Bridge Maintenance, Safety, Management, Life-Cycle Performance and Cost

Editors
Paulo J.S. Cruz, Dan M. Frangopol & Luis C. Neves
Table of Contents

Preface XXXI
Conference organization XXXIII

T.Y. Lin Lecture
Bridge forms and aesthetics 3
M.-C. Tang

Keynote Lectures
Protection of our bridge infrastructure against manmade and natural hazards 13
F. Seible, G. Hegemier, J. Wolfson, R. Conway, K. Arnett & J.D. Baum
Bridge management: Actual and future trends 21
J.R. Castro
Life time assessment of bridges 31
U. Peil, M. Mehdianpour, M. Frenz & K. Weilert
Cost-effectiveness of seismic bridge retrofit 39
M. Shinozuka, Y. Zhou, S. Banerjee & Y. Murachi
The important roles of bridge maintenance and management on transportation safety and efficiency 47
M.M. Lwin
Application of the structural health monitoring system to the long span cable-supported bridges 53
S.-P. Chang
Innovative structural health monitoring of bridges in Portugal 61
J.A. Figueiras & C.M. Félix
Developing a probability based limit states bridge specification – U.S. experience 69
J.M. Kalicki
Stonecutters bridge – durability, maintenance and safety considerations 77
M.C.H. Hui & C.K.P. Wong

Technical Contributions

Bridge management systems
The first regional level bridge management system application in Italy 87
E. Spallarossa
Development of lifetime maintenance strategies for highway structures based on the experience of a Japanese Highway Agency
M. Matsumoto & D.M. Frangopol

Life cycle cost optimization of a bridge superstructure considering maintenance history
Y.S. Shin, J.H. Park, Y.J. Ahn & H.S. Lee

The bridge management system in Osaka-City
M. Ishida, T. Iritani & M. Jido

A bridge management system applied to a set of Portuguese bridges
J.O. Almeida & R. Delgado

Optimal maintenance strategies for existing infrastructures under seismic risks
T. Koike & I. Aoki

Small and medium size bridge maintenance sequence analysis by optimization technique

Internet-based management of major bridges and tunnels using the Danbro+ system
J. Bjerrum & F.M. Jensen

Use of genetic algorithms for optimal policies of M&R in a bridge network
F.A. Alonso, J.R. Casas & M. Nazar

Optimization of reinforced concrete bridges maintenance by Markov chains
A. Orcesi & C. Cremona

Bridge management system – GOA

Current maintenance management practice for highway bridges in Vietnam
D.T. Hai, H. Yamada & H. Katsuchi

Proposal of maintenance management system for existing bridges
D.T. Hai, H. Yamada, H. Katsuchi & E. Sasaki

Toward maintenance of old stone bridges in Korea
N.K. Hong, H.-M. Koh, S.G. Hong & B.S. Bae

An outline of the APT bridge management software
D. Zonta, R. Zandomini, F. Bortol, R. De col & P.N. Paolaz

Development of a reconstruction strategy for the Angolan bridge network
M. Alves & J. Sebastião

Dynamic programming for optimal bridge maintenance planning
M. Liu & D.M. Frangopol

Optimal long-term single stage intervention strategies for road bridges
B.T. Adey, R. Hajdin & E. Brühwiler

Optimization of preventative maintenance strategies for bridges
E.A. Tantele, T. Onoufricou & M. Mulheron

Service life design in concrete bridges
T.P. Mendonça

A practical bridge management system using new multi-objective genetic algorithm
H. Furuta, T. Kameda & M. Erami
Novel management system for steel bridges in Korea
J.S. Kong, S.H. Park, S.H. Kim, K.H. Park & D.M. Frangopol

Egnatia Motorway bridge management systems for design, construction and maintenance
A. Liolios, D. Kotoulas, F. Antoniou & D. Konstantinidis

East river bridges preventive maintenance program
M.S. Hershey & M. Sharif

The potential applicability of the Life-Quality Index to maintenance optimisation problems
M.D. Pandey, J.M. van Noortwijk & H.E. Klattter

Optimal cost allocation for improving the seismic performance of road networks
H. Furuta, K. Nakatsu & D.M. Frangopol

Development of bridge maintenance planning support system using multiple-objective genetic algorithm
H. Furuta, Y. Takenaka, T. Kameda & I. Tsukiyama

Reliability analysis and optimal design of deteriorating structural systems

Lifetime nonlinear analysis of concrete structures under uncertainty
F. Biondini, F. Bontempi, D.M. Frangopol & P.G. Malerba

Probabilistic lifetime assessment based on limited monitoring
F. Biondini, D.M. Frangopol & E. Garavaglia

Structural response evaluation of two-blade bridge piers subjected to a localized deterioration
L. Sgambi, F. Bontempi & E. Garavaglia

Stiffness matrices and genetic algorithm identifiers toward damage detection
L. Faravelli & F. Marazzi

Influence of the corrosion damage scenarios on the residual life of bridge grillages
T. Albanesi, Z. Rinaldi, C. Valente & L. Pardi

Optimal design of deteriorating structural systems
L. Azzarello, F. Biondini & A. Marchiondelli

Design, operation and maintenance of high speed railway bridges

Design issues for dynamics of high speed railway bridges
J.M. Guticofea, F. Gabaldón & F. RiqueIme

Fatigue verification for railway bridges including resonance effects due to high speed trains
M. Muncke, L. Bagayoko, E. Koch & S. Crail

Dynamic behaviour of high speed railway bridges in interoperable lines
R. Delgado, R. Calçada, I. Faria, D. Ribeiro, J.R. Pinto & H. Figueiredo

Design and construction of structures for high-speed railway lines
P. Ramondenc
Application of structural system identification methods

Structural health monitoring using dynamic responses with regularized autoregressive model
J.S. Kang & H.S. Lee

Estimation of stiffness and mass properties from measured modal information
S.-B. Shin & S.M. Lee

Assessment of the dynamic displacements using acceleration data measured on bridge superstructures
B.S. Jung & N.S. Kim

Evaluation of load carrying capacity of bridge based on ambient acceleration measurements

System identification scheme using genetic algorithm for damage classification in beam-type structures
J.T. Kim, J.H. Park, D.S. Hong & W.J. Kim

Damage assessment of bridge superstructure using moving load tests
H.-J. Lee, S.-B. Shin & T.-W. Kang

Long-term signal analysis for the existing bridge health monitoring systems

Statistical time series analysis of long-term monitoring results of a cable-stayed bridge
J. Lee, S.-P. Chang, H. Kim & J.-G. Yoon

Signal analysis from a long-term bridge monitoring system in a three dimensional self-anchored suspension bridge
S. Kim, J. Lee & I.-H. Bae

Behavior monitoring of the Korea Highway Corporation test road

Bridge weigh-in-motion without axle-detector in a cable stayed bridge
M.-S. Park, S. Kim, B.-W. Jo & J. Lee

Development of maintenance and monitoring system for Young-Heung Bridge using the latest technologies
D.W. Kim, K.J. Joo & S.-B. Shin

Development of measuring data system of bridges by wireless transmission using fiber Bragg Grating sensor
K.H. Kwak, H.S. Hwang & B.K. Sung

Damage assessment – strength and durability

Application of a new metal spraying system for steel bridge Part 3. A report on 9 or 13 years experience with the spraying system
T. Kondo, S. Okuno, A. Yamazaki & H. Matsuno

Relationship between bearings type and their most common anomalies
L.M.R. Freire & J. de Brito

Residual structural performance of rolled H members submerged in seawater for a long time and their anti-corrosion strategy
E. Watanabe, K. Sugiura, T. Utsunomiya & M. Yamamoto
Strength of corroded tapered plate girders under pure shear
P.J.S. Cruz, L. Lourenco, M. Santos, H. Quintela & P. Cortez

Accelerated exposure test of uncoated and metal-coated steels and its application
I.-T. Kim & Y. Itoh

Condition assessment of concrete bridges during demolition
R. Bargähr & T. Vogel

A new method for two-stage structural damage identification
Y. Jiurong

Hungerford River Bridge No. 7 – a case study of assessment from first principles
A.K. Pope

Modelling the response of the New Svinesund arch bridge: FE model verification and updating based on field measurements
M. Plos

