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Abstract 
 

OpenFOAM® simulation of the injection moulding filling stage. 
 

The main purpose of this work is the simulation of the injection moulding 
filling stage using the open source software OpenFOAM® (version 2.3.1). The 
program can already solve general problems, but, we would like to extend its 
capabilities, by creating and implementing a new boundary condition capable of 
letting the air out of the mould, but not the polymer.  

We consider different locations for the air exit and study their influence on 
the quality of the final results. 

In addition, since the material viscosity influences the evolution of the flow 
front and its behaviour inside the mould, we also study the filling of the mould 
cavity considering both a Newtonian and a generalized Newtonian model (Bird-
Carreau) fluids. 

In order to take into account non-isothermal flows, we have implemented 
the energy equation in the interFoam solver. We also added a temperature-
dependent viscosity model (the Cross model) modified with the Arrhenius 
equation. The solver interFoam was also extended to viscoelastic flows, and 
simple tests were performed using an Oldroyd-B model. 

Finally we have performed simulations of the filling process of a real 
injection part, a tensile specimen and its feeding system. 
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Resumo 
 

Simulação em OpenFOAM® da fase de enchimento do processo de 
moldação por injeção. 

 
Este trabalho tem como principal objetivo simular a fase de enchimento do 

processo de moldação por injeção, usando o software de código aberto, 
OpenFOAM® (versão 2.3.1) O programa já consegue resolver problemas 
gerais, no entanto, para simular melhor a realidade é necessário adaptá-lo. 
Deste modo, a primeira fase deste estudo foi tentar resolver um dos problemas 
da abordagem computacional do processo de moldação por injeção, a saída do 
ar. Para isso, criámos e implementamos uma condição fronteira capaz de 
deixar o ar sair, mas o polímero não. Depois, estudámos a influência da 
localização desta condição na frente do fundido. 

Adicionalmente, como a viscosidade do material tem influência no seu 
movimento e na evolução da sua frente de fluxo, também estudámos o 
enchimento de um molde usando um fluido Newtoniano e um modelo 
Newtoniano generalizado (modelo de Bird-Carreau). 

Como o solver atualmente existente é isotérmico e a moldação por 
injeção é um processo não-isotérmico, a equação da energia foi implementada 
no solver interFoam. Adicionámos ainda um modelo para a viscosidade, que 
dependente da temperatura (modelo de Cross modificado com a equação de 
Arrhenius).  

O solver interFoam foi ainda estendido para fluídos viscoelásticos, tendo 
sido feito algumas simulações simples com o modelo Oldroyd-B. 

Por último, foram feitas simulações usando uma geometria real do 
processo de moldação por injeção. Essa geometria é um provete usado nos 
testes de tração, incluindo o seu sistema de alimentação.
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Nowadays, any project activities should be supported by suitable 
simulation tools, aiming the optimization of the process and the minimization of 
the used resources.  

In the market there are numerous modelling codes able to simulate 
extremely complex processes, but, the dissemination of these codes in industry 
faces two huge difficulties, the cost of commercial simulation licenses and/or the 
nonexistence of human resources able to use these tools adequately. For the 
first problem, costs limitations, a possible solution is the use of open source 
modelling software. For the second problem, specialized human resources, the 
R&D section should be progressively added/improved in the companies to help 
in the products development. 

Along the years, the number of open source code users increased, and 
these users became more organized. As a consequence, the quality of open 
source simulation codes was improved, leading to the development of codes 
with the same capabilities of the commercial ones. Also, teams that in the past 
developed their own simulation codes are now gathering their efforts to provide 
powerful and common simulation codes, to every member of the community. 

A good example is the software OpenFOAM® (Open source Field 
Operation and Manipulation) [1] which is capable of simulating complex 
systems behaviour, involving fluids and/or solids, multiphase systems, being 
also able to make parallel calculations.  

One of the main advantages of using OpenFOAM® is the possibility of own 
programming/adaptation, which allows the development of new applications 
using a symbolic language.  

In this work we are interested in the simulation of the polymer injection 
process, more precisely, the filling stage, and accordingly to what was stated 
above, the OpenFOAM® software seems to be the adequate tool to perform 
such studies.  

 
1.1. The injection moulding machine and process 
The consumption of plastics has increased significantly in the last few 

decades, overcoming the consumption of any other raw material. Because of 
their versatility, polymers can be used in several sectors, such as, for example: 
automotive, packaging, agriculture, electrical, etc. 
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In order to obtain the final plastic product with the desire shape, we have 
to transform raw material, granules or powders of plastic/polymer, into a 
polymer melt that can easily be shaped, and, one of the most used techniques 
to achieve this, it is the injection moulding process. In this process the raw 
material is forced to move along a heated channel (where the material becomes 
a polymer melt), being then injected into a mould, that gives the final shape of 
the part being produced. 

The equipment used in this processing technique has four units: control, 
power, clamping and injection units. In Figure 1.1 it is possible to observe this 
four units as well as the tool needed for part creation – the mould. 

 
The power unit provides the energy to the system. The control unit is 

responsible for monitoring and control of the operative variables (temperature, 
pressure, velocity, time, stroke), being the interface that connects the operator 
with the injection moulding machine. Clamping and injection units and mould 
are the three elements that together create the stages of the injection process: 

1- Mould closing: the injection moulding process is initiated when the 
mould closes (clamping unit is responsible for this stage). 

Figure 1.1: Injection moulding equipment scheme. 
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2- Injection or filling phase: after the closing of the mould the screw 
moves forward and the molten material is injected into the mould cavity 
(the injection unit is responsible for this stage). 

3- Holding: when the filling is completed, we may obtain a filling that goes 
from 90% to 99%, and, in order to be sure that the material is correctly 
packed, we keep the pressure – the holding phase begins. This stage 
is needed if we want to add more material to compensate the 
shrinkage of material as it cools. 

4- Cooling and plasticization: afterwards there is a time for cooling so the 
part can be ejected without losing its form. At the same time, new 
molten material homogenization is being done (phases responsible by 
mould and injection unit, respectively). 

5- Open and ejection: When the material is cold enough the mould is 
opened and the final part is ejected, and, another cycle starts again 
(the clamping unit is responsible for these phases). 

Now that we know the basic concepts of the injection moulding process, 
we should not get the wrong idea that this is a simple and easy process. 
Injection moulding is a very complex process, and, a large number of important 
details need to be taken into account in order to have a robust and efficient 
process. For example, the nature of the injection moulding, the material 
properties, the complexity of the part and the mould, the process 
optimization/stability, are crucial for obtaining a good final product. 

 
When we think about the optimization of the injection moulding process, 

the first idea that pops to our heads is to perform experimental tests, so that the 
process under optimization can be known in detail, and, the role of the different 
variables influencing the quality of the final result can be understood. This way 
of doing things can be an expensive choice, since tools for injection moulding 
are expensive. On the other hand, simulation can be comparatively cheaper in 
the initial steps of mould and part design, and, allows the evaluation of other 
design options of the mould, part and material. [2] 

In this work we are going to focus our attention in the simulation of the 
filling phase, not considering any compressibility of the material. 
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1.2. The OpenFOAM® computational library 
The development of the originally called FOAM started in eighties with 

Henry Weller and Hrvoje Jasak. They founded Nabla, Ltd, but the company 
failed to lead FOAM successfully in the market. In 2004, Henry Weller and 
Hrvoje Jasak created their own company, Hrvoje Jasak founded Wikki, Lda to 
release foam-extended and Henry Weller together with Chris Greenshields and 
Mattijs Janssens founded OpenCFD, Ltd to develop and release OpenFOAM. 
[3] 

OpenFOAM (Open Field Operation and Manipulation) [4] is an open 
source software capable of solving anything from complex fluid flows involving 
turbulence, heat transfer, chemical reactions and much more.  

This software can also simulate multiphase flows, and, to track the fluid 
front or interface between two different phases, OpenFOAM® uses a modified 
volume of fluid method (VOF), that will be explained later.  

To solve the differential equations, OpenFOAM® uses a finite volume 
method (FVM) based methodology [5]. 

This software includes tools for meshing and pre and post-processing, 
and, it also allows parallel computations. The program also provides a great 
flexibility, allowing the user to modify or add existing functionalities, being this a 
huge advantage over the commercial software’s. 

 
1.3. State of the art 
1.3.1. One-Dimensional injection simulation 
The first developments in the mathematical modelling of the injection 

moulding filling phase were limited to one-dimensional cases. These works 
started in the late fifties [2] but only in the seventies numerical simulations 
became a reality.  

