 32.95% 0.1569 0.1788 0.2800 -0.0983 0.0733 0.1608 0.2818
7 47.30% 0.1685 0.1212 0.1777 -0.1373 0.0861 0.0243 0.1805
8 67.75% 0.1914 0.4059 0.4952 -0.2499 0.2824 0.5163 0.4856
9 79.29% 0.1492 0.1764 0.2088 -0.1831 0.1399 0.1451 0.2050
10 56.39% 0.1191 0.0832 0.1569 -0.0002 0.0960 0.0162 0.1468
11 55.63% 0.1810 0.2346 -0.3227 0.2321 -0.1841 -0.1060 -0.3283
12 53.74% 0.0755 0.0449 0.0177 0.0909 0.0003 -0.0933 0.0221
13 25.80% 0.1949 0.4815 -0.6519 0.3576 -0.3917 -0.3600 -0.6466
14 60.80% 0.2200 0.4327 -0.4389 0.4169 -0.2715 -0.6089 -0.4275
15 19.58% 0.2169 0.0685 -0.0319 -0.1106 0.1026 0.0584 -0.0390
16 13.38% 0.1854 0.1324 -0.1893 0.0865 -0.0836 -0.1171 -0.1857
17 21.05% 0.1429 0.0704 0.0176 0.0728 -0.1493 -0.0911 0.0211
18 25.98% 0.1390 0.1455 0.1803 0.1990 -0.0972 -0.0702 0.1810
19 38.06% 0.1647 0.3317 0.4013 -0.2421 0.2427 0.3680 0.4043
20 53.84% 0.2291 0.4826 0.5794 -0.4864 0.3306 0.4344 0.5823
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Table 5.14: Results from Table 5.13 with the mean of the respective column subtracted
to each cell value. The mean was calculated with the absolute value of each column cell,
so negative correlations were taken into account correctly. Each cell shows how higher
or lower the value is for the mean of the entire population of parameters. Parameters
selected for later optimizations are in bold.

Pearson correlation coefficients differences

Index cv Param. Obj. vmean τmean ∆df CoP Success
difference average average

1 -7.82% 0.0704 -0.0693 -0.0081 -0.1669 -0.0675 -0.1065 0.0022
2 -8.47% -0.0472 0.1525 0.1122 0.1843 0.0947 0.2519 0.1193
3 4.22% 0.0171 -0.1249 -0.1425 -0.1044 -0.0656 -0.1730 -0.1388
4 15.46% -0.0157 -0.0530 -0.0060 -0.1284 -0.0587 -0.0622 -0.0098
5 10.21% -0.0355 -0.0914 -0.1532 -0.0214 -0.0387 -0.0788 -0.1652
6 -18.22% -0.0113 -0.0348 0.0165 -0.0835 -0.0864 -0.0393 0.0188
7 -3.87% 0.0002 -0.0924 -0.0857 -0.0445 -0.0736 -0.1758 -0.0825
8 16.58% 0.0232 0.1923 0.2318 0.0682 0.1227 0.3162 0.2226
9 28.12% -0.0190 -0.0373 -0.0547 0.0013 -0.0198 -0.0550 -0.0580
10 5.22% -0.0491 -0.1304 -0.1065 -0.1816 -0.0637 -0.1839 -0.1162
11 4.46% 0.0127 0.0210 0.0592 0.0503 0.0244 -0.0941 0.0653
12 2.57% -0.0927 -0.1687 -0.2458 -0.0908 -0.1594 -0.1068 -0.2409
13 -25.37% 0.0266 0.2679 0.3885 0.1758 0.2320 0.1599 0.3835
14 9.63% 0.0517 0.2191 0.1754 0.2351 0.1118 0.4088 0.1645
15 -31.59% 0.0486 -0.1451 -0.2315 -0.0712 -0.0571 -0.1417 -0.2240
16 -37.79% 0.0171 -0.0812 -0.0742 -0.0953 -0.0761 -0.0830 -0.0773
17 -30.12% -0.0254 -0.1432 -0.2459 -0.1090 -0.0104 -0.1090 -0.2420
18 -25.19% -0.0292 -0.0681 -0.0832 0.0172 -0.0625 -0.1299 -0.0821
19 -13.11% -0.0036 0.1181 0.1379 0.0603 0.0830 0.1679 0.1413
20 2.67% 0.0609 0.2690 0.3159 0.3046 0.1709 0.2343 0.3193

Table 5.15: Reference indexes and minimum and maximum values for the parameters
chosen after the correlation analysis of the DARwIn-OP. These were used for the stage
2 optimization.

Parameter Index Minimum Maximum

T 2 0.2 1.5
Aflexion,ankle,k 8 23 44
Ayield,knee 11 0 12
Ohip,yaw 13 -180 0
Ohip,pitch 14 -40 -20
�flexion,hip 19 0.01 1.0
�flexion,knee 20 0.01 1.0
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Table 5.16: Locomotion features involved in the second stage optimizations of the
DARwIn-OP locomotion control.

Feature

vmean (m/s)
τmean (N2.m2.s)
trajectory mse
CoP to support polygon distance (m)

was done in the first stage of the iCub optimizations, the ranges taken into account by
NSGA-II for each parameter were tuned according to the results from the preliminary
experiment, removing values that only resulted in failures.

Locomotion features

The performance related optimization objectives used were the mean speed of the robot
on the sagittal plane 2 vmean (maximized), and the torque indicator τmean, defined in
Equation 5.6 (minimized).

For stability, the measures used as objectives were the mean squared error (MSE)
of the locomotion trajectory (minimized), and the mean distance from the CoP of the
feet to the center of the support polygon of the robot (minimized; see Section 5.2.2 for
more details). The trajectory is defined as a straight line in the sagittal plane. This was
done in order to further ensure the robot walks in the intended direction, since, in the
preliminary optimization, even when considering the distance for the speed objective in
the sagittal plane only, the robot did not walk in that direction for the highest speeds
of the optimization. In relation to the preliminary optimization, the difference between
the duty factor of each foot was removed for the addition of the MSE of the locomotion
trajectory.

These optimization objectives are listed in Table 5.16.

Context variable values

This setup was applied to floors with no slope (no ramp), and for floors with slopes of
ranging from 1 to 12 degrees, with a 1 degree intervals.

Sensitivity analysis setup

The solutions of the Pareto fronts of the optimizations were tested in a variety of
different slopes, in order to analyze how their performance would differ in these different
conditions. The process applied is described in Section 4.4. They were tested for the
same values optimized for (from 0 to 12 degrees slopes, with a 1 degree interval).

2This plane is considered perpendicular to the ramps, in the optimizations these are present.
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5.2.5 Stage 2 results

Table 5.17 shows some statistics regarding the stage 2 experiments. The results were
restricted to values of vmean above 0.0075 m/s, equivalent to walking at least 15 cm
in the desired direction of movement, in 20 seconds of simulation. This was done so
solutions where the robot barely moved, or did not move at all, were not considered
towards lower torque indicator values or in the overall analysis of the size of the Pareto
fronts.

Comparing the performances for optimizations in different ramps

There is an overall (expected) trend of lower maximum values of mean speed with
increased values of slope, with a few low rises for the lower values of slopes, in addition
to one for the 12 degrees front, in relation to both the 10 and 11 degrees results. The
minimum values of τmean follow the inverse trend, with generally higher values with
increased values of floor slope. A significant outlier to this trend is the 10 degrees
front, which has the worst value of the optimizations by a clear margin. There is a
clear decline in the optimum mean speed above 8 and 9 degrees, and a clear incline for
τmean above 8 degrees. This difference is also observed in the size of the Pareto fronts,
which predictably got smaller with increased slopes, with a few minor outliers.

Sensitivity analysis

Tables 5.18, 5.19, 5.20, and 5.21 show various statistics regarding the sensitivity analysis
on the slope value of the ramp present in the simulation.

Why the iCub did not need a filter for minimum speed

The success rates from Table 5.18 deviate from the ones seen in the second stage of
the iCub experiments, seen in Table 5.7, not because a speed minimum was imposed
in this case, but because it was needed. With the iCub trials, the minimum of 0.0075
m/s is in fact observed for every trial meaning using it as a cutoff value would not
change the results. With the DARwIn-OP simulations the 15 cm displacement may
not be observed, mainly for two reasons. First, a ramp causes different restrictions
than the ones in place because of changes in the value of floor friction. The ramp is
an actual obstacle that can physically prevent a robot from walking forward, if not
approached in a effective manner. The second reason is related to the control approach
used for each robot. The dynamics based controller used in the iCub ensures that the
robot follows pre-computed step positions to some degrees, and, since the task chosen is
that of forward walking, there is a minimum speed it ensures, unless the robot falls, or
encounters obstacles (which are not present in those trials). The CPG based controller,
on the other hand, uses joint trajectories modulated by some of the parameters tuned
in these optimizations, which can result in trajectories that do not cause displacement
of the robot’s center of mass, meaning it does move in the intended way, i.e., resulting
in forward locomotion.
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Table 5.17: Results for the optimizations of DARwIn-OP’s locomotion control on dif-
ferent slopes. The table shows the maximum/minimum (depending on whether the
objective was maximized or minimized) values for the speed and torque indicators for
the Pareto front of solutions of those experiments, filtered for solutions with a mean
speed of at least 0.01m/s. The table also shows the size of those Pareto fronts.

Pareto front filtered for mean speed > 0.0075 m/s

Slope vmean τmean

(degrees) maximum (m/s) minimum (N2.m2) Size

0 0.1538 5.7900 97
1 0.1562 5.8903 88
2 0.1541 5.7391 81
3 0.1549 5.6856 89
4 0.1585 6.0199 69
5 0.1424 5.7429 62
6 0.1308 6.7458 41
7 0.1281 6.9924 46
8 0.1257 6.8873 22
9 0.0699 10.7721 21
10 0.0198 13.0866 6
11 0.0147 10.1730 7
12 0.0233 11.6505 5
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Fronts optimized for lower values of slope had better success rates

Table 5.18 shows the success rate of each Pareto front of solutions in the slopes tested.
In this case, only solutions which produced a behavior with mean speeds above 0.0075
m/s were considered. Overall, the fronts optimized for a mid-range of values, around
2 to 7 degrees, seem to have better consistency. Behaviors tuned for more steep ramps
will be, in general, less risky, and therefore have higher chances of success for ramps
with lower values of slope. On the other hand, these behaviors may also be overtuned
for ramps that approach a leveled floor. The fact that fronts optimized for the mid-
range were more successful overall gives credence to the hypothesis that there is a
relationship between these solutions, and respective behaviors, that is somewhat close
to a linear one, making the solutions optimized for values closer to both extremes more
successful.

How the size of the Pareto fronts support the previous point

To continue analyzing the hypothesis that a mid-range of values tends to perform
better, while taking into account a broader number of performance indexes, one can
look at Table 5.19. This shows, for each Pareto front, the number of solutions with a
high enough speed and diverse enough τmean to be considered an optimal solution in
the Pareto sense. These show that fronts related to lower values of slope tend to have
a larger number of interesting solutions. There is also an increase at the lower values,
making the optimum range between 2 and 7 degrees. This translates in a mid-range
optima, with a slant to the lower values. Lower values of slope tend to result in less
risky behaviors, since these have a higher tendency to result from the robot trying to
walk up a steeper ramp. This can lead to these solutions optimized for higher slopes
being more applicable to lower values of slope, and give them an edge in relation to
those fronts. The criteria to choose the Pareto front solutions is not strictly defined,
since the advantages of having one or multiple solutions that result in these acceptable
values of speed are not always clear. However, the differences these results show are
clear enough to reach a general conclusion.

Discussing the performance values from the sensitivity analysis

The previous results can have better context when analyzing the best performance
values for each front, as opposed to a number of solutions above a certain threshold.
Table 5.20 shows the best speed values reached by every set of solutions. Most of the
fronts would have the best behavior for the slope value they were optimized for, if it
was not for the performances shown by the front for 4 degrees. This group of solutions
shows the best values for the lower values of slope. This front also had the overall best
speed in the original optimizations, as seen in Table 5.17. As for the average values,
they follow a very similar trend to that of Table 5.19: the best averages are generally
towards the fronts for the low to mid-range of slopes tested.

Table 5.21 shows the best values for the other performance indicator, the τmean.
Here the trend follows more or less the already seen better values for solutions optimized
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for slopes in the mid-range of values, with the best results coming from fronts between
2 and 8 degrees. A clear outlier lies at the front for 10 degrees, that already had a
higher minimum than the neighborhood solutions, as seen in Table 5.17. In short, these
results only reinforce the ideas provided by the vmean results.

5.2.6 Conclusions

These are the main conclusions taken from the experiments related to the DARwIn-OP,
supported by the results, and respective discussions, seen in sections 5.2.2 and 5.2.5.

• The performance of the robot’s locomotion was, at least in part, improved by the
optimization process.

– The best speeds observed in the stage 2 optimizations (around 0.1538 m/s),
are better than the ones found in literature for the DARwIn-OP using a
CPG based controller (around 0.1 m/s).

• Different locomotion controllers may require different optimization setups, adding
restrictions that assure the desired behavior (e.g., the DARwIn-OP not moving
past the ramp, and failing to achieve an acceptable minimum speed).

• Different terrain parameters can also cause the need for these restrictions (the
ramp may be a bigger restriction to achieve an acceptable minimum speed than
the controller).

• The correlation analysis allowed to tune an initially large optimization setup
into one that is much less time consuming and computationally expensive, while
improving the values of the main performance indicator.

– The number of parameters in the optimization setup went from 20 to 7, the
number of optimization objectives from 5 to 4, the number of generations
from 200 to 100, and the population size from 200 to 100.

– The maximum speed achieved in stage 1 was below 0.11 m/s, much lower
than the value observed in stage 2 for the same floor (0.1538 m/s).

• There is a trend of decreased performance with an increase of the floor slope.
The maximum speeds trend lower, and the torque output higher.

• An optimization from stage 2 (for the 10 degrees ramp) that did not reach ex-
pected performance values seems to have been affected by the stochastic nature
of NSGA-II, rather than being limited by the ramp’s slope.

• Fronts related to lower values of slope tend to have a larger number of solutions,
and better average performances.

– The Pareto fronts with more solutions were between the 2 and 7 degrees
range, while the best overall performing front was for the 4 degrees opti-
mization.
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Figure 5.12: Screenshot of the XDE-manikin during simulation.