Development of evaluation system for service life of concrete bridge deck structures
B.H. Oh, Y.C. Choi & J.B. Park

Applications of acoustical techniques for detection and assessment of damage in aging structures
K.Z. Zahariev, Y.B. Kin & B.W. Parsons

Numerical modelling of damaged masonry arch bridges
J. Bičák & T. Kaminski

Bond-slip behaviour of corroded reinforcing steel in concrete bridges
C. Fang

West Mill Bridge – comparison of initial and long-term structural behaviour
L. Canning & S. Luke

Road bridge expansion joints: Existing systems and most common defects
A.J.M. Lima & J. de Brito

Experimental and analytical model analysis of Babolsar’s steel arch bridge
M.H.A. Beygi, M.T. Kazemi, B. Lark & Z. Tabrizian

Study on safety alerting system of beam bridge
Y.Q. Xiang, J.F. Wang & W.L. Yang

Comparison between damage detection methods applied to beam structures
R. Salgado, P.J.S. Cruz, L.F. Ramos & P.B. Lourenço

Prediction of crack width for prestressed concrete deck slabs in box girder bridges
B.H. Oh & Y.C. Choi

Structural damage analysis for SHM system design of PC girder bridge with losing of prestress
D. Dan, L. Sun & J. Li

Masonry arch railway bridges in Austria: Sustainable historical structures for today’s traffic
M. Mautner

Numerical modeling and assessment of the shear key problems of FC girder bridges
N.A. Khattak & J.J.R. Cheng
Degradation of structural performance – experiment introduction and expected results
M. Bergström & B. Täljsten

Assessment, monitoring and control of bridge vibrations

Evaluation of dynamic properties of the Infante Dom Henrique Bridge
F. Magalhães, A. Cunha, E. Caetano, A.A. da Fonseca & R. Bastos

Enhanced exploitation of bridge vibration measurements by Operational Modal Analysis
B. Peeters & H.v.d. Auweraer

Comparative study of system identification techniques applied to New Carquinez Bridge
X. He, B. Moaveni, J.P. Conte & A. Elgamal

Analysis and control of vibrations of Guarda footbridge
E. Caetano, A. Cunha, C. Moutinho & T.P. Mendonça

Human-induced vibrations on footbridges
J.M.W. Brownjohn & A. Pavic

Clarification of the effect of high-speed train induced vibration on a railway steel box girder by monitoring using Laser Doppler Vibrometer
T. Miyashita, H. Ishii, Y. Fujino, T. Shoji & M. Seki

Integrated monitoring of bridges by response measurements
S. Deix & R. Geier

Cable-deck dynamic interactions at the International Guadiana Bridge
V. Gattulli, M. Lepidi, E. Caetano & A. Cunha

Cost-effectiveness of bridge seismic retrofit using lead-rubber bearings
E.H. Wang & S.H. Lai

A wireless sensor network for force monitoring of cable stays
G. Feltrin, J. Meyer, R. Bischoff & O. Szabó

Dynamic testing of the Millau Viaduct
O. Flamand & G. Grillaud

Bridge displacement measurement system using image processing

Output-only modal identification of lively footbridges
F. Magalhães, A. Cunha, E. Caetano, C. Butz & A. Goldack

Seismic and dynamic analysis

Comprehensive parametric study on the performance of seismic-isolated bridges
M. Dicleli & S. Buddaram

Proposed improvements to AASHTO effective damping equation for seismic-isolated bridges
M. Dicleli & S. Buddaram

Using opposing spirals to enhance seismic behavior of reinforced concrete bridge columns
W. Turechek & R.A. Hindi
Effects of strong winds on bridge-vehicle interaction for long span bridges 295
M.S. Cheung, B. Norristaan & C.Y. Yang

Seismic capacity assessment of cable supported bridge considering material nonlinearity 297
K.C. Lee, D.S. Moon, S.-P. Chang & S.H. Bae

Seismic performance of hollow sectional columns with different portions of lap-spliced longitudinal bars 299
I.H. Kim, H.T. Yeo, C.H. Sun & J.S. Lee

Cost-effectiveness evaluation of MR damper system for cable-stayed bridges under earthquake excitation 301
D. Hahn, H.-M. Koh, S.-Y. Ok, W. Park, C. Chung & K.-S. Park

Performance evaluation tests of laminated rubber bearings for seismic isolation design of bridges 303
I.J. Kwak, C.B. Cho, Y.J. Kim & J.W. Kwak

Effect of variability in response modification factors on seismic damage of R-C bridge columns 305
A. Mechakhcekh & M. Ghosn

Influence of soundness degradation of railway viaducts on their dynamic response and site vibrations 307
K. Yoshida, M. Seki, M. Kawatani, S. Yamaguchi & S. Nishiyama

Dynamic analysis of railway bridges with random vertical rail irregularities 311
B. Biondi, G. Missolino & A. Sofi

Mitigation of buffeting response for a 800 m cable-stayed bridge during construction 313
H.K. Kim & S.W. Choi

Blast loading and earthquake effect on reinforced concrete structures 315
F. Shalouf & S.I. Ahmad

Characteristics of lead rubber bearings for elastic response of bridges substructures 317
J.M. Jara & M. Jara

Seismic risk management of highway bridges 319
M. Dolce, D. Cardone & L. Pardi

Performance-based design considering ageing of bridge rubber bearing 321
H.S. Gu & Y. Itoh

Seismic retrofitting of bridges using slide bearings with bending-type anchor bars 323
H. Namiki, H. Suzuki, H. Matsuhisa & M. Kimura

Numerical modeling and dynamic behavior of a railway concrete arch bridge over the Vindel River in Sweden 327
G.J. He, A. Bennitz, O. Enochsson, L. Elfgren, B. Paulsson, B. Töyrä, P. Olofsson & A. Kronborg

Assessment of bridge repair and strengthening

Bond quality survey of loaded RC beams with CFRP-plate repair using impulse-thermography 331
R. Helmerich, C. Materhofer, M. Röllig, R. Arndt & J. Vielhaber

XI
Chloride determination for condition assessment and quality assurance by LIBS
F. Weritz, A. Taffe, D. Schaurich & G. Witsch

Nonlinear analysis of RC beams with externally bonded plates

Parametric evaluation of CFRP patch effectiveness in fatigue repair
E.S. Aggelopoulos, T.D. Righiniotis & M.K. Chryssanthopoulos

Sustainable bridges: A European funded project for higher load and speed on railway bridges – WP6 repair and strengthening
B. Täljsten & R. Helmersch

Lessons learnt from underwater FRP repair of corroding piles
R. Sen, G. Mullins, K.-S. Suh & D. Winters

Handling uncertainty in analysis design
Probabilistic evaluation of model uncertainties in concrete structures
D.L. Allatix, V.I. Carbone & G. Mancini

Handling uncertainty in reliability analysis of concrete structures
F. Biondini, F. Bonometti & P.G. Malerba

Reliability of simplified analytical models for the analysis of FRP reinforced masonry frames
U. Ianniruberto & Z. Rinaldi

The role of monitoring in the management of uncertainties and residual life of existing structures
A. Del Grosso & F. Lanata

Excessive deflections of concrete bridges affect safety, maintenance and management
V. Kršteček & A. Kohoutková

Characterization of the structural performance of existing r.c. bridges and basic criteria for rehabilitation and refurbishment: Experiences in Northern Italy
C. Modena, P. Franchetti & M. Grendene

Effective framework for seismic analysis of cable-stayed-bridges, Part 1: Modeling of the structure and of the seismic action
L. Sgambi, F. Bonometti & G. Santoboni

Effective framework for seismic analysis of cable-stayed-bridges, Part 2: Analysis’ results
L. Sgambi, F. Bonometti & G. Santoboni

Reliability-based life cycle assessment for civil engineering structures
R. Schnetgöke, C. Klinzmann & D. Hosser

Probabilistic durability of concrete bridge structures in Korea

Performance analysis of a bridge – degradation, assessment and reliability modeling
A. Strauss, K. Bergmeister, R. Puki & D. Novák

Uncertainties in probabilistic modeling of the load carrying capacity of bridges
A. Stenlund, L. Elfgren & E. Rosell