In the early seventies Kamal and Kenig [6] proposed a theoretical model 
for the injection moulding behaviour. The study took into account the non-
Newtonian behaviour of molten polymers and the effect of temperature on 
density and viscosity. They obtained numerical solutions for radial flow in a 
semi-circular cavity. A year later, in 1973, Berger and Gogos [7] presented a 
numerical simulation of mould filling in a disk. They were able to predict filling 
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times considering both isothermal and non-isothermal flows. In 1975 Williams 
and Lord [8] developed a finite difference analysis to predict temperature, 
pressure and velocity for plastic flow in circular channels. A year later, Wu, 
Huang and Gogos [9] solved the equations governing the filling of a disk 
considering a transient nature and a non-isothermal flow. They also predicted 
gate pressures. In a subsequent work [10] by the same authors, their model 
was tested in more complex geometries. 

 
1.3.2.  2.5-Dimensional injection simulation 
In the early seventies we witnessed an increased interest in the Hele-

Shaw flow modelling approach [2]. Models that use Hele-Shaw approximations 
neglect pressure and velocity variation in the thickness direction which results in 
a two-dimensional problem [11]. Because of this, models using Hele-Shaw 
approximations are called 2.5-dimensional models.  

The following articles used this Hele-Shaw simplification. In 1972 
Richardson [12] studied the injection filling of a narrow channel. They placed a 
drop of a Newtonian fluid inside the channel, and they injected further fluid with 
the same material properties, to determine the way the drop expands. In the 
next year Broyer, Tadmor and Gutfinger [13] proposed a method for solving the 
filling of a rectangular channel with a Newtonian fluid under isothermal 
conditions. To solve the problem they used a flow analysis network (FAN). In 
1975, White [14] analysed the filling of a rectangular cavity considering 
isothermal and non-isothermal flow. In the same year Kamal, Kuo and Doan 
[15] presented two models for simulating the injection moulding filling of thin 
rectangular cavities. One of the models used Hele-Shaw approximation. Their 
studies also showed comparisons between experimental and computational 
results. They concluded that the employment of the numerical model, describing 
the injection process was a success, but it had a deficiency in the prediction of 
the melt front shape. In 1980 Hieber and Shen [16] presented a model for non-
Newtonian fluids under non-isothermal conditions. To solve their model they 
implemented a finite-element/finite-difference scheme. 
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1.3.3. Three-Dimensional injection simulation 
 Parts are becoming more and more complex, meaning that thickness 

plays an important role that cannot be overlooked. Therefore, the validity of the 
Hele-Shaw approximation became limited to simple geometries/conditions. To 
overcome this problem, the use of three-dimensional modelling to simulate 
injection moulding is a demand.  

Nowadays, most of studies use three-dimensional numerical models. In 
1998 Hétu et al. [17] presented a three-dimensional finite element method 
capable of predicting velocity, pressure, temperature and the position of the flow 
fronts. The fluid behaviour was modelled using Carreau and Arrhenius 
constitutive models. In the same year Pichelin and Coupez [18] simulated the 
filling process considering a viscous incompressible flow under isothermal 
conditions. To solve the fluid motion equation they introduced a Taylor-Galerkin 
scheme. Three years later Chang and Yang [19] presented a finite volume 
approach to simulate the injection moulding filling stage. They simulated the 
isothermal flow of an incompressible Newtonian fluid. They also compared their 
study with the results obtained by assuming the Hele-Shaw simplification. The 
two models produce identical results for the filling of thin cavities, but the three-
dimensional model showed a better accuracy in the filling of thicker cavities.  

More recently Yan, Zhou and Li [20] solved the Navier-Stokes equations 
using streamline–upwind/Petrov–Galerkin (SUPG) and pressure-stabilizing/ 
Petrov–Galerkin (PSPG) formulations. Their results were compared with the 
commercial software Moldflow, revealing that the applied model achieved 
identical results for the filling process. 

More and more works are being published everyday on the subject of 
numerical simulation of the injection moulding process, considering new and 
different phenomena that occur along the process, and also taking into account 
the characteristics of the different fluids. For instance, we have the study of 
Azaman et al. [21] on residual stress distribution in the injection moulding 
process using wood polymer composites and the study of Kim and Isayev [22] 
in birefringence using co-injection moulding. 
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1.4. Motivation 
Nowadays, simulation is a crucial tool in the injection moulding process. 

By performing simulations, it is possible to predict potential defects on the filling 
stage, obtain a better understanding of the injection moulding process, and 
comprehend the different variables involved in the filling stage. 

Since commercial simulation software’s are very expensive, the use of the 
open-source OpenFOAM® software seems to be a good alternative (we will be 
using version 2.3.1). The software does not come with boundary conditions that 
allows the air out and keep the fluid inside the mould, and therefore, the main 
motivation of this work is to upgrade the solver interFOAM, in order to model 
correctly the air vents present in the real moulds. 

  
1.5. Objectives 
The main objective of this work is to simulate the injection moulding filling 

phase, and for that we need to accomplish the following: 
- Create a computational approach to accurately model the air vents.  
- Study the filling with a Newtonian fluid, inelastic and viscoelastic models. 
- Study the filling of the mould considering a non-isothermal flow, so that 
the influence of temperature can be taken into account. 
 
1.6. Thesis structure 
This thesis is divided into eight main chapters. In Chapter 2 we present the 

governing equations for the filling stage of the injection moulding process. In 
Chapter 3 we describe the basics of the numerical method used to solve the 
governing equations. 

From Chapters 4 to 8 we show the studies we have performed for 
simulating the filling stage in simple geometries. In Chapter 4, we use a 
computational approach for reproducing the real air vents used in the mould. In 
Chapter 5, we focus our attention on a problem arising in most of the 
simulations. In Chapter 6, we simulate a non-isothermal flow with a 
temperature-dependent viscosity model, and we compare our results with the 
experimental and numerical study of Wang, Li and Han [23]. In Chapter 8, we 
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show some simple results obtained for the filling simulation using a viscoelastic 
model. 

In Chapter 9 we simulate the injection moulding filling stage considering a 
more complex part, a tensile specimen. In the last chapters we present a critical 
and brief discussion on the major achievements of this work and possible future 
work. 
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In the next subsections we present a brief description of the models used 
to model the fluid flow. We start by presenting the bulk governing equations, 
considering inelastic and viscoelastic fluids, and, we then present the extra 
equations needed to calculate free surface flows. 

 
2.1. Newtonian and non-Newtonian fluids 
During the filling phase of the injection moulding process the melt is 

assumed to be incompressible. The flow of non-Newtonian inelastic, 
incompressible fluids is governed by continuity, 

 
 . 0 u  (1) 
and the momentum equations, 
 . .p gt        

u uu τ  (2) 
In Equation (2), t  is the time, u  is the velocity vector, p  is the pressure, 

τ  is the deviatoric stress tensor,   is the fluid density and g  is the gravity 
acceleration vector. All equations are written in a coordinate free form. The 
stress tensor obeys the following law for generalized Newtonian fluids, 
 2 ( ) τ D  (3) 
with the rate of strain tensor D  given by, 
     T1

2   D u u  (4) 
and ( )   representing the fluid viscosity function and   the shear rate. 

For the case where viscosity is constant, ( )   , we are in the presence 
of a Newtonian fluid, otherwise when the viscosity varies (for example, with the 
shear rate) we say the fluid is non-Newtonian.  

Depending on how viscosity changes with time, the flow behaviour is 
characterized as thixotropic (viscosity decreases with time) or rheopetic 
(viscosity increases with time)  

Fluids can also be catalogued depending on how viscosity changes with 
shear rate: shear thinning (the viscosity decreases with increased shear rate) as 
for example polymer melts; shear thickening (viscosity increases with increased 
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shear rate); plastic (a certain stress must be applied before flow occurs). 
Examples of shear thinning fluids are for example, polymer melts and shampoo. 

Based on these differences between fluids, empirical models were 
proposed in the literature for the viscosity dependence on the second invariant 
of the stress tensor (which coincides with the shear rate for a simple shear 
deformation). Some examples are: 

The power law model, that is given by 
 1( ) na      (5) 
with a  and n (n=1: Newtonian fluid, 0<n<1: shear thinning, n>1: shear 
thickening) empirical parameters. This model presents some limitations, such 
as a zero viscosity for high shear rates, and inexistence of a Newtonian plateau. 

The Carreau model (more complex) already accounts for the features 
lacking the power-law model, 
     12 20( ) 1      

         
n

 (6) 
Here,  , 0 ,  , and n are constant parameters which are determined by 

experimental investigations. For both models, 4 DII   , with DII  the 
second invariant of the rate of strain tensor. 

The fluids just described cannot take into account the effects of 
viscoelasticity, and therefore, more complex models were derived. These 
models either come from molecular theories, network theories or are empirical. 

 
2.2. Viscoelastic fluids 

The key feature of viscoelastic fluids is the existence of relaxation and 
retardation times. When we apply a stress to a Newtonian fluid the response is 
instantaneous (the relaxation time is zero, or almost zero). On the other hand, if 
we have a viscoelastic fluid, the response will have a delay (the relaxation time 
is different from zero). 

