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Abstract: Over the last few years, the application of nanotechnology to nutraceuticals has been 

rapidly growing due to its ability to enhance the bioavailability of the loaded active ingredients, 

resulting in improved therapeutic/nutraceutical outcomes. The focus of this work is nanoprebiotics 

and nanoprobiotics, terms which stand for the loading of a set of compounds (e.g., prebiotics, 

probiotics, and synbiotics) in nanoparticles that work as absorption enhancers in the gastrointestinal 

tract. In this manuscript, the main features of prebiotics and probiotics are highlighted, together 

with the discussion of emerging applications of nanotechnologies in their formulation. Current 

research strategies are also discussed, in particular the promising use of nanofibers for the delivery 

of probiotics. Synbiotic-based nanoparticles represent an innovative trend within this area of 

interest. As only few experimental studies on nanoprebiotics and nanoprobiotics are available in the 

scientific literature, research on this prominent field is needed, covering effectiveness, 

bioavailability, and safety aspects. 

Keywords: nutraceuticals; nanotechnologies; nanonutraceuticals; prebiotics; probiotics; synbiotics. 

 

1. Nanonutraceuticals 

1.1. Nutraceuticals 

Beside the emerging need for natural origin alternatives to pharmaceuticals, the interest is 

focusing more and more on possible applications of food derived products that can be used as tools 

to prevent (and in some cases also cure) or delay the onset of a health issue [1–3]. Nutraceuticals, are 
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a novel toolbox not completely explored so far for its full potential in medicine [4–7]. Nutraceuticals, 

a portmanteau of the words ‘nutrition’ and ‘pharmaceutical’ [2], have been defined as “the 

phytocomplex if they derive from a food of vegetal origin, and as the pool of the secondary 

metabolites if they derive from a food of animal origin, concentrated and administered in the more 

suitable pharmaceutical form” [8]. Examples of substances that have nutritional and nutraceutical 

interest are antioxidants, vitamins, polyunsaturated fatty acids, dietary fibres, prebiotics, and 

probiotics [9]. Nutraceuticals reside nowadays in a gray area between pharmaceuticals and food; 

their safety and efficacy in health conditions and safety must be substantiated by clinical data; 

moreover, there is lack of a shared regulatory system for them [7,10]. 

1.2. From Nanopharmaceuticals to Nanonutraceuticals 

1.2.1. Characteristics of Nanoparticles and General Classification 

Within the different definitions of nanomaterials, these can be described as the products of 

nanotechnology, characterized by at least one dimension within the size range below 100 nanometers 

[11–13]. Due to their remarkable properties and versatility, nanomaterials are being exploited in 

different fields, e.g., agriculture, health, electronics, cosmetics [14–18], representing a great challenge, 

in particular, in food science and technology, environment, and human health [19]. The progress in 

pharmaceutical nanotechnology has led to a new class of products, the so-called 

nanopharmaceuticals [20,21], defined as pharmaceutical drug molecules formulated in nanomaterials 

. Different types of nanoformulations are being exploited for the treatment of neurodegenerative 

diseases, cancer, infectious diseases, and others [22–26]. Besides, nanomaterials are also succeeding 

in offering new advanced tools for imaging and diagnosis [27] which, combined with therapy, have 

been proposed as nanotheranostics. These formulations are also being tailored for personalized 

medicine. 

Nanoparticles can be produced from natural (e.g., proteins, polysaccharides, lipids) and from 

synthetic (e.g., polymers) sources. Ideally, materials should be biocompatible, biodegradable, and 

biotolerable, namely the way by which designed materials are tolerated by the body, and of generally 

recognized as safe (GRAS) status, in order to be used in pharmaceutical and nutraceutical products. 

Among the available options, and if the nanoparticles are intended for oral administration (as 

happens with nanonutraceuticals), lipid nanoparticles are of special interest [28–31]. Lipids are 

known for their role as absorption enhancers in the gut, which contribute to improving the oral 

bioavailability of several drugs and biomolecules. Besides this, the loading of poorly soluble drugs 

into lipid nanoparticles overcome the limitations encountered in their formulation into final 

products. Lipid nanoparticles can be produced from well-known lipids existing both in the human 

body and in foodstuff (e.g., fatty acids, triglycerides, phospholipids, waxes, cholesterol) thereby 

enhancing their biodegradability, and biocompatibility profiles [32].  

Among polysaccharides, chitosan [33–37] and alginate [33,38,39], have been frequently used in 

the production of nanoparticles for oral delivery. Being a mucoadhesive polysaccharide, chitosan is 

able to increase cellular permeability and improves the bioavailability of orally administered drugs 

and proteins. Moreover, the molecule itself exhibits antimicrobial properties, and has a low toxicity. 

The molecule has chemical functional groups that can be modified for site specific targeting. Alginate 

is also a versatile mucoadhesive natural polymer with very low toxicity in vivo. Alginate 

nanoparticles have a hydrophilic character with improved loading capacity for hydrophilic drugs, 

being able to modify their release profile. Alginate nanoparticles are reported as adjuvants in 

vaccinations and can be produced conjugated with dextran to modify the release profile of proteins 

and other macromolecules intended for oral administration [40]. 