XII
Probabilistic characterization and analysis of the properties of materials used in bridges
Reliability based assessment of prestressed concrete bridges subject to creep using a coupling procedure
W. Raphael, F. Geera, F. Kaddah & A. Chateauneuf

Probabilistic creep model by Bayesian updating for design codes
D.E.A. Selouan, W. Raphael & A. Chateauneuf

Failure analysis of FRP-strengthened concrete beams
M. Ali-Ahmad, K. Subramaniam & M. Ghozn

Designing with HSC for safety: Effect of age specification for characteristic strengths
S.M.C. Diniz

Designing and controlling concrete quality in the field for a 100-year life cycle
P.-C. Aïcbin & R. Morin

Estimation of the in-situ concrete characteristics from building control results
J.-L. Clément

Politics and perception in life-cycle decisions
Selling life-cycle concepts within the political system
R.B. Coroits

User costs in life-cycle cost-benefit (LCCB) analysis of bridges
P. Thoft-Christensen

 Governing issues and alternate resolutions for a state department of transportation's transition to asset management
A.E. Aktan & F.L. Moon

A budget management approach for societal infrastructure projects
K. Nishijima & M.H. Faber

Societal aspects of bridge management and safety in The Netherlands
H.E. Klatter, A.C.W.M. Vrouwenfelder & J.M. van Noortwijk

Safety of medium and long span bridge superstructures during the erection phases
Importance of modal cross-correlation on wind loaded structures
V. Deroël, H. Degée & V.d.V. de Goyet

Steel bridges launching and safety against patch loading
E. Maiorana & A. Muzzon

Safety of balanced cantilever and cable stayed bridges during construction
A.J. Reis

Patch loading resistance of longitudinally stiffened plate girders
U. Kuhlinann & B. Braun

Buckling of steel tied arches during erection
Ph. van Bogaert & A. Outtier
Buckling resistance of steel bridge web during launching
L. Davaine & J. Raoul

Safety sensitivity for temporary bridge erection conditions
R. G. Sexsmith

Status and findings of current BHM applications in the world
A methodology and decision support system for scheduling inspections in a bridge network following a natural disaster
K. Kepaptsoglou, M.G. Karlaftis, T. Bitsikas, P. Panetsos & S. Lambropoulos

Continuous monitoring of concrete bridges during construction and service as a tool for data-driven bridge health monitoring
D. Inaudi & B. Gilisic

The current status of SHMBM engineering
S. Sumitro, M. Tominaga, Y. Kato & T. Okamoto

GNSS for bridge deformation: Limitations and solutions
X. Meng, G.W. Roberts, A.H. Dodson & C.J. Brown

Development of a bridge management system for a freeway authority in Greece
M.G. Karlaftis, T. Bitsikas, K. Kepaptsoglou, S. Lambropoulos & P. Panetsos

Monitoring performance of the Tamar suspension bridge

Lesson learned from monitoring of long-span cable-supported bridges
Y. Fuyino & D.M. Siringoringo

Cable hanger plate replacement; a case study on Bosporus Bridge
A. Turer, A. Caner & C. Yilmaz

Structural identification of constructed systems and the impact of epistemic uncertainty
F.L. Moon & A.E. Akta

Service life prediction based on permanent output only monitoring
H. Wenzel

Steel stringer bridge load rating based on field calibrated grid models
A. Turer

Inspection and prediction of structural performance
Bridge condition and health measures for needs analysis
P.S. McCarten

Prediction and analysis of deterioration of Moscow Bridges
G. Brodski, Yu.A. Ponomarev & Yu.A. Yenutyin

Bridge deck deterioration: A parametric hazard-based duration modeling approach
P.M. Christofias & M.G. Karlaftis

Bridge inspections, a case for trained bridge inspectors
B. Kamyia

Correlation between reduction in load capacity and structural condition of highway bridges
D. Gurenich & W. Robert

XIV
Bridge inspection and monitoring

Durability in B.O.T. bridge projects
F. Branco, J. Ferreira & M.M. Branco

Post-mounted corrosion sensors, experiences and interpretation of data for use in service life models
R. Sørensen, T. Frelund & M. Sloth

Bridge decks with GFRP – concrete composite sections
J.R. Correia, J.G. Ferreira & F. Branco

Sensors in civil engineering infrastructures
J.G. Ferreira, F. Branco & M.M. Branco

Strain Checker: Stethoscope for bridge engineers
T. Ojio, K. Yamada, Y. Saito & S. Shiina

Health monitoring of structures using cement-based piezoelectric composites
L. Qin & Z. Li

Fatigue analysis

Serviceability and fatigue issues related to vibration of the cables of the Alamillo cable-stayed bridge in Sevilla (Spain)
J.R. Casas & A.C. Aparicio

Fatigue cracks of welds and their repair in steel spans of railroad bridge
Z. Manko

Fatigue behaviour of riveted steel lap joints

Accurate fatigue stress determination in concrete railway bridges considering rail track – structure interaction
A. Herwig & E. Brühlwiler

Application of post-weld treatment methods to improve the fatigue strength of high strength steels in bridges
U. Kuhlmann, A. Dürre & H.-P. Günther

Fatigue strength of web-gusset welded joint pasted with glass fiber reinforced polymer
H. Suzuki

Ultrasonic impact treatment for life extension of bridges with cracked and crack susceptible welded details

Fatigue lifetime estimation of Chunho steel box bridge on Han River
J.S. Lee

Fatigue monitoring of steel railway bridges
O. Hechtler, M. Feldmann & B. Kühn

Probabilistic fatigue life estimates for riveted railway bridges
B.M. Imam, T.D. Righiniotis, M.K. Chryssanthopoulos & B. Bell

Fatigue on metallic railway bridges: Methodology of analysis and application to Alcâcer do Sal Bridge
D. Ribeiro, R. Calçada & R. Delgado

XV
Fatigue life improvement of existing steel bridges
T. Ummenhofer, I. Weich & T. Nitschke-Pagel

Bridge owners benefits from probability-based assessment and maintenance management
Principles for a guideline for probability-based management of deteriorated bridges
J. Lauridsen, J. Bjerrum, M. Sloth & F.M. Jensen

Experience with probability-based assessment of bridges based upon the Danish Guideline
J. Lauridsen, J. Bjerrum, A.J. O’Connor & I. Enevoldsen

The Öland bridge – a case study for probability-based service life assessment
M. Sloth, R. Sørensen & A. Maglica

Probabilistic-based assessment of a concrete arch bridge
A.J. O’Connor, C. Pedersen, I. Enevoldsen & J. Bjerrum

Probability-based maintenance management plan for corrosion risk – a case study from Faro Bridges
M. Sloth, B.B. Jensen & E. Stoltzner

Reliability and risk management
Reliability based assessment of the influence of concrete durability on the timing of repair for RC bridges
M.G. Stewart & J.A. Mullard

Reliability-based calibration of dynamic load allowance of bridge by numerical simulation
T.J. Chung, C.R. Lee, D.K. Shin & Y.S. Park

An application of the probabilistic SBRA method in bridge structures design
D. Pustka & P. Marek

Harnessing social perception of a bridge’s condition
J.D. Birdsall & E. Brähwiler

Probabilistic evaluation of time to corrosion initiation in RC elements exposed to chlorides: 2-D modelling
D.V. Val & P.A. Trapper

Life cycle reliability assessment based on advanced structural modeling – nonlinear FEM
R. Pukl, V. Červenka, D. Novák, B. Teplý, A. Strauss & K. Bergmeister

Lifetime reliability profiles for evaluation of corroded steel girder bridges
A.A. Czarnecki & A.S. Nowak

Structural reliability of the Tampico Bridge under wind loading
D. de León, A.H-S. Ang & L. Manjarrez

Statistical inference for Markov deterioration models of bridge conditions in The Netherlands
M.J. Kallen & J.M. van Noortwijk

Lifetime seismic reliability analysis of deteriorating bridges
H.-N. Cho, K.-M. Lee & C.-J. Cha
Multi-objective probabilistic optimization of bridge lifetime maintenance: Novel approach
L.C. Neves, D.M. Frangopol & P.J.S. Cruz