Maxwell proposed a viscoelastic model (originally it was derived for gases) 
that couples two properties of the viscoelastic fluids, elasticity and viscosity. To 
represent the mechanical equivalent of this model we can assume a spring 
(elasticity) connected to a dashpot (viscosity), with both objects subject to the 
same stress (Figure 2.1). 
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Figure 2.1: Representation of the viscoelastic behaviour with a 
spring and dashpot. 

 
 

 
 

 
 
 
For quick deformations the fluid behaves as a Hookean elastic solid with 

modulus of elasticity G, for small deformations the fluid behaves as a 
Newtonian fluid. For solids, the stress is given by a constant (G) times the 
deformation (strain) eG  , while for a liquid, the deformation can be infinite 
so the measure “deformation” is of no use. The rate of deformation ( v ) is used 
instead, p v    The total rate of deformation is given by e v      , 
meaning that, 
 1

p

d
G dt

      (7) 

With some algebra and using tensor variables, we arrive at the Maxwell 
model, 

 2 Dt  
ττ  (8) 

This model can be generalized in order to become frame invariant, 
resulting in the Upper Convected Maxwell model, 
    T2 . . .D with t              

ττ τ τ u τ u τ τ u  (9) 

Where   stands for the upper convective derivative. 
If in Equation (2) 2 s UCMD τ τ  , where s  is the solvent viscosity and 

UCMτ  is the stress obtained with the UCM model (Equation (9)), then the 
Oldroyd-B model is obtained. 
Several other models exist in the literature, and a possible way to construct new 
models could be the use of different combination of springs and dashpots 
(Figure 2.2) 
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Figure 2.2: Representation of the viscoelastic behaviour with springs
and dashpots (different combinations). 

 
 

 
 
 
 
 
 
 
 

 
 
The combination of springs and dashpots is up the imagination of the 

person creating the model, but the model should be physically acceptable, 
providing a physical behaviour when deformed. The different parameters used 
for the springs and the dashpots allow the fit of the model to the fluid under 
study. Note that as said before, not all models are derived based on springs and 
dashpots. 

We now present some viscoelastic models popular in the literature. 
 

2.2.1. PTT model 
The PTT model, according to [24] is: 
       T T. . .f tr t                

ττ τ u τ u τ τ u u u  (10) 

Where   f tr τ  is a function depending on the trace of the stress tensor 
τ ,   is the relaxation time and   is the viscosity. 

In the literature there are two functions   f tr τ . The first one is the 
linearized function, presented by, 
     1f tr tr

 τ τ  (11) 
which is acceptable for low Reynolds numbers, where small molecular 
deformation occurs. 

The second function, is exponential and is given by, 
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     expf tr tr


    τ τ  (12) 

The parameter   is related to the elongational behaviour that the model 
predicts. 

 
2.2.2. Giesekus model 

The Giesekus model, according to [25] is given by, 
       TT .. . .  

             
p

p pp i pp p p
pt

ατ τ ττ u uu τ u τ τ u  (13) 

Where   is the polymer relaxation time, α  is the mobility factor, associated 
with anisotropic Brownian motion and anisotropic hydrodynamic drag of the 
polymer molecules, and, p  is the polymer viscosity coefficient. 

 
2.2.3. Other models 

Other models exists in the literature that show some improvements over 
the models previously described. For example, we have the FENE-P (finitely 
extensible nonlinear elastic) model [26] that takes into account the fact that a 
molecule should not be stretched infinitely. The constitutive equation is based 
on the evolution of the configuration tensor A  that can be linked to the stress 
tensor pτ : 

      T 1. . .p
p p p f tr at 

        
A u A A A Iu A A u  (14) 

  

  
2

2
p

p
L aL tr



     τ A IA  (15) 

In these equations the constant model parameter 2L  is the extensibility 
parameter and  21 / 1 3 /a L  . 

Another way to improve the modelling of the physical behaviour of 
viscoelastic fluids is to use integral models, which take into account all the 
history of deformation. Another way to improve the modelling is to sum several 
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constitutive equations so that the variety of relaxation times present in a real 
material is better represented. 
 

1

n
p pi

i
τ τ  (16) 

 
2.3. Non-isothermal flow 
The injection moulding filling stage is a non-isothermal process, that is, the 

temperature is not constant along the process. For that reason, we need to 
consider the energy equation, given by Equation (17) 

 
( ) (

)
p xx xy zx

xy yy zy xz yz zz

T u u uC T k Tt x y z
v v v w w w
x y z x y z

    
     

                 
               

u
 (17) 

where pC  is the specific heat capacity, k  the thermal conductivity, and T is the 
temperature. Both pC  and k , vary with temperature, but are considered 
constant in the injection filling stage [27]. 

 The right-hand-side terms of Equation (17) that are being multiplied by 
density ( ), represent the viscous heat dissipation (the stress terms are the 
usual Cartesian stress components). 
 

2.4. Free surface 
The equations presented until now are for confined flows, and only one 

phase. In this work we are interested in modelling free surface flows, and 
therefore, the previous equations need to be updated or upgraded. 

The volume of fluid (VOF) method was proposed by Hirt and Nicholas [28]. 
In this method a species transport equation is used to determine the relative 
volume fraction of the two phases, or phase fraction   (for example of air and 
molten polymer) in each computational cell. The nature of the VOF method 
dictates that an interface between the two phases is not clearly calculated, 
instead it appears as a phase fraction field.  
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Figure 2.3: Example of free surface modelling 
using the VOF method. 

Since the phase fraction can have any value between zero and one, the 
interface is never clearly defined, but occupies a volume around the region 
where a free surface should exist [1] as we can see in the Figure 2.3. 

 
 
 
 
 
 
 
 
 
 
    

 
Hence, physical properties can be calculated as weighted averages, 

considering   as the fluid phase fraction, 
 (1 )      p a , (18) 
 (1 )      p a , (19) 
where p  and a are the density of polymer and air, respectively, since we 
want to study the filling process in the presence of air and polymer. p and a
represent the viscosity of the polymer and air, respectively. 

The time dependence of   is governed by the following transport 
equation, 
 0            u v wt x y z . (20) 
Considering only the polymer phase fraction, Equation (20) can be expressed 
as, 
 ( ) 0    pt u  (21) 
and considering only the air phase fraction, 
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 (1 ) [ (1 )] 0      at u  (22) 
To overcome the difficulty in obtaining a sharp interface, a new formulation for 
the evolution of the interface was proposed, introducing an extra term in the 
phase fraction function – the artificial compression term. 
 ( ) [ (1 )] 0           r

artificial compression termt u u  (23)  

where r p a u u u  is the vector of relative velocity between the two fluids, also 
called as compression velocity, u  is the mean velocity, calculated by a 
weighted average of the velocity between the two fluids [4], 
 (1 )   p au u u  (24) 
 

The momentum equation must be modified in order to consider the 
surface tension (σ). The surface tension at the liquid-gas interface generates a 
pressure gradient which results in a force, 
 k   f  (25) 
where k is the mean curvature of free surface. 

With Equations (3) and (4), we can decompose   into a more 
appropriate form [4], 
 ( ) ( ) ( )T                   u u u u  (26) 
 

It is common to define a modified pressure ( dp ) as, 
 dp p g x    (27) 

due the existence of different phases [4]. 
With Eqs. (25), (26) and (27) we can rearrange momentum equation, Eq. 

(2), as, 
( ) ( ) ( ) k                   dp g xt

u uu u u  (28) 
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The objective of this chapter is to demonstrate, using simple examples, 
how the numerical solution of such differential equations can be obtained.  

We briefly describe some few steps that lead to the numerical solution, 
which is no more than obtaining the value of the dependent variable at specific 
points (the centre of the control volume) [29]. 

1. The first step consists on the definition of our physical domain, 
boundaries, etc; 

2. Then, we have to describe the physical phenomenon using a set of 
differential equations; 

3. The next step is to divide the domain into small control volumes 
(this stage is also known as meshing); 

4. Next, we can discretize the governing equations (transform 
continuous operators into discrete ones). OpenFOAM® uses a finite 
volume method based methodology for the discretization 
procedure. In this method all the equations are integrated over the 
control volume (CV). At the end of this step we obtain a system of 
algebraic equations; 

5. In order to obtain our numerical solution we need to solve our 
algebraic system of equations. 

 
3.1. Finite Volume Method (FVM) 
The FVM discrete process is the method most common used on 

computational fluid dynamics. To demonstrate how this method works we will 
take as an example, the scalar transport equation for a dependent variable  . 

 
( ) ( ) ( )

convective term diffusion term source termtransient term

St 
           u 

 (29) 

 
As mentioned before, in this method the studying object (the rectangular 

channel shown in Figure 3.1) is divided into several control volumes. 
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Figure 3.2: Gauss theorem scheme. 

