Bridge Maintenance, Safety, Management, Life-Cycle Performance and Cost

Editors Paulo J.S. Cruz, Dan M. Frangopol & Luis C. Neves

International Association for Bridge Maintenance and Safety Bridge Maintenance, Safety, Management, Life-Cycle Performance and Cost – Cruz, Frangopol & Neves (eds) © 2006 Taylor & Francis Group, London, ISBN 0 415 40315 4

Table of Contents

Preface	XXXI
Conference organization	XXXIII
T.Y. Lin Lecture	
Bridge forms and aesthetics MC. Tang	3
Keynote Lectures	
Protection of our bridge infrastructure against manmade and natural hazards F. Seible, G. Hegemier, J. Wolfson, R. Conway, K. Arnett & J.D. Baum	13
Bridge management: Actual and future trends J.R. Casas	21
Life time assessment of bridges U. Peil, M. Mehdianpour, M. Frenz & K. Weilert	. 31
Cost-effectiveness of seismic bridge retrofit M. Shinozuka, Y. Zhou, S. Banerjee & Y. Murachi	39
The important roles of bridge maintenance and management on transportation safety and efficiency <i>M.M. Lwin</i>	47
Application of the structural health monitoring system to the long span cable-supported bridges SP. Chang	53
Innovative structural health monitoring of bridges in Portugal J.A. Figueiras & C.M. Félix	61
Developing a probability based limit states bridge specification – U.S. experience <i>J.M. Kulicki</i>	69
Stonecutters bridge – durability, maintenance and safety considerations <i>M.C.H. Hui & C.K.P. Wong</i>	77
Technical Contributions	

Bridge management systems

The first regional level bridge management system application in Italy *E. Spallarossa*

87

Development of lifetime maintenance strategies for highway structures based on the experience of a Japanese Highway Agency <i>M. Matsumoto & D.M. Frangopol</i>	89
Life cycle cost optimization of a bridge superstructure considering maintenance history Y.S. Shin, J.H. Park, Y.J. Ahn & H.S. Lee	91
The bridge management system in Osaka-City M. Ishida, T. Iritani & M. Jido	93
A bridge management system applied to a set of Portuguese bridges <i>J.O. Almeida & R. Delgado</i>	95
Optimal maintenance strategies for existing infrastructures under seismic risks <i>T. Koike & I. Aoki</i>	97
Small and medium size bridge maintenance sequence analysis by optimization technique <i>H.C. Hsu, W.P. Chang, R.D. Wang, C.H. Cho & D.H. Jiang</i>	99
Internet-based management of major bridges and tunnels using the Danbro+ system J. Bjerrum & F.M. Jensen	101
Use of genetic algorithms for optimal policies of M&R in a bridge network <i>F.A. Alonso, J.R. Casas & M. Nazar</i>	103
Optimization of reinforced concrete bridges maintenance by Markov chains A. Orcesi & C. Cremona	105
Bridge management system – GOA T.P. Mendonça, A.R. Vieira, V.R. Brito & P.P. Paulo	107
Current maintenance management practice for highway bridges in Vietnam D.T. Hai, H. Yamada & H. Katsuchi	109
Proposal of maintenance management system for existing bridges D.T. Hai, H. Yamada, H. Katsuchi & E. Sasaki	113
Toward maintenance of old stone bridges in Korea N.K. Hong, HM. Koh, S.G. Hong & B.S. Bae	115
An outline of the APT bridge management software D. Zonta, R. Zandonini, F. Bortot, R. De col & P.N. Paolaz	119
Development of a reconstruction strategy for the Angolan bridge network <i>M. Alves & J. Sebastião</i>	121
Dynamic programming for optimal bridge maintenance planning <i>M. Liu & D.M. Frangopol</i>	123
Optimal long-term single stage intervention strategies for road bridges <i>B.T. Adey, R. Hajdin & E. Brühwiler</i>	125
Optimization of preventative maintenance strategies for bridges <i>E.A. Tantele, T. Onoufriou & M. Mulheron</i>	127
Service life design in concrete bridges <i>T.P. Mendonça</i>	129
A practical bridge management system using new multi-objective genetic algorithm <i>H. Furuta, T. Kameda & M. Erami</i>	131

Novel management system for steel bridges in Korea J.S. Kong, S.H. Park, S.H. Kim, K.H. Park & D.M. Frangopol	133
Egnatia Motorway bridge management systems for design, construction and maintenance A. Liolios, D. Kotoulas, F. Antoniou & D. Konstantinidis	135
East river bridges preventive maintenance program <i>M.S. Hershey & M. Sharif</i>	139
The potential applicability of the Life-Quality Index to maintenance optimisation problems M.D. Pandey, J.M. van Noortwijk & H.E. Klatter	141
Optimal cost allocation for improving the seismic performance of road networks <i>H. Furuta, K. Nakatsu & D.M. Frangopol</i>	143
Development of bridge maintenance planning support system using multiple-objective genetic algorithm <i>H. Furuta, Y. Takenaka, T. Kameda & I. Tsukiyama</i>	145
Reliability analysis and optimal design of deteriorating structural systems	
Lifetime nonlinear analysis of concrete structures under uncertainty F. Biondini, F. Bontempi, D.M. Frangopol & P.G. Malerba	149
Probabilistic lifetime assessment based on limited monitoring F. Biondini, D.M. Frangopol & E. Garavaglia	151
Structural response evaluation of two-blade bridge piers subjected to a localized deterioration L. Sgambi, F. Bontempi & E. Garavaglia	153
Stiffness matrices and genetic algorithm identifiers toward damage detection <i>L. Faravelli & F. Marazzi</i>	155
Influence of the corrosion damage scenarios on the residual life of bridge grillages T. Albanesi, Z. Rinaldi, C. Valente & L. Pardi	157
Optimal design of deteriorating structural systems L. Azzarello, F. Biondini & A. Marchiondelli	159
Design, operation and maintenance of high speed railway bridges	
Design issues for dynamics of high speed railway bridges J.M. Goicolea, F. Gabaldón & F. Riquelme	163
Fatigue verification for railway bridges including resonance effects due to high speed trains <i>M. Muncke, L. Bagayoko, E. Koch & S. Crail</i>	165
Dynamic behaviour of high speed railway bridges in interoperable lines R. Delgado, R. Calçada, I. Faria, D. Ribeiro, J.R. Pinto & H. Figueiredo	167
Design and construction of structures for high-speed railway lines	169

Design and construction of structures for high-speed railway lines *P. Ramondenc*

Application of structural system identification methods

Structural health monitoring using dynamic responses with regularized autoregressive model <i>J.S. Kang & H.S. Lee</i>	173
Estimation of stiffness and mass properties from measured modal information SB. Shin & S.M. Lee	175
Assessment of the dynamic displacements using acceleration data measured on bridge superstructures <i>B.S. Jung & N.S. Kim</i>	177
Evaluation of load carrying capacity of bridge based on ambient acceleration measurements <i>CB. Yun, S. Cho, JH. Yi, CG. Lee & WT. Lee</i>	179
System identification scheme using genetic algorithm for damage classification in beam-type structures <i>J.T. Kim, J.H. Park, D.S. Hong & W.J. Kim</i>	181
Damage assessment of bridge superstructure using moving load tests <i>HJ. Lee, SB. Shin & TW. Kang</i>	183
Long-term signal analysis for the existing bridge health monitoring system	ns
Statistical time series analysis of long-term monitoring results of a cable-stayed b J. Lee, SP. Chang, H. Kim & JG. Yoon	ridge 187
Signal analysis from a long-term bridge monitoring system in a three dimensional self-anchored suspension bridge <i>S. Kim, J. Lee & IH. Bae</i>	1 189
Behavior monitoring of the Korea Highway Corporation test road SM. Kwon, JH. Lee, JH. Jang & HG. Park	191
Bridge weigh-in-motion without axle-detector in a cable stayed bridge <i>MS. Park, S. Kim, BW. Jo & J. Lee</i>	193
Development of maintenance and monitoring system for Young-Heung Bridge using the latest technologies <i>D.W. Kim, K.J. Joo & SB. Shin</i>	197
Development of measuring data system of bridges by wireless transmission using fiber Bragg Grating sensor K.H. Kwak, H.S. Hwang & B.K. Sung	199
Damage assessment – strength and durability	
Application of a new metal spraying system for steel bridge Part 3. A report on 9 or 13 years experience with the spraying system <i>T. Kondo, S. Okuno, A. Yamazaki & H. Matsuno</i>	203
Relationship between bearings type and their most common anomalies <i>L.M.R. Freire & J. de Brito</i>	205
Residual structural performance of rolled H members submerged in seawater for a long time and their anti-corrosion strategy <i>E. Watanabe, K. Sugiura, T. Utsunomiya & M. Yamamoto</i>	207

Strength of corroded tapered plate girders under pure shear <i>P.J.S. Cruz, L. Lourenco, M. Santos, H. Quintela & P. Cortez</i>	211
Accelerated exposure test of uncoated and metal-coated steels and its application <i>IT. Kim & Y. Itoh</i>	213
Condition assessment of concrete bridges during demolition <i>R. Bargähr & T. Vogel</i>	215
A new method for two-stage structural damage identification <i>Y. Jiarong</i>	217
Hungerford River Bridge No. 7 – a case study of assessment from first principles $A.K.$ Pope	219
Modelling the response of the New Svinesund arch bridge: FE model verification and updating based on field measurements <i>M. Plos</i>	221
Development of evaluation system for service life of concrete bridge deck structures <i>B.H. Oh, Y.C. Choi & J.B. Park</i>	223
Applications of acoustical techniques for detection and assessment of damage in aging structures <i>K.Z. Zahariev, Y.B. Kin & B.W. Parsons</i>	225
Numerical modelling of damaged masonry arch bridges J. Bień & T. Kaminski	227
Bond-slip behaviour of corroded reinforcing steel in concrete bridges <i>C. Fang</i>	229
West Mill Bridge – comparison of initial and long-term structural behaviour <i>L. Canning & S. Luke</i>	231
Road bridge expansion joints: Existing systems and most common defects <i>A.J.M. Lima & J. de Brito</i>	233
Experimental and analytical model analysis of Babolsar's steel arch bridge <i>M.H.A. Beygi, M.T. Kazemi, B. Lark & Z. Tabrizian</i>	235
Study on safety alerting system of beam bridge Y.Q. Xiang, J.F. Wang & W.L. Yang	239
Comparison between damage detection methods applied to beam structures R. Salgado, P.J.S. Cruz, L.F. Ramos & P.B. Lourenço	241
Prediction of crack width for prestressed concrete deck slabs in box girder bridges <i>B.H. Oh & Y.C. Choi</i>	243
Structural damage analysis for SHM system design of PC girder bridge with losing of prestress <i>D. Dan, L. Sun & J. Li</i>	245
Masonry arch railway bridges in Austria: Sustainable historical structures for today's traffic <i>M. Mautner</i>	247
Numerical modeling and assessment of the shear key problems of FC girder bridges <i>N.A. Khattak & J.J.R. Cheng</i>	249