5.3 Effects of mass and volume changes on the control of

a virtual humanoid robot

During locomotion, on top of changes to the environment surrounding a humanoid
robot, changes to the robot itself can also affect the overall behavior on the task at
hand. In this section, we explore the impact of mass and volume changes to the
locomotion control of the XDE-manikin. Changing the mass of this system makes
the weight of its body parts change proportionally, and the same happens with the
height and volume of these parts, keeping the kinematic structure proportional. The
locomotion control of the manikin, under the same dynamics based controller used in
the iCub experiments, is optimized for different configurations of height and mass of
the robot.

5.3.1 Optimization framework setup

The model of the XDE-manikin is described in Appendix A, Section A.2. The controller
is the same one used in the iCub optimizations, a dynamics based controller from
Salini described in Appendix B, and the simulations are conducted in XDE (described
in Section 4.3.5). The optimization algorithm is NSGA-II, described in Section 4.3.6.
Figure 5.12 shows the model of the manikin in the XDE simulations, while Figure 5.13
shows a scheme of the optimization setup.

The NSGA-II related parameters used in this experiment are the same as the ones
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Dynamics based controller with task hierarchy manikinmodelNSGA-IIXDE simulator
x

b (outputs)Dt Pareto frontselection
DPf

Optimization cycle Data aggregator Height/mass values
θ

Figure 5.13: Architecture of the optimization process for the XDE-manikin. x is the
vector of values for the parameters being optimized, b is the vector of locomotion
features results from a trial, ✓ is the context variable, and Dt and Dpf are datasets
containing all the data from the optimizations, and only the data related to the Pareto
fronts of the optimizations, respectively. Refer to Figure 4.1 for a description of the
framework.
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Table 5.22: Range of values used for the parameters involved in each optimization
process of the XDE-manikin optimization.

Parameter Range

Step length (m) 0.03 - 0.45
Step width (m) 0.075 - 0.175
Step height (m) 0.001 - 0.25
Step duration (s) 0.25 - 3.0
Step phase ratio 0.4 - 1.0
Controller’s CoF 0.005 - 10.0

Table 5.23: Locomotion features involved in the XDE-manikin optimizations.

Feature

vmean (m/s)
τtotal (N

2.m2.s)
frglobal
trajectory emean

in the iCub setup, shown in Table 5.1. Section 5.1.1 contains a discussion on these
parameters.

5.3.2 Locomotion control optimization under different body’s mass

and height values

The locomotion control optimizations are applied to a task consisting of walking forward
for 20 s. NSGA-II ran for 100 generations, with a population size of 100, resulting in
10000 trials. Runs which ended with a physics or/and controller failure, resulting in a
robot fall and/or explosion, were given fitness penalties of 0 m/s for the mean speed,
and 99999 (N2.m2) for the joint torque output indicator.

The parameters involved in the optimization are seen in Table 5.22. The objectives
are listed in Table 5.23, and both the parameters and objectives used here are described
in Section 5.1.2. The parameter ranges were selected in a way that allows for the
optimization algorithm to find good values for any set of height and mass used. This
is done by using the trial and error process described in Sections 5.1.2, and 5.2.2 for
both the smallest and lightest robot and the tallest and heaviest one.

The 10000 simulations are repeated for different values of the robot’s height and
mass. Three height values are used: 1.60 m, 1.75 m, 1.90 m. For each height value, three
different body mass indexes (BMIs) were used: 20, 25, 30. The BMIs were calculated
using the equation BMI = mass

height2
, resulting in the combinations of height and mass

values shown in Table 5.24, labeled as different sets in order to make displaying and
discussing the experiment’s easier.
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Table 5.24: Sets of height and mass used in the XDE-manikin experiments, labeled as
different sets for future reference.

Set Height (m) Mass (kg)

1 1.60 51.2
2 1.60 64
3 1.60 76.8
4 1.75 61.25
5 1.75 76.5625
6 1.75 91.875
7 1.90 72.2
8 1.90 90.25
9 1.90 108.3

5.3.3 Results

Table 5.25 shows some statistics regarding the experiments of different weighted and
sized XDE-manikin models.

How the robot’s size affects the maximum speed achieved

The results for the highest mean speed show a clear separation between the three
different heights tested, with the highest speed from a robot with given height being
still lower than the lowest speed of a taller one. This is not surprising, since taller
robots have higher step lengths, and the step duration can be kept intact, albeit at the
cost of a higher torque output.

How the robot’s weight affects the maximum speed achieved

Heavier robots reached higher speeds, in general, in a given height category. There is
an exception, for the height of 1.60 m, between sets 2 and 3. These values are very close
though, with the same happening for the sets 8 and 9. One possible justification for
these higher speeds is a higher momentum achieved by the robot’s limbs when rotation
around each other. This implies that higher forces are applied to those limbs, which is
corroborated by the fact that the best speeds associated with higher masses are also
associated with higher torque outputs.

The torque outputs observed in the different sets

The lowest torque outputs are also higher for taller robots, although there is not a
clear separation like in the mean speed case. Within each height category, heavier
robots generally present worse results, with an expectation in the transition from set
2 to set 3. Interestingly, this behavior was also observed for the mean speed optimum
values, indicating that the optimization for set 2 may have focused its exploration in
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Table 5.25: Results for the optimizations of the locomotion control of versions of the
XDE-manikin with different height and total mass values. The table shows the best
values achieved for the optimization objectives in those experiments, which are, for
vmean, the maximum values, and the minimum values for the other indicators. The
τtotal for the behavior that showed the maximum speed for each set is shown in the
next column. Finally, the table also shows the size of the Pareto fronts of the speed
and torque objectives, and their size when the solution with a mean speed under 0.3
m/s are removed. The set number refer to the combinations of height and mass from
Table 5.24

Best values

vmean τtotal frglobal Trajectory τtotal for the P.f. P.f. size
Set (m/s) (N2.m2) emean (m) best speed (N2.m2) size (speed > 0.3 m/s)

1 0.3090 64667 0.0107 0.0045 215682 70 2
2 0.3562 122822 0.0105 0.0048 324877 68 14
3 0.3531 97000 0.0245 0.0106 496959 52 5
4 0.4262 118335 0.0107 0.0031 348012 85 25
5 0.4673 175234 0.0099 0.0031 519569 91 23
6 0.5060 252422 0.0094 0.0029 788532 72 26
7 0.5176 186186 0.0097 0.0014 578863 80 40
8 0.5905 299179 0.0096 0.0021 1039251 148 74
9 0.5955 411235 0.0091 0.0018 1257501 125 76

less efficient and faster behaviors, or, on the other hand, the optimization from set 3
may have been narrowed to efficient, but slower behaviors.

Discussing why heavier robot models could achieve higher speeds

The relationship between speed and total mass in these results may seem contradictory.
In humans, higher weights are usually associated with slower maximum locomotion
speed. This is due to the fact that these weights lead to the requirement of higher
power output from their muscles to produce the same amount of movement. In a robot,
the constraints from the torque output for each joint may be high enough that they still
enable the same amount of movement it can produce for lower masses. Furthermore,
there is not an incentive for the particular locomotion controller used in this setup to
optimize for torque output over the execution of the desired motion. Higher velocities
for robots with higher masses are associated with a higher torque output in every case
of these experiments, as one can observe in Table 5.25. Higher forces applied to the
center of mass as a result of the joints’ torques may result in higher momentums than
observed in lighter robots, leading to higher displacements.
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5.3.4 Conclusions

These are the main conclusions reached from the experiments related to the XDE-
manikin, that result from the discussion in Section 5.3.3.

• Taller models of the XDE-manikin reached higher mean speeds. These models
can produce higher step lengths, also resulting in higher torque outputs.

• Heavier models also reached higher speeds, in general. This may be caused by
higher momentums produced in its limbs, and also results in higher torque out-
puts.

5.4 Discussion

In this chapter we presented the results of experiments on optimizing the locomotion
behavior of three different robots in different conditions: the iCub in floors with differ-
ent frictions, the DARwIn-OP on ramps with different slopes, and the XDE-manikin
with different heights and weights.

Impact of stability features

Multiple optimization setups were experimented, which had different sets of parameters
optimized, and different locomotion features as optimization objectives. Two of the
locomotion features were used as performance indicators for all these setups: the mean
speed of the robot, and the total torque output in the locomotion. The other features
served as stability measures, with the intent of reducing the risk of the robot falling.
Adding these types of measures to the iCub optimization lead to a decrease in failure
rate, and an increase of high speed behaviors, although these came at the cost of higher
torque outputs. Higher stability leads to higher speeds, but a higher torque output is
required to sustain both these gains.

Comparing the obtained performances with the literature

When comparing the obtained speeds with current literature, one must take into ac-
count the context of the comparisons. Is the trial done in simulation, or in the real
robot? Is the terrain comparable? Is the control architecture the same, or similar?
This last point is especially important for this work, since we propose an optimization
framework, not the locomotion controller itself. This makes the comparison with speed
values reached for that specific controller more important that the overall best value
achieved. Speeds for the iCub and the DARwIn-OP showed improvement over refer-
ences found for similar contexts, although only one could be found for iCub, and two
for the DARwIn-OP.
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Tuning the optimization setups

The initial experiments with the iCub, the DARwIn-OP, and the XDE-manikin show
that some features of the locomotion of different robot models and controllers can be
optimized with an EA. Adding and removing parameters from the iCub optimizations
in further experiments shows how these can be further tuned. In the DARwIn-OP
preliminary optimization, this fine tuning was further explored by using a large number
of parameters for the optimization and analyzing their correlation with the optimization
results to choose which ones to keep. The correlation analysis led to the possibility of
an optimization with fewer parameters, a population with fewer solutions, and a lower
number of generations. The speed result had a significant increase, regarding the
optimization done on the floor with no ramp, while the torque indicator had a slightly
higher (i.e. worse) value. The fact that this decision was made from a larger pool of
parameters to begin with has the advantage of not loosing on potential beneficial sets
of parameters.

Optimizing for different floor conditions

Repeating the iCub optimizations for different values of friction coefficient, and the
DARwIn-OP optimizations for different floor slopes, showed that solutions for the
optimizations perform differently when changing these conditions, which implies the
need to know this information, and to take it into account, when choosing the best set
of parameters for each occasion. Sensitivity analysis on the pareto-optimal fronts of
these optimizations, in which the solutions from these fronts were tested in multiple
conditions, showed that no single optimization was optimal for every situation.

Effects of the CoF on optimization results

In the second stage of the iCub experiments, higher values of CoF cause less restrictions
on the forces applied by the feet on the ground, and allowed for higher speeds of
locomotion. In the sensitivity analysis, sets of solutions optimized for lower CoFs were
more successful in a broader range of values of CoF. The Pareto fronts optimized for
higher values of CoF struggle with lower values of friction, that do not allow some
of these behaviors without causing the robot to fall. These are, however, better at
reaching higher speeds for those higher values of CoF, whereas solutions for floors with
more constraints result in lower performance.

Effects of the floor slope on optimization results

Optimizations on the DARwIn-OP for floors with different ramps show that there
is a range of values for the ramp’s slope, around the middle of the range of values
tested, where the fronts of solutions perform better, overall. The fronts optimized for
values around 2 to 8 degrees, with 0 and 12 being the extremes of the tests, perform
better across the multiple scenarios, in the percentage and number of successes with a
minimum speed, maximum speed, and lowest torque output values.
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A hypothesis for the mid-range optimization fronts performing better

The hypothesis for solutions optimized for a mid-range of values to show better average
performances is that, since they have a shorter average numerical distance to the rest
of the slope values, the relationship between the slope and the behavior outputs is
somewhat linear. There are other factors that come into play, however, such as the
steeper ramps being inherently riskier to traverse due to the effect of gravity, and lower
values of the floor’s friction being more likely to cause the robot to fall. In the case
of the ramps in the DARwIn’s case, this causes all fronts to have poor results for
the highest slopes (10 and over). The fronts for lower values of slope, because they
perform well in those lower slopes, have higher rates of success. When it comes to
the floor’s friction, lower values are riskier, which means the behaviors optimized for
those will be more consistent across the board. These are not penalized for the high
friction values, as opposed to the ramps, where they become a physical obstacle hard
to traverse for solutions from different slopes. They are, however, penalized in terms
of speed performance, where values for the middle range of frictions produce better
average results.

Experiments with the XDE-manikin

Experiments on manikin models with the same kinematic structure, but scaled for
different height/mass combinations, provide information on how these different sizes
result in optimizations with different optimal solutions and performances. The highest
speeds reached are much higher than the iCub’s and DARwIn-OP’s because of their
relatively short height (1 m and 0.4545 m, respectively).

Importance of optimizing for different sizes

The effect of changes in height and mass of the robot in its locomotion could be impor-
tant for its design phase, with the possibility of choosing these quantities according to
what the desired performance resulting from the task is. Additionally, uncertainties in
the physical model parameters of the robot, such as lengths and masses of its segments,
are common, and it is therefore desirable to have a framework robust to these changes.
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Chapter 6

An adaptive approach to

humanoid locomotion

Building on the foundation of the optimization framework, we propose a method that
uses the information from several simulations to adapt the locomotion task of a robot
to environment changes. The data from the exploration phase, described in Chapter
4, is used to, first, identify the value of the environment variable, and then select the
most appropriate solution, taking into account the user’s requirements towards the
locomotion features that result from that solution. This process should happen in the
safest way possible, i.e., conducting trials that do not cause the robot to fall, and as
quickly as possible.

This chapter begins by stating the problem it is based on in Section 6.1, and then
gives an overview of the framework used (Section 6.2). The way each function from
the framework works is explained in Section 6.3, along with accompanying algorithms
detailing them.

6.1 Problem definition

Considering a locomotion environment with an unknown value of the variable modeled
in the exploration phase, ✓new, the objective is to find a solution x⇤, consisting of a
vector of controller parameters’ values, that optimizes the locomotion task towards
a set of user requirements P, consisting of a hierarchy of performance features, and
a number associated with each of these features indicating how strongly the solution
should be geared towards it.

6.2 Adaptation framework overview

The adaptation framework proposed tries to find an optimal solution supported by the
information gathered from the exploration phase, described in Chapter 4. This is done
in two stages: the identification of the value of the environment variable, and the choice
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of the optimal solution, supported by the identification.
The identification phase has the objective of estimating the environment variable of

the locomotion, ✓new. This variable was modeled in the exploration phase, from where
Ds is obtained: a set of solutions Xs and their respective resulting behaviors Bs for
different values of ✓. This dataset contains the optimal solutions from optimizations
on different environments, and their locomotion behavior, not only on the environment
they were optimized for, but in others as well. This set of environments is referred to
as Θs.