Nanopharmaceuticals and nanonutraceuticals are obtained, respectively, when a 

pharmaceutical or a nutraceutical is formulated in nanoparticles. The rationale for their development 

is mainly addressed to improve the physicochemical properties (e.g., solubility) and pharmacokinetic 

parameters (tmax, Cmax, area under the plasma drug concentration–time curve (AUC)), with the 

ultimate aim to reduce the dose required to observe the therapeutic/nutraceutical outcome and thus 
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the possible risk of toxicity [41–43]. Parameters, such as efficiency, quality, and safety should 

therefore be considered. Nevertheless, regulatory issues related to nanopharmaceuticals still need 

further developments [44].  

1.2.2. Emerging Area of Applications 

Nanopharmaceuticals and the great change of the pharmaceutical industry have a great impact 

also on nutraceuticals. The recent work of Agarwal et al. [45] gives the patented and approval 

scenario of nanopharmaceuticals with regards to biomedical application, manufacturing procedure, 

and safety aspects. 

Wu et al. [46] highlighted how nanotherapeutics and nanopharmaceuticals could lead to a more 

precise individual diagnosis, improve targeted therapies, reduce side effects, and enhance 

therapeutic monitoring. The same review also underlines that the field of nanomedicine is at its early 

stage and that further efforts to translate their potential into clinical trials and medical practice are 

still needed. 

A growing number of studies are addressed towards the application of nanotechnologies to 

nutraceuticals [47–50] in order to obtain improved bioavailability, delivery, and effect. This leads to 

the development of an emerging area of innovative products: the nanonutraceuticals [51–53]. 

Nanotechnology can be used to improve absorption, bioavailability, stability, and controlled 

release of nutrients and nutraceuticals, thereby increasing health benefits; some examples of potential 

advantages of applications of nanotechnology on the nutraceuticals are (i) efficient encapsulation; (ii) 

smart delivery and release from a nanoformulation. For example, research on encapsulation of 

nutraceuticals into biodegradable, environmentally friendly nanocarriers, is ongoing to increase their 

absorption and their therapeutic potential. 

The nanonutraceutical formulations represent a valuable and promising strategy to maintain 

nutraceutical health beneficial properties at a nano level, to guarantee safety and efficacy, when used 

in managing health conditions, particularly for patients who are not eligible for a conventional 

pharmacological therapy. Follow-up studies, as reported by recent works [54–57], and 

communication strategies [58], are needed for both the nanopharmaceuticals and nanonutraceuticals 

[59,60], in view of expanding the area of interest to different health conditions. For instance, Aditya 

et al. [61] describe the current status of the various delivery systems that are used for the delivery of 

hydrophilic bioactive compounds and discuss future prospects to be explored for the delivery of 

hydrophilic bioactive compoundse.g., niosomes, bilosomes, cubosomes. 

2. Focus on Nanotechnologies Applied to Prebiotics, Probiotics, and Synbiotics 

Focus of this perspective is the application of nanotechnologies to food supplements containing 

prebiotics, probiotics, and synbiotics. This section consists of (i) shot on prebiotics, probiotics, and 

synbiotics; (ii) definition and delineation of nano-prebiotics, nano-probiotics, and nano-synbiotics. 

2.1. An Overview on Prebiotics, Probiotics, and Synbiotics 

2.1.1. Prebiotics  

Prebiotics [62–66] are a special form of dietary fiber with health benefits, which invoke 

alterations in the host microbial ecosystem, not only in the gut, via their selective administration by 

live host microbes [67]. Food ingredients like prebiotics are classified on the basis of some principles, 

such as resistance to digestion in upper alimentary tract, selective stimulation of probiotic growth, 

beneficial health effects in the host, stability in different conditions of food/feed processing, and 

fermentation process through intestinal microbiota. They are found in various sources, including 

some non-digestible oligosaccharides, non-digestible carbohydrates, yacon, unrefined wheat, 

unrefined barley, soybeans, raw oats, breast milk, and inulin sources (e.g., chicory roots and 

Jerusalem artichoke) [68]. Some compounds found in prebiotics are soya-oligosaccharide, xylo-

oligosaccharide, pyrodextrins, gluco-oligosaccharide, lactulose, malto-oligosaccharide, galactans 
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(galacto-oligosaccharide (GOS)), oligofructose, isomalto-oligosaccharide (IOS), fructans (FOS and 

inulin), mannan-oligosaccharide (MOS), lactitol, and non-starch polysaccharides (NSP). Figure 1 

gives an overview of prebiotics. 

 

Figure 1. Overview of prebiotics. 

Several mechanisms are involved in the bioactivity of prebiotics and probiotics [69,70], as 

described in Figure 2.  
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Figure 2. Overview of mechanism of action of pre and probiotics. 

The metabolic products of such microorganisms can drop the gastrointestinal (GI) pH by 

carbohydrate fermentation via Bifidobacteria and Lactobacillus thereby influencing mineral uptake, 

growth, and spread of gut microbiota, epithelial integrity, and hormonal regulation. They also are 

able to enhance the absorption of trace elements and especially of iron and act on the regulation of 

body immune function. The prebiotics can use the short-chain fatty acids (SCFAs) as an energy 

source. 