Degradation of structural performance – experiment introduction and expected results 251 *M. Bergström & B. Täljsten*

Assessment, monitoring and control of bridge vibrations

Evaluation of dynamic properties of the Infante Dom Henrique Bridge F. Magalhães, A. Cunha, E. Caetano, A.A. da Fonseca & R. Bastos	255
Enhanced exploitation of bridge vibration measurements by Operational Modal Analysis <i>B. Peeters & H.v.d. Auweraer</i>	257
Comparative study of system identification techniques applied to New Carquinez Bridge <i>X. He, B. Moaveni, J.P. Conte & A. Elgamal</i>	259
Analysis and control of vibrations of Guarda footbridge E. Caetano, A. Cunha, C. Moutinho & T.P. Mendonça	261
Human-induced vibrations on footbridges J.M.W. Brownjohn & A. Pavic	263
Clarification of the effect of high-speed train induced vibration on a railway steel box girder by monitoring using Laser Doppler Vibrometer <i>T. Miyashita, H. Ishii, Y. Fujino, T. Shoji & M. Seki</i>	265
Integrated monitoring of bridges by response measurements <i>S. Deix & R. Geier</i>	269
Cable-deck dynamic interactions at the International Guadiana Bridge V. Gattulli, M. Lepidi, E. Caetano & A. Cunha	271
Cost-effectiveness of bridge seismic retrofit using lead-rubber bearings <i>E.H. Wang & S.H. Lai</i>	273
A wireless sensor network for force monitoring of cable stays G. Feltrin, J. Meyer, R. Bischoff & O. Saukh	277
Dynamic testing of the Millau Viaduct O. Flamand & G. Grillaud	279
Bridge displacement measurement system using image processing J.W. Lee, J.S. Oh, M.K. Park, S.D. Kwon & J.W. Kwark	281
Output-only modal identification of lively footbridges F. Magalhães, A. Cunha, E. Caetano, C. Butz & A. Goldack	283
Seismic and dynamic analysis	
Comprehensive parametric study on the performance of seismic-isolated bridges <i>M. Dicleli & S. Buddaram</i>	289
Proposed improvements to AASHTO effective damping equation for seismic-isolated bridges <i>M. Dicleli & S. Buddaram</i>	291
Using opposing spirals to enhance seismic behavior of reinforced concrete bridge columns <i>W. Turechek & R.A. Hindi</i>	293

Effects of strong winds on bridge-vehicle interaction for long span bridges <i>M.S. Cheung, B. Noruziaan & C.Y. Yang</i>	295
Seismic capacity assessment of cable supported bridge considering material nonlinearity <i>K.C. Lee, D.S. Moon, SP. Chang & S.H. Bae</i>	297
Seismic performance of hollow sectional columns with different portions of lap-spliced longitudinal bars <i>I.H. Kim, H.T. Yeo, C.H. Sun & J.S. Lee</i>	299
Cost-effectiveness evaluation of MR damper system for cable-stayed bridges under earthquake excitation D. Hahm, HM. Koh, SY. Ok, W. Park, C. Chung & KS. Park	301
Performance evaluation tests of laminated rubber bearings for seismic isolation design of bridges I.J. Kwahk, C.B. Cho, Y.J. Kim & J.W. Kwak	303
Effect of variability in response modification factors on seismic damage of R-C bridge columns <i>A. Mechakhchekh & M. Ghosn</i>	305
Influence of soundness degradation of railway viaducts on their dynamic response and site vibrations K. Yoshida, M. Seki, M. Kawatani, S. Yamaguchi & S. Nishiyama	307
Dynamic analysis of railway bridges with random vertical rail irregularities <i>B. Biondi, G. Muscolino & A. Sofi</i>	311
Mitigation of buffeting response for a 800 m cable-stayed bridge during construction <i>H.K. Kim & S.W. Choi</i>	313
Blast loading and earthquake effect on reinforced concrete structures <i>F. Shalouf & S.I. Ahmad</i>	315
Characteristics of lead rubber bearings for elastic response of bridges substructures J.M. Jara & M. Jara	317
Seismic risk management of highway bridges M. Dolce, D. Cardone & L. Pardi	319
Performance-based design considering ageing of bridge rubber bearing <i>H.S. Gu & Y. Itoh</i>	321
Seismic retrofitting of bridges using slide bearings with bending-type anchor bars <i>H. Namiki, H. Suzuki, H. Matsuhisa & M. Kimura</i>	323
Numerical modeling and dynamic behavior of a railway concrete arch bridge over the Vindel River in Sweden G.J. He, A. Bennitz, O. Enochsson, L. Elfgren, B. Paulsson, B. Töyrä, P. Olofsson & A. Kronborg	327
Assessment of bridge repair and strengthening	

Bond quality survey of loaded RC beams with CFRP-plate repair using impulse-thermography *R. Helmerich, C. Maierhofer, M. Röllig, R. Arndt & J. Vielhaber*

331

Chloride determination for condition assessment and quality assurance by LIBS <i>F. Weritz, A. Taffe, D. Schaurich & G. Wilsch</i>	333
Nonlinear analysis of RC beams with externally bonded plates JG. Park, KM. Lee, HM. Shin & YJ. Park	335
Parametric evaluation of CFRP patch effectiveness in fatigue repair <i>E.S. Aggelopoulos, T.D. Righiniotis & M.K. Chryssanthopoulos</i>	337
Sustainable bridges: A European funded project for higher load and speed on railway bridges – WP6 repair and strengthening <i>B. Täljsten & R. Helmerich</i>	339
Lessons learnt from underwater FRP repair of corroding piles R. Sen, G. Mullins, KS. Suh & D. Winters	341
Handling uncertainty in analysis design	
Probabilistic evaluation of model uncertainties in concrete structures D.L. Allaix, V.I. Carbone & G. Mancini	345
Handling uncertainty in reliability analysis of concrete structures F. Biondini, F. Bontempi & P.G. Malerba	347
Reliability of simplified analytical models for the analysis of FRP reinforced masonry frames <i>U. Ianniruberto & Z. Rinaldi</i>	351
The role of monitoring in the management of uncertainties and residual life of existing structures <i>A. Del Grosso & F. Lanata</i>	353
Excessive deflections of concrete bridges affect safety, maintenance and management V. Křístek & A. Kohoutková	355
Characterization of the structural performance of existing r.c. bridges and basic criteria for rehabilitation and refurbishment: Experiences in Northern Italy <i>C. Modena, P. Franchetti & M. Grendene</i>	357
Effective framework for seismic analysis of cable-stayed-bridges, Part 1: Modeling of the structure and of the seismic action <i>L. Sgambi, F. Bontempi & G. Santoboni</i>	359
Effective framework for seismic analysis of cable-stayed-bridges, Part 2: Analysis' results L. Sgambi, F. Bontempi & G. Santoboni	361
Reliability-based life cycle assessment for civil engineering structures R. Schnetgöke, C. Klinzmann & D. Hosser	363
Probabilistic durability of concrete bridge structures in Korea J.S. Kim, S.H. Jung, JH. Kim, KM. Lee, S.H. Bae & Y.G. Kim	365
Performance analysis of a bridge – degradation, assessment and reliability modeling A. Strauss, K. Bergmeister, R. Pukl & D. Novák	367
Uncertainties in probabilistic modeling of the load carrying capacity of bridges <i>A. Stenlund, L. Elfgren & E. Rosell</i>	369

Probabilistic characterization and analysis of the properties of materials used in bridges	
Reliability based assessment of prestressed concrete bridges subject to creep using a coupling procedure <i>W. Raphael, F. Geara, F. Kaddah & A. Chateauneuf</i>	373
Probabilistic creep model by Bayesian updating for design codes D.E.A. Selouan, W. Raphael & A. Chateauneuf	375
Failure analysis of FRP-strengthened concrete beams M. Ali-Ahmad, K. Subramaniam & M. Ghosn	377
Designing with HSC for safety: Effect of age specification for characteristic strengths S.M.C. Diniz	379
Designing and controlling concrete quality in the field for a 100-year life cycle <i>PC. Aitcin & R. Morin</i>	381
Estimation of the <i>in-situ</i> concrete characteristics from building control results <i>JL. Clément</i>	383
Politics and perception in life-cycle decisions	
Selling life-cycle concepts within the political system <i>R.B. Corotis</i>	387
User costs in life-cycle cost-benefit (LCCB) analysis of bridges <i>P. Thoft-Christensen</i>	389
Governing issues and alternate resolutions for a state department of transportations' transition to asset management <i>A.E. Aktan & F.L. Moon</i>	391
A budget management approach for societal infrastructure projects K. Nishijima & M.H. Faber	395
Societal aspects of bridge management and safety in The Netherlands <i>H.E. Klatter, A.C.W.M. Vrouwenvelder & J.M. van Noortwijk</i>	397
Safety of medium and long span bridge superstructures during the erection phases	
Importance of modal cross-correlation on wind loaded structures V. Denoël, H. Degée & V.d. V. de Goyet	401
Steel bridges launching and safety against patch loading E. Maiorana & A. Miazzon	403
Safety of balanced cantilever and cable stayed bridges during construction <i>A.J. Reis</i>	405
Patch loading resistance of longitudinally stiffened plate girders U. Kuhlmann & B. Braun	409
Buckling of steel tied arches during erection <i>Ph. van Bogaert & A. Outtier</i>	411