The identification is done by conducting a locomotion trial with a solution with
known behaviors (also referred to as features) in multiple contexts, and then comparing
the outcome of that trial with those behaviors. This is done in two steps; first, the
solution xid, used for the identification trial, is selected. This set of parameters should
both provide a safe behavior in as many different contexts as possible, and also allow
for the correct identification of the context value. Conducting a trial with that solution,
using the same conditions used in the optimizations for the exploration phase, results
in the locomotion features, bnew. These are used to identify the context value, which
is referred to as ✓id. This identification is also supported by the information gathered
from the sensitivity analysis from the exploration phase, contained in Ds.

The last step of the adaptation is the choice of the optimal solution for the overall
problem. This is done with the support of the information from the environment
identification, ✓id, and the datasets of solutions and behaviors from the sensitivity
analysis, Ds. ✓id is used to filter the list of solutions from Ds to the ones that were
conducted in the new environment, and, from that new list, the solution that maximizes
the requirements expressed in P is selected as the final solution to the problem, x⇤.

Figure 6.1 shows an overview of this framework. The details of each function are
described in the next section.

6.3 Functions of the adaptation framework

This section outlines how each function of the adaptation system was implemented.
Algorithm 4 details the procedure for the overall adaptation process, with further
sections exposing and detailing each of its steps.
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Exploration frameworkΘt
θ1,θ2...θn DPf1

,DPf2
...DPfn

Sensitivityanalysis
DsIdentification solution selectionxid

Simulation in new context
f(xid,θnew)

bnewContext identification
Ds

θid

P

(output)x
∗

Θs

Ds Solution maximizing performance requirements
Figure 6.1: Architecture of the adaptation framework. The exploration framework
(Figure 4.1) is used to optimize the locomotion of a robot model in n different en-
vironments, Θt, obtaining n different Pareto fronts datasets, DPf1 ,DPf2 ...DPfn . The
solutions from these datasets are then used in a sensitivity analysis (Figure 4.2) to test
their performance in a set of different contexts, Θs. From the dataset resulting from
that analysis, Ds, a solution xid is selected. This solution is tested in simulation in the
unknown environment ✓new, in order to use the resulting locomotion features bnew to
come up with ✓id, an estimation of ✓new. This estimation is used to filter the solutions
list from Ds, after which the solution, x⇤, that best fits the performance requirements
from P will be selected.
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Algorithm 4 Context adaptation procedure. Given a dataset Ds, and a set of performance
requirements P, selects the solution x⇤ that better adapts to a new environment ✓new, while fitting
the performance requirements. The cutoff values cs and cd can be changed to balance how much
the identification solution selection prioritizes safety or features dispersion.

procedure context adaptation(Ds,P,✓new, cs, cd)
xid  ; . Solution to be used in the identification test.
Bid  ; . Features of xid in the contexts from Ds.
xid,Bid  select ID solution(Ds, cs, cd)
bnew  ; . Features of xid in the unknown environment.
bnew  f(xid,✓new) . Run a identification test in the new environment.
bnew  normalize features(Ds, bnew) . Normalize the values of bnew and Bid,
Bid  normalize features(Ds,Bid) . taking into account the features from Ds.
✓id  0 . Estimation of the value of the unknown context, ✓new.
✓id  identify context(xid,Bid, bnew)
Did  get context solutions(Ds,✓id) . Get the solutions related to the identified

context value.
x⇤  ; . Final solution to the context adaptation.
x⇤  select solution(Did,P)
b⇤  ; . Behavioral feature for x⇤ in the unknown context.
b⇤  f(x⇤,✓new)

end procedure
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6.3.1 Selection of the solution for the identification process

The identification process requires a solution xid that is both safe in the largest number
of different environments possible, and also enables the identification of the environment
variable in the new context, ✓new. To comply with this last point, a solution is selected
so that it shows as much dispersion as possible in the resulting locomotion features, in
the different contexts it is tested.

This dispersion will lead to an easier identification of ✓id. If there is more varia-
tion between these results, it is easier to differentiate between them, making it so the
resulting behavior from the identification trial, bid, is easier to match to the correct
context. If the solution had the same features in every context tested, for instance, it
would be impossible to make an identification using this method.

The index of dispersion of a distribution is defined as,

D =
�2

µ
, (6.1)

with � being the standard deviation, and µ the mean of the distribution. Each solution
from Xs is scored according to the dispersion the features of the locomotion (e.g. speed,
torque) showed in the different contexts they were tested in. The dispersions from the
different features are then added up into a single value. The features from locomotion
that resulted in a fall were not considered.

The choice of the identification solution is made taking into account both the num-
ber of successful simulations observed in the different environments, and the total
dispersion scored by the solution. To balance these two factors, two cutoff values are
used, cd and cs. cd is the minimum required for the ratio between the dispersion of
the chosen solution (d) and the highest overall dispersion (dmax) to be,

d

dmax
� cd. (6.2)

cs represents the minimum number of successes the identification solution should have.
Finding a balance between cd and cs is important. Choosing the solution with the

highest dispersion does not matter if it can only perform in two different contexts,
while simply choosing a solution that is successful in every environment tested can
make it useless in terms of differentiating between them. Our approach was to select
the solution that respects both cutoffs and shows the highest dispersion. In case one
does not exist, we choose one that has the highest number of successes, and, from those,
the one that shows the highest dispersion. This approach is biased towards the number
of simulations without the robot falling, and, while it served its purpose in these trials,
others could be used. A more balanced one would be, for example, to successively lower
both cutoffs (e.g., cs by 1 and cd by 0.1) until a suitable solution is found.

Algorithms 5 and 6 show an overview of the functions that were used in this process.
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Algorithm 5 Identification solution selection. From the sensitivity analysis dataset, Ds, the
algorithm tries to find a solution that respects both the cutoffs for the minimum ratio between the
chosen solution’s dispersion and the maximum observed, cd, and the number of successful solutions
in different contexts, cs. The list of behaviors of that solution in different contexts is also returned.

function select ID solution(Ds, cs, cd)
xid  ;
DXs
 ; . List with the total dispersion of each solution.

DXs
 get features dispersions(Ds)

Dmax  ; . Maximum dispersions for a given number of successes.
Xmax  ; . Solutions associated with each dispersion from Dmax.
Dmax,Xmax  order max dispersions(Ds,DXs

)
dmax  maximum(Dmax) . Overall maximum dispersion.
for i length(Dmax) to 1 do . Start at the highest number of successes.

d Dmax,i . Best dispersion for i number of successes.
x Xmax,i . Solution showing the best dispersion.
if i < cs then . If there are no solutions with the cutoff

xid  x . number of successes, return best solution for the
break . maximum number of successes observed.

end if
if d

dmax
� cd then . If the solution’s dispersion respects

xid  x . the cutoff, select it as the ID solution.
break

end if
end for
Bid  ; . List of features for the chosen xid solutions for each context in Θs.
Bid  get solution features(xid)
return xid,Bid

end function
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Algorithm 6 Sub-functions used in the identification solution selection algorithm.
GET FEATURES DISPERSIONS, given a dataset of tests Ds, returns a list with the total dis-
persion in locomotion features shown by each solution, DXs

. ORDER MAX DISPERSIONS, given
the same dataset Ds, and the list of dispersions DXs

, returns a list with the best dispersion for a
given number of successes, and another with the solutions that result in those dispersions.

function get features dispersions(Ds)
DXs
 ; . List of dispersions of the features from Ds.

for i 1 to length(Ds) do . Cycle through behavior results from different solutions.
B  Bs,i . List of behavior for different contexts, for the current solution.Bs 2 Ds.
dtotal  0 . Value of total dispersion for the current bs.
for j  1 to number of columns in B do . Each column is associated with one feature.

Bj  get column(B, j) . Get all the values for feature j in the dataset.
µ Average(Bj)
�  Standard deviation(Bj)

dj  σ
2

µ
. Dispersion for a single features

dtotal  dtotal + dj . Add dj to the total.
end for
DXs

.insert(dtotal) . Insert the total dispersion of one solution in the list.
end for
return DXs

end function

function order max dispersions(Ds, DXs
)

Dmax  ; . List to hold the maximum dispersions for number of successes.
Xmax  ; . List to hold the solutions that show the maximum dispersions.
S  get nr successes(Ds) . List with number of successes for each solution.
for i 1 to length(Ds) do . Loop through each solution, selecting

d DXs,i . its dispersion,
j Si . the number of successes in different contexts
x Xs,i . and the solution itself. Xs 2 Ds

if d > Dmax,s then . If current dispersion is greater than the maximum,
Dmax,j  d . for the number of successes the solution has across contexts.
Xmax,j  x . Assign the solution and dispertion as the best

end if . for the current number of successes.
end for
return Dmax,Xmax

end function
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6.3.2 Identification of the new context

The goal of the identification phase is to choose an adequate value for an unknown
locomotion context that was modeled as a numerical variable (e.g., a friction value).
This value, ✓id, works as an approximation of ✓new, and will be used to inform the
decision of selecting the final solution for the problem.

After determining xid, the solution to be used in the identification, a test of the
locomotion behavior is conducted in the unknown environment, with the same setup
(i.e., robot model, control framework) as the exploration phase,

bnew = f(xid, ✓new). (6.3)

The features that resulted from the test, bnew, can then be compared with the
features that xid shows in simulations in the different environments Θs, from the dataset
Ds, which are grouped in the set Bid.

The distance between bnew and each vector of features from Bid can show which of
the sensitivity tests the identification test is closest to, and, therefore, which con-
text value the new environment is more likely to approximate to. This compari-
son can be done with different distance metrics, the most common being the Eu-
clidean distance. Considering two points in a Euclidean space 1 with nb dimensions
(corresponding to the numbers of features), bnew = (bnew,1, bnew,2, . . . , bnew,nb

) and
bid = (bid,1, bid,2, . . . , bid,nb

), this distance is calculated as

distanceEuclidean(bnew, bid) =
q

(bid,1 � bnew,1)2 + . . .+ (bid,nb
� bnew,nb

)2. (6.4)

The Euclidean distance measures the distance in a straight line between two points,
giving equal weight to all dimensions in their contribution to the value. This means, in
this case, that every feature will have a similar impact, given that they have a similar
difference in value between the two vectors. Since there is no indication of whether some
of these features better differentiate between contexts, it is desirable that they have
similar impacts, regardless of their numeric scale. In order to achieve this, every feature
value is normalized between 0 and 1. Given a single feature value bi, the maximum
value of that feature on the entire sensitivity dataset Bs, maxbi , and its minimum,
minbi , the normalization is conducted as follows

bi,norm =
bi �minbi

maxbi �minbi
. (6.5)

After calculating all the distances between bnew and the vectors from Bid, the con-
text that corresponds to the vector that shows the shortest distance, i.e., the closest
features, is chosen as an estimate, and used as ✓id.

1The Euclidean n-space is also called Cartesian space, and it is the space of all n-tuples of real
numbers.

106



Algorithm 7 shows the process used for this identification step. The normalization
of the features is included in the overall adaptation Algorithm 4, as the NORMAL-
IZE FEATURES function.

Algorithm 7 Context identification algorithm. Given a solution xid, compares its features from
the sensitivity tests, Bid, with the ones from the test in the new environment, bnew, and returns
the context value, ✓id, which simulation shows the closest features’ values.

function identify context(xid,Bid, bnew)
distances  ; . Distances between features sets.
for i 1 to length(Bid) do . Loop through the xid features for each context.

b Bid,i . Features for the current context.
distance  euclidean distance(bnew, b)
distances.insert(distance)

end for
index  arg min(distances) . Index of the minimum distance between features.
✓id  ✓index . Context value for the shortest distance.
return ✓id

end function

6.3.3 Selecting the final solution

The solution to the main problem, x⇤, is one that needs to both lead the robot to walk
in the new environment without falling, and follows the performance requirements from
P. The solution is selected from a list which is taken from Ds by removing the solutions
and features pairs that are not relative to tests in ✓id. This dataset is called Did.

The performance requirements set contain a vector related to the hierarchy of the
desired features, and another related to the weight given to each of these features,
P = hp,wp. The hierarchy vector contains the order of preference given to each feature.
The weights vector contains a number from 0 to 1.0, with higher values translating into
more solutions that do not perform well in that given feature being discarded. Both
vectors’ size is nb, the number of features of locomotion considered in the setup.

The selection process works in nb + 1 steps. At each step, the list of solutions, and
respective behaviors, Did, is filtered by removing solutions that do not perform well in
regard a given feature. For the step i, the feature indicated by the hierarchy hp,i is
considered. A given solution is removed from the list if its value for that feature, bi, is
below a certain fraction of the best value in the list, maxb,i,

bi < maxb,i ⇥wp,i. (6.6)

If the feature in question is to be minimized, instead of maximized,

bi > minb,i ⇥
1

wp,i
(6.7)
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Table 6.1: Set of solutions and behaviors for an example Did dataset. Each line contains
one solution x from Xid, and its respective behavior vector b from Bid. The context ✓ of the
solution test is ✓id for every line. The first two features were maximized, where the third was
minimized.

Xid Bid

x1 0.50 1.20 0.02
x2 0.43 2.11 0.11
x3 0.70 3.24 0.06
x4 0.12 2.50 0.07
x5 0.91 0.95 0.06
x6 1.20 2.70 0.09
x7 0.20 2.33 0.10
x8 0.11 1.89 0.03
x9 0.40 1.05 0.05
x10 1.14 0.80 0.06

is the inequation used to decide whether that solution is removed.
After the nb stages of filtering the solutions list are done, the final solution is

selected. This selection is done by taking the first feature of the hierarchy vector, hp,1

(i.e., the feature given the highest priority), and choosing the solution that optimizes
the performance towards that behavior.

Example of the selection towards P

Here is displayed a small example of the solution selection procedure from Section 6.3.3.
Table 6.1 shows an example dataset with 10 solutions, and 3 features measured in the
locomotion process. Table 6.2 shows the solution’s list at each of the four stages of the
solution selection process, when using the performance requirements hp = (b2, b1, b3)
and wp = (0.5, 0.3, 0.6).

In the first stage, the second feature is considered (hp,1 = b2). Since this feature was
maximized during the exploration phase, the first stage of Table 6.2 shows the solutions
ordered from the highest to the lowest value of that feature. Since the weight for that
feature is wp,1 = 0.5, the solutions removed are the ones in which b1  maxb,1⇥wp,1 =
3.24⇥ 0.5 = 1.62. This leaves the bottom four solutions out of future stages.

For the second stage, six solutions remain, and the focus is on the first feature, which
was maximized. The minimum value of the feature is 1.20⇥0.3 = 0.36, which brings the
list down to three solutions. In the third stage the removal is due to the performance
in the third feature, which was minimized. The cutoff value is of 0.06 ⇥ 1

0.6 = 0.1,
meaning one of the solutions is removed.