Damage magnitude analysis of industrial accidents by risk curve
S. Hanayasu & K. Ohdo

Reliability-based life-cycle bridge management using structural health monitoring
T.B. Messervey, D.M. Frangopol & A.C. Estes

Seismic design and retrofitting strategies for bridges

Application of displacement-based seismic analysis of bridges: Case study of the Taiwan Chi-Chi earthquake
C.C. Fu, H. Alayed & Y.T. Hsu

Advancements in seismic vulnerability assessment and retrofitting strategies
A.H. Malik & M. Asce

Seismic vulnerability assessment of bridges in Germany
P. Renaud & K. Mekousris

Full-scale pseudo dynamic test for bridge retrofitted with base isolations
K.B. Han, S.-K. Park, S.N. Hong & H.-Y. Kim

ANN-based damage detection using dynamic responses of seismically isolated bridge structure

Bridge testing and assessment

Technical evaluation of the bridge crossing Olt River in Rămniciu Vâlcea – Romania
N.I. Popa, A.I. Dima & I.R.I. Răcănel

Multi mapping in evaluation of concrete bridges
A. Wawrusiewicz

Damage detection using reflectorless electronic distance measurements: Results of the first epochs
K. Züll, E. Penka, M. Hennecke, U. Willberg & Th. Wunderlich

Statistical damage detection of structures by using system identification with 1-norm based regularization
H.W. Park, H. Sohn & H.S. Lee

Evaluation and rating of damaged steel I-girders
H.W. Shenton III, M. Dawson & A. Chavez

On the detection of damage in bridge structures using dynamic testing
V. Zabel & C. Bucher

Research needs for BHM systems of the future and benchmark studies

Bridge assessment under uncertain parameters via interval analysis

Suggestions for future research, development and application of bridge health monitoring systems
J.M. W. Brownjohn & J.S. Owen
Development of a benchmark problem for bridge health monitoring
F.N. Caihao, J.M. Caicedo & S.J. Dyke 579

Application of ARMAV for modal identification of the Emerson Bridge

Improvement of seismic performance of the Toyosato Bridge with base isolation and response control
H. Isomura, Y. Kawamura, M. Hirano & K. Taira 583

Residual strength prediction of reinforced bridge piers under seismic risks
I. Aoki & T. Katake 585

Integration of bridge management and bridge monitoring
Health monitoring system using learning system
H. Furuta & H. Hattori 589

Damage identification method for bridges from a pseudostatic formulation of bridge-vehicle interaction system
C.W. Kim & M. Kawatani 591

Impact acoustics of concrete structures by applying discrete wavelet transform
Y. Nomura, M. Kawatani, M. Hirokane & M. Koushi 593

Predictive SHM-supported deterioration modelling of reinforced concrete bridges
M.I. Rafig, M.K. Chryssanthopoulos & T. Onoufiou 595

Development of BMS for a large number of bridges

Implementation of bridge management system in Aomori prefectural government, Japan
N. Yamamoto, H. Asari, T. Ishizawa, M. Kameyuki & E. Watanabe 599

Condition evaluation standards and deterioration prediction for BMS
E. Matsumura, Y. Seno, M. Sato, Y. Miyahara, M. Kameyuki & M. Sakano 601

Health monitoring of steel bridges using local vibration excitation
S. Beskhyroun, T. Oshima & S. Mikami 605

A system for field inspection of infrastructure in snowy cold regions using speech recognition
A. Kenmotsu, H. Ushio, H. Tsugimura & T. Oyama 607

Integrating bridge health monitoring into bridge management
R. Kiviluoma 609

Innovative developments towards improving bridge seismic safety
Bayesian updating of bridge fragility curves using sensor data
J.-M. Wong, K. Mackie & B. Stojadinovic 613

Analytical assessment of the post-earthquake condition of self-centering versus traditional concrete bridge pier systems
W.K. Lee & S.L. Billington 615

Seismic performance of unbonded columns and isolator built-in columns based on cyclic loading tests
K. Kawashima & G. Watanabe 617

XVIII
Seismic performance of reinforced concrete bridge columns encased in fiber composite tube
Z. Zhu, A. Miriran & M. Salidi 621

Analysis of reinforced concrete bridge columns with shape memory alloy and engineered cementitious composites under cyclic loads
M. Salidi, M. Zadeh & M. O’Brien 623

Seismic upgrade of column-bent cap connections of Alaska bridges
M.C. Lubiewski, P.F. Silva & G.D. Chen 625

Soft computing in bridge engineering

Application of soft computing techniques to safety management during bridge construction
A. Miyamoto 629

 Imaging-based surface quality assessment of weathering steel bridge based on wavelet transform and support vector machine
B.F. Yan, S. Goto & A. Miyamoto 631

Development of standardized semantic model for structural calculation documents of bridges and XML schema matching technique

Application of PSO algorithm to damage identification for concrete bridges
M. Beppu, H. Emoto & A. Miyamoto 635

Monitoring of early age shrinkage using image analysis and its use in repair of bridges
K.C.G. Ong & M.-L. Kyaw 637

Development of an internet para-stressing system for intelligent bridge
T. Morisaki, M. Motoshita & A. Miyamoto 641

Optimal intervention strategies for multiple bridges during catch-up periods using age equivalents
B.T. Adey, R. Hajdin & E. Brühwiler 645

Bayesian regression modeling of concrete carbonation depth for inclusion in J-BMS
A. Tarighat & A. Miyamoto 647

Long-term monitoring of concrete bridges by direct combination of experimental and mechanical analysis
K. Brandes, W. Daum & F. Buchhardt 649

Development of a web-based database system for management of existing bridges in the Yamaguchi prefecture, Japan
K. Kawamura, D.M. Frangopol & A. Miyamoto 651

Loads and testing

AASHTO-LRFD live load distribution: Limitations and applicability
Z.G. Yousif & R.A. Hindi 655

Numerical model for bridge-vehicle interaction and traffic-induced vibration investigation
H. Moghimi 657

The probability of extreme load effects in bridges subject to dynamic vehicle-bridge interaction
P.H. Rattigan, E.J. Obrien, A. González & N.K. Harris 659

XIX
NCHRP Project 20-07/task 122: Load rating by load and resistance factor evaluation method
D.R. Mertz

Investigating truck load effects using bridge weigh-in-motion system

Design temperature load models for concrete slab bridges
E.-S. Hwang & J.J. Lee

Prediction and influence of future traffic demands on Croatian highway bridges
A. Mandić & J. Radić

Smart bridge technology

A low power wireless sensor network for structural health monitoring
J. Meyer, R. Bischoff, G. Feltrin & O. Saubh

Global smart bridge monitoring system
S. Sumitra & M.H. Hodge

Design approach and full implementation of intelligent SHM systems for bridges
H. Li & J.P. Ou

Monitoring of PC structure with distributed sensing techniques
Z.S. Wu, C.Q. Yang & K. Kishida

Damage detection of truss structures
Z.D. Duan, G.R. Yan & J.P. Ou

State-of-the-art and state-of-the-practice and guidelines of bridge health monitoring in the mainland of China
J.P. Ou & H. Li

Structural control of seismically induced pounding of elevated bridges by using magnetorheological dampers
A.X. Guo, I.L. Cui & H. Li

Development of bridge management system for expressway bridges in Japan
K. Yokoyama, S. Sakai, N. Inaba, A. Homma & N. Ogata

Acceleration response energy method for damage identification of bridge structures
Z.S. Wu & Z.-D. Xu

SMARTE – Development and implementation of a long term structural health monitoring

Use of mobile measuring system for bridge monitoring
V.N. Fedoseyev & E. Brodskaita

Structural health monitoring of Delaware’s Indian River Inlet Bridge
M.J. Chajes, H.W. Shenton, D.F. Weston, T.J. Stuffle & J. West

Intelligent use of cathodic protection on bridges

State-of-the-art on cathodic protection installations and innovative projects
B.B. Jensen & E. Stoltzner

XX
Cathodic protection as repair option for the Öland Bridge superstructure
R. Sørensen, B. Buhr & A. Maglica

Benefits and challenges using cathodic protection from an owners point of view
E. Stoltzner, C. Henriksson & B.B. Jensen