Figure 3.1: Division of a two-dimensional physical 
domain in 16 CVs. 

 
 
 
 
 
 
 

 
 
The governing equations are then integrated over space (and time, for 

transient problems), allowing the conservation of properties for each cell [30],  
( ) ( ) ( )CV CV CV CVdV dV dV S dVt 
             u  (30) 

Considering a steady problem, the transient term of Equation (30) 
disappears. If we consider an unsteady problem, Equation (30) needs to be 
integrated again, but over time. 

In order to simplify the convective and diffusive terms, we use Gauss 
theorem, represented in the Figure 3.2, which transform the volume integrals 
into surface integrals. Basically, the theorem says that is possible to observe 
what happens to the variable in the surface instead of studying it in the whole 
volume. 

 
 
  
 
 
 
 

 
 

Applying Gauss theorem, Equation (30) (for a steady problem) can be 
rewritten as, 
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 ( ) ( )S S CVn dS n dS S dV       u  (31) 
 
For each node we will have an equation similar to the one show before, 

and, these equations need to be discretized, resulting in a system of algebraic 
equations. The approximation of the integral is simple, and we can assume we 
know the values of the variables under the integral at the centre of the control 
volume faces. For example, for the control volume 1, we would have 

( ) ( ) ( ) ( ) ( )e w n sS n dS u u v v         u , and for the diffusive term 
( ) ( ) ( ) ( ) ( )e w n sS n dS              , where e, w, n, s 

stand for the east, west, north and south faces of the control volume. This 
means that we need to approximate u ,  and   (we assume   is constant) 
at the faces of the CV, since all variables are placed at the centre of the control 
volume. 

For instance, considering that the area of each face ( A ) is the same for all 
CVs, as well as the distance between the nodes ( ), using Equation (31), the 
equation for   at node 6, using the approximation given by the central 
difference method (CDS), is given by (we assume the velocity field is known): 

7 6 6 5 2 6 6 11

7 6 6 5 2 6 6 11

2 2 2 2
( ) ( ) ( ) ( )

e w n sA u A u A v A v

A A A A S V

          
       
   

                           
            

(32) 

where, u  and v  are the x and y velocity components, respectively. If we 
consider that the source term does not depend of the variable in the node 6, 

uS V S  , equation (32) can be simplified as, 
 

 
6 7 5 2

11

4 2 2 2

2

p E W N

S

a a a a

u

a

A A A u A A u A A u

A A u S

        
 

                        
     

  



 (33) 
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Figure 3.3: System of algebraic equations for the two-dimensional physical problem of 
16 CVs. 

Note that Equation (33) is written in its canonical form: 
 p p E E W W N N S S ua a a a a S          (34) 
where the indexes , , , ,P E W N S  are the discretized node, and the neighbours 
at East, West, North and South, respectively. 

Equation (34) was obtained using approximation for the derivatives and 
velocity at the cell faces. In the OpenFOAM® computational library we can 
choose the discretization schemes to be used for each term of Equation (30) 
(file fvSchemes). 

 
3.2. Numerical solution of the system of equations 
As we said before, after discretization of Equation (31) we obtain a system 

of algebraic equations as illustrated in Figure 3.3. 
 

 
 

 
The system of algebraic equations can be solved by calculating the 

inverse matrix (obtaining in this way the exact solution) or using iterative 
methods [31]. Due to the size of the system of algebraic equations, iterative 
methods are preferred, since they perform faster.  

Observing momentum equation (Equation (2) in 2.1) we can discretize it 
for each one of the three velocity components, but we cannot solve it since we 
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Figure 3.4: Representation of a staggered grid and its coordinates. 

do not know how to calculate the pressure field. There is no transport equation 
for pressure. In the same equation we want to obtain pressure and velocity 
fields, so we have a coupling problem.  

A careful watch of the momentum equation reveals the existence of non-
linear terms 2( ) ( )uu ux x       .  

To overcome these problems we will use SIMPLE (Semi-Implicit Method 
for Pressure-Linked Equations) algorithm, as described in the next section. 

 
3.2.1. SIMPLE algorithm 

The SIMPLE algorithm was presented by Patankar and Spalding in 1972 
[30], and essentially it is a procedure for the calculation of pressure and 
velocity, by guessing and correcting pressure and velocity fields. 

For ease of understanding we are going to explain how this algorithm 
works in a staggered mesh where the variables are not all stored at the centre 
of the CV, as shown in the Figure 3.4. In this we already have velocity and the 
CV faces. 

 
 
 
 
 
 
 
 
 
 
 
 
 
The discretized momentum equations for this case is given by, 
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* * * *

, , 1, , , ,
* * * *

, , 1, , , ,

( )
( )

i J i J nb nb I J I J i J i J
nb

I j I j nb nb I J I J I j I j
nb

a u a u p p A b
a v a v p p A b





   
   

  (35) 

for the two velocity components, u and v, respectively. 
Note that the equations above are written in the canonical form (as shown 

in Equation (34)). *u  and *v  are the velocity components calculated from the 
initial guess pressure, *p , b is the source term and the index nb  represents 
the cell neighbours. 

The methodology defines a new pressure ( 'p ) and velocity ( ' ',u v ) 
correction field to achieve the correct fields ( , ,p u v ), 

 
* '

* '
* '

p p p
u u u
v v v

 
 
 

 (36) 

The correction velocity field ( ' ',u v ) is calculated from Equation (35), 
eliminating the sum term, being this suppression, the main simplification on the 
SIMPLE algorithm, 

 
' ' '

, , 1, , , ,
' ' '

, , 1, , , ,

( )
( )

i J i J I J I J i J i J

I j I j I J I J I j I j

a u p p A b
a v p p A b




  
    (37) 
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Figure 3.5: Flowchart of the SIMPLE algorithm. 

The whole SIMPLE algorithm can be seen in the flowchart of the Figure 
3.5. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 



 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. The interFoam solver 
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Figure 4.1: Directories and files for running a case using interFoam. 

The OpenFOAM® solver most suitable to solve the equations governing 
the injection moulding filling stage is called interFoam. It is an isothermal, 
multiphase solver for two incompressible and immiscible fluids, that uses the 
VOF interface capturing approach [1]. 

The filling stage of the injection moulding process is controlled by velocity 
and can be assumed as incompressible, since there is no compaction of the 
material in this phase. Initially we have air inside the cavity of the mould and 
gradually we fill it with molten polymer.  

When setting up a case in OpenFOAM® we need the folders 0, constant 
and system. For the InterFoam solver the typical files (and folders) used are 
shown in Figure 4.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The purpose of the main files is: 

 alpha: set up the interface boundary conditions; 
 U: set up the velocity boundary conditions; 
 p_rgh: set up the dynamic pressure boundary conditions; 
 polyMesh: is actually a folder, within this folder there is a file called 

blockMeshDict where we can create the geometry; 
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 transportProperties: in this file we discriminate the properties of the 
two fluids under study (viscosity, density, surface tension, etc). It should 
be remarked that OpenFOAM® uses a cinematic viscosity,  (dynamic 
viscosity ( ) divided by the density).  

 controlDict: in this file we control time settings like the maximum 
Courant number, time step, etc. The modifiable time step ( t ) of the 
simulation is calculated according to the smaller dimension of the cell, x , 
the magnitude of the velocity, | |U and the Courant number (Co ), 

 | |
Co xt U

   (38) 

 fvSchemes: in this file we define the discretization schemes. The 
discretization schemes used in this work were central differences for the 
diffusive terms and (linear) upwind for the convective terms. For the time 
derivative, a simple Euler method was used; 

 fvSolutions: we specify the methods for solving the system of 
algebraic equations. In this work, the SIMPLE method was used to couple 
velocity and pressure fields. For the numerical solution of the velocity we 
used the “smoothsolver”; for the pressure, the preconditioned conjugate 
gradient (PCG) method was used.  

 setFieldsDict: define the initial spatial distribution of the phases 
involved in the simulation. 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
5. Air vents – a computational approach 
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Figure 5.1: Scheme of a venting gap in a mould. 

In the injection moulding process, when the mould closes, some air 
remains inside. In many cases the air can escape through the parting line of the 
mould, but sometimes it cannot, and the part will not be completely filled, if the 
air does not get out. To overcome this problem, venting slits are necessary. 

The venting gaps are of such small size that it becomes a problem to 
simulate the process, because, it is difficult to create such a refined mesh in the 
regions that model the air vents. In Figure 5.1 we can see a venting gap in a 
mould, and we can barely see its depth, because it is among 0.01 to 0.07 mm, 
depending on the used polymer. The other slit, described as vent relief, is used 
for letting the air out, after leaving the cavity through the venting gap.   