4

L. Davaine & J. Raoul Safety sensitivity for temporary bridge erection conditions	
R.G. Sexsmith	
Status and findings of current BHM applications in the world	
A methodology and decision support system for scheduling inspections in a bridge network following a natural disaster <i>K. Kepaptsoglou, M.G. Karlaftis, T. Bitsikas, P. Panetsos & S. Lambropoulos</i>	4
Continuous monitoring of concrete bridges during construction and service as a tool for data-driven bridge health monitoring <i>D. Inaudi & B. Glisic</i>	4
The current status of SHMBM engineering S. Sumitro, M. Tominaga, Y. Kato & T. Okamoto	4
GNSS for bridge deformation: Limitations and solutions X. Meng, G.W. Roberts, A.H. Dodson & C.J. Brown	4
Development of a bridge management system for a freeway authority in Greece M.G. Karlaftis, T. Bitsikas, K. Kepaptsoglou, S. Lambropoulos & P. Panetsos	4
Monitoring performance of the Tamar suspension bridge D.I. List, R. Cole, T. Wood & J.M.W. Brownjohn	۷
Lesson learned from monitoring of long-span cable-supported bridges Y. Fujino & D.M. Siringoringo	2
Cable hanger plate replacement; a case study on Bosporus Bridge A. Turer, A. Caner & C. Yilmaz	4
Structural identification of constructed systems and the impact of epistemic uncertainty <i>F.L. Moon & A.E. Aktan</i>	4
Service life prediction based on permanent output only monitoring <i>H. Wenzel</i>	4
Steel stringer bridge load rating based on field calibrated grid models A. <i>Turer</i>	4
Inspection and prediction of structural performance	
Bridge condition and health measures for needs analysis P.S. McCarten	4
Prediction and analysis of deterioration of Moscow Bridges G. Brodski, Yu.A. Ponomarev & Yu.A. Yenutyin	4
Bridge deck deterioration: A parametric hazard-based duration modeling approach <i>P.M. Christofas & M.G. Karlaftis</i>	4
Bridge inspections, a case for trained bridge inspectors B. Kamya	4
Correlation between reduction in load capacity and structural condition of highway bridges	4

Bridge inspection and monitoring

Durability in B.O.T. bridge projects F. Branco, J. Ferreira & M.M. Branco	457
Post-mounted corrosion sensors, experiences and interpretation of data for use in service life models <i>R. Sørensen, T. Frølund & M. Sloth</i>	459
Bridge decks with GFRP – concrete composite sections J.R. Correia, J.G. Ferreira & F. Branco	463
Sensors in civil engineering infrastructures J.G. Ferreira, F. Branco & M.M. Branco	465
Strain Checker: Stethoscope for bridge engineers T. Ojio, K. Yamada, Y. Saito & S. Shiina	467
Health monitoring of structures using cement-based piezoelectric composites <i>L. Qin & Z. Li</i>	471
Fatigue analysis	
Serviceability and fatigue issues related to vibration of the cables of the Alamillo cable-stayed bridge in Sevilla (Spain) <i>J.R. Casas & A.C. Aparicio</i>	475
Fatigue cracks of welds and their repair in steel spans of railroad bridge Z. Manko	477
Fatigue behaviour of riveted steel lap joints M.A.V. Figueiredo, A.M.P Jesus, A.S. Ribeiro, P.M.S.T. de Castro & A.A. Fernandes	479
Accurate fatigue stress determination in concrete railway bridges considering rail track – structure interaction <i>A. Herwig & E. Brühwiler</i>	483
Application of post-weld treatment methods to improve the fatigue strength of high strength steels in bridges U. Kuhlmann, A. Dürr & HP. Günther	485
Fatigue strength of web-gusset welded joint pasted with glass fiber reinforced polymer <i>H. Suzuki</i>	487
Ultrasonic impact treatment for life extension of bridges with cracked and crack susceptible welded details <i>E. Nyborg, P. Moffatt, J. Cavaco & D. Nyborg</i>	489
Fatigue lifetime estimation of Chunho steel box bridge on Han River J.S. Lee	493
Fatigue monitoring of steel railway bridges O. Hechler, M. Feldmann & B. Kühn	495
Probabilistic fatigue life estimates for riveted railway bridges B.M. Imam, T.D. Righiniotis, M.K. Chryssanthopoulos & B. Bell	499
Fatigue on metallic railway bridges: Methodology of analysis and application to Alcácer do Sal Bridge <i>D. Ribeiro, R. Calçada & R. Delgado</i>	501

Fatigue life improvement of existing steel bridges T. Ummenhofer, I. Weich & T. Nitschke-Pagel

503

Bridge owners benefits from probability-based assessment and maintenance management

Principles for a guideline for probability-based management of deteriorated bridges J. Lauridsen, J. Bjerrum, M. Sloth & F.M. Jensen	507
Experience with probability-based assessment of bridges based upon the Danish Guideline J. Lauridsen, J. Bjerrum, A.J. O'Connor & I. Enevoldsen	509
The Öland bridge – a case study for probability-based service life assessment <i>M. Sloth, R. Sørensen & A. Maglica</i>	511
Probabilistic-based assessment of a concrete arch bridge A.J. O'Connor, C. Pedersen, I. Enevoldsen & J. Bjerrum	513
Probability-based maintenance management plan for corrosion risk – a case study from Faro Bridges M. Sloth, B.B. Jensen & E. Stoltzner	515

Reliability and risk management

Reliability based assessment of the influence of concrete durability on the timing of repair for RC bridges <i>M.G. Stewart & J.A. Mullard</i>	519
Reliability-based calibration of dynamic load allowance of bridge by numerical simulation <i>T.J. Chung, C.R. Lee, D.K. Shin & Y.S. Park</i>	521
An application of the probabilistic SBRA method in bridge structures design D. Pustka & P. Marek	523
Harnessing social perception of a bridge's condition J.D. Birdsall & E. Brühwiler	525
Probabilistic evaluation of time to corrosion initiation in RC elements exposed to chlorides: 2-D modelling <i>D.V. Val & P.A. Trapper</i>	527
Life cycle reliability assessment based on advanced structural modeling – nonlinear FEM R. Pukl, V. Červenka, D. Novák, B. Teplý, A. Strauss & K. Bergmeister	529
Lifetime reliability profiles for evaluation of corroded steel girder bridges A.A. Czarnecki & A.S. Nowak	531
Structural reliability of the Tampico Bridge under wind loading <i>D. de León, A.H-S. Ang & L. Manjarrez</i>	533
Statistical inference for Markov deterioration models of bridge conditions in The Netherlands <i>M.J. Kallen & J.M. van Noortwijk</i>	535
Lifetime seismic reliability analysis of deteriorating bridges <i>HN. Cho, KM. Lee & CJ. Cha</i>	537

Multi-objective probabilistic optimization of bridge lifetime maintenance: Novel approach <i>L.C. Neves, D.M. Frangopol & P.J.S. Cruz</i>	539
Damage magnitude analysis of industrial accidents by risk curve S. Hanayasu & K. Ohdo	543
Reliability-based life-cycle bridge management using structural health monitoring <i>T.B. Messervey, D.M. Frangopol & A.C. Estes</i>	545
Seismic design and retrofitting strategies for bridges	
Application of displacement-based seismic analysis of bridges: Case study of the Taiwan Chi-Chi earthquake <i>C.C. Fu, H. Alayed & Y.T. Hsu</i>	549
Advancements in seismic vulnerability assessment and retrofitting strategies <i>A.H. Malik & M. Asce</i>	551
Seismic vulnerability assessment of bridges in Germany <i>P. Renault & K. Meskouris</i>	553
Full-scale pseudo dynamic test for bridge retrofitted with base isolations K.B. Han, SK. Park, S.N. Hong & HY. Kim	555
ANN-based damage detection using dynamic responses of seismically isolated bridge structure J.F. Choo, HM. Koh, C. Chung, S.K. Kook & J.H. Lee	557
Bridge testing and assessment	
Technical evaluation of the bridge crossing Olt River in Râmnicu Vâlcea – Romania N.V. Popa, A.I. Dima & I.R.I. Răcănel	561
Multi mapping in evaluation of concrete bridges A. Wawrusiewicz	563
Damage detection using reflectorless electronic distance measurements: Results of the first epochs <i>K. Zilch, E. Penka, M. Hennecke, U. Willberg & Th. Wunderlich</i>	565
Statistical damage detection of structures by using system identification with 1-norm based regularization <i>H.W. Park, H. Sohn & H.S. Lee</i>	567
Evaluation and rating of damaged steel I-girders <i>H.W. Shenton III, M. Dawson & A. Chavez</i>	569
On the detection of damage in bridge structures using dynamic testing <i>V. Zabel & C. Bucher</i>	571
Research needs for BHM systems of the future and benchmark studies	
Bridge assessment under uncertain parameters via interval analysis O.D. Garcia, J. Vehí, J.C. Matos, A.A. Henriques, J.A. Figueiras & J.R. Casas	575
Suggestions for future research, development and application of bridge health monitoring systems J.M. W. Brownjohn & J.S. Owen	577