Cathodic protection of anchorages in deteriorated post-tensioned bridges
P.H. Møller, A. Højgaard & H.O. Nielsen

Cathodic protection of the west bridge caissons and piers
P.H. Møller, M.E. Andersen & E. Lauersen

Bridge evaluation using field testing
Experimental and numerical dynamic analysis and assessment of a railway bridge subjected to moving trains
M. Majka, M. Hartnett, J. Bien & J. Zwolski

Effect of bridge live load based on 10 years of WIM data
M. Gindy & H. Nassif

Evaluating ultimate bridge capacity through destructive testing of decommissioned bridges
J. Rossi, J. Righman, M. Chajes, D.R. Mertz, T. Zoli & J. Volk

Fatigue performance of steel girder bridges based on data from structural monitoring
H. Nassif, J.C. Davis & N. Sukosawang

Field test on the noise and the vibration of expansion joint
J.W. Kwark, J.W. Lee, W.S. Chin & Y.J. Kim

Business intelligence and asset management
Development of the inspection support system for bridge asset management
T. Kiguire, T. Ishizawa, Y. Hosoi, H. Fujii, M. Iwai & M. Kaneuji

An approach to integrating bridge and other asset management analyses
F. Harrison, D. Gurencih & W. Robert

The next generation of the Pontis Bridge management system

The role of the bridge management system in bridge asset valuation
R.M. Ellis & P.D. Thompson

Multi-objective optimization for bridge management
P.D. Thompson, V. Patidar, S. Labi, K. Sinha, W.A. Hyman & A. Shirolé

Probabilistic model for aging of bridges
M. Petschacher

Load and resistance assessment of railway bridges
Structural assessment of concrete railway bridges: Non-linear analysis and remaining fatigue life
Considerations for traffic loads in the assessment of existing railway bridges
G.A. James & R. Karoumi
745
A new assessment method for masonry arch bridges
C. Melbourne & A.K. Tomor
747
General basis and criteria for the capacity assessment of European railway bridges
J.R. Casas, E. Brühwiler, J. Cervenka, G. Holm & D. Wisniewski
749
Improved assessment methods for static and fatigue resistance of metallic railway bridges in Europe
A. Patron, C. Cremona, S. Hoehler, B. Johansson, T. Larsson & M. Maksymowicz
751
Development of a guideline for load and resistance assessment of existing European railway bridges
J.S. Jensen, C. Melbourne, J.R. Casas, R. Karoumi, M. Plos & A. Patron
755

Design and analysis

Service and ultimate limit state of precast segmental concrete bridges with unbonded prestressing and dry joints
J. Turmo, G. Ramos & A.C. Aparicio
761
Airtrain JFK – the longest segmental girder construction erected in the New York city environs
H.W. Hessing
763
Analytical prediction of displacement capacity and length limits of integral bridges
M. Dicelli
765
Effect of thermal displacements on the performance of integral abutment-backfill system
M. Dicelli
767
Development of a steel-concrete composite bridge deck with perfobond ribs
H.-Y. Kim, Y.J. Jeong, S.-K. Park, K.B. Han & Y.K. Shin
769
Static performance of concrete encased composite columns with low steel ratio
Y.-S. Chung, C.-S. Shim, C.-K. Park & J. Min
771
Unconventional high performance steel bridge girder systems
H.H. Abbas, B.-G. Kim & R. Sause
773
Steel bridge system – simple for dead load, continuous for live load
A. Azizinamini & D.T. Kowalski
775
Experimental tests of behaviour of unconventional steel-soil structure
D. Beben & Z. Manko
777
An experimental study of soil-arch interaction in masonry bridges
M. Gilber, C.C. Smith, C. Melbourne & J. Wang
779
An analysis of simplified cable stayed bridge with FRP components
J. Park, C.H. Chung & I.C. An
781
Regressive model for the partial-interactive ultimate strength of steel-concrete composite deck
Y.-J. Jeong, S.-H. Kim, H.-Y. Kim & H.-B. Koo
783
Flexural behavior of external prestressed H-beam
K.S. Kim, S.-K. Park, K.B. Han & D.S. Yang
787

XXII
In-plane buckling strength and design of parabolic arch ribs in uniform compression
J. Moon, S. Kim, H. Lee & K. Yoon

Field tests of prefabricated composite girders
M. Lagoda & P. Olauszek

Robustness of highway overpasses
H. Stempfle & T. Vogel

Neural network modelling of perfobond shear connector resistance

Nonlinear analysis of prestressed concrete structures using unbonded tendon model

Ultimate strength of compression members undergoing buckling interaction
Y.B. Kwon & N.G. Kim

Numerical analysis of welding considering phase transformation
H. Shirahata

Design guidelines for sole plates in the elastomeric bearing system
C. Joh & Y.J. Kim

Design and experimental analysis of a new shear connector for steel and concrete composite structures
G.S. Verissimo, J.L.R. Paes, I. Valente, P.J.S. Cruz & R.H. Fakury

Cyclic loadings on steel and lightweight concrete composite beams
I. Valente & P.J.S. Cruz

Numerical analysis and assessment of a cable-stayed bridge during construction
A.A. Henriques, R. Faria, J.A. Figueras & C.M. Félix

The collision behaviors between the navigating vessel and the fender systems against the medium collision event
G.H. Lee, S.L. Lee & J.Y. Ko

A modern concept of movable scaffolding systems
A. Póvoas

Evaluation of performances on bridges with overloading trucks

Research on lifetime performance-based bridge design method
J. Peng, X. Shao & X. Jin

Ultimate strengths of partial composite beams considering long-term effects of concrete slabs
D. Bae, S.G. Youn, H.K. Ryu & Y.S. Park

Busan-Geogje fixed link: Concrete durability design for the bridges and tunnels

Quasi-static tests on concrete encased composite columns
C.-S. Shin, Y.-S. Chung, J. Min & J.-H. Han

Effects of thickness and yield strength of steel on peeling stress
K. Nosaka, T. Furukawa & K. Suzukiwara

Side-by-side box-beam bridges – design for durability
U. Attanayake & H.M. Akton

XXIII
Preflex beams: Structural optimization and analysis of economic advantages
C. Mannini & S.G. Morano

Characteristics of 3-D FRP sandwich panels for transportation infrastructures
E.M. Reis & S.H. Rizkalla

Mechanical properties of HPC and SCC cured in mass structures
M. Kaszynska

Durability design criteria for the Reno Bridge
G. Furlanetto, L.F. Torricelli & A. Marchiondelli

Measurement and monitoring
Suitability of portable electrochemical techniques for determination of corrosion stage of concrete structures in on-site conditions
R. Bößler, A. Burkert & G. Eich

Detecting wire breaks in a prestressed concrete road bridge with continuous acoustic monitoring
S. Fricker & T. Vogel

Study of masonry arch bridge limit states with acoustic emission techniques
A.K. Tomor & C. Melbourne

System for monitoring of steel railway bridges based on forced vibration tests
J. Bien, P. Rawa, J. Zwolski, J. Krzyzanowski, W. Skoczynski & J. Szymkowski

Wavelet-based impact acoustic method for detecting interfacial separation of steel-concrete composite bridge
B.F. Yan, A. Miyamoto & X.Y. Zhou

A neural-network-based system for Bridge Health Monitoring
T.K. Lin, K.-C. Chang, C.C. Chen, C.Y. Chen & L.J. Tsai

Distributed strain measurement in steel slab-on-girder bridge via Brillouin optical time domain reflectometry
F. Bastianini, F. Matta, N. Galati & A. Nanni

Data processing for safety control of bridges in real time
V. Marecos, L.O. Santos & F. Branco

New method for detecting & measuring cracks on concrete using fiber optic sensors
A.D. de León, P.I.S. Cruz, K.T. Wan & C.K.Y. Leung

Computer benchmark for static and dynamic damage identification in bridges
A. Del Grosso & F. Lanata

A real scale PC bridge for testing and validation of monitoring methods
H. Budelmann, K. Hariri & A. Holst

MEMS-based sensor networks for bridge stability monitoring during flood induced scour
J. Isley II, M. Saafi & J. Julius

Acoustic emission analysis techniques for wireless sensor networks used for structural health monitoring
M. Krüger, C.U. Grosse & J.H. Kurz