 
 
 
 
 
 
 
 
To use the real size air vents, we need to have a really refined mesh. The 

problem is that the mesh would become too heavy for the simulation to run 
smoothly. To overcome this problem we created a new boundary condition 
where the air can exit the mould but the material cannot (the code to implement 
this boundary condition is totally described in the Annex I).  

Basically, in this new boundary condition we have the following: 
- When the fraction of the material is higher than half at the last cell 

touching the venting gap, the velocity of the material at that boundary is set to 
zero (as happens in a wall), and a zero-gradient boundary condition is used for 
the pressure. 

- If in the last cell touching the venting gap we have 0.5  , the pressure 
at that boundary is set to zero and a zero-gradient boundary condition is 
considered for the velocity, allowing the air to exit the mould (similar to an outlet 
boundary condition).  

Another problem that requires our attention is where we should place this 
boundary condition in the mould. To overcome this problem and to 
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Figure 5.2: Geometry used to simulate the different locations of the new boundary 
condition. Dimensions: 50X50X2 [mm] 

Figure 5.3: Meshes used to test the convergence of the method. 

acknowledge the influence of the new boundary condition location, we did some 
two-dimensional simulations using four different locations for the air vents 
(showed in the next subsections).  
 

5.1. Definition of the case study: geometry, meshes and data 
The simulations performed to study the influence of the air exit region, 

were done using the geometry shown in Figure 5.2. 
 

 
 

Besides the influence of the new boundary condition location, it is also 
important to be sure about the convergence of the numerical solutions. For that, 
we performed simulations using three different meshes, presented in Figure 5.3, 
where we also describe the number of divisions and the respective control 
volume dimensions.  

 
 
First, we studied the convergence of the solutions with two-dimensional 

simulations, considering a Newtonian fluid, and using the three meshes shown 
before. Then, we show the results obtained for a Newtonian fluid and for a 
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generalized Newtonian model (the Bird-Carreau model described in Equation 
(6)).  

We, also performed three-dimensional simulations. For those simulations, 
a different number of cells were considered along thickness, and, we have 
concluded that using 10 cells, provides a reasonably accurate solution. Note 
that we need to take into account the simulation time when creating the 
meshes, therefore we simulated in parallel using a cluster (24 cores).  

For the simulations with the Newtonian fluid, we have used the parameters 
shown in Table 1. Note, that the velocity corresponds to the fluid inlet velocity. 
This parameters were used by Chang and Yang [19] (they used a higher air 
viscosity to improve convergence of their method).  

Throughout this work we are going to designate the polymer phase (note 
that in this case we are using a Newtonian model) as simply, fluid. 

 
Table 1: Data used on Newtonian simulations. 

 ν [m2/s] Density [kg/m3] Surface tension [kg/s2] Velocity [m/s] 
Fluid 0.2 1000 2.71E-2 6.33E-3 
Air 8.12E-2 1.23   

 
For the simulations with inelastic fluid (parameters in Table 2) we have 

considered the same initial velocity and density of material and air. 
 

Table 2: Bird-Carreau model parameters for the liquid phase. 
 ν0 [m2/s] ν∞ [m2/s] m [s] n 

Fluid 53 0 1.10 0.15 
 
To obtain the parameters of the Bird-Carreau model, we fitted the model to 

a graph of viscosity vs. shear rate for polystyrene obtained from the study of 
Munstedt [32]. The graph we obtain after the adjustment is represented in 
Figure 5.4. 
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Figure 5.4: Fit of experimental data (symbols) using a Bird-Carreau model (full line).  
 
We will show and comment the results obtained for the Newtonian and 

inelastic model, but, we cannot compare them since the characteristics of the 
two flows were obtained differently.  

 
5.2. Simulation results without the air vents 
In order to assess the original interFoam solver, we have tested first the 

case where the air and the material can both leave the part. In the scheme of 
the Figure 5.5 we see a schematic of the geometry and corresponding 
boundaries. 
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Figure 5.5: Geometry and boundary conditions 
used to test the interFoam solver. 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
5.2.1. Influence of the time step 

First we did a study on the influence of the time step on the converged 
solution, in order to choose a time step that leads to an accurate solution, but 
caring in mind that a smaller time step increases the simulations time.  

In Figure 5.6 we show the results obtained for three different time steps in 
the Mesh 1. In this mesh the time steps used seem to have a small influence on 
the final simulations results. 

 
 

From the Figure 5.7, we also see that the time step do not affect the 
simulations results, considering Mesh 2. 

Figure 5.6: Mesh 1 results for different time steps (at t=5s). 
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We only see differences between the different time steps in Mesh 3 

(Figure 5.8). The time step of 0.01 [s] leads to a more plug flow front. 
 

 
 
Almost all simulations during the next sections were done using a time 

step of 1E-3 seconds (with few exceptions). 
 

5.2.2. Mesh convergence results 
The fluid front, for the case where the air and the Newtonian liquid can go 

out at the outlet boundary (at 2, 4 and 6 seconds), is shown in Figure 5.9. It is 
possible to see that the Mesh 2 results are closer to the results obtained with 
Mesh 3, when compared to the results obtained with Mesh 1.  

Figure 5.7: Mesh 2 results with different time step simulations, at 5s. 

Figure 5.8: Mesh 3 results with different time step simulations, at 5s. 
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Figure 5.9: Fluid front at 2, 4 and 6 seconds. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the simulations that follow, only Mesh 3 will be used. 
 
We were expecting a profile of this type for the flow front, since there is 

no-slip along the wall, leading to a zero velocity of the material at the wall, and a 
maximum velocity occurring at the centre. Also, the fluid in the flow centre 
moves outwards, leading to the filling in the wall surfaces. This flow effect is 
known as fountain flow. 

 
5.2.3. Bird-Carreau and Newtonian fluids 

We can see in Figure 5.10 the flow front obtained for the Bird-Carreau and 
Newtonian fluids. 
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Figure 5.10: Flow front obtained for the Bird-Carreau and Newtonian fluids using the 
interFoam solver. 

Figure 5.11: Flow front at 5s. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
In Figure 5.11, we show the flow front for the three-dimensional 

simulations. It can be seen that a smooth velocity profile was obtained for both 
fluids.  

 
 
 
 
 
 
 
 

 
 

5.3.  Modelling the air vents – first option   
As said before we studied the influence of different venting zones. In this 

first option, the air escapes in the last filling zone, but this location is still seen 
as a wall by the fluid, as we can see in the Figure 5.12.  
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Figure 5.12: Representation of the boundary 
which lets the air out in the last filling zone. 

Figure 5.13: Simulation results when the material reaches the wall in three different meshes. 

Material fraction 

 
 
 
 
 

 
 
 
 
 
 
 

 
 

 
5.3.1. Mesh convergence results 

The simulation results for a Newtonian fluid, considering the three meshes 
presented before, are shown in Figure 5.13. Since, we are studying the 
influence of a new boundary condition that should model the air vents, it is 
pertinent to show the simulation results when the material reaches the final wall.  

 

We can observe that the material cannot reach the corners of the final 
wall, and, this is more accentuated in Mesh 3. This happens because in the less 
refined meshes, the front line is more prone to diffusion, disguising the filling of 
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Figure 5.14: Flow front for the Bird-Carreau and Newtonian fluids – First 
option for the air exit boundary condition. 

the box near the corners. According to the simulations results, we have 
obtained for meshes 1, 2 and 3 a filling of 95%, 96% and 98% respectively. 

 
5.3.2.  Bird-Carreau and Newtonian fluids 

We can see in Figure 5.14 the flow front for both the Bird-Carreau and 
Newtonian fluids. Note that for the Bird-Carreau model we always obtain a more 
flatten interface at the centre of the channel. This is mainly due to the fact that 
in this region the shear rates are low, and therefore the fluid behaves like a solid 
(plug like profile). 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
The three-dimensional results at t=5 s can be seen in the Figure 5.15. 

Again a smooth fluid front was obtained. 
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Figure 5.16: Representation of the boundaries at which the air can leave 
the mould. 

Figure 5.15: Flow front at 5s for the three-dimensional 
simulation. 

 
 

 
 
 
 
 
 
 
 
 
 
5.4. Modelling the air vents – second Option  
The second option we have considered to model the air vents is the 

possibility of the air to leave the channel through the bottom and lateral walls, 
as shown in Figure 5.16. 
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Figure 5.17: Simulation results in the three different meshes. 

5.4.1.  Mesh converge results 
The simulations results for the case where the air can exit the mould 

through the bottom and lateral walls (Figure 5.17), presents similarities with the 
case shown before.  

 
 
 
 
 
 
 
 

 
In this case the filling was about 97%, 98% and 99% for meshes 1, 2 and 

3, respectively. This means a better filling percentage was obtained when 
compared to the First Option. 

 
5.4.2. Bird-Carreau and Newtonian fluids 

 The flow front at three different simulation times using both the Bird-
Carreau and Newtonian fluids are shown in Figure 5.18.  