Development of a benchmark problem for bridge health monitoring F.N. Catbas, J.M. Caicedo & S.J. Dyke	579
Application of ARMAV for modal identification of the Emerson Bridge W. Song, D. Giraldo, E.H. Clayton, S.J. Dyke & J.M. Caicedo	581
Improvement of seismic performance of the Toyosato Bridge with base isolation and response control <i>H. Iemura, Y. Kawamura, M. Hirano & K. Taira</i>	583
Residual strength prediction of reinforced bridge piers under seismic risks <i>I. Aoki & T. Koike</i>	585
Integration of bridge management and bridge monitoring	
Health monitoring system using learning system H. Furuta & H. Hattori	589
Damage identification method for bridges from a pseudostatic formulation of bridge-vehicle interaction system <i>C.W. Kim & M. Kawatani</i>	591
Impact acoustics of concrete structures by applying discrete wavelet transform <i>Y. Nomura, M. Kawatani, M. Hirokane & M. Kou</i>	593
Predictive SHM-supported deterioration modelling of reinforced concrete bridges <i>M.I. Rafiq, M.K. Chryssanthopoulos & T. Onoufriou</i>	595
Development of BMS for a large number of bridges M. Kaneuji, H. Asari, Y. Takahashi, Y. Ohtani, H. Ukon & K. Kobayashi	597
Implementation of bridge management system in Aomori prefectural government, Japan N. Yamamoto, H. Asari, T. Ishizawa, M. Kaneuji & E. Watanabe	599
Condition evaluation standards and deterioration prediction for BMS E. Matsumura, Y. Senoh, M. Sato, Y. Miyahara, M. Kaneuji & M. Sakano	601
Health monitoring of steel bridges using local vibration excitation S. Beskhyroun, T. Oshima & S. Mikami	605
A system for field inspection of infrastructure in snowy cold regions using speech recognition	<0 7
A. Kenmotsu, H. Ushio, H. Tsugimura & T. Oyama	607
Integrating bridge health monitoring into bridge management <i>R. Kiviluoma</i>	609
Innovative developments towards improving bridge seismic safety	
Bayesian updating of bridge fragility curves using sensor data JM. Wong, K. Mackie & B. Stojadinovic	613
Analytical assessment of the post-earthquake condition of self-centering versus traditional concrete bridge pier systems <i>W.K. Lee & S.L. Billington</i>	615
Seismic performance of unbonded columns and isolator built-in columns based on cyclic loading tests <i>K. Kawashima & G. Watanabe</i>	617

XVIII

Seismic performance of reinforced concrete bridge columns encased in fiber composite tube <i>Z. Zhu, A. Mirmiran & M. Saiidi</i>	621
Analysis of reinforced concrete bridge columns with shape memory alloy and engineered cementitious composites under cyclic loads <i>M. Saiidi, M. Zadeh & M. O'Brien</i>	623
Seismic upgrade of column-bent cap connections of Alaska bridges <i>M.C. Lubiewski, P.F. Silva & G.D. Chen</i>	625
Soft computing in bridge engineering	
Application of soft computing techniques to safety management during bridge construction <i>A. Miyamoto</i>	629
Imaging-based surface quality assessment of weathering steel bridge based on wavelet transform and support vector machine <i>B.F. Yan, S. Goto & A. Miyamoto</i>	631
Development of standardized semantic model for structural calculation documents of bridges and XML schema matching technique <i>SH. Lee, BG. Kim, DH. Kim & YS. Jeong</i>	633
Application of PSO algorithm to damage identification for concrete bridges <i>M. Beppu, H. Emoto & A. Miyamoto</i>	635
Monitoring of early age shrinkage using image analysis and it's use in repair of bridges K.C.G. Ong & ML. $Kyaw$	637
Development of an internet para-stressing system for intelligent bridge T. Morisaki, M. Motoshita & A. Miyamoto	641
Optimal intervention strategies for multiple bridges during catch-up periods using age equivalents <i>B.T. Adey, R. Hajdin & E. Brühwiler</i>	645
Bayesian regression modeling of concrete carbonation depth for inclusion in J-BMS <i>A. Tarighat & A. Miyamoto</i>	647
Long-term monitoring of concrete bridges by direct combination of experimental and mechanical analysis <i>K. Brandes, W. Daum & F. Buchhardt</i>	649
Development of a web-based database system for management of existing bridges in the Yamaguchi prefecture, Japan K. Kawamura, D.M. Frangopol & A. Miyamoto	651
Loads and testing	
AASHTO-LRFD live load distribution: Limitations and applicability Z.G. Yousif & R.A. Hindi	655
Numerical model for bridge-vehicle interaction and traffic-induced vibration investigation <i>H. Moghimi</i>	657
The probability of extreme load effects in bridges subject to dynamic vehicle-bridge interaction <i>P.H. Rattigan, E.J. Obrien, A. González & N.K. Harris</i>	659

XIX

D.R. Mertz Investigating truck load effects using bridge weigh-in-motion system	
ES. Hwang, J.J. Lee, S.H. Jang & I.Y. Paik	
Design temperature load models for concrete slab bridges <i>ES. Hwang & J.J. Lee</i>	
Prediction and influence of future traffic demands on Croatian highway bridges A. Mandić & J. Radić	
Smart bridge technology	
A low power wireless sensor network for structural health monitoring J. Meyer, R. Bischoff, G. Feltrin & O. Saukh	
Global smart bridge monitoring system S. Sumitro & M.H. Hodge	
Design approach and full implementation of intelligent SHM systems for bridges <i>H. Li & J.P. Ou</i>	
Monitoring of PC structure with distributed sensing techniques Z.S. Wu, C.Q. Yang & K. Kishida	
Damage detection of truss structures Z.D. Duan, G.R. Yan & J.P. Ou	ſ
State-of-the-art and state-of-the-practice and guidelines of bridge health monitoring in the mainland of China <i>J.P. Ou & H. Li</i>	
Structural control of seismically induced pounding of elevated bridges by using magnetorheological dampers A.X. Guo, L.L. Cui & H. Li	
Development of bridge management system for expressway bridges in Japan K. Yokoyama, S. Sakai, N. Inaba, A. Homma & N. Ogata	
Acceleration response energy method for damage identification of bridge structures <i>Z.S. Wu & ZD. Xu</i>	(
SMARTE – Development and implementation of a long term structural health monitoring V. Perdigão, P. Barros, J.C. Matos, H. Sousa, J.A. Figueiras, I. Dias & D. Pereira	
Use of mobile measuring system for bridge monitoring V.N. Fedoseyev & E. Brodskaia	4
Structural health monitoring of Delaware's Indian River Inlet Bridge M.J. Chajes, H.W. Shenton, D.F. Weston, T.J. Stuffle & J. West	ł

State-of-the-art on cathodic protection installations and innovative projects699B.B. Jensen & E. Stoltzner699

Cathodic protection as repair option for the Öland Bridge superstructure R. Sørensen, B. Buhr & A. Maglica	703
Benefits and challenges using cathodic protection from an owners point of view <i>E. Stoltzner, C. Henriksen & B.B. Jensen</i>	705
Cathodic protection of anchorages in deteriorated post-tensioned bridges <i>P.H. Møller, A. Hojgaard & H.O. Nielsen</i>	707
Cathodic protection of the west bridge caissons and piers <i>P.H. Møller, M.E. Andersen & E. Laursen</i>	709
Bridge evaluation using field testing	
Experimental and numerical dynamic analysis and assessment of a railway bridge subjected to moving trains <i>M. Majka, M. Hartnett, J. Bień & J. Zwolski</i>	713
Effect of bridge live load based on 10 years of WIM data <i>M. Gindy & H. Nassif</i>	715
Evaluating ultimate bridge capacity through destructive testing of decommissioned bridges J. Ross, J. Righman, M. Chajes, D.R. Mertz, T. Zoli & J. Volk	717
Fatigue performance of steel girder bridges based on data from structural monitoring <i>H. Nassif, J.C. Davis & N. Suksawang</i>	719
Field test on the noise and the vibration of expansion joint J.W. Kwark, J.W. Lee, W.J. Chin & Y.J. Kim	721
Business intelligence and asset management	
Development of the inspection support system for bridge asset management T. Kigure, T. Ishizawa, Y. Hosoi, H. Fujii, M. Iwai & M. Kaneuji	727
An approach to integrating bridge and other asset management analyses <i>F. Harrison, D. Gurenich & W. Robert</i>	729
The next generation of the Pontis Bridge management system W. Robert, A. Marshall, S. Hwang & J. Aldayuz	731
The role of the bridge management system in bridge asset valuation <i>R.M. Ellis & P.D. Thompson</i>	733
Multi-objective optimization for bridge management P.D. Thompson, V. Patidar, S. Labi, K. Sinha, W.A. Hyman & A. Shirolé	735
Probabilistic model for aging of bridges M. Petschacher	737
Load and resistance assessment of railway bridges	
Structural assessment of concrete railway bridges: Non-linear analysis and remaining fatigue life M. Plos, K. Gylltoft, K. Lundgren, L. Elfgren, J. Cervenka, E. Brühwiler, S. Thelandermer, C. F. B. J.	741

S. Thelandersson & E. Rosell

Considerations for traffic loads in the assessment of existing railway bridges <i>G.A. James & R. Karoumi</i>	745
A new assessment method for masonry arch bridges C. Melbourne & A.K. Tomor	747
General basis and criteria for the capacity assessment of European railway bridges J.R. Casas, E. Brühwiler, J. Cervenka, G. Holm & D. Wisniewski	749
Improved assessment methods for static and fatigue resistance of metallic railway bridges in Europe A. Patrón, C. Cremona, S. Hoehler, B. Johansson, T. Larsson & M. Maksymowicz	751
Development of a guideline for load and resistance assessment of existing European railway bridges J.S. Jensen, C. Melbourne, J.R. Casas, R. Karoumi, M. Plos & A. Patrón	755
Design and analysis	
Service and ultimate limit state of precast segmental concrete bridges with unbonded prestressing and dry joints <i>J. Turmo, G. Ramos & A.C. Aparicio</i>	761
Airtrain JFK – the longest segmental girder construction erected in the New York city environs <i>H.W. Hessing</i>	763
Analytical prediction of displacement capacity and length limits of integral bridges <i>M. Dicleli</i>	765
Effect of thermal displacements on the performance of integral abutment-backfill system <i>M. Dicleli</i>	767
Development of a steel-concrete composite bridge deck with perfobond ribs <i>HY. Kim, Y.J. Jeong, SK. Park, K.B. Han & Y.K. Shin</i>	769
Static performance of concrete encased composite columns with low steel ratio YS. Chung, CS. Shim, CK. Park & J. Min	771
Unconventional high performance steel bridge girder systems <i>H.H. Abbas, BG. Kim & R. Sause</i>	773
Steel bridge system – simple for dead load, continuous for live load A. Azizinamini & D.T. Kowalski	775
Experimental tests of behaviour of unconventional steel-soil structure D. Beben & Z. Manko	777
An experimental study of soil-arch interaction in masonry bridges M. Gilbert, C.C. Smith, C. Melbourne & J. Wang	779
An analysis of simplified cable stayed bridge with FRP components J. Park, C.H. Chung & I.C. An	781
Regressive model for the partial-interactive ultimate strength of steel-concrete composite deck <i>YJ. Jeong, SH. Kim, HY. Kim & HB. Koo</i>	783
Flexural behavior of external prestressed H-beam K.S. Kim, SK. Park, K.B. Han & D.S. Yang	787

P.