2.1.2. Probiotics  

The FAO (Food and Agriculture Organization) and WHO (World Health Organization) have 

defined probiotics as non-pathogenic living microorganisms that ensure host health if used properly 

in foods or as dietary supplements [71,72]. Probiotics come from different sources, such as various 
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natural environments, human gut microbiota, and foods. The main properties of probiotics like the 

ability to survive through the gastrointestinal tract, the resistance against bile and gastric acidity, and 

the stimulation of the activity of bile salt hydrolase, promote health benefits to the host [68,73–81]. 

The count of probiotic bacteria (colony-forming units (CFU)/g) in probiotic-containing products 

differ among the countries; for example, 107 CFU/g in the USA and 109 CFU/g in Canada. The effective 

dose generally contains >106-108 CFU/g or >108-1010 CFU/d of live probiotic bacteria [82,83]. Most 

probiotics are found in Gram-positive bacteria, including Streptococcus, Bacillus, Lactobacillus, 

Enterococcus, and Pediococcus. The probiotics can also include fungal and yeast species such as 

Saccharomyces cerevisiae and Kluyveromyces. Only some microorganisms such as Lactobacillus spp., 

Bifidobacterium spp., and Lactococcus are known as generally recognized as safe (GRAS) despite the 

existence of diverse microorganisms which can act as probiotics with health benefits [84–86]. Figure 

3 gives an overview of probiotics. 

 

Figure 3. An overview of probiotics. 

The reported key mechanisms of action of probiotics [87] have been mentioned as follows (see 

Figure 2): enhancement of epithelial barrier, modulation of insulin-sensitive tissues, synthesis of 

antimicrobial substances, multi-pathogen competition, and induction of mucin secretion. The 

probiotics are able to adhere to epithelium, resulting in microbial elimination. They also modulate 

the immune function via the stimulation of signaling pathways to upregulate anti-inflammatory 

cytokines and growth factors, to differentiate T-regulatory cells (Tregs), and to interact with the gut-

brain axis (GBA) by endocrine regulation and neurologic functions. 

2.1.3. Synbiotics  

The synbiotic agents are a combination of prebiotics and probiotics with beneficial effects on 

host through the enhancement of activity and survival of beneficial microorganisms in the 

gastrointestinal tract, so that they can selectively provoke the growth and stimulate the metabolism 

of one or more health-promoting bacteria, thereby enhancing the host welfare [88–97]. The most 
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important issue in the design of synbiotics resides in the prebiotic and probiotic selection criteria and 

requirements, which should be clearly described.  

2.1.4. Health Promoting Effect of Prebiotics, Probiotics, and Synbiotics 

The International Scientific Association for Probiotics and Prebiotics (ISAPP) introduced a wide 

range of products containing the probiotics with health promoting effects, including non-edible 

products (e.g., vaginal preparations), baby formulas (e.g., first milk), drugs, therapeutic supplements 

(e.g., for enteral nutrition), and foods (e.g., fermented milk with reportedly health beneficial effects) 

[98]. 

Some of the reported beneficial effects of probiotics in human health include anticancer [99–111], 

anti-allergic [112,113], anti-diabetic [114–116], anti-obesity [117–120], anti-pathogenic [121,122], 

immunomodulatory [123], and anti-inflammatory [124–127] activities [128], as reported in Table 1. In 

an in vitro study, Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) as a 

quantitative analysis technique was applied to evaluate the proteomic profile of colon cancer cells in 

Lactobacillus kefiri SGL 13, and the results indicated antiproliferative and pro-apoptotic activities for 

this strain on human colon adenocarcinoma cell line HT29 [99]. In another study, the airway hyper 

reactivity was suppressed in ovalbumin-sensitized samples by Lactobacillus spp. (such as Lactobacillus 

and Pediococcus) via a reduction in the level of Th2 cytokines, OVA-specific IgE and IgG1 as well as 

an increase in the level of IgG2a [112]. Lactobacillus fermentum cell-free supernatant (LCFS) caused 

cancer cell death in 3D HCT-116 conditions through the induction of apoptosis in the colon cancer 

cell line and the antiproliferative activity by the inhibition of NF-κB signaling [129]. The use of 

lactoferrin and Bifidobacterium longum BB536 managed the enteropathy caused by diclofenac in rat 

samples by modulating the proinflammatory pathway of TLR-2/-4/NF-kB [130]. Othman et al. [131], 

studied the effect of inactivated Bifidobacterium longum intake on obese diabetes affected mice. They 

reported a   significant decrease of body weight gain, adipose tissue mass and blood glucose levels, 

as well as a significant reduction in blood glucose after a 5 weeks treatment. The treatment also 

resulted in  reduced levels of cholesterol and triglycerides [131]. 

The administration of three strains of Bifidobacteria in the adult rats improved neuronal plasticity 

and cognitive behavior [132].  

Prebiotics have been reported to have different activities; for example, generation of bacteriocins, 

maintenance of gut health [133], possibility to be used as food additive and starter culture, clearance 

of cholesterol [134,135], potentiation of immune defense [136], inhibition of constipation and risk of 

obesity [137,138], inhibition of colitis [139], protection of colon and other organs against cancer [140–

142], reduction of cardiovascular disease risk factors, antioxidant activity [143,244], over-

bioavailability [145]. According to scientific published data, the administration of oligofructose-

enriched inulin (OEI) promotes malondialdehyde content, lipid profile, glycemic indices, and 

antioxidant level in female patients suffering from type II diabetes [146]. The supplementation of 

inulin in shaken cultures was found to increase the growth rate of L. plantarum ST16 [147]. Based on 

the findings from Ramos et al. [148], the administration of fructooligosaccharides (FOS) was tolerated 

and decreased the total and free p-cresyl sulfate (PCS) in the serum samples of patients with non-

diabetic chronic kidney disease (NDD-CKD). 