 
 
 
 
 
 
 
 
 
 
 
 

 Figure 5.18: Flow front obtained for the Bird-Carreau and Newtonian fluids –
second option. 

Material fraction 
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Figure 5.20: Third location of the air exit 
boundary conditions 

Figure 5.19: Three-dimensional flow front with the option two of the air exit, at 5s. 

The flow front for the Bird-Carreau model, is slightly different from the 
previous results. Therefore, this boundary condition is influencing the final 
results. We cannot forget that all the results are also influenced by the 
interpolation made by the visualization program (ParaView).  

Figure 5.19 illustrates the flow front at 5s for the three-dimensional 
simulation. Until now, all three-dimensional simulations shown are similar.  

 

 
 
5.5. Modelling the air vents – third option 
In this case, the wall parallel to the inlet wall is divided into three distinct 

zones and the air can escape from two of those three regions (as shown 
below). 
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Figure 5.21: Simulation results obtained for three different meshes. 

Figure 5.22: Flow front for the Bird-Carreau and Newtonian fluids – third option. 

5.5.1.  Mesh convergence results 
From the simulation results shown in Figure 5.21, we observe that the 

mould is not fully filled. This happens, because the fluid feels a restriction at the 
center of the channel (a wall) once the air reaches the wall, and it stays there, 
trapped. 

 
 
 
 
 
 
 
 
 
 

5.5.2. Bird-Carreau and Newtonian fluids 
The flow front using the Bird-Carreau and Newtonian fluids is shown in 

Figure 5.22. 
Some problems appeared at the flow front when using a Newtonian fluid. It 

looks like the flow front it is not symmetric, and we see oscillations near the wall 
(this problem is addressed in the next chapter). 

 
 
 
 
 
 
 
 
 
 
 

 

Material fraction 



5. Air vents – a computational approach 

51  

Figure 5.24: Representation of the fourth 
option for the air exit boundary condition. 

Figure 5.23: Three-dimensional simulation considering the third option 
for the location of the air exit boundary conditions. 

Figure 5.23 shows the flow front obtained for the three-dimensional 
simulation. We can also see an oscillation at the lateral wall for the Newtonian 
simulation  

 
 
 
 
 
 
 

 
 
 

5.6. Modelling the air vents – fourth option 
The last attempt to study the influence of the air exit boundary condition 

location on the fluid front development is presented in the figure below. 
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Figure 5.25: Simulation results using the fourth option for the air exit boundary condition. 

5.6.1. Mesh convergence results 
In this case, the fluid front reaches the air exit and closes the mould. 

Therefore, the air stays trapped inside the mould, resulting in a non-finished 
filling. We cannot forget that the fluid may only push the air, being unable to 
compress it.  

 
 
 
 
 
 
 
 

 
5.6.2. Bird-Carreau and Newtonian fluids 

The flow front using both Bird-Carreau and Newtonian fluids is shown in 
Figure 5.26. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.26: Flow front for the Bird-Carreau and Newtonian fluids - fouth option for the 
location of the air exit boundary condition. 

Material fraction 
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Figure 5.27: Three-dimensional simulation, when the material touches the wall, 
when using the fourth option for the air exit boundary condition location. 

The small bump obtained for the flow front of the Newtonian fluid at t=5 
seconds, was not obtained for the Bird-Carreau fluid. Note that for both 2D and 
3D simulations, some oscillations appear at the wall. 
 
 
 
 
 
 
 
 
 
 
 



 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. Oscillations of the interface near the wall 
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Figure 6.1: Representation of a simulation with and without oscillations 
near the wall. 

In Chapter 5 we have presented results using different location of the air 
exit/air vents boundary conditions, and, we saw that some simulations revealed 
oscillations of the interface near the wall, as lustrated in Figure 6.1.  

  
  

 
 
 
 
 
 
 
 
 
 

We were expecting a progressive filling of the fluid near the wall as the 
fluid front goes backwards (fountain flow), not the appearance of those filling 
oscillations in the wall. 

To discover the origin of the oscillations, we did a small study to 
understand if it is a problem of the solver or if it appears with some of the 
conditions we have used. 

First, from observation, we noticed that those oscillations only appear in 
the most refined mesh, which it is normal, since we have a more refined and 
sharp solution. Our second move was to decrease the time step of the 
simulations of the most refined mesh to see if the solution would be the same or 
not. The results obtained are presented in Figure 6.2. 

 
 
 
 



6. Oscillations of the interface near the wall 

58  

Figure 6.3:  Velocity field at t=5 seconds. 

Figure 6.2: Simulations results near the wall with different boundary conditions and for 
different time step. 

The solutions of the simulations with a smaller time step presented 
improvements compared with the time step of 1E-4 seconds. When we let both 
air and fluid leave through the outlet we still observe some oscillations. Another 
fact we can take from the results is that when these oscillations appear, we 
have a higher percentage of filling. This is more visible in subfigures a) and b) 
of Figure 6.2. This occurrence makes us question if the problem is because of 
velocity of the interface near the wall 

As an example, in Figure 6.3 we can see the velocity field and the flow 
front at t=5 seconds of simulation for the third option of air vents location. 
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Note that, “on top” of the flow front line we only have air. We see many 
differences between the velocity profiles using a different time step. We should 
have zero velocity in the wall and we see it well using the time step of 1E-5 
seconds, but using the higher time step we have velocity fluctuations at the wall. 
We did not see, these velocity variations at the wall, in the case that we let the 
air and material exit, maybe because the oscillations are small. 

It should be remarked that we barely observe oscillations using the Bird-
Carreau Model. The difference between the two flows is the viscosity, with 
Newtonian flow we have a constant viscosity, but with the Bird-Carreau we 
obtained a viscosity profile, as the one exhibited in Figure 6.4. 

 
 
 
 
 
 
 
 
 
 
 
We conclude that we have a viscosity in the wall greater than the used in 

the Newtonian flow (0.2 m2/s), and this can be also influencing the appearance 
of oscillations. Therefore, we performed simulations with a Newtonian fluid with 
higher viscosity (the results are shown in the Figure 6.5). We can clearly see 
that we have fewer oscillations when we have a higher viscosity. 

 
 
 
 
 
 
 

Figure 6.4: Viscosity profile with the Bird-Carreau 
model, at 5s. 
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The velocity profile of the simulation using a greater viscosity shows also, 

less oscillations near the wall, as expected (Figure 6.6).  
 
 
 
 
 
 
 
 
 
 
 
It seems that the solver produces more stable results when the viscosity in 

the wall is higher leading also to a better velocity field, and consequently less 
oscillations near the wall. 

Besides those oscillations, we still have good results in the flow front. It 
seems that the decrease of the time step is not always the solution to remove 
these oscillations, but, due the limited time to perform this work, this problem 
could not be studied in detail. 

 

Figure 6.5: Flow front at t=5s considering different viscosity values. 

Figure 6.6: Velocity profile using Newtonian fluids with different viscosities, at 5s. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. Non-isothermal flow with temperature-
dependent viscosity 
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Figure 7.1: Two-dimensional geometry. Dimensions: 115X10X4 [mm]. 

As said before, interFoam is an isothermal solver, but, the injection 
moulding process is a non-isothermal process. For that reason we have 
implemented the energy equation in the interFoam solver and we called it 
viscousHeatingSolver (the implementation of this solver is totally described in 
the Annex II). 

Many authors, for instance Khor et al. [33], Tie, Dequn and Huamin [34], 
Zhou, Yan and Zhang [35] and Yang et al. [36] use the Cross model, an 
inelastic model, modified with the Arrhenius equation (to add the temperature 
influence on the flow development) to study the injection moulding filling stage. 
The implementation of this model as well as the implementation of the 
temperature dependence can be seen in the Annex I. 

The modified Cross model is given by, 
 0

1
0

*

( )(| |, ) ( ) | |1
n

TT T
   


     



 (39) 

where   is the shear rate and n  and * are material constants. The zero shear 
viscosity, 0 ( )T , is given by the Arrhenius equation, at the reference 
temperature ( refT ), 
 ( )

0 0( ) refb T TT e     (40) 
b , is also a material constant. 
 

7.1. Definition of the case study: geometry, mesh and data 
To test the new non-isothermal solver, as well as the temperature-

dependent viscosity model we compare our simulations results with the work of 
Wang, Li and Han [23]. The geometry used to perform such simulations is 
presented in the Figure 7.1. 
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Figure 7.2: Mesh used in the non-isothermal simulations. 

The parameters of the modified Cross model used for the material were 
taken from the work of Wang, Li and Han, and are presented in Table 3. Note 
that we use the kinematic viscosity instead of the dynamic viscosity.  

 
Table 3: Parameters of the modified Cross model. 