The first three stages end up with a list of two solutions. The choice between them
is done according to the feature given first priority, hp,1 = b2. The solution with the
best (in this case, highest) value for that given features, x3, is selected, with the rest
being removed.
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Table 6.2: Process of solution selection using the Did from Table 6.1, hp = (b2, b1, b3),
and wp = (0.5, 0.3, 0.6). Four stages of solutions removal are shown, each separated by
an horizontal line. The rows corresponding to the solutions removed at each stage are
colored in gray.

Xid Bid

x3 0.70 3.24 0.06
x6 1.20 2.70 0.09
x4 0.12 2.50 0.07
x7 0.20 2.33 0.10
x2 0.43 2.11 0.11
x8 0.11 1.89 0.03
x1 0.50 1.20 0.02
x9 0.40 1.05 0.05
x5 0.91 0.95 0.06
x10 1.14 0.80 0.06

x6 1.20 2.70 0.09
x3 0.70 3.24 0.06
x2 0.43 2.11 0.11
x7 0.20 2.33 0.10
x4 0.12 2.50 0.07
x8 0.11 1.89 0.03

x3 0.70 3.24 0.06
x6 1.20 2.70 0.09
x2 0.43 2.11 0.11

x3 0.70 3.24 0.06
x6 1.20 2.70 0.09
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Algorithm 8 Solution selection algorithm. Given the dataset for the sensitivity analysis in the
exploration phase, and considering only the tests relative to ✓id, Did, this function returns the
solution x⇤ that better fits the performance requirements P.

function select solution(Did,P)
x∗  ; . Final solution of the framework.
hp,wp  P . Features’ hierarchy and weights.
X ,B  Did . Identification set solutions and respective behaviors.
nr solutions = length(Did)
nr features = length(b) . For any given b 2 Bs.
Optb  ; . Optimum value for each feature in the entire dataset.
for i 1 to nr features do

Bi  get column(B, i) . Get all the values for feature i in the dataset.
if feature i is maximized then . If the feature was maximized,

Optb,i  maximum(Bi) . Get the maximum value of the entire set.
else

Optb,i  minimum(Bi) . Otherwise get the minimum.
end if
for j  1 to nr solutions do

x Xj . Current solution evaluated.
b get row(B, j) . Features vector for x.
if bi is maximized then . Check if the feature was maximized.

cutoff wp, i ⇥Optb,i . Calculate the cutoff of the feature value.
if bi < cutoff then . If the solution’s performance is not good enough.

X .remove(x) . Remove the solution and respective
B.remove(b) . behavior from their lists.

end if
else . Make the appropriate changes if the feature was minimized.

cutoff 1
wp, i

⇥Optb,i . Change the cutoff calculation.

if bi > cutoff then . Inequality is reversed.
X .remove(x)
B.remove(b)

end if
end if

end for
end for
i hp, 1 . Choose the highest prioritized feature for the final selection.
Bi  get column(B, i) . Get all the values for feature i in the dataset.
if feature i is maximized then

j  arg max(Bi) . Return the index corresponding to the maximum value.
else

j  arg min(Bi) . Return the index corresponding to the minimum value.
end if
x∗  Xj . Solution, from the ones left, that optimizes the highest priority feature.
return x∗

end function
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Chapter 7

Humanoid locomotion adaptation

to unknown terrain features

This chapter contains the experiments conducted to test the adaptation framework
from Chapter 6.

The locomotion of a model of the iCub robot was adapted to floors with different
coefficients of friction, while a model of the DARwIn-OP was adapted to walk up ramps
with different slope values.

7.1 Wilcoxon test

This section details a procedure used to compare results obtained during this chapter.
It compares the performance values achieved from different methods, by evaluating the
differences between them in each point tested.

The Wilcoxon signed-ranked test (Wilcoxon, 1945) compares two related samples of
values by testing the hypothesis that the mean value of their populations do not differ
significantly. It is applied to two populations with paired data, and calculates the
difference between each of these pairs in order to analyze how different the populations
are, overall.

7.1.1 Procedure

With x1,i,x2,i, being the measurements of the pairs i = 1, . . . , N , the test considers
only Nr pairs, excluding the ones where |x2,i � x1,i| = 0, which means Nr  N . The
test evaluates the null hypothesis H0 that the difference between the pairs follows a
symmetric distribution around 0, against the H1 hypothesis that the differences do not
follow that type of distribution.

The test procedure is as follows:

1. For i = 1, . . . , N , calculate the module of the difference between the paired values,
|x2,i � x1,i|, and sign(x2,i � x1,i). The sign function returns 1 if the difference is
positive, 0 if it is null, and -1 if it is negative.
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2. Order the Nr pairs from smallest to largest absolute difference.

3. Assign a rank Ri to each difference, with the smallest one getting rank 1.

4. Calculate

W =

Nr
X

i=1

[sign(x2,i � x1,i)⇥Ri], (7.1)

which is the sum of the signed ranks, i.e., the sum of the ranks of every difference,
weighted by its sign.

5. Under H0, W follows a distribution with an expected value of 0 and variance

Nr(Nr + 1)(2⇥Nr + 1)

6
. (7.2)

A critical value from a reference table, Wcritical,Nr
, can be used to evaluate whether

W is within the distribution limits, and the null hypothesis H0 is rejected if
|W | > Wcritical,Nr

.

A p-value can also be calculated using the sums of ranks R from the distributions of
each population. This process is described in Pratt (1959). A small p-value rejects the
null hypothesis that the differences between the pairs are due to chance, while bigger
values contribute towards confirming H0.

7.2 Adapting the iCub’s locomotion control to different

coefficients of friction

This experiment applied the framework presented in Chapter 6, and shown in Figure
6.1. The dataset of information used in this approach (Ds) is the one that resulted
from the exploration phase and sensitivity analysis presented in Section 5.1.4.

The information from this dataset is used to estimate the value of the coefficient
of friction of different floors, and that estimation is then used to select a solution that
enables a locomotion behavior that suits predetermined performance requirements.

The adaptation method was compared to two others. In the naive approach, the
solution that best fits the performance requirements is done without taking into account
the floor’s coefficient of friction at all. In the other one, the random approach, an
estimation for the CoF is done randomly, and that value is then used to select the
solution that best fits the requirements.

7.2.1 Adaptation framework setup

The dataset Ds contains solutions to the optimization of a forward walk of a model of
the iCub robot in different terrains. These solutions consist of values for seven different
parameters of a locomotion controller which is based on the locomotion’s dynamics and
a task hierarchy (see Appendix B). When applied to a forward walk of the iCub robot,
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a controller with these parameters results in four different features of locomotion that
were chosen to be measured. The context variable modeled, in this case the CoF, affects
the behaviors these solutions result in.

The seven parameters used in the optimization are shown in Table 5.4, and the four
features measured in Table 5.5. Two of these features were performance related, the
mean speed and torque output (τtotal), while the other two were added to increase the
stability of the task (global average f.r. indicator and average trajectory error). The
solutions from different optimizations were tested for the context values of 0.05, 0.1,
0.25, 0.5, 0.75, 1.0, 1.25, and 1.5, from which resulted the sensitivity analysis dataset.

In these experiments, the adaptation framework was applied to Ds in order to
adjust the locomotion to floors with CoF values ranging from 0.05 to 2.0, with 0.05
intervals (extremes included). The cutoff values used in the adaptation algorithm (see
Section 6.3.1) were cs = 5, for the minimum number of successes across different floors,
and cd = 0.8, for the minimum ratio of features dispersion relative to the maximum.
Two different performance requirements were tested for: one solely focused on speed,
and a balanced approach that more closely prioritizes torque output and speed. The
first one had the hierarchy hp = (mean speed), and weights wp = (1.0), meaning it
only takes speed into account when choosing the final solution, making the rest of
the indicators’ hierarchy and weights irrelevant. The balanced approach had hp =
(τtotal, mean speed, f.r. indicator, trajectory error), and wp = (0.7, 0.7, 0.5, 0.5).

Two other approaches were used alongside the proposed framework, in order to
verify how impactful are key aspects of the algorithm. The naive approach skips the
identification of the environment variable and goes directly to the step of choosing the
final solution, doing so without being informed on the context variable ✓. This serves
as a control for the possibility that ✓ doesn’t affect the locomotion behavior enough
to justify the process of identification. The other approach is a random one, where
the identification is done by selecting a random number for the floor friction. In this
case, the number was selected from a list of the friction values used in the sensitivity
analysis (2 paragraphs above), since these are the ones the adaptation algorithm also
chooses from. This approach serves as control for the possibility that the identification
does not provide a clear advantage over simply choosing a random value for the context
variable.

7.2.2 Results

The results for these experiments uses a paired differences test, called the Wilcoxon
test (Wilcoxon, 1945), described in Section 7.1. It compares the performance of each
approach in a given indicator, for each unknown context value tested. A sum of ranks
indicates how well each approach performed when compared with the other. A p-value
 0.05 indicates there is strong evidence the approach with the best sum of ranks is
better performing than the other one. A value greater than that is not considered
statistically significant. A higher sum of ranks indicates better performance for the
speed feature, while a lower one is desired for the torque output feature (since one
seeks to minimize it).
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Table 7.1: Wilcoxon test results for our approach (labeled ID) against random and
naive approaches, for the speed and torque features. Results related to the adaptation
tests on the iCub. The values associated with a statistical significant test (p-value <
0.05) are bolded.

Performance
requirements

Feature
compared

Sum of the ranks of the differences
p-value

ID approach Random approach

Balanced Speed 589 221 0.0143
Balanced Torque 558 252 0.0573
Speed Speed 595 224 0.0123
Speed Torque 430 389 0.8125

ID approach Naive approach

Balanced Speed 820 0 0.0000
Balanced Torque 667 153 0.0006
Speed Speed 571 243 0.0261
Speed Torque 146 668 0.0006

Wilcoxon test speed results

Table 7.1 shows the results of a Wilcoxon test used to compare the adaptation frame-
work to both the random and naive approaches. These results show the identification
approach outperforms the other two in the speed feature, both for the balanced and
speed focused performance requirements. The differences are all statistically significant,
with the naive approach being outperformed for every context value, in the balanced
performance requirements (it has a sum of ranks equal to 0). This indicates that the
naive approach, ignoring the context value, always goes for a solution that does not
perform well for the speed indicator for the current environment.

Wilcoxon test torque results

Regarding the torque output indicator, the identification approach performs worse
in three out of the four cases, with only two of them being statistically significant:
one in which it performs better, and other where the performance is worse. Both
cases are observed in the naive approach comparison. This can happen because the
solution the approach always chooses with the speed focused requirements, constant
due to always ignoring ✓, is one that has especially bad torque performance, while the
one chosen in the balanced requirements has better performance regarding the torque
output. Additionally, the balanced requirements that result in the naive approach
having a better torque performance are the same ones that result in it having a sum of
ranks of 0 for the speed indicator. This situation is bound to occur with performance
requirements where the weights are closer to a balance between all the indicators, since
the solutions for a given context can have varying spreads of performance, and varying
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Table 7.2: Success rates and average values of performance indicators for the adaptation
phase tests for the iCub. The best averages for each performance requirement are
bolded.

Approach
Performance
requirements

Success
rate (%)

Average mean
speed (m/s)

Average
τtotal(N

2.m2.s)

ID Balanced 95.0 0.1020 422.44
Random Balanced 92.5 0.0936 567.28
Naive Balanced 85.0 0.0672 453.46
ID Speed 80.0 0.2676 691.36
Random Speed 72.5 0.2563 716.65
Naive Speed 55.0 0.2531 1102.63

best values, for each indicator. In the case of a set of requirements with full focus on
one indicator, such as the speed focus on these experiments, this particular situation
cannot occur.

Average performance values

Table 7.2 shows the performance averages of every approach, for both performance
requirements tested. The adaptation framework shows better averages for the success
rate (percentage of trials where the robot did not fall), the average mean speed, and
the average torque output. Although the naive approach showed a better sum of ranks
in the Wilcoxon test, for the torque indicator, it shows a higher (therefore worse)
average. The Wilcoxon test ranks the difference between a given pair of values (each
belonging to the performance of one approach in a given context), and gives a higher
weight to the biggest differences. This weight is fixed though, which means that it
may not accurately represent the absolute difference between performances for certain
cases. In this situation, the naive approach has a lower (better) sum of ranks because
it outperforms the identification approach more often than not, but it has a higher
average torque output because, when it does perform worse, the differences are higher.
Specifically, it performs worse in the tests the robot falls, which are more often in the
naive approach, given its lower success rate.

The balanced set of requirements results in safer solutions

The identification process for the experiments for different performance requirements
yields the same results, since these requirements do not affect it. This means that the
difference in success rates for the adaptation framework for the different requirements is
a result of the choice of the final solution. For the context values where the identification
was not correct, the balanced requirements have a higher chance of choosing solutions
that do not fail in these environments, while the speed focused ones choose solutions
that are riskier and therefore more prone to fail in contexts with an incorrect value
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estimation.

Differences between the random and naive approaches

The random approach has better success rates than the naive approach for both perfor-
mance requirements. The naive approach, selecting the best performing solution with
no regard for the context value, can end up choosing one that performs well in a certain
context, but that has an overall low success rate across different environments in the
sensitivity analysis. This can be evidenced in this particular instance with the values
from Tables 5.7 to 5.10. Regarding the speed focused performance requirements, in
Table 5.9 it is evident the best solution would be one optimized for the CoF of 0.75,
since it achieved the maximum speed observed (0.2736 m/s). This solution, however,
may not have a good success rate in other contexts, as shown in Table 5.7, where the
Pareto front for 0.75 CoF has one of the lowest averages. A similar case can be made for
the balanced performance requirements. The other approach, even selecting a context
value at random, has a high probability of selecting a solution that performs well in a
great variety of contexts, simply because the naive approach ends up selecting one of
the worst.

Identification of context values ✓

Figure 7.1 shows the results of the identification itself, for each context value tested.
There is a discrepancy between the behaviors the algorithm can identify, given how it
works, and the ones it is tested for. The values tested were between 0.05 and 2.00, with
steps of 0.05, while the ones that can be identified are 0.05, 0.10, 0.25, 0.50, 0.75, 1.00,
1.25, and 1.50 (the values tested in the sensitivity analysis).

Following the hypothesis that the same solution produces similar behaviors for
values of friction near each other, the desired behavior for the identification process is
the one observed for the real context values ranging from 0.1 to around 1.25. In this
section the identified values for each test are around the closest value the algorithm
could estimate, i.e. the values which behaviors were known for each solutions. This
means that, as an example, even though there was no information for the behavior the
identification solution should produce for 0.55, the estimated value is still 0.50. This
happens with most values in the highlighted section, with some of them (0.5 to 1.25)
being the center for their closest neighbors, both to the left and right, as evidenced by
the vertical lines.