The therapeutic potential of synbiotics has been comprehensively discussed in a recent review 

published by Flesch et al. [149]. According to their findings, the patients with irritable bowel 

syndrome (IBS) when receiving B. longum BB536 and L. rhamnosus HN001 plus vitamin B6 showed 

restoration of intestinal permeability and gut microbiota, as well as amelioration of the disease 

symptoms [150]. In the research of Mohan et al., the synbiotic AMFTM 15+ manuka honey yogurt 

showed antibacterial properties, followed by increasing probiotic bacteria and producing lactic and 

propionic acids [151]. A study reported gut health enhancement following the administration of 

seaweed-based synbiotic of Gracilaria coronopifolia which caused the reduction of inflammation, the 

generation of reactive oxygen species (ROS), and diminution of the oxidative stress-induced cell 

damage [152]. According to Sarwar et al., the textural properties, such as adhesiveness, cohesiveness, 

and hardness, were enhanced following the co-administration of inulin and Saccharomyces boulardii 
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[153]. In Table 1 an updated overview of in vitro and in vivo studies on prebiotic, probiotic, and 

synbiotic products is given. 

Table 1. An updated overview of in vitro and in vivo studies on prebiotic, probiotic, and synbiotic 

products. 

Type 

Microorganisms/

Prebiotics 

Activity Study References 

Probiotic Bacillus and 

Enterobacter 

Anticancer and 

antioxidant 

effect 

The intracellular cell-free supernatants (CFS) 

from Bacillus licheniformis KT921419 and the 

ethyl acetate extracts could control the growth of 

HT-29, a colon cancer cell line 

[100] 

L. plantarum C70 Anticancer effect L. plantarum C70 by releasing the 

exopolysaccharide caused 73.1% and 88.1% 

cytotoxic properties against the breast and colon 

cancers, respectively   

[101] 

Kluyveromyces 

marxianus and 

Pichia kudriavzevii 

Anticancer effect According to analysis of Annexin V/PI and 

DAPI, an apoptotic induction was observed due 

to exopolysaccharides released by probiotic 

yeasts of Kluyveromyces marxianus and Pichia 

kudriavzevii 

[102] 

Lactobacilli cocktail Anticancer effect HT-29, a human colorectal carcinoma cell line 

was controlled by Lactobacilli cocktail via the 

modulation of the Notch and Wnt/β-catenin 

signaling pathways 

[104] 

L. rhamnosus Anticancer effect The bioconversion of cranberry 

proanthocyanidins to Lactobacillus rhamnosus 

could result in the IC50 values of 20.1 and 47.8 

μg/mL 

[105] 

Bifidobacterium 

infantis, L. 

acidophilus, 

Enterococcus 

faecalis, Bacillus 

cereus 

Anti-

inflammatory 

effect 

A mixture of aerobic probiotics improved the 

functions of various intestinal barriers and the 

restoration of lucrative intestinal microbiota in 

the mouse model of DSS-induced chronic colitis, 

meaning anti-inflammatory properties  

[127] 

Saccharomyces 

boulardii CNCM I-

745 

Anti-

inflammatory 

effect 

The inflammatory response was modulated in 

mucositis caused by 5-FU (fluorouracil) via the 

probiotic Saccharomyces boulardii CNCM I-745 

[103] 
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through the control of TLR 2 and 4 as well as the 

reduction of pro-inflammatory and NF-κB 

cytokines 

L. casei 

IMAU60214 

Immunomodula

tory effect 

The use of L. casei IMAU60214 killed by heat 

increased the activity of M1-like pro-

inflammatory phenotype through the TLR2 

signaling pathway 

[123] 

L. plantarum Antimicrobial 

effect 

L. plantarum ZLP001 impeded the ETEC 

adhesion and linked with IPEC-J2 cells via the 

competition and exclusion 

[122] 

Lactobacillus Anti-diabetic 

effect 

The lactobacillus strain alleviated the levels of 

blood sugar and HbA1c in diabetic rats 

[115] 

L. plantarum 

LMT1-48 

Anti-obesity 

effect 

The body weight and abdominal fat content 

were decreased in mouse models fed a modified 

diet through the administration of L. plantarum 

LMT1-48 at a density of 106 CFU/mL 

[117] 

Hafnia alvei Anti-obesity 

effect 

Fat mass, food intake, and body weights were 

reduced in the mouse model of obesity and 

hyperphagia 

[118] 

Eurotium cristatum Anti-obesity 

effect 

The administration of Eurotium cristatum 

showed anti-obesity activity in mice fed a high-

fat diet (HFD) through the modulation of gut 

microbiota 

[119] 

L. plantarum strain 

TCI378 

Anti-obesity The expression of glucose transporter type 4 

(GLUT-4) and adipocyte-specific genes perilipin 

1 was suppressed by metabolism derivatives 

from L. plantarum strain TCI378 

[120] 