Section 1

In-plane buckling strength and design of parabolic arch ribs in uniform compression J. Moon, S. Kim, H. Lee & K. Yoon	789
Field tests of prefabricated composite girders M. Łagoda & P. Olaszek	791
Robustness of highway overpasses H. Stempfle & T. Vogel	793
Neural network modelling of perfobond shear connector resistance J.C. Vianna, S.A.L. de Andrade, P.C.G. da S. Vellasco & M.M.B.R. Vellasco	795
Nonlinear analysis of prestressed concrete structures using unbonded tendon model JG. Park, HM. Shin, TH. Kim & JH. Choi	799
Ultimate strength of compression members undergoing buckling interaction <i>Y.B. Kwon & N.G. Kim</i>	801
Numerical analysis of welding considering phase transformation <i>H. Shirahata</i>	803
Design guidelines for sole plates in the elastomeric bearing system <i>C. Joh & Y.J. Kim</i>	805
Design and experimental analysis of a new shear connector for steel and concrete composite structures <i>G.S. Veríssimo, J.L.R. Paes, I. Valente, P.J.S. Cruz & R.H. Fakury</i>	807
Cyclic loadings on steel and lightweight concrete composite beams <i>I. Valente & P.J.S. Cruz</i>	811
Numerical analysis and assessment of a cable-stayed bridge during construction A.A. Henriques, R. Faria, J.A. Figueiras & C.M. Félix	813
The collision behaviors between the navigating vessel and the fender systems against the medium collision event <i>G.H. Lee, S.L. Lee & J.Y. Ko</i>	815
A modern concept of movable scaffolding systems A. Póvoas	817
Evaluation of performances on bridges with overloading trucks Y. Wang, D. Hu, Z. Liu, H. Xie, J. Liu & J.P. Grundling	819
Research on lifetime performance-based bridge design method <i>J. Peng, X. Shao & X. Jin</i>	821
Ultimate strengths of partial composite beams considering long-term effects of concrete slabs <i>D. Bae, S.G. Youn, H.K. Ryu & Y.S. Park</i>	823
Busan-Geogje fixed link: Concrete durability design for the bridges and tunnels C.K. Edvardsen, SK. Jeong, JC. Kim & GM. Lee	827
Quasi-static tests on concrete encased composite columns CS. Shim, YS. Chung, J. Min & JH. Han	829
Effects of thickness and yield strength of steel on peeling stress K. Nozaka, T. Furukawa & K. Suzukawa	831
Side-by-side box-beam bridges – design for durability <i>U. Attanayake & H.M. Aktan</i>	833

Preflex beams: Structural optimization and analysis of economic advantages <i>C. Mannini & S.G. Morano</i>	835
Characteristics of 3-D FRP sandwich panels for transportation infrastructures <i>E.M. Reis & S.H. Rizkalla</i>	837
Mechanical properties of HPC and SCC cured in mass structures <i>M. Kaszynska</i>	839
Durability design criteria for the Reno Bridge G. Furlanetto, L.F. Torricelli & A. Marchiondelli	841
Measurement and monitoring	
Suitability of portable electrochemical techniques for determination of corrosion stage of concrete structures in on-site conditions <i>R. Bäßler, A. Burkert & G. Eich</i>	845
Detecting wire breaks in a prestressed concrete road bridge with continuous acoustic monitoring S. Fricker & T. Vogel	847
Study of masonry arch bridge limit states with acoustic emission techniques <i>A.K. Tomor & C. Melbourne</i>	851
System for monitoring of steel railway bridges based on forced vibration tests J. Bień, P. Rawa, J. Zwolski, J. Krzyzanowski, W. Skoczynski & J. Szymkowski	853
Wavelet-based impact acoustic method for detecting interfacial separation of steel-concrete composite bridge <i>B.F. Yan, A. Miyamoto & X.Y. Zhou</i>	855
A neural-network-based system for Bridge Health Monitoring T.K. Lin, KC. Chang, C.C. Chen, C.Y. Chen & I.J. Tsai	857
Distributed strain measurement in steel slab-on-girder bridge via Brillouin optical time domain reflectometry F. Bastianini, F. Matta, N. Galati & A. Nanni	859
Data processing for safety control of bridges in real time V. Marecos, L.O. Santos & F. Branco	861
New method for detecting & measuring cracks on concrete using fiber optic sensors A.D. de León, P.J.S. Cruz, K.T. Wan & C.K.Y. Leung	863
Computer benchmark for static and dynamic damage identification in bridges 4. Del Grosso & F. Lanata	865
A real scale PC bridge for testing and validation of monitoring methods H. Budelmann, K. Hariri & A. Holst	867
MEMS-based sensor networks for bridge stability monitoring during flood induced scour I. Isley II, M. Saafi & J. Julius	869
Acoustic emission analysis techniques for wireless sensor networks used for structural health monitoring M. Krüger, C.U. Grosse & J.H. Kurz	873
Ground anchorage tension force monitoring by using magnetostrictive method E. Yanagisawa, O. Nakade, S. Oka, K. Ideue, K. Onishi & T. Nagashima	875

- CARA

XXIV

Monitoring an interstate highway bridge with a built-in fiber-optic sensor system <i>R.L. Idriss & Z. Liang</i>	877
Monitoring of fatigue crack by field signature method K. Oku, K. Arita & YC. Kim	879
Multiplexed fibre Bragg grating sensor system for bridge monitoring applications Y.M. Gebremichael, W.J.O. Boyle, J. Leighton, K.T.V. Grattan & B.T. Meggitt	883
Field observations on concrete box girder railway bridges L.O. Santos, J. Rodrigues & X. Min	885
Assessment and condition monitoring of a concrete railway bridge in Kiruna, Sweden O. Enochsson, L. Elfgren, T. Olofsson, B. Täljsten, B. Töyrä, A. Kronborg & B. Paulsson	887
Fuzzy-based variable gain approach for controlling cable-stayed bridges SY. Ok, KS. Park, C. Chung & HM. Koh	889
Development of safety warning system for infrastructures J.S. Lee & G.H. Juhn	893
Development of strain sensor holders to be applied to the monitoring of metallic structures B_{L4} Costa 4.0. Dimensional to the monitoring of the structure	895
B.J.A. Costa, A.O. Diamande, J.A. Figueiras & C.M. Félix Design and installation of the aptic has a large in the second	075
Design and installation of the optic based monitoring system applied to the Luiz I Bridge B.J.A. Costa, J.A. Figueiras & C.M. Félix	897
Design and implementation of the new structural monitoring system of the Tagus river suspension bridge <i>J. Rodrigues, J.A. Garrett, C.O. Costa & P. Silveira</i>	899
Health monitoring of large Adriatic bridges J. Radić, J. Bleiziffer & G. Puž	901
Cable stayed bridges. Failure of a stay: Dynamic and pseudo-dynamic analysis of structural behaviour <i>C.M.M. del Olmo & A.C.A. Bengoechea</i>	903
Monitoring of a bridge-deck using long-gage optical fiber sensors with a pulsed TOF measurement techniques V. Lyöri, A. Kilpelä, G. Duan, J. Kostamovaara & T. Aho	905
Live-bed bridge scour monitoring system development using fiber Bragg grating sensors YB. Lin, KC. Chang & JS. Lai	907
Assessment and monitoring of cables stayed bridges E. Laurent	909
<i>In-situ</i> materials analysis for health monitoring of bridges M. Ghandehari	911
Structural system identification in time domain using a time windowing technique from measured acceleration <i>SK. Park & H.S. Lee</i>	913
Toward more practical BMS: Its application on actual budget and maintenance planning of a large urban expressway network in Japan <i>M. Nishibayashi, N. Kanjo & D. Katayama</i>	915

Life cycle costing

Lifecycle design module for project level bridge management <i>E. Vesikari</i>	919
Risk based approach of Life Cycle Management Systems <i>A. Chaperon</i>	921
Maintenance management from an economical perspective J. Bakker, J. Volwerk & J. Verlaan	923
New trends in bridge management systems: Life cycle assessment analysis <i>H. Gervásio & L.S. da Silva</i>	925
Probabilistic approach for predicting life cycle costs and performance of bridg <i>A.P. Silva & A.A. Fernandes</i>	ges 927
Bridge condition assessment using combined non-destructive testing n	nethods
Current use of NDT in bridge condition assessments B.B. Jensen, T. Frølund & T. Pedersen	931
Trends in bridge condition assessment using non-destructive testing methods <i>E. Niederleithinger, R. Helmerich & H. Wiggenhauser</i>	933
Verifying design plans and detecting deficiencies in concrete bridge using GPL L. Topczewski, F.M. Fernandes, P.J.S. Cruz & P.B. Lourenço	R 935
Crack depth determination at large concrete structures using scanning impact-echo-techniques <i>M. Krüger, C.U. Grosse & H.W. Reinhardt</i>	937
Development and combined application of NDT echo-methods for the investig post tensioned concrete bridges D. Streicher, D. Algernon, Ch. Kohl, M. Krause, C. Maierhofer & H. Wiggenha	941
Concrete railway bridges – taxonomy of degradation mechanisms and damages identified by NDT methods <i>M. Maksymowicz, P.J.S. Cruz, J. Bień & R. Helmerich</i>	s 943
Durability performance of bridges in severe environments	
Durability of bridges in severe environments: The high quality cover plus monitoring-approach <i>M. Raupach & G. Weizhong</i>	947
Durability design of concrete structures in marine environment <i>O.E. Gjørv</i>	949
Chloride penetration into silica fume concrete after 10 years of exposure in Aursundet Bridge V. Årskog, O. Sengul, R. Dahl & O.E. Gjørv	951
Effect of blast furnace slag on chloride penetration into concrete bridges O. Sengul & O.E. Gjørv	953
Improving durability through probabilistic design <i>R.M. Ferreira</i>	955