There are some outliers that go against the hypothesis of an approximately linear
relationship. The value estimated for 0.05 was 1.50, the farthest value that could be
estimated. The vertical lines for 0.10 and 0.25 show that estimated values around them
are not centered around these values, although they were identified as values that are
directly above or below those. The values identified around 1.50 oscillate between 1.25
and 1.50, even those that are above it. Since the sensitivity analysis did not include
values above 1.50, a linear relationship would mean that those were all estimated as
1.50.
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Figure 7.1: Real value of the context tested for, against the value identified by the
adaptation framework. Results for the experiments with the iCub on floors with dif-
ferent CoF. Vertical lines mark the context values which behaviors the solutions were
tested for in the sensitivity analysis.
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7.2.3 Conclusions

Here the main conclusions from the adaptation experiments related to the iCub, which
were reached in Section 7.2.2 are presented.

• The identification approach (adaptation framework) clearly outperforms the naive
approach and the random approach in the speed feature.

• There is no clear evidence of the difference in performance between the ap-
proaches, regarding the torque indicator.

• The adaptation framework obtained better averages for the success rates, the
mean speed, and torque output.

• For the context values where the identification was not correct, the balanced
requirements have a higher chance of choosing a final solution that do not fail,
when compared to the speed requirements.

• The identification results indicate that the relationship between the context values
✓, and the features of locomotion b, seems to follow an approximately linear curve.

7.3 Making the DARwIn-OP walk up ramps with differ-

ent slopes

The adaptation framework (Chapter 6) was also tested with the setup for the DARwIn-
OP tests from section 5.2. The objective is to adapt the locomotion to different, un-
known, values of ramp slope. The identification process, and the choice of a final
solution, were conducted with basis on the sensitivity dataset obtained in the experi-
ments from Section 5.2.4. The method was compared to a naive and a random approach
that were both described in the previous section.

7.3.1 Adaptation framework setup

The dataset Ds, resulting from the sensitivity analysis on the Pareto fronts of the op-
timization experiments, contains solutions consisting of the values of seven different
parameters of a CPG based controller (see Appendix C) that was applied to the lo-
comotion task of a DARwIn-OP robot model. These solutions result in locomotion
behaviors that are measured as four different indicators: the mean speed of the robot,
an average related to the torque output of all the robot’s joints, the MSE of the tra-
jectory, and the distance between the CoP and the support polygon of the robot’s feet.
The behaviors produced are dependent on the value of a context variable modeled for
the process, which in this case is the slope of a ramp that must be walked on upwards.
In the sensitivity analysis, every solution was tested for slope values ranging from 0 to
12 degrees, with 1 degree intervals, and including both extremes.
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This setup was tested for the adaptation to context values ranging from 0 to 12
degrees, with 0.5 degrees intervals and including the extremes. The cutoff values used
for the adaptation algorithm’s selection of the identification solution (see Section 6.3.1)
were cs = 10 and cd = 0.7. Like in the iCub experiments, two different performance
requirements were used in these tests: one focused only on the mean speed, and a more
balanced approach. The first one had a hierarchy of priorities hp = (mean speed) and
weight wp = (1.0), while the other had hp = (τmean, mean speed, trajectory error, CoP
distance) and wp = (0.8, 0.7, 0.5, 0.5).

The tests were also repeated for two different sets of Ds. One was the complete
set, containing all the solutions, and respective behaviors in different contexts, from
the sensitivity analysis in Section 5.2.4. The other one only contained behaviors for
the context values of 0, 2, 4, 6, 8, 10, 12 degrees of the ramp’s slope. These will be
referred to as the complete and reduced sets, respectively. With the way the adaptation
framework works, the identified value can only be one of the contexts tested for in these
datasets.

The random and naive approaches tested for as points of comparison to the adap-
tation framework work in the same way as in the iCub experiments. Their descriptions
can be found in Section 7.2.1.

7.3.2 Results

The results of the adaptation framework tests were compared against the other two
approaches using Wilcoxon tests, similarly to the previous section. Averages of per-
formance and the value estimated for each context in the identification phase are also
shown, for both the complete and reduced sets of contexts from the sensitivity analysis.

Complete sensitivity dataset: Wilcoxon test results

Table 7.3 shows the direct comparison between the identification approach and the
random and naive approaches, relative to the torque and speed features of the tests
using the complete sensitivity dataset. The adaptation framework shows better values
of mean speed than both approaches, for both sets of requirements tested. In three
of these four cases, the p-value indicates a statistically significant difference. The
identification approach’s results related to the torque indicator are better in three
cases, with one of them being significant.

Complete sensitivity dataset: performance averages

The performance values for each approach can give a better insight into these re-
sults. Table ?? shows the averages of some of these indicators for both performance
requirements. The identification approach had the best success rates for both sets of
performance requirements. In the case of the balanced requirements, it had 100% rate
of trials without the robot falling, which drops to 48% when filtering for trials with
a minimum speed of 0.0075 m/s. These trials, where the robot did not move at least
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Table 7.3: Wilcoxon test results for our approach (labeled ID) against random and
naive approaches, for the speed and torque features. Results related to the adaptation
tests on the DARwIn-OP, using the complete sensitivity dataset. The values associated
with a statistical significant test (p-value < 0.05) are bolded.

Performance
requirements

Feature
compared

Sum of the ranks of the differences
p-value

ID approach Random approach

Balanced Speed 237 33 0.0076
Balanced Torque 87 183 0.1914
Speed Speed 276 46 0.0024
Speed Torque 96 226 0.0890

ID approach Naive approach

Balanced Speed 221 101 0.1209
Balanced Torque 37 285 0.0007
Speed Speed 264 58 0.0051
Speed Torque 201 121 0.2355

15 cm, can be observed even in cases where the context value was identified correctly,
which means the balanced performance requirements did not set a high enough weight
in the speed indicator, resulting in solutions that fall short in that category. The tests
with the speed focused requirements achieved a success rate of 68% for both defini-
tions of the indicator. This indicates that the simulations that fall under the minimum
speed are exclusively ones that result in a robot fall. These consisted in tests where
the context value was misidentified, due to being a value not tested in the sensitivity
analysis (e.g 0.5, 1.5, ...), meaning that the requirements focused on speed did not
lead to the problem of not choosing a high enough speed. In addition to the success
rates differences, the speed focused requirements also resulted in a higher average mean
speed, considering all trials. On the other hand, the balanced requirements shows a
lower average torque output.

Differences between the approaches and the performance requirements

Regarding the other two approaches tested, the random one results in increased perfor-
mances above the speed threshold, when using the speed focused requirements. Given
that there is a significant difference between the values for success rates with and with-
out filtering in the balanced case, one can assume the increase comes from the previous
hypothesis that the speed focused requirements are more efficient at selecting solutions
that can move the robot an appreciable amount during locomotion. The naive ap-
proach does not show the same increase in performance with different requirements,
but, in fact, a decrease (36% to 32%). This happens because the naive approach is
highly dependent on how good the solution chosen by those requirements is in different
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environments. Since it ignores the context variable, it chooses the same solution for
each trial. In the case of the balanced requirements, it happens to be a solution that is
slightly better at covering a minimum amount of ground, when compared to the speed
focused requirements. In two cases the random and naive approach show better mean
speeds when not considering robot falls, or speeds below the threshold. These results
from the trials that do not fail tending to be ones related to higher speeds, which are
also observable in the identification approach, but weighted down by the higher number
of successful simulations. In a related situation, the naive approach shows the lowest
average for the torque indicator for the speed requirements, but that is, again, tied to
a much lower success rate (32% to 68%).

Complete sensitivity dataset: identification of context values

Figure 7.2 shows the value estimated in each for the context variable by the identifi-
cation approach. Every context present in the sensitivity analysis (1, 2, . . . 12) was
correctly identified. For the rest of the values, given that they cannot be precisely es-
timated, the more desired outcome is a value directly below or above the nearest that
can be estimated. This can be observed in the plot between 3 and 8 degrees, with an
error of at most 1.5 degrees in the other cases. Given that the best overall success rate
did not go over 68%, and that the failures observed were all in misidentified contexts, it
is important to be able to correctly identify these values, or lessen the impact of these
errors somehow.

Reduced sensitivity dataset

The reduced sensitivity dataset bases its identification process, and the choice of the
final solution in a smaller group of contexts tested for each solution. Only the behaviors
for the values of 0, 2, . . . 12 were used, totaling seven different contexts, as opposed to
the original twelve.

Reduced sensitivity dataset: Wilcoxon test results

The Wilcoxon test results from Table 7.4 indicate that the reduced dataset leads to a
worse comparative performance than the complete set (Table 7.3), for every situation
expect for the torque indicator performance in the balanced requirements, against the
random approach. Here the sum of ranks of the differences is lower for the reduced
dataset, leading to a p-value of approximately 0.0557, which is close to the threshold
for it to be considered a statistically significant case. This might be a consequence
of the adaptation framework being forced to identify context values which solutions
are better at performing in certain environments, or it might result from the random
approach being more hindered by the reduced set. The only situation where the iden-
tification approach comparative performance worsened enough to become significant
was for the speed focused requirements, when comparing the torque indicator results
against the naive approach. The naive approach, focusing on one solution through the
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Figure 7.2: Real value of the context tested for, against the value identified by the adap-
tation framework. Results for the experiments with the DARwIn-OP on ramps with
different slope values, using the complete sensitivity dataset. Vertical lines mark the
context values which behaviors the solutions were tested for in the sensitivity analysis.
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Table 7.4: Wilcoxon test results for our approach (labeled ID) against random and
naive approaches, for the speed and torque features. Results related to the adaptation
tests on the DARwIn-OP, using the reduced sensitivity dataset. The values associated
with a statistical significant test (p-value < 0.05) are bolded.

Performance
requirements

Feature
compared

Sum of the ranks of the differences
p-value

ID approach Random approach

Balanced Speed 210 70 0.0562
Balanced Torque 67 213 0.0557
Speed Speed 225 90 0.0630
Speed Torque 176 139 0.5663

ID approach Naive approach

Balanced Speed 93 220 0.1060
Balanced Torque 54 261 0.0071
Speed Speed 191 89 0.0879
Speed Torque 228 52 0.0072

whole experiments, might have ended up choosing one that was comparatively better
than before in multiple environments, or the identification approach might just have
worsened enough. Both these situations can be cleared up when looking at the average
performances of each approach in the different settings.

Reduced sensitivity dataset: performance averages

Table 7.5 shows the average performances for the reduced sensitivity test. These ex-
periments led to worse results for the identification and random approaches, but to
better ones in the balanced requirements of the naive approach. This approach showed
the best success rate above the threshold speed, and the best averages for both speed
indicators. On top of that, it had a better overall mean speed and success rates than
the ones from the identification approach in the complete dataset tests. This highlights
the impact of the balanced requirements in choosing a solution that successfully allows
the robot to travel up a ramp. Even with the advantage of having the correct context
information, in some cases, the choice falls in a solution that performs worse than the
naive approach of ignoring the context variable.

Causes for some of the different performances, relative to the complete
dataset

As previously stated, the performance of the naive approach is completely dependent on
the solution chosen for every trial, which is the same. The one chosen in the reduced
set led to better average performances. Using the speed focused requirements, the
naive approach had worse success rates and better mean speeds, but its lower torque
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Table 7.5: Success rates and average values of performance indicators for the adaptation
phase tests for the DARwIn-OP, reduced sensitivity dataset. Shows results for all three
approaches tested, with two different performance requirements. Success rates are
shown both for strictly non falls, and filtered for a mean speed > 0.0075 m/s. Average
mean speeds are shown both for all trials, and for trials with a mean speed > 0.0075
m/s. The best averages for each performance requirements are bolded.

Average mean
Success rate (%) speed (m/s)

Approach
Performance
requirements

> 0.0075

m/s

Any
speed

Overall
> 0.0075

m/s

Average
τmean(N

2.m2)

ID Balanced 44.0 100.0 0.0444 0.1091 6.26
Random Balanced 16.0 80.0 0.0063 0.1172 6.72
Naive Balanced 52.0 52.0 0.0664 0.1317 6.76

ID Speed 60.0 60.0 0.0684 0.1080 9.21
Random Speed 32.0 36.0 0.0414 0.1146 8.66
Naive Speed 28.0 28.0 0.0362 0.1572 7.56

output, in combination with the decreased performance for the identification approach,
resulted in a statistically significant difference in the Wilcoxon test. The only relative
improvement for the identification approach, seen in the torque indicator against the
random approach, for the balanced requirements, seems to come essentially from a
slightly worse average in the random approach, which was not enough to make the
difference significant, although close (p-value = 0.0557).

Reduced sensitivity dataset: identification of context values

The values estimated for the context variable in each test for the reduced sensitivity
dataset are presented in Figure 7.3. These are the same for both sets of performance
requirements, since the identification step is independent of these. The errors observed
in this plot are similar to those of Figure 7.2. In this situation, 2 degrees is the minimum
step between the values in the reduced set (as opposed to 1 degree in the complete),
meaning larger errors are expected. There are two outliers with a larger error, meaning
that not only the reduced set has the unavoidable problem of not being able to identify
as much different discreet values as before, but it also has a larger issue with identifying
values close to those, resulting in greater errors, even when adjusting for the wider gap
between each context value.

7.3.3 Conclusions

This section shows the main conclusions taken from the adaptation experiments related
to the DARwIn-OP, which results are presented in Section 7.3.2.
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Figure 7.3: Real value of the context tested for, against the value identified by the adap-
tation framework. Results for the experiments with the DARwIn-OP on ramps with
different slope values, using the complete sensitivity dataset. Vertical lines mark the
context values which behaviors the solutions were tested for in the sensitivity analysis.
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• Conclusions related to the complete sensitivity dataset:

– The adaptation framework showed better performance values for both indi-
cators. The differences in speed are clear, and the ones in the torque output
are only significant in one instance.

– The adaptation framework had lower average performances in some in-
stances. However, these deficits are offset by a much larger success rate.

– The weight set by the balanced requirements on the speed feature was not
high enough to avoid situations where the robot moved less than 15 cm.
The same did not happen with solutions chosen by the speed focused re-
quirements.

– As with the iCub experiments, the results of the identification of the con-
text values suggest a relationship curve between these and the locomotion
features that may be close to a line.

• Conclusions related to the reduced sensitivity dataset:

– The adaptation framework showed worse relative performance when com-
pared with the complete dataset, with no clear statistically significant overall
advantages.

– The identification approach shows worse results relative to the complete
dataset. Specifically, the success rates do not offset the worse performance
values, for the balanced requirements.