Prebiotic Galacto-

oligosaccharides 

and phycocyanin 

Anticancer effect The prebiotics co-administered by phycocyanin 

arrested the cell cycle at the G0/G1 phase, 

resulting in inhibited growth of HCT116 cells 

[141] 

Chondroitin 

Sulfate 

Disaccharide 

Anticancer effect The growth of HT-29, human colon cancer cell 

line, was controlled by Chondroitin sulfate (CS)-

Keel disaccharide (CSD) generated by 

chondroitin AC lyase, estimating at 80% 

antiproliferative activity 

[140] 
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Short-chain fatty 

acids 

Antiproliferativ

e effects 

The administration of short-chain fatty acids 

(SCFAs) prevented the expression of genes 

involved in human colorectal cancer cells 

[142] 

Blueberry 

anthocyanins 

Antioxidant 

effect 

The density and composition of intestinal 

microbiota in human models were increased by 

consumption of high purity blueberry 

anthocyanins through the increase in the 

modulatory and prebiotic activities 

[143] 

Oligosaccharides Antioxidant 

effect 

The water-soluble oligosaccharide of EMOS-1a 

showed 1420% proliferation level 

[144] 

Lycium barbarum 

polysaccharide 

Immunomodula

tion 

effect 

The administration of polysaccharides derived 

from Lycium barbarum in mice showed 

immunomodulatory effects, and enhanced 

density of beneficial bacteria and gut microbiota 

[136] 

Synbiotic Djulis 

(Chenopodium 

formosanum) with 

L. acidophilus 

Anticancer effect The co-administration of Djulis (Chenopodium 

formosanum Koidz.) and Lactobacillus acidophilus 

inhibited the growth of rat colon cancer cells 

through the promotion of apoptosis, 

proliferation, and inflammation 

[80] 

L. casei, 

acidophilus, 

rhamnosus, 

bulgaricus, 

Bifidobacterium 

breve, longum and 

Streptococcus 

thermophilus with 

fructo-

oligosaccharides. 

Anticancer and 

antioxidant 

effect 

Ten weeks of low-calorie diet program along 

with synbiotic supplementation enhanced the 

activity of superoxide dismutase (SOD) and 

reduced the serum level of malondialdehyde 

(MDA) in obese patients suffering from breast 

cancer-related lymphedema 

[89] 

Weissella cibaria 

FB069 with 

xylooligosacchari

des 

Anticancer effect The use of synbiotic-fermented soymilk 

(containing xylooligosaccharides and Weissella 

cibaria FB069) inhibited the proliferation of 

HCT116 and Caco-2, colorectal cancer cell lines, 

through the reduction in the transcription of 

MD2/TLR4/MyD88/NF-κB   

[90] 
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Auricularia 

auricula aqueous 

with L. acidophilus 

La-5 and 

Bifidobacterium 

bifidum Bb-12 

Antioxidant 

effect 

The aqueous extract of Auricularia auricula in the 

presence of L. acidophilus La-5 and 

Bifidobacterium bifidum Bb-12 significantly 

elevated the level of phenolic compounds and 

the activity of antioxidant properties up to 

1057.6 mg of Gallic acid/kg and 115.30 of mg 

BHT eq/kg following 28-day storage 

[91] 

L. bulgaricus PXN 

39, L. casei subsp. 

casei PXN 37, 

Bifidobacterium 

breve PXN 25, L. 

rhamnosus PXN 

54, B. infantis PXN 

27 Lactobacillus 

acidophilus PXN 

35, Streptococcus 

thermophilus PXN 

66 with fructo-

oligosaccharides 

Immunomodula

tion 

effect 

The use of multispecies symbiotic showed 

immunoregulatory effects on the expression 

levels of CD4 and IgA in mice exposed to 

lipopolysaccharide (LPS) 

[92] 

L. plantarum with 

inulin 

Neuropsycholog

ical effect 

Concomitant administration of inulin and L. 

plantarum in diabetic rats improved 

CREB/BDNF/TrkB signaling pathway, serotonin 

secretion, brain parameters, intestinal microbial 

composition, and oxidative stress, thus leading 

to improved memory and learning disorders 

[93] 

β-glucan, Bacillus 

coagulans, and 

inulin, lactic acid 

Anti-diabetic 

effect 

Eight weeks of taking daily synbiotic plus lactic 

acid improved the levels of GSH-Px, SOD and 

HbA1c in patients with type II diabetes 

[94] 

Corn starch, 

maltodextrin, 

inulin, 

fructooligosacchar

ides, potassium 

chloride, 

magnesium 

sulfate, mangan 

sulfate with L. 