Civil structural health monitoring

Monitoring with fiber optic sensors of a cable-stayed bridge in the Port of Venice A. Del Grosso, A. Torre, G.Brunetti, D. Inaudi & A. Pietrogrande	961
Distributed fiber optic strain and temperature sensing for structural health monitorin <i>D. Inaudi & B. Glisic</i>	ng 963
Development of structural health monitoring methodologies for cable-stayed bridges fiber optic sensors L.M. Giacosa, F. Ansari & A. De Stefano	s by 965
Determination of concrete properties with fiber optic sensor <i>Q. Li & F. Ansari</i>	967
Multiple fiber optic twin-sensor-array based on Michelson optical low-coherence reflectometer L.B. Yuan, J. Yang, Z. Liu, Q. Wen, C. Liu, Y. Jie & G. Li	969
Intrinsic polymer optical fiber sensors for civil infrastructure systems S. Kiesel, P. Van Vickle, K. Peters, O. Abdi, T. Hassan & M. Kowalsky	971
Implementation of a fiber Bragg grating sensor network for structural monitoring of a new stone bridge L.A. Ferreira, F.M. Araújo, C. Barbosa, N. Costa, A. Arêde, A. Costa & P. Costa	973
Implementation of a fiber Bragg grating sensor network for structural monitoring of a rehabilitated metallic bridge <i>E.M. Araújo, L.A. Ferreira, C. Barbosa & N. Costa</i>	975
The deterioration of concrete deck slabs in bridges – A Canadian experience L.G. Jaeger, W. Saltzberg, G. Tadros & N. Banthia	979
Weighing-in-motion of truck axle weights through a bridge B. Bakht, A. Mufti, G. Tadros, R. Eden & G. Mourant	981
Comparing conventional and innovative bridge deck options: A life cycle engineering and costing approach <i>K.J. Kostuk, G.A. Sparks & G. Tadros</i>	g 983
ISIS Canada educational modules on fibre reinforced polymers and structural health monitoring <i>L.A. Bisby</i>	985
Performance of concrete bridge deck slabs reinforced with glass FRP composite reinforcing bars A. El-Ragaby, S. El-Gamal, E. El-Salakawy & B. Benmokrane	987
Fatigue and static investigation of innovative steel free bridge decks C. Klowak, A. Memon & A. Mufti	989
Salmon River steel-free bridge deck – 10 years review of field performance <i>J. Newhook & J. Gaudet</i>	991
Experimental modal analysis of a cable-stayed bridge <i>P. Clemente, A. Manuli & F. Saitta</i>	993
Assessment and NDE of FRP rehabilitation of bridge deck slabs at systems level K. Ghosh, H. Guan & V.M. Karbhari	995
Innovative seismic design of bridges of the South Carolina Department of Transportation (SCDOT) <i>L.E. Mesa</i>	997

XXVII

H. Guan, V.M. Karbhari & C.S. Sikorsky Development of a field useable interrogation system for RF cavity wireless sensors A. Hladio, R. Jayas, D.J. Thomson & G.E. Bridges	1001
Repair and strengthening	
Planning and working of overall recoating for long-span bridges I. Yamada & K. Sumi	1005
Experimental research on the prestressed concrete main beams of road bridge strengthened by CFRP tapes under static loads at different repair stages <i>A.G. Mordak & Z. Manko</i>	1007
Strengthening steel beams using bonded carbon-fibre-reinforced-polymers laminates D. Linghoff, M. Al-Emrani & R. Kliger	1011
Rehabilitation of fatigue cracks in welded gusset joint using CFRP strips H. Nakamura, H. Suzuki, Ki. Maeda & T. Irube	1013
Alcácer do Sal Bridge – rehabilitation and strengthening T.P. Mendonça, M.P. Almeida & P.P. Paulo	1017
Vouga Bridge – rehabilitation and strengthening T.P. Mendonça, M.P. Almeida, A.R. Vieira & V.R. Brito	1019
Safety evaluation based on required strength for reinforced concrete members IH. Cheon, DJ. Seong, HM. Shin & SC. Lee	1021
Application of CFRP sheets with high fiber density in strengthening RC slabs subjected to fatigue load H.K. Chai, H. Onishi & S. Matsui	1023
Black river parkway viaduct bearing replacement H.S. Viljoen, A.A. Newmark & B.E. Mawman	1027
Rehabilitation of the U.S. route 46 bridge over Overpeck Creek 1.P. Ranasinghe & G. Khaitan	1029
Renovation problems of historical concrete bridges <i>G. Boroñczyk-Płaska & W. Radomski</i>	1031
Study of stress distribution of cracked steel plate with single sided CFRP naterial patching C.C.L. Angus, J.J.R. Cheng, G.D. Kennedy & C.H.Y. Michael	1033
trengthening of composite beams with external tendons using a rating factor equation D.H. Choi, S.H. Chung, D.M. Yoo & M.Y. Han	1035
Evaluation of safety for repair work with welding – features of thermal stress enerated by cutting <i></i>	1037
ehabilitation of the Barra Bridge – the strengthening side . <i>Rito, M. Loureiro, S. Bispo & T. Ripper</i>	1041
ehabilitation of the Barra Bridge – the repair side . Rito, S. Bispo, M. Loureiro, T. Ripper, P. Marques & J.N. Ferreira	1043

XXVIII

Numerical analysis of two-way concrete slabs with openings strengthened with CFRP <i>P. Rusinowski, B. Täljsten, O. Enochsson, T. Olofsson & J. Lundqvist</i>	1045
Strengthening of concrete structures by external prestressing <i>H. Nordin & B. Täljsten</i>	1047
Applicability of welding for repair/reinforcement of overage bridges <i>YC. Kim, H. Horikawa & M. Hirohata</i>	1049
Evaluation of reinforcement effect of deteriorated PSC beam through cutting its external tendons <i>B. Lee, C. Park, W. Lee & M. Kim</i>	1053
Some efficient solutions for bridge reconstruction <i>V. Popa</i>	1055
Mineral based bonding of CFRP to strengthen concrete structures T. Blanksvärd, A. Carolin, B. Täljsten & E. Rosell	1057
Repair of a historical stone masonry arch bridge D.V. Oliveira & P.B. Lourenço	1059
Study on the risk of scaffolding works exposed to strong wind <i>K. Ohdo</i>	1061
Strengthening steel bridges with new high modulus CFRP materials <i>M. Dawood, E. Sumner, S.H. Rizkalla & D. Schnerch</i>	1063
Developments in FRP strengthening of railway bridges in the UK B. Bell, B. Cox, S. Luke, L. Canning, N. Farmer & I. Smith	1065
FRP strengthening of masonry arches toward an enhanced behaviour <i>D.V. Oliveira, I. Basílio & P.B. Lourenço</i>	1067
Fiber Reinforced Cementitious Matrix (FRCM) – advanced composite material and emerging technology for retrofitting concrete and masonry buildings <i>G. Mantegazza, A. Gatti & A. Barbieri</i>	1069
Rehabilitation of the Figueira da Foz Bridge A. Rito & J. Appleton	1071
Multi-stepwise thermal prestressing method for strengthening of concrete structures SH. Kim, JH. Kim, JH. Ahn, MS. Jang, KM. Kim & SS. Han	1073
Reinforcement and protection of the Tâmega Railway Bridge <i>F. Martins</i>	1075
Author index	1079

XXIX

FRP strengthening of masonry arches towards an enhanced behaviour

D.V. Oliveira Universidade do Minho, Guimarães, Portugal (danvco@civil.uminho.pt)

I. Basílio Universidade do Minho, Guimarães, Portugal (ibasilio@civil.uminho.pt)

P.B. Lourenço Universidade do Minho, Guimarães, Portugal (pbl@civil.uminho.pt)

ABSTRACT: This paper deals with the experimental behaviour of brick masonry arches strengthened with glass composite materials (GFRP). Eight 1:2 scale models of 1.5 m span arches were tested under a monotonic vertical load applied at the quarter span. The FRP strengthening was applied either at the extrados or at the intrados of the specimens. The experimental results presented in this paper show that the adopted GFRP strengthening provides an enhanced arch behaviour, with respect to the unstrengthened specimens. The ultimate strength was considerably increased and also a noticeable improvement in ductility was possible. The collapse mechanism of the strengthened arches was no longer related to the formation of a classical four-hinge mechanism, but it was characterized by the occurrence of new failure modes at some critical sections instead.

1 INTRODUCTION

As part of the widespread European cultural heritage, historical masonry constructions deserve particular attention. In particular, masonry arches are often subject to rise of loads, movements in the abutments or ageing effects, which can originate important structural damage. Therefore, an efficient strengthening/repair measure would be able to re-establish the performance of these structures, preventing its brittle collapse or even increasing its load capacity. Being most of the historical masonry constructions of considerable architectural and cultural historical significance, their study and preservation constitute current issues in scientific research.