– The good results for the naive approach highlight both the inability of
the balanced requirement to choose solutions with an acceptable minimum
speed, and the fact that the naive approach may get “stuck” with a good
solution, regardless of the dataset size.

7.4 Discussion

This chapter presented the experiments related to the adaptation framework exposed
in Chapter 6. Tests were conducted for both the iCub and the DARwIn-OP robots,
trying to find solutions for their controllers that enabled them to walk on floors with
different friction, or ramps with different slopes, respectively. Different performance
requirements were tested for each one, prioritizing different locomotion features. The
identification approach was tested against two others, called the random approach, and
the naive approach.

Overall effect of the identification of the context value

The random approach and naive approach were both used to control for the possibility
that the identification of the correct value for the environment variable was not advan-
tageous for the adaptation process. Globally, the results show that a correct estimation
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of this value brings a clear advantage, especially if the sensitivity dataset from where
the necessary information is drawn is large enough. Even in some cases where the vari-
able is estimated with a value that is close to the real value, but not equal to it, that
advantage is still observed. There are, however, a lot of misidentified values, because of
the fact that only some of them can be exactly estimated using the sensitivity dataset.
Given that the misidentified tests are the main source of failed trials, this is an aspect
which impact should be lessened somehow.

Results from the Wilcoxon tests

In the iCub Wilcoxon tests, the identification approach outperformed the other two in
the speed feature, for both sets of requirements, with a statistically significant differ-
ence. The tests applied to the torque feature showed two significant cases, one that
favored the identification approach, and other that favored the naive approach. The
DARwIn-OP tests with the complete dataset showed the adaptation framework had a
clearly better speed performance for three out of four cases, and one out of four cases
for the torque indicator. The adaptation framework was not worse in a significant way
for any of the comparisons. The reduced dataset led to comparatively worse perfor-
mances, with only the torque indicator advantage from before being kept. Additionally,
it led to the naive approach having a better torque output performance, when using
the speed focused requirements.

Performance averages in the iCub experiments

These tests that rely on direct comparison can be supplemented by the performance
averages of each approach in different categories. In the iCub tests, the identification
approach showed better success rates, and better averages for both performance indi-
cators, and for both sets of requirements, reinforcing the idea that the approach is well
suited for this particular situation.

How different performance requirements affect different control architec-
tures

The success rates shown in the DARwIn-OP’s experiments are lower than the iCub ones,
due to the nature of the environment variable; a ramp causes a physical obstacle that
needs to be successfully traversed. The locomotion control frameworks used in both
robots exacerbate this issue: the iCub was controlled by a dynamics based controller
that has no trouble reaching an acceptable minimum displacement, while the DARwIn-
OP was controlled by a CPG controller that does not guarantee forward movement.
Another consequence of this is the balanced performance requirements resulting in
worse success rates for this robot, since they do not prioritize speed enough to get the
robot moving in some cases. The balanced requirements are still better at achieving a
lower average torque output.
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Performance averages in the DARwIn-OP experiments, complete sensitivity
dataset

In the complete set results for the DARwIn-OP, the speed focused requirements showed
a better success rate than the balanced requirements, which is the opposite of what
was observed with the iCub. The random approach, which has an overall tendency
of going up or down in performance that matches the identification approach, for all
experiments, also has better performance with the speed focused requirements, unlike
the naive approach.

Performance averages in the DARwIn-OP experiments, reduced sensitivity
dataset

The tests conducted with the reduced sensitivity dataset led to worse average per-
formances for the identification approach, which matches the drop observed in the
Wilcoxon tests. The naive approach showed an improvement in the average perfor-
mances in the balanced requirements tests. It also showed a higher success rate, and a
better overall mean speed than the ID approach in the complete dataset, for the same
requirements. This occurrence highlights both the problem with the balanced require-
ments with selecting effective solutions, even with a correct estimation of the context
variable, and the possibility of the naive approach selecting an effective solution, which
by chance is applicable to multiple contexts.

Advantages and drawbacks of a naive approach

The possibility of the naive approach ending up selecting a solution that performs
well in a variety of contexts, also comes with the risk of selecting one that performs
below average. For example, the iCub Wilcoxon tests show two statistically significant
comparisons for the naive approach: one where it performs better, and other where
it performs worse. The performance averages for the iCub experiments, as well as its
success rates, are generally better for the random approach than those put out by the
naive approach. In the reduced dataset for the DARwIn-OP, the naive approach had
a better torque performance in the Wilcoxon test, using the balanced approach. This
results from both the drop in performance of the identification approach in the reduced
set, and the possibility of the naive approach to choose a good overall solution.

The hypothesis of a near linear relationship between the context variable
and the locomotion features

When analyzing the individual identification of each environment, a hypothesis was put
forward, stating that the same solution produces similar behaviors for similar values
of the context variable. This means the intended behavior in the identification process
is that, for the values that cannot be estimated correctly, the identification chooses
values that are as close to the real value as possible. Both in the iCub’s case, and in
the complete dataset for the DARwIn-OP, zones approximating this behaviors were
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identified. The reduced set for the DARwIn-OP showed a worse performance, even
when taking into account that the wider gap between each context value in the set will
naturally lead to larger errors.
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Chapter 8

Summary and perspectives

For humanoid robots, locomotion is both an important and difficult to control task.
Even finding control solutions that keep the robots standing can be difficult, and finding
solutions that maximize performance is even harder. Locomotion controllers usually
have open parameters that need to be tuned, and affect the outcome of the locomotion.
This can be used to optimize the control towards features such as speed or energy
consumption, or to adapt to changes to the terrain or the robot.

Broadly, approaches to humanoid locomotion control optimization can focus on an
analysis of mathematical relations, or use a derivative-free approach. Optimization
based on analysis is usually faster and potentially more precise, but they are not good
at generalizing towards different controllers, or optimization objectives. Derivative free
optimizations are better at generalizing, although they need take more time in offline
optimizations, and usually do not guarantee the best performing solutions (only “good”
ones).

The aim of the framework presented in this document is to offer an optimization
and adaptation approach that works with any bipedal locomotion controller with open
parameters. The optimization can be done towards different locomotion features, and
adaptation to new terrains is done by using a context variable that models a change in
the terrain/robot.

8.1 Goals

As a reminder, and for the sake of completeness of this summary, these are the main
goals of the work derived from this thesis:

• Optimize a humanoid locomotion controller towards multiple locomo-
tion features, and different contexts.

– Locomotion features are defined as measurable quantities related to the task,
such as speed, energy consumption, or stability measures.

– Contexts define the combination of the robot model, the terrain it walks in,
and the dynamics governing their interactions.
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– The optimizations setup should be as automated as possible, with minimal
input from the users in terms of selection of parameters and their ranges, as
well as stability features.

– These optimizations can be conducted offline, and are not especially time
constrained.

• Adapt the locomotion to different contexts and user preferred features.

– The solution (set of parameters) chosen depends on both the identified con-
text variable, and a hierarchy of user preferences for the locomotion features.

– These adaptations should be conducted online, are time constrained, and
should be as fast as possible.

8.2 Methodology and contributions

These are the methods used to achieve the proposed goals, and the contributions that
results from each of them:

• Run derivative-free optimizations that tune controller parameters to-
wards multiple locomotion features.

– This can be applied to any controller with open parameters, which are used
as optimization inputs.

– Any locomotion feature measurable during the task, and represented as a
single value, can be used as an optimization objective.

• Run a preliminary optimization with a more extensive setup, and use a
correlation analysis to chose the most relevant parameters and features
for later optimizations

– This helps automates the process, by selecting the optimization parameters
and objectives that most affect the chosen performance indicators.

– The range of values for each parameter is also decided by leaving out the
ones that always result in locomotion failures.

• A context variable is created to model a terrain or robot change, and
multiple optimizations are conducted, using different values of this
variable.

– Any terrain or robot characteristic that can be measured, represented as a
single value, and manipulated, can be used as the context variable.

– This provides insight regarding how different solutions are required to control
the locomotion in different contexts, and how these contexts impact the
task’s performance.
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• A sensitivity analysis is conducted by evaluating the best solutions for
each optimization in multiple contexts.

– This will determine whether optimizing towards a single context is enough,
by gauging if there is a solution adequate to all the contexts tested.

• A procedure designed to adapt to an unknown terrain first tries to
identify the value of the context variable, and then uses that informa-
tion, together with the data from the previous optimizations, to choose
a solution suited for the situation. The identification is done by comparing
the results of a trial run (in the unknown context) to the results of the previous
optimizations. The final solution is chosen taking into account a hierarchy of user
define preferences towards each locomotion feature (e.g., prioritizing speed).

– This adaptation procedure can be used to optimize the locomotion control
in situations where certain context changes are expected.

– The adaptation requires a trial run lasting a few seconds, and the compu-
tational cost is minimal, making it fast and suitable for online implementa-
tions.

– The user preferences, being arranged in a hierarchy, and given different
weights representing their importance, allow a choice between fast, or energy
efficient and stable behaviors, for example.

8.3 Conclusions

Literature review

Serving as the introduction to the main topic of this thesis, and as literature review,
Chapter 2 exposed the inherent complexity of the humanoid locomotion task, high-
lighting the difficulty to coordinate the different DoFs in a feasible gait, and making
it stable. It also explored different approaches to the control of this task, in order to
conclude how none of them is able to both optimize its open parameters towards clearly
defined locomotion features, as well as adapt to changing terrain, while being appli-
cable to different robots. It concluded that a derivative-free optimization approach,
somehow abstract in the modeling of the context changes, would be the most adequate
for the goals set in this project. The Inteligent Trial and Error algorithm from Cully
et al. (2015) was identified as the reviewed work that more closely achieved these goals.

Optimization framework: exploration phase

Chapters 4 and 5 present the framework for the optimization of a given locomotion
controller when applied to a given robot model, and the experiments conducted with
it. The framework was designed to support any controller with open parameters, as
long as it can be used to control the locomotion of the chosen humanoid robot model. In
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order to highlight this point, the framework was tested in three different robot models
(the iCub, the DARwIn-OP, and a virtual manikin), and two different controllers (a
dynamics based controller with tasks hierarchy, and a Central Pattern Generators based
controller).

The optimizations managed to reach higher speeds than those found in literature
for both the iCub and the DARwIn-OP, and obtain sets of solutions that show diverse
locomotion behavior in the three experimental setups. Adding stability measures as
optimization objectives in the iCub experiments resulted in higher maximum speeds
and a reduction if locomotion failures, at the cost of higher torque outputs. The
correlation analysis conducted in the DARwIn-OP experiments was used to tune the
initial optimization setup towards a less expensive one, both in terms of time and
computationally. The new setup also resulted in improved maximum speeds.

These tests were also conducted in terrains with one varying parameter, and a
sensitivity analysis showed that in no case there was a solution that could be optimal
in every terrain tested, underlining the need for the adaptation to these changes.

Optimization framework: adaptation phase

Chapters 6 and 7 delineate the second stage of the thesis’s method — the adaptation
phase — and the experiments and respective results related to it. This framework
supports itself with the data from the exploration phase, which lead to using two of the
same robot models from the previous experiments (the iCub and the DARwIn-OP),
and the same controllers.

The results show that, although there is not a suitable comparison with other
works in literature, the correct identification of the terrain parameter improves the
final locomotion performance. In the iCub experiments, the identification approach
outperformed both a naive one that ignored the context variable, and an approach that
selected the value of this variable randomly. The same was observed for the DARwIn-
OP experiments with the complete sensitivity dataset. These results were worse with
a reduced dataset, showing the importance that the data from the exploration phase
has in a correct identification of the context, and, consequently, a good choice of a final
solution.

The proposed strategy to encode user requirements towards different locomotion
features, such as a faster gait, or a more energy conservative one, also showed that it is
suitable to select solutions more geared towards those requirements. The requirements
focused on speed always resulted in better overall average speeds for the identification
approach. The balanced requirements, not being as focused as the former, led to mixed
situations. They lead to higher success rates on the iCub, but the ramp in the DARwIn-
OP trials meant that a focus on speed was more effective at achieving an acceptable
minimum speed.
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8.4 Discussion

As proposed, the overall adaptation framework, which includes an exploration phase
to support the adaptation, can optimize any locomotion controller with open param-
eters, applied to any bipedal robot. The only constraint to this is that the robot, the
controller, and interactions between them and surrounding terrain are simulated in a
computer. The framework can optimize towards different contexts, as long as those
changes are modeled under a numerical variable. Different locomotion features can be
used as optimization objectives, and multiple examples were proposed, both perfor-
mance and stability related. Both these features, and the controller parameters being
optimized, can be automatically selected from a larger list, using a correlation analysis.

The adaptation scheme achieves the two main goals set for this phase: 1) it is
conducted in two locomotion trials, with minimal time between them, for additional
computations; 2) this adaptation can take into account a context variable included in
the exploration phase, on top of user preferences towards different locomotion features.

8.4.1 Main advantages and disadvantages

The experiments with multiple setups showed the proposed framework can be applied to
different humanoid robots, locomotion controllers, and context changes. It can also be
applied to different situations, such as changing contexts and user preferences towards
performance indicators. Implementation of the framework in these different setups is
made easier with a correlation analysis that can be used to select the most relevant
controller parameters and locomotion features. Additionally, the exploration phase can
provide information for the design phase of both a robot (using design parameters in
the optimization), and a controller, since it provides information about the potential
locomotion behaviors they produce.

Making the framework flexible makes it less effective in specific situations. If the
goal is to adapt a specific humanoid robot, which locomotion is controlled by a specific
system, a more focused approach is more appropriate. As an example, making full
use of the robot’s sensors and their feedback, and adapting the controller to use that
feedback, is usually a better approach for specific adaptations. Additionally, although
the adaptation framework was developed with making everything require as little out-
side input as possible, the context parameter still needs to be specifically modeled in,
with possible exceptions for common changes (such as terrain slope, friction, or height
differences).

The length of the exploration phase can be a problem when adapting to a new type
of context change. The impact of this problem is lessened by the fact that this time
cost is predictable, as part of the design of the adaptation system, and in line with
the time spent by other approaches in this implementation phases. On top of this, a
shorter exploration phase can be employed by using previously obtained sets of optimal
solutions, and only exploring those in the new environments.

Another point of concern is the possibility of the robot falling during the adaptation
process. Even though the solution used for the identification is selected with safety in
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mind, this is impossible to guarantee. The robot can be secured with some sort of safety
device, but this can affect the locomotion process itself, changing the outcome of the
desired solution. This outcome is already, in part, unpredictable, because of the issue
of controllers evolved in simulation becoming less efficient when applied to a physical
model of the robot. Koos, Mouret, and Doncieux (2013) proposed a solution to this
problem, in the context of evolutionary algorithms, which is to model the concept of
transferability as an optimization objective. They define this as simulation-to-reality
disparity measure, and applied the framework to navigation tasks of an e-puck robot
and a 8 DoF quadrupedal, finding efficient controllers for both cases.