Ground anchorage tension force monitoring by using magnetostrictive method

XXIV
Monitoring an interstate highway bridge with a built-in fiber-optic sensor system
R.L. Idriss & Z. Liang 877

Monitoring of fatigue crack by field signature method
K. Oka, K. Arita & Y.-C. Kim 879

Multiplexed fibre Bragg grating sensor system for bridge monitoring applications

Field observations on concrete box girder railway bridges
L.O. Santos, J. Rodrigues & X. Min 885

Assessment and condition monitoring of a concrete railway bridge in Kiruna, Sweden
O. Enrochsson, L. Elfström, T. Olofsson, B. Täjsten, B. Törnblom, A. Kronborg & B. Paulsson 887

Fuzzy-based variable gain approach for controlling cable-stayed bridges
S.-Y. Ok, K.-S. Park, C. Chung & H.-M. Koh 889

Development of safety warning system for infrastructures
J.S. Lee & G.H. Juhn 893

Development of strain sensor holders to be applied to the monitoring of metallic structures
B.J.A. Costa, A.O. Diamande, J.A. Figueiras & C.M. Félix 895

Design and installation of the optic based monitoring system applied to the Luiz I Bridge
B.J.A. Costa, J.A. Figueiras & C.M. Félix 897

Design and implementation of the new structural monitoring system of the Tagus river suspension bridge
J. Rodrigues, J.A. Garrett, C.O. Costa & P. Silveira 899

Health monitoring of large Adriatic bridges
J. Radl, J. Bleiziffer & G. Puž 901

Cable stayed bridges. Failure of a stay: Dynamic and pseudo-dynamic analysis of structural behaviour
C.M.M. del Olmo & A.C.A. Bengoechea 903

Monitoring of a bridge-deck using long-gage optical fiber sensors with a pulsed TOF measurement techniques
V. Lyoří, A. Kilpelä, G. Duan, J. Kostamovaara & T. Aho 905

Live-bed bridge scour monitoring system development using fiber Bragg grating sensors
Y.-B. Lin, K.-C. Chang & J.-S. Lai 907

Assessment and monitoring of cables stayed bridges
E. Laurent 909

In-situ materials analysis for health monitoring of bridges
M. Ghandehari 911

Structural system identification in time domain using a time windowing technique from measured acceleration
S.-K. Park & H.S. Lee 913

Toward more practical BMS: Its application on actual budget and maintenance planning of a large urban expressway network in Japan
M. Nishibayashi, N. Kanjo & D. Katayama 915
Life cycle costing
Lifecycle design module for project level bridge management
E. Vestkari

Risk based approach of Life Cycle Management Systems
A. Chaperon

Maintenance management from an economical perspective
J. Bakker, J. Volwerk & J. Verlaan

New trends in bridge management systems: Life cycle assessment analysis
H. Gervásio & L.S. da Silva

Probabilistic approach for predicting life cycle costs and performance of bridges
A.P. Silva & A.A. Fernandes

Bridge condition assessment using combined non-destructive testing methods

Current use of NDT in bridge condition assessments
B.B. Jensen, T. Froland & T. Pedersen

Trends in bridge condition assessment using non-destructive testing methods
E. Niederleithinger, R. Helmerich & H. Wiggenhauser

Verifying design plans and detecting deficiencies in concrete bridge using GPR
L. Topczewski, E.M. Fernandes, P.J.S. Cruz & P.B. Lourenço

Crack depth determination at large concrete structures using scanning impact-echo-techniques
M. Krüger, C.U. Grosse & H.W. Reinhardt

Development and combined application of NDT echo-methods for the investigation of post tensioned concrete bridges
D. Streicher, D. Algernon, Ch. Kohl, M. Krause, C. Maierhofer & H. Wiggenhauser

Concrete railway bridges – taxonomy of degradation mechanisms and damages identified by NDT methods
M. Maksymowicz, P.J.S. Cruz, J. Bień & R. Helmerich

Durability performance of bridges in severe environments

Durability of bridges in severe environments: The high quality cover plus monitoring-approach
M. Rasbach & G. Weizhong

Durability design of concrete structures in marine environment
O.E. Gjørv

Chloride penetration into silica fume concrete after 10 years of exposure in Aursundet Bridge
V. Årskog, O. Sengul, R. Dahl & O.E. Gjørv

Effect of blast furnace slag on chloride penetration into concrete bridges
O. Sengul & O.E. Gjørv

Improving durability through probabilistic design
R.M. Ferreira

XXVI
Civil structural health monitoring

Monitoring with fiber optic sensors of a cable-stayed bridge in the Port of Venice
A. Del Grosso, A. Torre, G. Brunetti, D. Inaudi & A. Pietrogrande

Distributed fiber optic strain and temperature sensing for structural health monitoring
D. Inaudi & B. Glisic

Development of structural health monitoring methodologies for cable-stayed bridges by fiber optic sensors
L.M. Giacosa, F. Ansari & A. De Stefano

Determination of concrete properties with fiber optic sensor
Q. Li & F. Ansari

Multiple fiber optic twin-sensor-array based on Michelson optical low-coherence reflectometer
L.B. Yuan, J. Yang, Z. Liu, Q. Wen, C. Liu, Y. Jie & G. Li

Intrinsic polymer optical fiber sensors for civil infrastructure systems
S. Kiesel, P. Van Vickle, K. Peters, O. Abdi, T. Hassan & M. Kowalsky

Implementation of a fiber Bragg grating sensor network for structural monitoring of a new stone bridge
L.A. Ferreira, F.M. Araújo, C. Barbosa, N. Costa, A. Arede, A. Costa & P. Costa

Implementation of a fiber Bragg grating sensor network for structural monitoring of a rehabilitated metallic bridge
F.M. Araújo, L.A. Ferreira, C. Barbosa & N. Costa

The deterioration of concrete deck slabs in bridges – A Canadian experience
L.G. Jaeger, W. Salzberg, G. Tadros & N. Banthia

Weighing-in-motion of truck axle weights through a bridge
B. Bakh, A. Mufii, G. Tadros, R. Eden & G. Mourant

Comparing conventional and innovative bridge deck options: A life cycle engineering and costing approach
K.J. Kostuk, G.A. Sparks & G. Tadros

ISIS Canada educational modules on fibre reinforced polymers and structural health monitoring
L.A. Bisby

Performance of concrete bridge deck slabs reinforced with glass FRP composite reinforcing bars
A. El-Ragaby, S. El-Gamal, E. El-Salakawy & B. Bemmokrane

Fatigue and static investigation of innovative steel free bridge decks
C. Klowak, A. Memon & A. Mufii

Salmon River steel-free bridge deck – 10 years review of field performance
J. Newhaak & J. Gaudet

Experimental modal analysis of a cable-stayed bridge
P. Clemente, A. Manuli & F. Saitta

Assessment and NDE of FRP rehabilitation of bridge deck slabs at systems level
K. Ghosh, H. Guan & V.M. Karbhari

Innovative seismic design of bridges of the South Carolina Department of Transportation (SCDOT)
L.E. Mesa

XXVII
Operational modal analysis for long-term bridge performance monitoring
H. Guan, V.M. Karbhari & C.S. Sikorsky
Development of a field useable interrogation system for RF cavity
wireless sensors
A. Hladio, R. Jayas, D.J. Thomson & G.E. Bridges