Improve 

symptoms of 

diarrhea-

predominant 

irritable bowel 

syndrome 

Irritable bowel syndrome (IBS) symptoms were 

improved by synbiotic treatment through an 

increase in fecal acetate and butyrate, colonic 

CD4+ T cells, mucosal microbial diversity as 

well as a decrease in surrogate of intestinal 

barrier function and fecal zonulin 

[95] 
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casei W56, 

acidophilus W22, 

paracasei W20, 

salivarius W24, 

plantarum W62, 

Lactococcus lactis 

W19, 

Bifidobacterium 

lactis W51 and 

W52, and 

Bifidobacterium 

bifidum W23 

Grape pomace 

extract with 

lactobacilli 

Anti- 

inflammatory 

effect 

The co-administration of lactobacilli and 

prebiotic grape pomace caused a 

downregulation of inflammatory genes, 

proteins, signaling molecules through the 

symbiotic effects 

[96] 

L. acidophilus, L. 

rhamnosus, B. 

longum and 

Bifidobacterium 

bifidum, 

Saccharomyces 

boulardii with 

fructo-

oligosaccharides 

Hepatoprotectiv

e effects 

The administration of synbiotic soy yogurt 

controlled hypercholesterolemia in mice liver by 

reducing the levels of low-density lipoprotein 

cholesterol, triacylglycerols, blood cholesterol, 

and lipid peroxidation. 

[97] 

2.2. Nano-Prebiotics, Nano-Probiotics, and Nano-Synbiotics 

Recently, emerging applications of nanotechnologies in prebiotics and probiotics have been 

developed and carried out as reported in Table 2 [154–167].  

Table 2. Emerging applications of nanotechnologies on nanoprobiotics, nanoprebiotics, and nano 

synbiotics. 

Type Activity Study References 

Probiotic Antimicrobial 

effect 

The polylysine-induced poly glutamic acid (PG) films caused 

protection of probiotics against food-borne pathogens 

[154] 
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Anticancer effect The high levels of synthesized silver/Lactobacillus rhamnosus 

GG nanoparticles (Ag-LNPs) led to a decline in the rate of HT-

29 live cells 

[155] 

Anticancer and 

antimicrobial 

effect 

The fabrication of copper oxide nanoparticles (CuO-NPs) 

using L. casei could control the proliferation of HT-29, a 

human colon carcinoma cell line, and human gastric 

carcinoma cell line, as well as could eliminate Pseudomonas 

aeruginosa and Staphylococcus aureus 

[156] 

Anticancer and 

antioxidant 

effect 

The L. casei capped-SeNPS suppressed the cytotoxicity caused 

by Diquat and oxidative damage, impeded the cell damage 

and apoptosis induced by H2O2, and induced the apoptosis 

mediated by the HepG2 cell line 

[157] 

Anticancer and 

antioxidant 

effect 

The findings from the administration of L. casei 393-SeNPs 

were the induction of HepG2 cell line apoptosis, the elevation 

of oxidative damage caused by Diquat in IECs, and the 

reduction in gut barrier dysfunction caused by ETEC K88 via 

the antioxidant functions, the regulation of inflammation, the 

establishment of gut epithelial barrier integrity, and the 

balance of gut microflora 

[158] 

Anticancer effect Dead nano-scale L. plantarum could impede the proliferation 

of a colorectal cancer cell line through an increase in the 

expression level of IgA, an induction of cancer cell cycle arrest 

and apoptosis, and a suppression of inflammatory response 

[159] 

Anticancer and 

antioxidant 

effect 

The synthesis gold nanoparticles (AuNps) having antioxidant 

activity and low cytotoxicity using L. kimchicus DCY51T strain 

exhibited the activity of a protective protein capping layer 

[160] 

Prebiotic 

 

Improve drug 

delivery 

High molecular weight (HMW) inulin nanoparticles were 

fabricated to achieve drug delivery system, whose 

concentration of <200μg/mL had no toxicity for peripheral 

blood mononuclear cells (PBMCs) 

[161] 

Antimicrobial 

effect 

The probiotics were internalized by phthalyl dextran 

nanoparticles (PDNs) to construct pediocin, aiming at the 

alteration of gut microbiome composition, the suppression of 

pathogenic intestinal infections, and the elevation of beneficial 

bacteria species 

[162] 
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Antimicrobial 

effect 

The higher pediocin generation following the administration 

of PIN-internalized probiotics with 0.171 polydispersity index 

(PDI) with a size of about 203 nm showed the maximum 

antimicrobial properties 

[163] 

Synbiotic 

 

Antimicrobial 

effect 

The activity of Listeria monocytogenes and Escherichia coli K99 

was inhibited by L. plantarum exposed to phthalylpullulan 

nanoparticle (PPN) due to production of antimicrobial 

peptides via intracellular stimulation 

[164] 

The photo 

protective effect 

A cream containing L. rhamnosus plus Selenium nanoparticles 

could heal the side effects induced by sunburn and showed 

sun protection factor (SPF) of 29.77 in Wistar rat model 

[165] 

Improve 

delivery system 

A new formulation of nano-emulsion containing E. faecium 

plus inulin could increase probiotic bacterial viability and 

stability 

[166] 

Improve 

tolerance of 

probiotic 

bacteria 

Beads reinforced by inulin (5% w/v) had the highest effect on 

bacterial protection against bile salts 

[167] 

Caneus et al. [168] remarked how nanomedicine, together with the known practices of 

prebiotics, probiotics, and synbiotics, represents a valuable approach in creating an optimal 

environment within the gastrointestinal tract.  