8.4.2 Towards a full-fledged implementation of the adaptation frame-

work

With such a big focus on usability and broad application potential, an important point
to make is how far this framework is from being implementable as an actual application.
Generally speaking, each optimization needs a framework that simulates the controller,
the locomotion dynamics, the terrain, and a virtual robot model. This framework needs
to be able to receive controller parameters to use in locomotion trials, and output
features of locomotion after these end. Additionally, it needs to be able to control
parts of the environment, to use as context variables.

Regarding the setup of the optimizations for the exploration phase, the implemen-
tation of locomotion features and context variables both come into question, since the
parameters are dependent on the controller. In both cases, these measurements and
variables need to be implemented in the simulation framework, case by case.

The features should be well defined, and common to the largest amount of hu-
manoids possible. Features dependent on sensors should be avoided, with possible
exceptions made for more common ones. These guidelines are meant to provide a list
of features that can then be filtered with the results from a correlation analysis, but
other features can be implemented by the user, provided that they can be measured in
the simulation environment.

Similar to the locomotion features, a list of pre-defined context variables can also
be developed, and more can be implemented, as long as they can be represented by a
single value. Terrain changes such as friction and slopes levels can be easily modeled as
a single real value, as long as they are implemented in the simulation. Variables that
need the control of parts of the context which is not possible in some simulations can
be implemented in other situations.

The adaptation phase, when applied to a physical robot, needs a controller imple-
mented in the model, or a connection to a computer that can send commands to its
joints. Measurements of locomotion features must be made either by reading the out-
puts of the robot’s sensors, or by measuring these quantities with other devices. The
adaptation framework needs to communicate with the robot, ideally through a link
to a computer, since implementing the framework directly in the robot could require
additional development time.
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8.5 Perspectives

This sections presents overall thoughts on this work, as well as perspectives regarding
future improvements.

8.5.1 Time cost and safety of the adaptation framework

One of the goals of this project was to keep the time spent in the adaptation process to
a minimum. This needs to be balanced with the fact that, ideally, the process is safe
at all time, and ensures the robot does not fall (or minimizes this possibility).

The exploration phase, requiring thousands of optimizations in different contexts,
can take weeks. This phase is intended to be performed offline, and in a simulation
environment. Having an exploration unconstrained by time, and by the computational
limitations of a bipedal robot, can reduce the adaptation time.

The adaptation phase requires at least two trials: one to identify the solution, and
another to evaluate if the performance resulting from the selected solution is acceptable.
If feedback is introduced in the adaptation process for situations where the initially
chosen solution does not provide a good performance, the process could go on for 3, 4,
or more trials. In the experiments conducted in this work, each trial takes around 20
seconds to complete. Allowing for 10 seconds for setting up the robot between trials, 1
minute could be enough for the whole process, whereas an adaptation requiring 4 trials
could take 2 minutes. This is an acceptable amount of time, but it could be reduced if
the trials’ duration was adaptive (see subsection 8.5.4).

Regarding safety, the adaptation process tries to keep robot falls to a minimum by
choosing solutions safe in the largest amount of contexts possible. For the choice of
the final solution, stability features can be given relatively high preferences in order
to avoid locomotion failure. The success rates from the adaptation experiments in
Chapter 7 show that different requirements are better at reaching safer solutions in
different situations (balanced for the iCub in different CoFs, speed focused for the
DARwIn-OP going up a ramp). Absolute safety is impossible to guarantee, since it
depends on how risky the unknown context being adapted to is, and how much stability
the locomotion control and robot provides.

8.5.2 Adding feedback to the adaptation process

The current framework has no feedback after an unsatisfactory adaptation. If the final
solution results in a robot fall, or low values of performance, that information can be
used to inform either a new identification, a new selection of the final solution, or both.

The identification process can be repeated with a different balance between the
safety and the feature variability the solution provides. This can lead to a different
identification, and, consequently, a different choice in the final stage. Another option is
to, instead of re-doing the identification trial, directly changing the identified context
value to one immediately above or below it (from the list of the values tested in the
sensitivity analysis).
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If the first identification is deemed to not be the source of the problem, or if the
second one identifies the same context value, changes can be made to the choice of the
final solution instead. If the issue is a locomotion failure, the set of user preferences can
be modified to give a bigger weight to the stability features. If it is a performance issue,
they can be made to focus that, or those, particular performance features instead.

8.5.3 Automatization of the exploration phase

The exploration phase requires the definition of what controller parameters need to be
optimized, the locomotion features used as optimization objectives, and the context
parameters modeled. This process can be time consuming and require user expertise.
Making the exploration phase as automated as possible, by avoiding this necessities,
accentuates the universal applicability of this approach.

The correlation analysis on a preliminary optimization can be used to filter down the
list of parameters. Stability features, to be optimized along the performance features,
can also be decided upon in a manner similar to the parameters, with the initial set
consisting of measures that can be applied and measured to humanoid robots, regardless
of the sensors they possess. Additionally, some measures dependent on common sensors
can be considered (e.g., using touch sensors on the feet).

The biggest obstacle towards the workflow evidenced in this project was the re-
strictions required by the DARwIn-OP in order to ensure it moved past the ramp, and
not backwards, or not at all. The solution was to formulate the speed feature in a
more focused way (specifying the direction), and adding a restriction to the minimum
acceptable speed. This changes would not have affected the iCub optimizations, since
the minimum speed was always observed (when it did not fall), and the LQP controller
ensured the robot walked in the right direction. Taking this into account, it is possible
that simply using this considerations in every situation would solve the problems where
needed, and not negatively affect the rest of the optimizations.

Regarding the software implementation of the framework, it should be as inde-
pendent as possible of the locomotion controller, and the simulation environment. The
optimization algorithm decides the values of parameters to be optimized, and the frame-
work sends that information to the simulator, receiving, in turn, the features resulting
from the locomotion. It also should be able to tune the optimization setup with the
information from the correlation analysis.

8.5.4 Duration of each trial

In the experiments conducted throughout this thesis, each individual trial took 20
seconds to complete. A possibility to minimize this duration, it to make it adaptive,
ending the trial whenever the decision is made that the information gathered is enough.

If the locomotion features/optimization objectives used are an average over time,
it is possible to track these values, and stop the simulation if they have changed over
time in a similar manner, i.e., if the locomotion shows periodicity, and that period is
successfully detected.

137



8.5.5 Optimizing towards multiple context variables

One possible expansion to the optimization framework is expanding the context vari-
able, ✓, to a vector that contains multiple values, therefore modeling more than one
aspect of the environment.

Given the number of simulations conducted for each value of ✓ in the experiments in
Chapter 5, there is a need to change the general approach, since adding more variables
would result in, for instance, with two variabless, nθ,1 ⇥ nθ,2 optimizations, each one
requiring thousands of simulations. nθ,1 and nθ,2 being the number of context values
tested for each variable.

One way to reduce the number of optimizations would be optimizing towards one
value of each context variable, and then testing those Pareto fronts in the nθ values,
instead of conducting full optimizations. Choosing the values to do the initial opti-
mizations would be a problem in itself. In the iCub experiments the sensitivity analysis
showed the solutions optimized for the lowest value of coefficient of friction were the
best at generalizing towards other values (see Section 5.1.5), while in the DARwIn-OP
experiments these solutions were the ones resulting from the optimizations for values
in the middle of the range tested (see Section 5.2.5).

For the adaptation phase, the choice of the solution for the identification process
needs to be rethought. Ideally this solution would show diversity in the nθ,1 ⇥ nθ,2

contexts it was tested in. It could, however, be impossible to find a solution that does
not show redundancy in terms of output for some of these combinations of values, due
to the sheer number of these. An alternative would be to tend towards safer solutions
in the final selection, protecting against a failed identification.

8.5.6 Relation between context values and locomotion features

The mathematical relationship between the values of the context variable ✓ and the
locomotion features b is important in the adaptation process, since the identification
of the context depends on it.

Some evidence from the adaptation experiments in Chapter 7 supports the hypoth-
esis that this relation may resemble a linear one, in some setups. A linear relationship,
or simply one easy to encode and extrapolate, would mean that one could try to find
this relationship from a small sample, and apply it to an expanded set of context values.
This would open up the possibility of correctly identifying contexts not explored in the
initial optimizations, as well as further informing the selection of the final adaptation
solution.

8.5.7 Optimizing a humanoid for total mass and height

The optimizations in the XDE-manikin for different combinations of the robot’s total
mass and height (see Section 5.3) provided both expected, and somehow unexpected
results. These types of optimizations can be important in the design phase of a bipedal
robot. Other aspects of the robot, such as the length of each limb, or other parts of
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its kinematic structure, as well as the mass of different sections, can be used in this
context.

This hypothetical design phase optimization could be made more efficient by using
the robot’s mass and height as optimization inputs, along with controller parameters,
or simply by themselves. This would make the optimization more focused in the design
aspect, rather than finding a large Pareto front of solutions for one specific model of
the robot.

An example of such an approach is the one presented by Maurice et al. (2017),
which uses an evolutionary algorithm to optimize the design of a virtual humanoid. It
encodes estimations of biomechanical demands during manual activities as ‘ergonomic
indicators”, and optimizes parameters controlling the design of the robot. The most
informative ergonomic indicators are used as optimization objectives.
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Appendix A

Description of the robot models

used

This appendix describes the models of the robots used in this work: the iCub, the
XDE-manikin, and the DARwIn-OP.

A.1 Description of the iCub model

The iCub (Parmiggiani et al., 2012), seen in Figure A.1 (a) is approximately 1 m
tall, weights approximately 24 kg, and has 53 DoFs. The virtual model used in the
experiments in this thesis is a simplified version with not hand or eye joints, reduced
to 32 joints, and with 4 contact points modeled for each foot.

The kinematic structure of the model (Figure A.1 (b)) used in the XDE simulator
can be seen in Figure A.1 (c), and is described in Table A.1.

A.2 Description of the XDE-manikin

The XDE-manikin, displayed in Figure A.2 (a), is a virtual humanoid robot constructed
for the XDE simulator (Merlhiot et al., 2012). When changing the height and mass of
this system, its kinematic structure and the volumes of its body segments are main-
tained in the same proportions, although they are scaled with the changes, according
to average scaling coefficients (Open Design Lab Tools: Proportionality Constant Cal-
culator ; Mass of body segment - calculation).

The robot has 21 segments and 20 joints, some of which have multiple DoFs, for a
total of 45, not counting the 6 from the free floating base. This structure can be seen
in Figure A.2 (b), and it is described in Table A.2.
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Figure A.1: Images related to the iCub, showing a photograph of the robot (a) (from
(Parmiggiani et al., 2012)), a screenshot of the model of the robot used in the XDE
simulator (b), and the kinematic structure of the model used in XDE (c) (adapted from
(Parmiggiani et al., 2012)).

(a) (b)

Figure A.2: Images related to the XDE-manikin, showing a screenshot of the robot in
the XDE simulator (a), and the kinematic structure of the model (b) (from (Maurice,
2015)).
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Table A.1: Kinematic structure and joint names of the model of the iCub robot. The
coordinate system is the one used in the XDE simulations.

Body part Joint Axis

Head
Head roll X
Head pitch Y
Head yaw Z

Torso
Torso roll X
Torso pitch Y
Torso yaw Z

Right/Left arm

Shoulder roll X
Shoulder pitch Y
Shoulder yaw Z
Elbow pitch Y
Elbow yaw Z
Wrist roll X
Wrist pitch Y

Right/Left leg

Hip roll X
Hip pitch Y
Hip yaw Z
Knee Y
Ankle roll X
Ankle yaw Y
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Table A.2: Kinematic structure, joint names, and number and direction of axes for
each joint, for the XDE-manikin humanoid. Data from (Maurice, 2015)), using the
coordinate system that was used in the XDE simulations.

Body part Joint Axes

Torso

Lower back X Y Z
Upper back X Y Z
Neck X Y Z
Head X Y

Right/Left arm

Clavicle X Z
Shoulder X Y Z
Elbow Y Z
Wrist X Z

Right/Left leg

Hip X Y Z
Knee Y Z
Ankle X Y
Toes Y

A.3 Description of the DARwIn-OP model

The DARwIn-OP (Figure A.3 (a)) is an open source humanoid robot platform devel-
oped and manufactured by ROBOTIS in collaboration with the University of Pennsyl-
vania (Ha et al., 2011). It is 0.455 m tall, weighs 2.8 kg, and has a total of 20 degrees
of freedom.

The kinematic structure of the model (Figure A.3 (b) used in the Webots simulator
can be seen in Figure A.4, and is described in Table A.3.

(a) (b)

Figure A.3: Images related to the DARwIn-OP, showing a photograph of the robot (a),
and a screenshot of the model of the robot used in the Webots simulator (b).
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Y

Figure A.4: Kinematic structure of the DARwIn-OP robot (adapted from (RoboSavvy
- Robots)).

145



Table A.3: Kinematic structure and joint names of the model of the DARwIn-OP robot.
The coordinate system is the one used in the Webots simulations, seen in Figure A.4.

Body part Joint Axis

Head
Head pitch X
Head yaw Y

Right/Left arm
Shoulder roll Z
Shoulder pitch X
Elbow X

Right/Left leg

Hip roll Z
Hip pitch X
Hip yaw Y
Knee X
Ankle roll Z
Ankle pitch X

A.3.1 Webots simulation

The robot will be simulated in Webots (Michel, 2004), which is a platform developed
by Cyberbotics Ltd and used to model, program and simulate mobile robots. Webots
allows for a full dynamic simulation using a physics engine. It also provides the option
for low level control of a robot’s servos, and the simulation of the sensors present in
the DARwIn-OP robot that are necessary to collect necessary feedback information.
Furthermore, the code for its controllers can be written in C++, which is a flexible
language with fast computation times that can also be used in the chosen robot. There
is a open-source DARwIn-OP with Webots project (Github: webots-cross-compilation).

Webots also contains a model of DARwIn-OP out of the box. The simulated model
of DARwIn-OP was designed to be as close as possible to the real robot. Is is equipped
with the following sensors and actuators:

• 20 servos.

• 5 LED’s (including 2 RGB ones).

• A 3 axes accelerometer.

• A 3 axes gyroscope.

• A camera.

A.3.2 DARwIn-OP physical limits

Each of the 20 Dynamixel MX-28 servos has the configuration presented in Table A.4.
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Table A.4: DARwIn-OP’s servos physical configuration.