 ν0 [m2/s] τ*[m2/s] n b [K-1] Tref [K] 
Fluid 3.105 90.941 0.21 5.8E-3 433 

 
The study of Wang, Li and Han refers nothing about the simulation of the 

air phase, but in this work we consider this phase, with a viscosity of 15.11E-6 
m2/s [37]. 

The thermal properties and the density used for the fluid [23] and the air 
[37] are exhibited in the following table. 

 
Table 4: Density and thermal properties of the fluid and the air. 

 k  [(kgˑm) /s3] pC  [m2/(s2ˑK)]   [kg/m3] 
Fluid 0.355 2300 920 
Air 0.025 1005 1.205 

 
To perform this case study we used the two-dimensional mesh 

represented in Figure 7.2. 
 
 
 
 

 
 
 

The boundary conditions for this case are shown in Figure 7.3. As we can 
see, the inlet velocity of the fluid is 0.1 m/s and the fluid enters the channel at a 
temperature of 465 Kelvin. Before the filling, the material inside the mould is at 
295 K (room temperature), and the remaining boundaries are set to T=315 K.  
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Figure 7.3: Representation of the boundary conditions.  
 
Note that in this simulation we use the boundary condition that allows the 

air to exit the mould but not the material. 
 
7.2. Simulation results 
In Figure 7.4 we show the simulation results regarding the flow front. We 

can see that our flow front is much more curved. The work of Wang, Li and Han 
does not consider the air, but we do. We did two experiments without and with 
surface tension (2.77E-2 kg/m2), we also tested different air viscosities and 
nothing changed the flow front geometry. Besides, our mesh is more refined, 
maybe that is why the difference between our simulations and theirs. 

 
 
 
 
 
 
 
 

 
Regarding, the temperature field, we can see the results in Figure 7.5. Our 

result seems to be similar to the ones obtained by Wang. We observe a 
gradient of temperature that is sharp in the zone near the side wall (this 
indicates the material is cooling faster in this region due to the smaller 
temperature imposed at the wall). Our modified solver seems to be working fine. 
In the future further tests need to be performed to validate the solver. 

Figure 7.4: Flow front using the Cross model modified with Arrhenius equation. 

This work Work of Wang, Li and 
Han 
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Figure 7.5: Simulation results of the temperature field at 0.53s. Comparison with the work of 
Wang, Li and Han. 

 
 

 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8. Viscoelastic simulations 
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The interFoam solver was modified so that it could deal with viscoelastic 
fluids – viscoelasticInterFoam (see Annex III). Due to time limitations we could 
only perform really simple simulations considering an Oldroyd-B model, low 
polymer viscosity, and using Mesh 2. Some tests were performed with different 
parameters and different models (for example the PTT model), but we faced 
severe convergence problems (mainly due the high polymer viscosities tested). 

The parameters used in this study are: 1.(185)s  , 0.(814)p  , 
0.(6)  . 
Figure 8.1 shows the results obtained for a case study where the fluid and 

air can both leave the mould through the bottom boundary. 
The results are only shown for t=1, 2, and 3 seconds, from left to right 

(these simulations are still running). 
 

 
Based on the preliminary tests we have performed, the 

viscoelasticInterFoam solver seems to be inadequate to model two fluids with 
highly different viscosities, but, more mathematical studies need to be 
performed in order to evaluate the performance of this technique (the one 
employed by interFoam) under sharp differences at the interface.  

 
 
 

Figure 8.1: Fluid front evolution for the Oldroyd-B model (from left to right – t=1,2,3 [s]). 



 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9. Three dimensional simulation using a 
real injected part 
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Figure 9.1: Dimension of the tensile specimen in millimetres. 

Figure 9.2: Dimension of the feeding system of the part in millimetres. 

In this chapter we simulate the injection moulding filling stage using a real 
injected part, a tensile specimen, considering its feeding system too. 

 
9.1. Definition of the case study: geometry, mesh and material 

properties 
To perform the simulations we use a tensile specimen with the dimensions 

illustrated in Figure 9.1. 
 

 
 

The feeding system dimensions are shown in Figure 9.2. 
 
 
 
 
 
 
 
 
 
 
 

We tried to make a mesh as most uniform as possible, but, because of the 
complexity of geometry, this was not possible. Anyway, our maximum control 
volume size is of 0.5 [mm] (edge). 

To perform Newtonian simulations, we used the data of Table 5, and we 
consider that the air can leave the mould through the last filling zone. Note that 
the velocity in Table 5 corresponds to the injection velocity at the inlet. 
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Table 5: Data used in the simulation of real injected part. 
 ν [m2/s] Density [kg/m3] Surface tension [kg/s2] Velocity [m/s] 

Fluid 0.2 1000 2.77E-2 5E-2 
Air 15.11E-6 1.205   

 
We also perform simulations with inelastic fluid, using the Bird-Carreau 

model. The parameters were presented in Table 2. 
 
9.2. Newtonian simulation results 
In Figure 9.3. we show the results obtained at t= 22.21s, and, we can see 

that the appearance of oscillations near the wall could not be avoided. In this 
case the oscillations are more pronounced because we simulated a three-
dimensional case, thus we have oscillations also in the top and bottom walls. 

 
 

 
 
 
 
 
 
After 22.21s, some unfilled zones appear that make no sense, we can 

clearly see it in the Figure 9.4. This is also due to oscillations. 
 
 
 
 
 
 
 
 

When we see the whole domain together, in Figure 9.5 we can see that 
something wrong happened with the numerical solution of the material phase 

Figure 9.3: Simulation at 22.21s. 

Figure 9.4: Simulation at 22.29s 

View from the top 

View in the middle 

Material fraction 

View from the top 

View in the middle 

Material fraction 
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Figure 9.5: Simulation result in the whole domain. 

Figure 9.6: Simulation result at 18s. 

fraction. Some cells are filled with material over six hundred percent, of course 
this is impossible.   
 
 
 
 
 
 
 
 
 
 

We tried to refine the mesh and the time step, but, the simulations are still 
slowly running.  

 
9.3. Simulation results using the Bird-Carreau model 
In Figure 9.6 is shown the simulation result at 18 seconds. This is the last 

time with a good result, from there, the simulation explodes. 

 
 
As we can see, with the Bird-Carreau model, the oscillations decrease 

considerably comparing with the Newtonian results. 
The last result of the simulation is illustrated in Figure 9.7. In this case, the 

increase of the material fraction led to higher residuals, and therefore leading to 
the end of the simulation. 

 

Material fraction 

Material fraction 
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Figure 9.7: Simulation result at 18.15s.  
 
In the Newtonian simulations the material fraction starts to increase from 

the 7 seconds, but using the Bird-Carreau model only from the 18.15 seconds 
the same happened. The error seems to appear in the same place of the 
geometry, what makes us think that can be a geometry imperfection. If we look 
close to the Figure 9.6, we see that, the place that at 18.15 seconds has higher 
material fraction, is completely filled at 18 seconds, what makes us think that 
can be a problem of the software, too. 

We tried to simulate from the 18 seconds with a lower time step (1E-6 
seconds), but we also obtained an increase of the material fraction.  

 
 
 
 
 
 

 
 

Material fraction 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10. Conclusion 
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We succeed in the implementation of a boundary condition capable of 
modeling the air vents.  

We concluded that the last filling zone/boundary is the best region, for the 
fluid to leave the mould. We obtained a higher filling percentage when the air 
leaves through the bottom and side boundaries. 

After obtaining our preliminary results we observed oscillations near the 
wall which should not exist. These oscillations only appear with the Newtonian 
flow, what makes us think that the used solver is better when the viscosity in the 
wall is higher. 

The study of a non-isothermal flow was also performed, showing the good 
implementation of the energy equation in the interFoam solver. The results were 
compared with another numerical and experimental work, and they were 
qualitatively similar. 

We have also extended the interFoam solver to deal with viscoelastic 
fluids, but, we could only perform one simulation, considering the Oldroyd-B 
model with a low viscosity. 

The simulation with a real complex geometry revealed some problems in 
the phase fraction profile, for the mesh we have tested. The weird part is that 
the residuals of all equations were low in the Newtonian simulation. The 
simulation with the Bird-Carreau model led to a better result but it presented the 
same problem in the phase fraction profile. 

One of the targets of this work was to perceive the performance of the 
solver, using the new implemented boundary conditions. The observed 
oscillations are a real problem of the solver that we need to understand, 
because it can be the reason of other nonphysical solutions.  

We believe that OpenFOAM® is a good software, but, interFoam needs 
further validation, because, of its difficulty in solving two completely different 
phases.
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Further validation tests with the used models, namely the Cross model 
modified with the Arrhenius equation. 

Additional tests with viscoelastic fluids should be performed, which can 
take into account the evolution of the stresses in the regions where we have a 
singularity. 

A future work would be to consider more refined meshes and smaller time 
steps, and also, the filling using a viscoelastic models with a real complex 
geometry. 