Repair and strengthening
Planning and working of overall recoating for long-span bridges
I. Yamada & K. Sumi
Experimental research on the prestressed concrete main beams of road bridge
strengthened by CFRP tapes under static loads at different repair stages
A.G. Mordak & Z. Manko
Strengthening steel beams using bonded carbon-fibre-reinforced-polymerus laminates
D. Linghoff, M. Al-Emrani & R. Kliger
Rehabilitation of fatigue cracks in welded gusset joint using CFRP strips
H. Nakamura, H. Suzuki, K.-i. Maeda & T. Imube
Alcâcer do Sal Bridge – rehabilitation and strengthening
T.P. Mendonça, M.P. Almeida & P.P. Paulo
Vouga Bridge – rehabilitation and strengthening
Safety evaluation based on required strength for reinforced concrete members
Application of CFRP sheets with high fiber density in strengthening RC slabs
subjected to fatigue load
H.K. Chai, H. Onishi & S. Matsui
Black river parkway viaduct bearing replacement
H.S. Viljoen, A.A. Newmark & B.E. Mawman
Rehabilitation of the U.S. route 46 bridge over Overpeck Creek
A.P. Ranasinghe & G. Khaitan
Renovation problems of historical concrete bridges
G. Borończyk-Plaska & W. Radomski
Study of stress distribution of cracked steel plate with single sided CFRP
material patching
Strengthening of composite beams with external tendons using a rating factor equation
D.H. Choi, S.H. Chung, D.M. Yoo & M.Y. Han
Evaluation of safety for repair work with welding – features of thermal stress
generated by cutting
S.H. Lee, K.H. Chang & Y.-C. Kim
Rehabilitation of the Barra Bridge – the strengthening side
A. Rito, M. Loureiro, S. Bispo & T. Ripper
Rehabilitation of the Barra Bridge – the repair side
A. Rito, S. Bispo, M. Loureiro, T. Ripper, P. Marques & J.N. Ferreira

XXVIII
Numerical analysis of two-way concrete slabs with openings strengthened with CFRP
P. Rusinowski, B. Tälfsten, O. Enochsön, T. Olafsson & J. Lundqvist
1045

Strengthening of concrete structures by external prestressing
H. Nordin & B. Tälfsten
1047

Applicability of welding for repair/reinforcement of overage bridges
Y.-C. Kim, H. Horikawa & M. Hirohaia
1049

Evaluation of reinforcement effect of deteriorated PSC beam through cutting its external tendons
B. Lee, C. Park, W. Lee & M. Kim
1053

Some efficient solutions for bridge reconstruction
V. Popa
1055

Mineral based bonding of CFRP to strengthen concrete structures
T. Blancksvrd, A. Carolin, B. Tälfsten & E. Rosell
1057

Repair of a historical stone masonry arch bridge
D.V. Oliveira & P.B. Lourenço
1059

Study on the risk of scaffolding works exposed to strong wind
K. Ohdo
1061

Strengthening steel bridges with new high modulus CFRP materials
M. Dawood, E. Sunner, S.H. Rizkalla & D. Schnorch
1063

Developments in FRP strengthening of railway bridges in the UK
B. Bell, B. Cox, S. Luke, L. Canning, N. Farmer & J. Smith
1065

FRP strengthening of masonry arches toward an enhanced behaviour
D.V. Oliveira, I. Basilio & P.B. Lourenço
1067

Fiber Reinforced Cementitious Matrix (FRCM) – advanced composite material and emerging technology for retrofitting concrete and masonry buildings
G. Mantegazza, A. Gatti & A. Barbieri
1069

Rehabilitation of the Figueira da Foz Bridge
A. Rito & J. Appleton
1071

Multi-stepwise thermal prestressing method for strengthening of concrete structures
1073

Reinforcement and protection of the Tâmega Railway Bridge
F. Martins
1075

Author index
1079

XXIX
Repair of a historical stone masonry arch bridge

D.V. Oliveira
Universidade do Minho, Guimarães, Portugal (danvco@civil.uminho.pt)

P.B. Lourenço
Universidade do Minho, Guimarães, Portugal (pbl@civil.uminho.pt)

ABSTRACT: This paper describes the procedure adopted in the analysis and design of repair measures of a historical masonry arch bridge, carried out at Universidade do Minho. The bridge under study crosses over Vizela River, near Guimarães. A detailed survey carried out allowed concluding that remedial measures were necessary in order to restore safety. The bridge load capacity was also assessed by means of a simple computational tool based on the limit analysis theory. To assure the safety use of the bridge, by light traffic and people, repair measures were proposed in accordance with the modern principles of intervention in historical structures.

1 INTRODUCTION

Portuguese masonry arch bridges were built throughout centuries, spanning from the Roman period to modern times, and thus representing an invaluable architectural and cultural heritage. Nowadays, it is still possible to find Roman bridges, characterized by their flat pavements and semicircular arches of equal dimensions, as well as the more flexible medieval bridges, with larger central spans, with semicircular or pointed arches, cutwaters and humpback pavements. However, the successive maintenance and repair works that bridges were submitted along the centuries generally implies a difficult dating process, leading sometimes to erroneous classifications.

With time, the deep change of loads for which bridges were initially built, the decay of the materials and the lack of maintenance have led to different states of damage, in many circumstances not compatible with their use or even their safety. The most common generalized damage observed in Portuguese bridges is related to the absence of mortar in the stone joints, the existence of vegetation and biological colonization, the presence of humidity and efflorescences and the accelerated decay of the materials. On the other hand, localized damage is essentially related with longitudinal cracking of the arches at the intrados, movement of abutments and the lack of plumness of the spandrel walls. However, some of the causes of the afore-mentioned damage could be avoided if bridges were submitted to periodical inspections. It is well known that the implementation of both periodical inspections and the reduction of the traffic load can efficiently contribute to decrease the structural degradation rate of masonry bridges.

However, the presence of damage, in particular cracking, is not inevitably a sign of danger, since it may produce only a simple redistribution of stresses, for which failure risk might be absence. Nevertheless, when the presence of damage threatens the safety of historical bridges, it becomes necessary to assure their structural stability, by carrying out adequate repair and strengthening measures, motivated by both the importance they still assume in the actual road network and the architectural, historical or cultural value they represent.

By their own nature, structures belonging to cultural heritage constructions present a set of
specific features that effectively limit the application of modern codes. Instead, recommendations regarding adequate approaches to guide the intervention in architectural heritage, within a rational and scientific procedure and within a cultural context are available (ICOMOS, 2001). Aspects as minimum repair to assure safety and durability requirements, the respect of the original conception and techniques and the compatibility between new and existing materials are essential issues when dealing with cultural heritage constructions.

This paper presents the survey of a Portuguese damaged granite stone masonry arch bridge, the assessment of its load capacity and finally describes the adopted repair measures to restore safety, compatible with the modern principles of intervention in structures with heritage value.

2 SURVEY AND DAMAGE PATTERN

The multi-span Negrelos Bridge is located close to Guimarães over the Vizela River. Although considered to be a Roman bridge, there are no available documents to clearly corroborate this hypothesis. As the major part of the bridges, Negrelos Bridge was an important structure of Minho road network in ancient times. With time, the bridge has lost its regional importance, though still assuming a great significance to the local network.

The bridge has a flat roadway, supported by three semicircular granite stone masonry arches, with different free spans (8.0 m + 6.4 m + 8.0 m), as schematically represented in Figure 1. The bridge reaches a total length of approximately 30 m and has a roadway width of about 3.0 m. The central arch is supported by two massive piers, endowed with two triangular cutwaters at upstream and two rectangular cutwaters at downstream. Within a governmental program to clear the river from pollution, a drainage pipe was placed on the left shore, on top of an embankment made beneath arch A1 and close to the left abutment, see Figure 1 (the pipe is not visible).

Both the spandrel walls and the parapets were built with stone masonry, but successive repair works carried out over the years have changed some original characteristics as it can be noticed by the parapet wall partially rebuilt with concrete blocks.

Fearing for the bridge safety, which was originated and supported by its visual aspect, the local authorities requested a complete survey on the bridge, as well as the definition of a set of remedial measures in order to restore safety, if necessary. However, any repair measures to be adopted ought to take into account the architectural significance of the bridge. The survey carried out has showed that the bridge presented a pronounced damage state, where damage was mostly characterized by:

- Extensive longitudinal cracking exhibited by the central arch (A2), close to the downstream spandrel wall, clearly visible at the intrados, see Figure 2a. This is mainly caused by earth pressure in the spandrel walls.
- Lateral movements of the spandrel walls near the left abutment, which became out of plumb, most likely originated by lack of maintenance in conjunction with increasingly heavy loads, see Figure 2b.
- Generalized damage caused by vegetation, spread all over the bridge, see Figure 2c, d.
- Extensive cracking in the left downstream cutwater and minor cracking in the other
three cutwaters, mainly due to existing vegetation and the lack of adequate stone imbri-
cation, see Figure 2c, d. Also, some stone blocks were cracked. Most probably, some of
the cutwaters were built or extended after the construction of the bridge.