Exploring the nanonization strategies of probiotics and the utility of nanoprobiotics in the 

delivery of encapsulated bacteria is being carried out. For encapsulation of probiotic have been used 

mainly nanoparticles i.e., with of selenium and gold particles of a size in the range 10–1000 nm; 

nanolayers, consisting of at least three layers of a charged polyelectrolyte, a polymeric layer, and a 

functionalized polysaccharide or polyether; nanoemulsions consisting of a liquid phase dispersion in 

another liquid phase with droplet size less 200 nm; nanobeads (nanosized bacteria-enabled 

autonomous delivery system) and emerging product of nanofibers [169]. The best technique for 

probiotics encapsulation was mainly chosen for protecting the cells against an adverse environment 

in the gastrointestinal tract, in order to allow their release in a viable and metabolically active state in 

the intestine [170]. 

Kazmierczak et al. [171] describe an innovative engineering approach to load such nanoparticles 

onto a biological “mailman” (a novel, nontoxic, therapeutic strain of Salmonella typhimurium 

engineered to preferentially and precisely seek out, penetrate, and hinder prostate cancer cells as 

biological delivery system) that will deliver the therapeutics to a target site. Another example of 

probiotic bacteria encapsulated with nanoparticles was given by Hu et al. [172] that showed how 

coating live bacterial cells with synthetic nanoparticles represents a promising strategy to engineer 

efficient and versatile DNA vaccines. Feher et al. [173] have reported the use of nano-sized particles 

of probiotics for preventing and treating neuroinflammation. 

Probiotics are indeed receiving special interest as an alternative to the classical antibiotics to 

overcome bacterial resistance. As prebiotics enhance the activity of probiotics, Kim et al. [162] 

proposed the development of a prebiotic formulation composed of Pediococcus acidilactidi loaded in 

phthalyl dextran nanoparticles by conjugating phthalic anhydride with dextran [162]. The authors 
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evaluated the cellular effects of the produced nanomaterial and checked the antimicrobial properties 

of the probiotics. The loading of P. acidilactidi into phthalyl dextran nanoparticles was found to 

enhance the production of antimicrobial peptides by probiotics by a self-defense mechanism, with 

improved antimicrobial effect against Gram (+) and Gram (−) micro-organisms compared to the 

probiotics alone. The same authors previously reported that prebiotic phthalyl inulin nanoparticles 

could also enhance the antimicrobial activities of P. acidilactici [174]. 

Hong et al. also reported the enhanced antimicrobial activity of phthalyl pullulan nanoparticles 

treated with L. plantarum against Escherichia coli K99 and Listeria monocytogenes [164]. The 

nanoparticles were internalized into the L. plantarum by an energy-dependent and galactose 

transporter-dependent mechanism and a higher amount of plantaricin, a natural antibacterial 

peptide, was secreted from the developed nanoprobiotic than from probiotic alone.  

The use of spores from probiotics have been recently proposed as a delivery system for 

chemotherapeutic drugs. Song et al. [175] produced deoxycholic acid-modified spores to be loaded 

with doxorubicin and sorafenib as an approach for autonomous production of nanoparticles in the 

gastrointestinal tract. Such approach envisions drug protection upon oral administration to improve 

bioavailability. Besides, the release is based on the disintegrated hydrophobic protein and the 

hydrophilic deoxycholic acid with enhanced uptake by the epithelial cells via the bile acid pathway, 

increasing basolateral drug release.  

The anticancer activity of silver/Lactobacillus rhamnosus GG nanoparticles was described by Aziz 

et al. [155]. Using the MTT assay, the authors demonstrated that the viability of HT-29 cell lines has 

been significantly reduced when applying the highest tested nanoparticle concentration, leading to 

apoptosis. The method of synthesizing silver/Lactobacillus rhamnosus GG nanoparticles was also 

found to be cost-effective, offering a viable nanoprobiotic approach for biomedical applications.  

It is worth mentioning the work of Fung et al. [176] where, by investigating the agrowaste-based 

nanofibers as a probiotic encapsulant, has proposed the use of nanofibers for the nanoencapsulation 

of L. acidophilus using 8% poly(vinyl alcohol) to produce nanofibers by electrospinning technology. 

The authors suggested how thermal behavior of nanofibers suggested possible thermal protection of 

probiotics in heat-processed foods. Nagy et al. [177] by investigating the suitability of electrospinning 

for biodrugs delivery to produce vaginal drug delivery systems, concluded how nanofibers can 

provide long term stability for huge amounts of living bacteria if they are kept at (or below) 7 °C. The 

recent work of Zupancic et al. [178], who studied the incorporation of a range of safe lactic acid 

bacteria into poly(ethylene oxide)-based nanofibers, evidenced that all of the lactic acid bacteria were 

viable after incorporation into nanofibers, with 0–3 log CFU/mg loss in viability, depending on the 

species. Moreover, the authors reported that viability can be correlated with the hydrophobicity and 

to the extreme length of lactic acid bacteria, whereas a horizontal or vertical electrospinning set-up 

did not have any role. Development of nanofibers via electrospinning has a great potential and use 

in pharmaceutical and food industry for their properties i.e., sterile nature, biocompatibility, 

adhesiveness, efficiency, and as vehicle for controlled and sustained release in drug delivery [179–

182]. Electrospinning and electrospraying represent innovative technologies for the delivery of 

nutraceuticals [183]. 

An example of nanolayers coated probiotics has been given by Franz et al. [184] who developed 

layer-by-layer nano self-assembly coating of Allochromatium vinosum with different polyelectrolyte 

combinations and investigated substrate uptake in bacteria: surface charge neither affected sulfide 

uptake nor the contact formation between the cells and solid sulfur, whereas increasing layers slowed 

or inhibited the uptake of sulfide and elemental sulfur. 