 



 

 



 

 

Figure A. 1: Content for the pressure folder. 

Annex I – Code used to create the new boundary 
conditions (air vents) 

To create the new boundary condition, to let the air exit the mould but not 
the polymer, we have to create a code that basically says what happens to 
velocity and pressure at the boundary under study. In order to create this code 
we need to create in the user directory two folders, one for the pressure and 
one for velocity. The content of the folder for pressure is shown in Figure A. 1: 
Content for the pressure folder. 

 
 
 
 
 
 
 
 
The content of the folder for the velocity is the same but instead of writing 

pressure, we write velocity. We are only going to show the code for the 
pressure boundary, for the velocity is the same; we just have to be careful, 
because the velocity is a vector field, not a scalar one.  

In the file valuePhaseFractionPressure.H, we must have the class names 
and their function. The added code is the following, 
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In the file valuePhaseFractionPressure.C we have the main code, 
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The next lines of the code are different for pressure and velocity files. 
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For the pressure file,      For the velocity file, 

 
These code lines says what was already explained in the main text: 
 
“Basically, in this new boundary condition we have the following: 
- when the fraction of the material is higher than half at the last cell touching the 

venting gap, the velocity of the material at that boundary is set to zero (as happens in a 
wall), and a zero-gradient boundary condition is used for the pressure. 

- If in the last cell touching the venting gap we have 0.5  , the pressure at that 
boundary is set to zero and a zero-gradient boundary condition is considered for the 
velocity, allowing the air to exit the mould (similar to an outlet boundary condition).” 

The remaining code stays the same, remembering always that velocity is a 
vector field, not a scalar field as pressure is. 
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In the options we add the existent libraries that we need to take in order to 

compile our new boundary condition. 

 
In the file named files we write, 

Regarding the velocity we call the new boundary condition as 
valuePhaseFractionU. 

Once we created a new boundary condition, we need to do some changes 
in our running cases. Those modifications are presented in Figure A. 2: 
Changes in the running files. 
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Figure A. 2: Changes in the running files.  
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Annex II – Implementation of the energy equation 
For the InterFoam to able to deal with non-isothermal fluids, we need to 

add to this solver the energy equation (Eq. (17)). 
 
Modification of the transport model 
Since we need to introduce new thermal properties, the transportModels 

library needs to be modified. The files that we have to adjust are inside the 
directory incompressibleTwoPhaseMixture. We, also, want to add a new 
temperature-dependent viscosity model, the Cross model modified by Arrhenius 
equation, so we have to also change the files inside the viscosityModels 
directory. The path to access the files that we need to change (or create) is 
shown in Figure A. 3: Directories to reach the needed files.. 

 
First of all, we have to copy the incompressible model to the user folder 

and clean all the dependencies already existing, using the commands, 
 

As we can see in Equation (17), we have two new constants that need to 
be introduced, pC  and k  in the file twoPhaseMixture.H, defining them as a 
scalar. 

Figure A. 3: Directories to reach the needed files. 
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Then, in the same file, we add, 

 
Lastly, we write a line, which basically says to return the face-interpolated 

thermal conductivity of the mixture, 
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The first change that we do in the file two twoPhaseMixture.C is, 

 
We have now to add the thermal conductivity of the mixture, which is given 

by the following equation, 
 1 2(1 )k k k      (41) 
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The final modification is 

 
Before compiling the new transport model, we want to add a new viscosity 

model, thus we must create a folder named CrossArrhenius inside the 
viscosityModels directory. Inside that folder we can create a file called 
CrossArrhenius.H, with the following code,  
 

Parameters of the 
modified Cross model 
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In the same folder, we create another file called CrossArrhenius.C, it is in 
this file that we define the modified Cross model. All the information present in 
this file is, 
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The next modifications are in the files inside of viscosityModel folder. 
Since we now have to consider the temperature field, everytime the following 
code line appears, 
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Figure A. 4: Files that need to be modified. 

we only need to add, 

The last file that will suffer some changes is the file named File inside the 
Make directory. We add the next line to the Files file in order to compile the new 
transport model with our created viscosity model. 

Finally, since we need to compile the new library, and instead of doing it in 
the OpenFOAM directory, is better to compile in the user directory, thus we 
need to modify the last line of the Files file as, 

 
To compile the library we need to type the following command, 

 
Modification of the interFoam solver 
After we compile the new transport model, we have to modify the 

interFoam solver. The differences between the interFoam and the new solver 
created from it, that we call viscousHeatingSolver, are exhibited in Figure A. 4 
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It is possible to observe that we need to create a new file designated by 
TEqn.H, but before doing any modifications, we also have to copy the 
interFoam solver to the user directory. 

 
We should then, create temperature field in the file createFields.H, by 

adding the following lines of code, 

 
And declare the specific heat capacity, since we are going to add the equation 
that needs this term. 
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The last modification in this file is the description of the specific heat 

capacity of the mixture, 
 1 1 2 2(1 )p p pC C C       (42) 

and the flux heat, 
 1 1 2 2(1 )p p pC C C        (43) 

 
The   term is the velocity interpolated to the cell faces. 
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Equation (42) is defined in the alphaEqnSubCycle.H. 
 
As well as Equation (43) in the alphaEqn.H file.  

 
Afterwards we need to create an empty file with the name TEqn.H to add 

the energy equation, 
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The file interFoam.C must be renamed to viscousHeatingSolver.C and 

must contain the following line, 

 
The file named Files, inside the Make directory, should only contain the 

following lines of code, 

Since we need to connect this new solver with the modified library of the 
transportModels, we need to add the next lines in the options file inside the 
Make directory, 

 
Finally, we rename the solver interFoam to viscousHeatingSolver and we 

compile it by using the following command, 
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Modifications on the files for cases using the viscousHeatingSolver 
Once we change the transportModels library and the interFoam solver, 

some of the files that we need to run the cases have to be modified. 
The folders that will suffer some change are shown in Figure A. 5. The 

folder 0 has the boundary conditions in the initial time state. Since 
viscousHeatingSolver solves the temperature equation, we need to have a new 
file named T. We add new thermal properties, and their values are written in the 
transportProperties file. One of the purposes of controlDict file is calling the 
used solver, so we need to change this file. The fvSchemes file need to be 
modified, once there are new terms to be discretised, as well as the fvSolution 
file, since we have to add a new solution method for the linear system resulting 
from the temperature equation discretization. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The temperature file of the initial time has the same functionality of the 
velocity and pressure file, but we have to be careful that temperature is a scalar 
field and we have to define our boundaries in Kelvin units, as seen in the Figure 
A. 6: The T file in the folder 0.. 
 
 

Figure A. 5: The underlined files are the ones who suffer changes. 
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Figure A. 6: The T file in the folder 0. 

Figure A. 7: Adjustments in the transportProperties file. 

 
 
 

 
 
In the folder constant we modified the transportProperties file as shown in 

Figure A. 7 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

 
 
The changes in the files inside the system directory are presented in 

Figure A. 8. 
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Figure A. 8: Modifications made in the files inside the system folder. 
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Annex III – Implementation of the viscoelasticInterFoam 
For the InterFoam to able to deal with viscoelastic fluids, we need to do 

some changes.  
 
Modification on the transport model 
In Figure A. 9 we can see the files which need to be modify or created in 

the original transport model used by the interFoam solver 
 

 
 
The Incompressible folder already exists in the original transport model, 

and also the folder inside it, named viscoelasticIncompressibleTwoPhase-
Mixture, but in the original transport model is called IncompressibleTwoPhase-
Mixture. The files inside the IncompressibleTwoPhaseMixture need to be 
deleted and we have to add the viscoelasticIncompressibleTwoPhaseMixture.C 
file, 

 
 
 
 
 

Figure A. 9 - Files that need to be modify. 
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We also add the viscoelasticIncompressibleTwoPhaseMixture.H file, 
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Then, we create the viscoelasticImmiscibleIncompressibleTwoPhase-

Mixture folder and to add the viscoelasticImmiscibleIncompressibleTwoPhase-
Mixture.C file, 

 
and the viscoelasticImmiscibleIncompressibleTwoPhase-Mixture.H file,  
 



 

118  

 
Afterwards, we rename the file interfaceProperties (that exists in the 

original transport model) as viscoelasticInterfaceProperties, Then, we rename 
the file interfaceProperties.C as viscoelasticInterfaceProperties.C and we add 
the following lines, 
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The last step is to rename the file interfaceProperties.H as 

viscoelasticInterfaceProperties.H and add the following lines, 

 
Modification on the interFom solver 
In the interFoam solver we just need to modify the creatFiles file, rewriting 

the lines 32 and 33 as, 

 
The interFoam solver needs to be rename to viscoelasticInterFoam, as 

well as the file interFoam.C file should be rename to viscoelasticInterFoam.C, 
and to have the following code, 
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