Among the materials used to repair or upgrade civil engineering structures, there has been an increasing interest devoted to the use of FRP (fiber-reinforced polymer) composites in the form of bonded surface reinforcements, which are being more and more used. FRP exhibits several advantages, as low specific weight, corrosion immunity, high tensile strength, adaptability to curved surfaces and ease of application, which makes it highly attractive and cost effective to be used in strengthening/repair works. However, FRP is a brittle material and its behaviour has to be further investigated, particularly some aspects related to its long term durability.

Following the initial researches concerning the use of FRP in masonry structures (Schwegler, 1994; Triantafillou, 1998; Kolsh, 1998), numerous experimental works were carried out showing that this technique is effectively valid as an option to strengthen or repair masonry structures, in particular arched ones, see Valluzzi et al. (2001), Lissel & Gayevoy (2003) and Foraboshi (2004) for further details. On the other hand, available experimental results show that the strengthening of masonry arches with glass fibers, which exhibit lower mechanical properties than carbon ones, allow a better control of the collapse mechanisms and provide higher strength and better global ductility characteristics (Valluzzi et al., 2001).

2 BEHAVIOUR AND FAILURE MECHANISMS OF MASONRY ARCHES

Assuming that masonry has zero tensile strength, which can be justified by its relatively low or even zero tensile strength, an arched masonry structure is kept in compression as long as the thrust line (or pressure line), which represents the eccentricity of the compressive force at every cross-section, is kept inside the central core. When the thrust line moves outside the central core, at a given cross-section, the formation and consequent opening of a crack takes place. In this way, safety is maintained as long as the thrust line is kept inside the thickness of the arch. Naturally, the crack development leads to the formation of a plastic hinge at the compressed edge of the arch. However, in most cases masonry crushing is not likely to occur. Then, the formation of successive hinges leads to the formation of a mechanism that causes the arch failure. This means that unstrengthened masonry arches fail essentially by the occurrence of plastic hinges enough to form a mechanism (Heyman, 1982). Figure 1 represents the classical four-hinge mechanism of a masonry arch submitted to an asymmetrical loading.

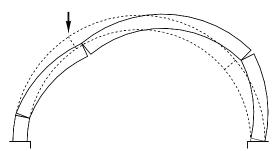


Figure 1. Four-hinge failure mechanism of a semi-circular masonry arch submitted to an asymmetrical loading.

As expected, the presence of a bonded FRP strengthening changes completely the structural behaviour of a masonry arch. The fibers, which possess a high tensile strength, prevent the aforementioned hinge formation and may change significantly the failure mechanism. Since the use of FRP strips provides bending moment resistance, the thrust line may now safely move outside the thickness of the arch.

For the arch illustrated in Figure 1 and considering the reinforcement located either at the extrados or at the intrados of the arch, the formation of a fourth hinge mechanism is prevented. Therefore, only three hinges are able to rise, transforming the arch into an isostatic structure. This means that new failure mechanisms different from the one afore-mentioned have to be considered. Due to the FRP high tensile strength, the compressive stress in masonry may now assume higher values so failure of the arch caused by masonry crushing has to be taken into account. The presence of the reinforcement also allows the development of higher shear stresses in masonry and, therefore, shear failure due to sliding along a mortar joint may occur. Moreover, in addition to the usual stresses parallel to the fibers, the curved shape of arches originates stresses with a component normal to the fibers, which may lead to the detachment of the reinforcement from masonry, namely in arches strengthened at the intrados. Consequently, the following failure mechanisms are usually added to the afore-mentioned one:

- Failure due to masonry crushing;
- Failure due to detachment of the fibers;
- Failure due to sliding along a masonry joint.

Sliding between the fibers and its support is usually neglected since shear stresses at the FRPmasonry interface are of minor magnitude (Valluzzi et al., 2001). Also FRP tensile failure is not likely to occur due to its high tensile strength.

It is known that, for a given arch shape, the type of failure to be obtained depends both on the mechanical properties of the materials (brick, mortar and FRP) and on the quantity and location of the reinforcement. In order to evaluate the behaviour of brick masonry arches strengthened with FRP, a combined experimental-numerical research project was started at Universidade do Minho, see also Lourenço & Martins (2001). This paper presents the first experimental results concerning the behaviour of brick masonry arches strengthened with glass composite materials (GFRP) and tested under a monotonic loading scheme.

3 EXPERIMENTAL STUDY

The experimental program carried out consisted partially in the testing of twelve scaled semicircular brick masonry arches, plain and strengthened with GFRP strips. This experimental program was designed to attain the following main objectives:

- Characterization of the structural behaviour of both unstrengthened and strengthened masonry arches loaded monotonically until failure;
- Assessment of the influence of the reinforcement on the mechanical behaviour and failure mechanism;
- Creation of a reliable database on the experimental behaviour of masonry arches, able to be used in the calibration of both analytical and numerical tools.

All arch specimens were constructed at scale 1:2 in order to optimize expenses related to raw materials and workmanship as well as to achieve a quicker construction process and a feasible testing setup. In order to replicate old masonry constructions, handmade bricks and a suitable mortar were selected. For that purpose, $100 \times 50 \times 25 \text{ mm}^3$ clay bricks were especially made, reaching an average compressive strength of about 6.3 N/mm², whereas a pre-mixed hydraulic lime based mortar was adopted for the joints. Each semi-circular single-ring arch was composed of 59 brick courses and had a 750 mm radius, 500 mm width and 50 mm thickness (thickness/span $\approx 1/30$), see Figure 2. The mortar joints were kept with a constant intrados thickness of approximately 10 mm.

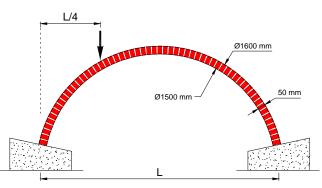


Figure 2. Adopted arch geometry and load scheme.

Two concrete blocks fixed to the laboratory rigid floor were used as supports, whereas the arches were constructed over a rigid wooden mould, as represented in Figure 3a, b. One week after the construction, the mould was removed, see Figure 3c, and the GFRP strips (with an average tensile strength of approximately 1470 N/mm²), if any, were applied on the arch surface. The application of the strips was carried out using the typical multi-layer system (formed by epoxy primer, epoxy resin and GFRP strips) either at the extrados or at the intrados of the arches. The definition of the GFRP strip width to be used was based on a previous numerical analysis (Basílio et al., 2004). All tests took place two weeks after the construction of the arches.

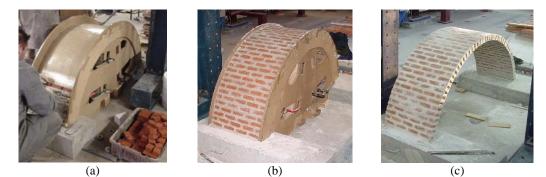


Figure 3. Different phases involved in the construction of the masonry arches.

The first set of specimens was composed by two unstrengthened arches (US1 and US2). However, since both arches did not fall down at the end of the respective test, due to stability provided by the arch self-weight, it was decided to use a localized strengthening arrangement composed of two GFRP strips of 80 mm width each, placed over the hinges at either the intrados or the extrados, and test them again (specimens LS1 and LS2), see Figure 4a. In addition, four undamaged arches were strengthened with two continuous GFRP strips of 50 mm width each. Two arches were strengthened at the intrados (CSI1 and CSI2), see Figure 4b, and the other two were strengthened at the extrados (CSE1 and CSE2), see Figure 4c. In total eight tests are described in the paper.

All specimens were tested for a monotonic load applied at the quarter span, as illustrated in Figure 2, until the formation of the correspondent failure mechanism was achieved. The experiments were performed under displacement control using the vertical displacement underneath the load line as the test control parameter. Negligible horizontal displacements were recorded at the springers.

Figure 4. Strengthening arrangements adopted: (a) localized strengthening; (b) continuous intrados strengthening; (c) continuous extrados strengthening.

4 TEST RESULTS

Both unstrengthened arches US1 and US2 presented a similar structural behaviour, essentially characterized by the formation of the classical four-hinge mechanism, see Figure 5 where two of the hinges are clearly visible. Despite the observed resemblance, slight differences were observed, namely in terms of pre-peak stiffness and peak load achieved, see Figure 6a. An important feature is the low ductility exhibited by both specimens. Failure occurred suddenly, for small displacements and just after the maximum load has been reached.

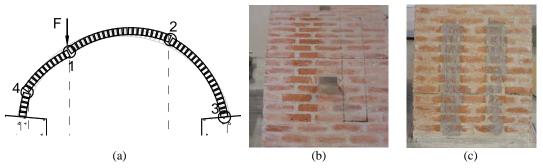


Figure 5. Unstrengthened arches: (a) typical four-hinge failure mechanism developed; (b) extrados view of hinge 2; (c) extrados view of hinge 4.

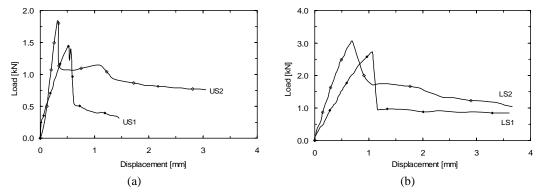


Figure 6. Vertical load-displacement diagrams measured at the load point for the plain arches: (a) before strengthening (arches US1 and US2); after localized strengthening (arches LS1 and LS2).

As afore-mentioned, since arches US1 and US2 did not fall down at failure, GFRP strips were applied locally over hinges 1, 2 and 4 (see Figure 5a). These new specimens are here denoted as arches LS1 and LS2, respectively.

The use of a strengthening strategy aiming at repair locally the damaged hinges did not avoid the formation of a four-hinge mechanism, see Figure 7a. In fact, the GFRP strips used were able to prevent the re-opening of the existent cracks but new hinges appeared beyond the strip length instead, as shown in Figure 7b, c. The formation of new hinges far from their typical locations, forced by the bonded GFRP strips, allowed an increase of the peak load in both arches. The new load-displacement diagrams obtained after strengthening are shown in Figure 6b. The average increase is in the order of 76%.