The recent work of Ebrahimnejad et al. [185] described the use of chitosan for nanoencapsulation 

of L. acidophilus as probiotic bacteria, by concluding how nanoencapsulation of probiotic bacteria 

represents a promising strategy in enhancing the viability and survival of them against gastro-

intestinal environmental conditions. 

Ranjan et al. [186] reported physicochemical characterization and potential prebiotic effect of 

whey protein isolate/inulin nano complex. 
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Atia et al. [167] developed an encapsulated oral-symbiotic supplement by studying the effect of 

adding inulin in alginate beads and observed their ability to protect three probiotic strains, namely, 

P. acidilactici, L. reuteri, and L. salivarius. The antimicrobial and probiotic properties of bacterial strains 

were found not to be affected by the encapsulation. 

Krithika and Preetha [166] have developed a protein-based inulin incorporated symbiotic 

nanoemulsion for enhanced stability of probiotic; whey protein concentrate/inulin nano complex can 

be recommended as a delivery system for various probiotics in food products. 

Salmerón et al. [187] reported the development fermented beverages with synbiotic properties, 

and the incorporation of nanoparticles with unique and specific bioactivity, to improve organoleptic 

characteristics, absorption, and delivery of nutrients and bioactive compounds which has opened a 

new horizon in this segment of food created to improve human health and well-being. 

Formulation of protein-based inulin incorporated synbiotic nanoemulsion for enhanced stability 

of probiotic are currently studied extensively. 

It is worth mentioning the work of Rezaee et al. [188] that investigated the antimicrobial activity 

of Ag and TiO2 nano-particles on three species of Lactobacillus i.e., L. casei ATCC 39392, L. plantarum 

ATCC 8014, and L. fermentum ATCC 9338 in the presence and absence of raffinose, lactulose, and 

inulin, respectively. The results indicated that silver nanoparticles decreased 85%, 85%, and 71% of 

L. casei, L. plantarum, and L. fermentum, respectively, after 48 h and decreased percentages of L. casei, 

L. plantarum, and L. fermentum that were 16%, 64%, and 4% in the presence of the prebiotics. Nano 

TiO2 particles decreased 59%, 85%, and 61% of L. casei, L. plantarum, and L. fermentum, respectively, 

after 48 h, and decreased percentages of L. casei, L. plantarum, and L. fermentum which were 16%, 2%, 

and 4% in the presence of these prebiotics. 

The treatment of gastrointestinal disorders (e.g., diarrhea) using nanoprobiotics is also a 

relatively unexplored field. Khan et al. [189] aimed at quantifying the concentration of nanomaterials 

commercialized in chocolates and evaluated their effect on a commercial probiotic formulation 

(containing Bacillus coagulans, Enterococcus faecalis, and Enterococcus faecium) usually used to treat 

diarrhea in children [189]. The known probiotic activities, such as acid production, biofilm formation, 

growth, and antibiotic resistance were observed from isolated bacteria, while the isolated titanium 

oxide nanoparticles from chocolates were shown to inhibit the growth and activity of the probiotic 

formulation in a concentration range of 125–500 μg/mL in vitro [189]. The outcomes of this study 

concluded that TiO2 in chocolate discourages the survival of probiotic bacteria in the gastrointestinal 

tract.  

To trace target probiotics in situ and in real-time, Liu et al. [190] developed an in vivo probing 

strategy using persistent luminescence nanophosphors surface-modified by plasmid-like DNA as 

optical labelling and background-free fluorescence bioimaging as signal readout. The surface 

modification with DNA molecules was shown to promote the nanoparticles penetration into the 

bacteria and facilitated in vivo bioimaging. Such an approach opens new research perspectives in 

terms of food safety making use of nanotechnologies. 

3. Conclusions 

Only a few experimental studies are present in literature on nanoprebiotics and nanoprobiotics, 

while studies on this prominent issue are needed, covering effectiveness and safety aspects as it has 

been developed for pharmaceuticals. The potential of nanotechnologies in the food area is an 

emerging challenge as well as the nanonutraceuticals, which are an emerging field of study in the 

nutraceuticals area. Safety and regulatory aspects should be considered to depict the potentiality of 

nanoprobiotics and nanoprebiotics. Nanoformulation should be accompanied with regulatory 

requirements to ensure efficacy, safety, and authorization procedures. As a general guideline, the 

European Authority for Food Safety (EFSA) [191] has developed an approach for assessing the 

potential risks arising from the applications of nanoscience and nanotechnologies in the food and 

feed chain. Regarding prebiotics and probiotics, McClements and Xiao [192] developed a summary 

of the possible applications of inorganic and organic nanoparticles in foods, a description of the 

nanoparticle characteristics, and discussed the importance of the food matrix and gastrointestinal 
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tract effects on nanoparticle properties as well as potential possible toxicity mechanisms of different 

food-grade nanoparticles. The same authors concluded, however, that many of these nanoparticles 

are unlikely to have adverse-side effects on human health in line with previously reported data [193]. 

Nonetheless, in order to assess the effective use of food-grade nanoparticles, further studies are 

expected to exploit and assess safety, improved bioavailability, and efficacy.  
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