Servo characteristic Numeric limit Units

maxForce 2.5 N.m
acceleration 55 rad/s2

maxAngularVelocity 12.26 rad/s
dampingConstant 0.002 —
staticFriction 0.025 N.m
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Appendix B

Dynamics based control with

task hierarchy

This appendix briefly describes a dynamics based locomotion approach, where variables
from dynamics equations are optimized through linear-quadratic programming (LQP)
(Rockafellar, 1987). The control system also applies a task based hierarchy, where
different sub-tasks are given relative importance based on weights. It was developed by
Joseph Salini during his PhD thesis (Salini, 2012; Salini, Padois, and Bidaud, 2011),
and implemented in C++ and used in XDE with python wrappers.

Additionally, we will detail, for each of the experiments done with this controller,
the numbers used for the control variables that need to be tuned, but were not part of
the optimization process.

B.1 Control scheme summary

Equation of motion and control objectives

The robot is considered a multi-body system modeled with rigid bodies, and applies
bounded torque on each joint. It follows Euler-Lagrange motion equations,

M(q)q̈ +N(q, q̇)q̇ = g(q) + Jχ(q)
>�, (B.1)

that relates the joint positions q, velocities q̇, and accelerations q̈, to the mass
matrix M(q), the nonlinear effects matrix N(q, q̇), the gravity forces vector g(q) and
the generalized wrench Jacobian Jχ(q), which describes how external forces affect the
system in motion. � is called the action variable, and is composed of the vector of
contact forces, and the vector of torque inputs, � = [w>

c , ⌧
>]. X is called the dynamic

variable of the system, and includes the joint accelerations, the contact forces, and the
joint torques, X = [q̈>,�>]. The motion equation can be used to optimize the system
towards any of these variables.
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Tasks definition

This controller uses formalized tasks, defined as the servoing of a frame attached to the
robot body to a desired goal value. A generic task function is defined as the norm of
an error dependent on X which has to be minimized in the dynamic space

T (q, q̇,X) =k E(q)X� f(q, q̇) k2, (B.2)

where (E(q)X� f(q, q̇)) is the error to minimize.
A task servoing controller is used to track and minimize the error of these task

functions. For example, when tracking a twist,

ṫ
des

= ṫ
goal

+Kp✏p +Kd✏̇p, (B.3)

where ṫ
goal

is the trajectory reference acceleration, ✏p, ✏̇p are the pose and velocity
errors, and Kp, Kd are the proportional and derivative gains reflecting respectively the
stiffness and the damping of the virtual system.

The tasks used to achieve a desired high-level decision are subject to the equality
and inequality constraints of the equations of motion and some actuation limits, as well
as some incompatibilities between them, leading to the use of an optimization program,
LQP. The actuation limits involve limiting the torque output of the system, and the
range of motion and velocity of the actuators.

Frictional contact

The robot interacts with its environment through a set of contact points linked to
its bodies. The ith contact depends on two variables, one describing its velocity vci

and the other describing its force wci . Each one has a related Coulomb friction cone
which relates the tangential component of the force with the normal component (Beer,
Johnston, and Mazurek, 2013). A frictional contact has different discrete states, with
two being distinguished here: the point does not move, or it takes off. When the contact
is persistent the velocity is null and the forces lie inside the Coulomb cone, with the
cone being approximated by a linear cone Cci . In the second case, the velocity along
the contact normal n is greater than 0 and the the contact wrenches are null.

case 1 (contact is persistent): vci = 0

Jci(q)q̈ + J̇ci(q, q̇)q̇ = 0 (B.4)

Cciwci  0 (B.5)

case 2 (contact is lifting) : vci .n � 0

wci = 0 (B.6)
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Table B.1: Tasks for the control of the iCub’s and XDE-manikin’s locomotion. The
tasks can minimize the error of a frame or a joint. Kp and Kd are the proportional and
derivative gains of the task tracking controllers.

Task Type w Kp(s
�2) Kd(s

�1)

Minimization of X - 1e�7 0.01 2 2
p
10

ZMP control Frame 10 0 0
Right foot trajectory control Frame 10 100 20
Left foot trajectory control Frame 10 100 20
Contact points tasks Frame 1 0 0
Posture task for the arms Joint 0.01 9 6
Posture task for the leg Joint 0.01 9 6
Posture task for the back Joint 0.1 25 10
Task for the waist pose rotation Frame 10 9 6
Task for the waist pose altitude Frame 10 9 6
Contacts friction task Frame 1 0 0

Tasks priorities: weighting strategy

A weighting strategy associates each task with a coefficient that sets its importance
with respect to the others, the task weight w.

B.2 Tasks and weights used for the locomotion control of

the iCub and the XDE-manikin

The control framework was implemented in the iCub’s and the XDE-manikin’s loco-
motion control in the XDE simulator. The objective was to, at each time-step, solve
a group of QPs to retrieve the torques for each joint. Let X

⇤

i be the solution to the
problem:

minX
1

2
(

n
X

i=1

(w2
i .Ti(q, q̇,X)) + w2

0.T0(q, q̇,X))

s.t. :
GX  h

AX = b

The QP solver used was qld, with a sampling time of both XDE physics and the
LQP solver of 0.01s.

The tasks implemented in the controller for the iCub’s locomotion are described in
Table B.1. The feet trajectories tasks control the feet frames accelerations toward given
trajectories derived from the ZMP trajectory calculated from the ZMP control system.
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Contact tasks are used for each contact modeled, and are represented in the solver as an
inequality constrain that represents the limitation of the contact force that must remain
inside the cone of friction. The posture tasks maintain some of the joints at default
values, so the robot stands in a normal position if the there are no walking controller
commands. The waist pose tasks are used to keep a default “upright” pose of the robot.
Additionally, feet and waist controllers that use a ZMP trajectory to generate feet and
waist trajectories to be followed by their respective tasks. Regarding the actuation
limits, the torque in all the joints is limited to 80 N.m, and no limits were imposed on
the joints positions and velocities. In addition, a frictional contact constraint takes into
account the relation between the tangential and vertical components of force acting on
the feet so the robot doesn’t fall. This ratio is constrained to a value of 1.5.

The contacts are added as tasks because the constraint of having a 0 m/s velocity
when touching the ground can be treated either as a rigid equality constraint, or as
an objective, in which case the acceleration of the contacts is minimized. This is more
flexible and prevents the controller from finding no solutions in the case where stopping
the motion completely is not feasible. Adding a contact task adds a contact point in
the model of the contact contained in the XDE model instance, and it adds in the
solver an inequality constraint that represents the limitation of the contact force that
must remain inside the cone of friction.

B.3 Actuation limits constraints

The characteristics of the actuators bound their range of action. The torque is bounded
in a way dependent on the dynamic variable of the system, �,

⌧min  ⌧  ⌧max (B.7)

The range of motion and the velocity of the actuators are also bounded, and, in
order to describe these in terms of �, the following constraints are used,

qmin  q + q̇h1 + q̈(h1)
2/2  qmax (B.8)

q̇min  q̇ + q̈h2  q̇max (B.9)

where h1 and h2 are anticipation coefficients set to predict the future value of the
state (q, q̇) given the generalized acceleration q̈ of the system.

In the iCub and XDE-manikin presented in this document, the maximum torque
was set at 80 N.m. The joint position constraints were disabled, because they caused
XDE to crash often, and no joint velocity and acceleration constraints were used.
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Appendix C

CPG-based control

This appendix briefly describes a CPG based locomotion approach (Matos and Santos,
2012; Matos, 2013), that aims to be a model-free biped locomotion control approach
allowing for easy parametrization, progressive building of a motor repertoire, and the
inclusion of feedback mechanisms for modulation and adaptation of the generated joint
trajectories. It was implemented in C++ in the Webots simulator, and used in simu-
lations with a model of the DARwIn-OP in this project.

C.1 Control scheme summary

Each CPG produces the motions for a single leg, and is modeled in two layers: a
rhythmic generation layer producing the temporal reference that feeds into a pattern
generation layer to produce the spatial references. These references are represented
as sums of motion primitives, which are encoded as a set of non-linear dynamical
equations with well-defined attractor dynamics, and are smoothly regulated in regard
to their amplitudes, frequencies, and pattern offsets. These motion primitives consist
of sinusoidal and bell-shaped trajectories.

The same motions are produced for each leg, maintaining a contralateral anti-
phase relationship. In order to simplify the walking behavior, it is assumed the feet are
maintained parallel to the ground during the whole step cycle. Each motion pattern
generator contains a set of motion primitives that can be disabled or modulated through
parameter manipulation.

C.2 Rhythm generator

The rhythm generator layer is implemented as a coupled phase oscillator,

�̇i = ! + k sin(�i � �o + ⇡), (C.1)

which results in �i being an increasing periodic signal that is used as the phase of
the leg i, with rate !. �o is the phase of leg o, kept in a desired relationship with the
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oscillator for i. The coupling strength can be controlled with k.

C.3 Motion primitives

A motion pattern generator, implemented as a set of nonlinear dynamical equations,
generates a list of positions for each joint, taking into account the primitives for all the
desired motions. The position zj,i of joint j from leg i is generated according to the
current phase of the leg, �i, obtained through C.1,

żj,i = ↵(Oj,i � zj,i) +
X

f(zj,i,�i, �̇i). (C.2)

The offset attractor Oj,i is a position żj,i converges to if ↵ > 0. Each motion primitive
is defined by a function f(zj,i,�i, �̇i).

Each motion function can be the form of either a sinusoidal profile,

fmotion
j = �Aj,motion�̇i sin(�i + motion), (C.3)

or a bell-shaped profile,

fmotion
j =

Aj,motion�̇i(�i + motion)

�2
exp

⇣

� (�i + motion)
2

2�2

⌘

. (C.4)

In these equations, Amotion is the amplitude of the motion, � the phase of the current
leg,  motion the phase shift, and � the width of the bell curve.

Next, a set of motion primitives put together to achieve basic goal-directed bipedal
walking is presented. These equations resort only to sinusoidal and bell-shaped joint
trajectory profiles.

Balancing Motion

The balancing motion displaces the CoM in the frontal plane from one foot to the
other, in order to place the hold on the current support foot. It acts on hip and ankle
rolls as a sinusoidal trajectory that makes the robot oscillate laterally. If the motion
of these joints is symmetrical, the feet will be parallel to the ground.

Flexion Motion

The flexion motion is meant to achieve the vertical clearance of the foot in the swing
phase. It changes the vertical length of the leg by actuating in the three pitch joints:
hip, knee, and ankle. The hip and knee trajectories are bell-shaped curves, and the
motion in the ankle is the sum of the previous two, imposing a parallel foot to the
ground.
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Compass Motion

The compass motion is responsible for the propulsion of the body during locomotion. It
moves the legs in the sagittal plane, alternating between the contralateral legs forward
and backward. The motions are described as sinusoidal curves for the hip and ankle
pitch joints.

Knee Yielding Motion

The knee yielding motion is used in the supporting foot at the start of the stance phase.
This is done when the body weight is passed to the foot, and it flattens the vertical
trajectory of the CoM. The joint trajectories are applied to the knee and ankle joints,
and are described by a sinusoidal profile.

Pelvis Rotation Motion

Alternate rotation of the pelvis can contribute to improve stability by smoothing the
inflections when changing the vertical direction of the CoM. This motion can also
increase the horizontal length of a step by twisting the body and placing the swinging
foot further in front. This pelvic rotation is implemented as a sinusoidal trajectory
applied to the hip yaw joints.

C.3.1 Motion primitives parametrization

Selecting different amplitudes and offsets for the various motion primitives described
above changes some features of the walking task.

Changing the offset values will change the initial posture of the robot. This posture
usually consists of flexed legs with a slight forward tilt, allowing for the onset of a swing
phase. Offsets of the hip and ankle roll joints are set as symmetrical to make the legs
point inward in the frontal plane. Offsets for the hip, knee and ankle pitch joints define
the initial vertical leg length.

The amplitude of the balancing motion affects the movement transferring the CoM
over the two feet, alternately. An amplitude that makes the displacement of the body
weight get directly above the center of the support feet is probably preferred. Going
past that value might make the CoP go over the valid support region. Changing the
amplitude of the flexion motion changes the total vertical clearance of the feet in the
swing phase. The amplitude of the compass motion is directly tied to the length of
each step (thesis mentions an almost linear relation).

The influence of each motion primitive parameter in the final trajectory of the robot
is not clear. When they are combined, the achieved kinematic and dynamic behaviors
are difficult to anticipate.
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C.3.2 List of the CPG controller’s parameters tuned

Here are listed all the parameters tuned in the optimization process. In addition to
these, other, lower level parameters, could possibly be used, but they have a lower
impact in the behavior of the locomotion, and a list of twenty parameters is already
one that needs to be decreased for this kind of optimization to work effectively.

• ↵: Time constant of the dynamical equations for the motion primitives. Higher
values increase the rate of change of the outputs. A value of ↵ > 0 is required
for the stability of the dynamical system.

• T : Period of oscillation of the generators oscillators of both legs.

• Abalancing,hip: Amplitude for the hip roll function of the balancing motion.

• Abalancing,ankle: Amplitude for the ankle roll function of the balancing motion.

• Aflexion,hip: Amplitude for the hip pitch function of the flexion motion.

• Aflexion,knee: Amplitude for the knee pitch function of the flexion motion.

• Aflexion,ankle,h: Amplitude for the ankle pitch function of the flexion motion, hip
function contribution.

• Aflexion,ankle,k: Amplitude for the ankle pitch function of the flexion motion,
knee function contribution.

• Acompass,hip: Amplitude for the hip pitch function of the compass motion.

• Acompass,ankle: Amplitude for the ankle pitch function of the compass motion.

• Ayield,knee: Amplitude for the knee pitch function of the knee yielding motion.

• Ayield,ankle: Amplitude for the ankle pitch function of the knee yielding motion.

• �flexion,hip: Amplitude of the bell curve for the flexion motion for the hip, i.e.
the duration of the movement.

• �flexion,knee: Amplitude of the bell curve for the flexion motion for the knee, i.e.
the duration of the movement.

• Ohip,pitch: Offset for the hip pitch trajectory, left and right equal.

• Oknee,pitch: Offset for the knee pitch trajectory, left and right equal.

• Oankle,pitch: Offset for the ankle pitch trajectory, left and right equal.

• Ohip,roll: Offset for the hip roll trajectory, left and right symmetrical.

• Oankle,roll: Offset for the ankle roll trajectory, left and right symmetrical.

• Ohip,yaw: Offset for the hip yaw trajectory, left and right symmetrical.
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