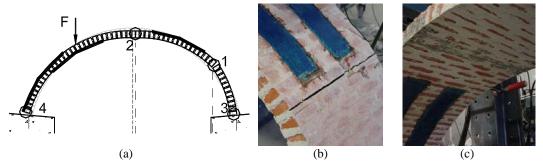


Figure 7. Localized strengthening: (a) failure mechanism developed; (b) extrados view of hinge 1; (c) intrados view of hinge 2.

For a better comparison, the results exhibited in Figure 6 were rearranged in order to gather the structural response by specimen, see Figure 8. As it can be observed, the reinforcement did

change neither the pre-peak stiffness nor the previous fragile behaviour of the unstrengthened specimens. However, besides the load capacity increase also a slightly larger post-peak branch was possible to attain.

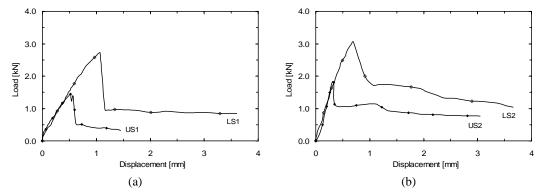


Figure 8. Vertical load-displacement diagrams measured at the load point: (a) arch US1 before and after strengthening (LS1); (b) arch US2 before and after strengthening (LS2).

For the arches strengthened with continuous strips, a different collapse mechanism was expected since the presence of the fibers along the extrados or intrados prevents the fourth plastic hinge from occur.

For the continuous strengthened specimens at intrados (CSI1 and CSI2), the mechanism observed is illustrated in Figure 9a. Two of the hinges were formed at the supports and the third one appeared on the less-load half of the arch, see Figure 9b. The fibers were able to maintain equilibrium until total collapse of the specimens.

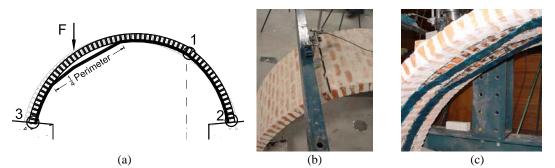


Figure 9. Continuous intrados strengthening: (a) failure mechanism developed; (b) extrados view of hinge 1; (c) detachment of both GFRP strips at the end of the test.

In terms of global load-displacement response, noticeable increases both in terms of load capacity were possible as shown by the responses depicted in Figure 10a. On average terms, the load capacity was increased in 170% and the maximum load was achieved for a displacement of about 35 times greater than the one corresponding to the unstrengthened specimens. On the other hand, the GFRP strengthening did not increase the initial stiffness of the arches. Despite the occurrence of the first hinge for different load values, both specimens presented a quite similar behaviour. The abrupt drops in load observed in Figure 10a are due to the detachment of the GFRP strips. This means that failure, which occurred for high deformations, was dictated by the successive detachment of the two reinforcement strips, caused by the ripping of a thin layer of brick, see Figure 9c. This phenomenon is due to the higher tensile strength of the epoxy resin when compared to the brick one, as corroborated by pull-off tests carried out on masonry prisms strengthened with GFRP (Basílio et al., 2005a).

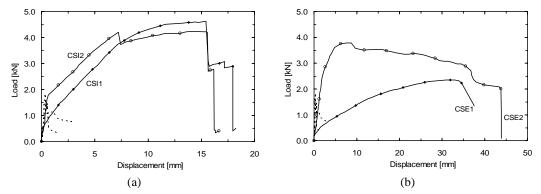


Figure 10. Vertical load-displacement diagrams measured at the load point: (a) arches CSI1 and CSI2 (intrados strengthening); (b) arches CSE1 and CSE2 (extrados strengthening). In both diagrams the responses of the unstrengthened specimens are represented by dashed lines for a better comparison.

For the continuous strengthened specimens at extrados (CSE1 and CSE2), the mechanism developed during testing is illustrated in Figure 11a. In these experiments, the first hinge was formed underneath the load point, see Figure 11b, whereas the other two hinges appeared at the supports.

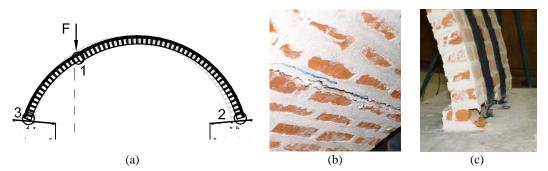


Figure 11. Continuous extrados strengthening: (a) failure mechanism developed; (b) intrados view of hinge 1; (c) sliding along a mortar joint close to the right support.

The global load-displacement curves are included in Figure 10b. The different pre-peak stiffness is likely to be related with previous damage caused to specimen CSE1 during its curing or mould removal, as it becomes perceptible since a very low load. This feature causes also an important decrease in the maximum load achieved. Therefore, it seems reasonable not to consider the CSE1 response as typical of this kind of structures. This assumption is further validated by another set of experimental tests performed on arches strengthened at extrados and reported elsewhere (Basilio et al, 2005b).

Figure 10b shows that an important load increase was achieved (about 130% on average terms if the specimen CSE1 is not considered) comparatively with the unstrengthened specimens, however not as high as the increase enabled by specimens CSI. Also in this set, the reinforcement did not increase the pre-peak stiffness, whereas the maximum load capacity was achieved for a displacement approximately 20 times greater than the one corresponding to specimens US. A very important feature is the long post-peak branch recorded, which provides the structure with important ductility behaviour. In fact, the displacement measured at collapse doubles the corresponding one measured in specimens CSI. For specimens CSE failure was characterized by the slipping of one part of the arch with respect to the other along a mortar joint located close to the right springing, see Figure 11c, and was due to insufficient shear resistance.

In order to provide a general overview about the various strengthening arrangements, Table 1 summarizes the quantitative data regarding the load capacity of each specimen and the strength increase achieved by the application of the GFRP reinforcement.

As mention before, all strengthening arrangements adopted in this study were able to make available a load capacity increase. However, while the intrados strengthening allows for the maximum load increase, the extrados strengthening provides the most interesting solution in terms of ductility.

Strengthening arrangement	Specimen	Maximum load [kN]	Average value [kN]	Load increase
Unstrengthened	US1	1.44	1.64	
Unsuengmened	US2	1.84	1.04	
Localized	LS1	2.72	2.89	+89%
strengthening	LS2	3.06		+66%
Continuous	CSI1	4.62	4.43	
strengthening (intrados)	CSI2	4.24		+170%
Continuous	CSE1	2.35		
strengthening (extrados)	CSE2	3.78	3.78 ^(*) -	+130% ^(*)

Table 1. Experimental results concerning the maximum load achieved and load increase provided by the GFRP strengthening.

^(*) The result concerning specimen CSE1 was not considered.

5 MAIN CONCLUSIONS

The experimental behaviour of brick masonry arches, plain and strengthened with GFRP strips under different arrangements, has been presented and discussed in the paper. The unstrengthened specimens exhibited a structural behaviour characterized by the formation of the typical four-hinge mechanism, which occurred for small displacements and just after reaching the maximum load.

On the other hand, all the adopted strengthening arrangements caused an increase in terms of load capacity. However, new dominant failure modes were observed, namely detachment of the fibers from the arch surface and sliding along a mortar joint. The debonding phenomenon only affected the arches where the GFRP strips were placed at intrados, whereas for specimens strengthened at extrados failure occurred due to slipping of one part with respect to the other along a mortar joint. Another important feature of the continuously strengthened specimens is the large deformation capacity exhibited prior to failure, which provides the arches with important ductility behaviour.

The experimental results show that the adopted continuous GFRP strengthening arrangements provided an enhanced arch behaviour, with respect to the unstrengthened specimens, both in terms of load capacity and in terms of ductility. While specimens CSI got the maximum load increase, specimens CSE presented the most interesting solution in terms of ductility.

ACKNOWLEDGEMENTS

The financial support provided by the Portuguese Science and Technology Foundation through the POCTI/ECM/38071/2001 project is gratefully acknowledged.

FRP composites and pre-mixed mortar used in the experiments were offered by BETTOR MBT and MAPEI, respectively, to whom the authors are grateful. The assistance of the Structural Laboratory technicians during the construction of the specimens is also appreciated.

The second author whishes to express his gratitude to CONACYT for the scholarship granted.

REFERENCES

- Basílio, I.; Oliveira, D. & Lourenço, P. 2004. Optimal FRP strengthening of masonry arches. 13th International Brick/Block Masonry Conference, Amsterdam, 361-370.
- Basílio, I.; Oliveira, D. & Lourenço, P. 2005a. Experimental behaviour of masonry strengthened with composite materials under shear loading, Report 05-DEC/E-20, Universidade do Minho, Guimarães, Portugal.
- Basílio, I.; Oliveira, D. & Lourenço, P. 2005b. Behaviour of strengthened masonry arches. Report 05-DEC/E-21. Universidade do Minho, Guimarães, Portugal.
- Foraboshi, P. 2004. Strengthening of masonry arches with fiber-reinforced polymer strips. ASCE J. Compos. for Constr., 8(3), 191-202.
- Heyman, J. 1982. The masonry arch. Ellis Horwood, Ltd., New York.
- Lissel, S.L.; Gayevoy, A. 2003. The use of FRP's in masonry: A state of the art review. International Conference on the Performance of Construction Materials, 1243-1252.
- Lourenço, P. & Martins, J.P.P. 2001. Strengthening of the architectural heritage with composite materials. Proc. Composites in Constructions, Figueiras et al. (eds), Swets and Zeitlinger, 571-576.
- Kolsh, H. 1998. Carbon fiber cement overlay system for masonry strengthening. ASCE J. Compos. for Constr., 2(2), 105-109.
- Schwegler, G. 1994. Strengthening of masonry with fiber composites. PhD Dissertation, Federal Institute of Technology, Zurich, Switzerland.
- Triantafillou, T.C. 1998. Strengthening of masonry structures using epoxy-bonded FRP laminates. ASCE J. Compos. for Constr., 2(2), 96-104.
- Valluzzi, M.; Valdemarca, M. & Modena, C. 2001. Experimental analysis and modeling of brick masonry vaults strengthened by FRP laminates. ASCE J. Compos. for Constr., 5(3), 163-169.