The deficient maintenance of the bridge along the years together with heavy traffic loads seem
to be the main causes of the damage pattern found during the survey, that led the bridge to its
actual poor condition. Naturally, the antiquity of the bridge, the water pollution and the decay of
the materials also contributed to the actual degraded state.

Figure 2. Relevant damage: (a) longitudinal cracking in the central arch; (b) spandrel wall out of plumb;
(c) vegetation and cracks in the downstream cutwaters (downstream view); (d) vegetation and cracks in
the left pier (upstream view).

3 CARRYING CAPACITY ASSESSMENT

Besides the necessary repair measures to be undertaken, also a numerical assessment in terms of
carrying capacity was required in order to appraise the safety conditions of the repaired bridge
to be used by light vehicles. Here, the objective of the numerical analysis is just to have a good
estimation of the maximum load that the bridge can sustain prior to failure.

Among the available computational methods proposed in literature to compute the carrying
capacity of masonry arch bridges, from hand-based methods to advanced non-linear tools, the
rigid block computational limit analysis method is the most generally applicable (Livesley,
1978; Gilbert & Melbourne, 1994). However, the applicability of limit analysis to masonry
structures modeled as assemblages of rigid blocks connected through joints depends on some
basic hypotheses. The first hypothesis requires that the limit load occurs at small overall dis-
placements, which is true for most cases. The second hypothesis is that masonry has zero tensile
strength, which can be justified by the relatively low or even zero tensile strength. The third hy-
pothesis requires that shear failure at the joints is perfectly plastic, which can be considerable
acceptable since this assumption is supported by experimental results. Finally, the fourth hy-
hypothesis is that the hinging failure mode at a joint occurs for a compressive load independent from the rotation. In the case of masonry crushing, this hypothesis might be questionable, but crushing behaviour (except for columns) seems to have minor importance in the response of masonry structures, particularly in stone arch bridges.

Within the limit analysis method the load distribution is known but the load magnitude that the bridge can carry is unknown, but it can be easily computed. Therefore, limit analysis is a very practical computational tool since it only requires a reduced number of material parameters and it can provide a good insight into the failure pattern and limit load.

Here, Negrelos Bridge was modeled as an in-plane three-span semicircular arch bridge with a 0.50 m arch thickness and a flat pavement (Gilbert, 2005). The necessary geometrical data was obtained from topographic surveying and visual inspection, see Figure 1. In the absence of in-situ test results, the material properties were considered to assume typical values found in similar structures (Oliveira & Lourenço, 2004; Oliveira & Lourenço, 2005). In particular, a value of 8 N/mm² was adopted for the masonry compressive strength (PIET, 1970), whereas for the horizontal passive pressure a conservative value equal to half of the classical value given by Rankine theory was used (Smith et al., 2004).

Besides the self-weight of the materials (masonry and fill), a rolling load composed by the standard Portuguese vehicle (RSA, 1983) was considered. This standard vehicle is composed by three axles equally spaced by 1.5 m and with a 200 kN load per axle.

Using a computer program developed within the rigid block limit analysis method (Gilbert, 2005), the minimum failure load factor is equal to 1.67. Figure 3 illustrates the associated four hinges failure mechanism found, where both the dead and live load pressures applied to the arch, the hinges and the thrust-line are showed.

Assuming that the vehicle crosses the bridge from left to right, the minimum failure load factor was found for the vehicle central axle positioned at 31.9 % of the left arch free span (arch A1), as illustrated in Figure 3. Since symmetrical geometry and vehicle are used, the same result is obtained considering that the vehicle crosses the bridge from right to left instead. Since the local authorities are planning to close the bridge to heavy traffic after concluding the repair works, it can be considered that the bridge will present safety conditions to be crossed by light traffic.

Figure 3. Minimum load failure mechanism of Negrelos Bridge.

4 REPAIR MEASURES

4.1 Description of the remedial measures

The detailed visual inspection carried out showed that a set of repair actions were necessary, namely to stop the progression of the longitudinal cracking along the central arch, to counteract the outward movement of the spandrel walls, to prevent the failure of the cutwaters and to clean all vegetation from masonry. As stated above, the historical and architectural importance of Negrelos Bridge forced that any strengthening measures had to be designed in accordance with the principles that guide structural interventions in historical constructions.
To prevent any additional increase of the longitudinal cracking in the intrados of the central arch as well as to assure its future stability, a set of four horizontal stainless steel anchors across the full bridge width, endowed with cylindrical steel anchorage plates at each side of the arch, were proposed, see Figure 4. Also, two additional shorter stainless steel anchors were used close to each springing. In addition, it was recommended a light injection of the arch, at the intrados.

![Figure 4. Strengthening of the central arch: (a) adopted anchor scheme; (b) full bridge width anchors.](image)

For the connection between the arch and the spandrel walls a similar solution was developed. Five stitching anchors in each side of the arch were used with the purpose of linking the spandrel walls to the external arch voussoirs, see Figure 4a.

In order to face the out-of-plumbness of the spandrel walls above the left arch, it was decided to use two horizontal stainless steel anchors across the full bridge width provided with cross-shaped anchorage plates at the extremes, see Figure 5. The shape of the plates was due to aesthetic reasons.

![Figure 5. Strengthening of the spandrel walls: (a) anchor cross-shape plates; (b) transversal elevation view.](image)

To repair high level of damage found in the downstream cutwaters, with some stones cracked and others out of their original place and disconnected from the piers, the dismantling and subsequent rebuilding of the most deteriorated areas was proposed. On the other hand, the upstream cutwaters, less damaged but also in a poor condition, are to be injected with a lime-based grout after conclusion of the joint repointing works.

All infesting vegetation is to be removed using the most adequate procedures, and all masonry joints that show degradation are to be carefully cleaned and repointed.

In order to prevent the fines from being washed out of the fill material, leading to voids and thus affecting the carrying capacity of the bridge, it is recommended to execute an adequate wa-
terproofing and drainage of the pavement.

4.2 Execution

The intervention started with the cleaning and repointing of damaged masonry joints. Special care was put on the removal of vegetation, in order to cause the least possible damage to masonry. All repointing works were done with a lime-based mortar designed to match as close as possible the stone colour, see Figure 6a, b. At the same time, the preparatory works leading to the injection of the upstream cutwaters and central arch were begun, see Figure 6b, c.

![Figure 6](image)

Figure 6. (a) Joint repointing of piers and arches; (b) joint repointing and injection works of an upstream cutwater; (c) injection works of the central arch.

After dismantling, the rebuilding of the downstream cutwaters was carried out using the same stones, previously numbered, or when not able to be used, with similar stones from the region, see Figure 7a. During the rebuilding, the stones in a same course were connected to each other and to the piers by means of stainless steel cramps, at every three courses. The link between two consecutive courses was achieved through the use of vertical stainless steel latches.

Both the transversal full bridge width tying strengthening of spandrel walls and central arch, by means of anchors, was carried out using the same technique. In each anchor, after drilling an oversized hole using a rotating cutting device, a stainless steel rod was placed in the hole and subsequently grouted under low pressure. In order to prevent generalized material injection it was decided to use a sleeve involving the rod. No tension was applied to the rods other than a tightening force resulting from their adjustment using a dynamometric wrench. While in the spandrel walls anchors it was decided to use cross-shaped anchorage plates, see Figure 7b, in the all eleven arch anchors the hole was made good with a slip taken from the drilled stone cores, see Figure 8.

![Figure 7](image)

Figure 7. (a) Rebuilding of a downstream cutwater; (b) cross-shaped anchorage plate.
CONCLUDING REMARKS

The main results of a detailed survey performed on a damaged historical masonry arch bridge are here reported. This damage level threatened the normal usage of the bridge as well as its future stability. Given the historical significance of Negrelos Bridge and taking into account its rehabilitation and protection, a set of remedial measures were designed and executed aiming at restoring the bridge safety, in accordance with the principles that guide interventions in architectural heritage constructions.

The computational program based on the rigid block limit analysis theory used in this work has reveled to be a very simple and practical tool toll in the estimation of the carrying capacity of masonry arch bridges.

REFERENCES