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Abstract: A two-story full-scale CLT building of 4.5 m x 9.1 m in plan, with a height of 5.04 12 

m, was tested under quasi-static monotonic and cyclic loading for platform-type construction. 13 

The main objectives were to evaluate the global response of the structure, the performance of 14 

the shear walls, the behaviour of the connectors (hold-downs and angle brackets) and the 15 

frequency response of the structure during the tests. Lateral loads were applied on the storeys 16 

inducing torsion to the building. Loading procedure, number and disposition of connectors 17 

varied between tests. However, it is important to note that, in order to avoid a possible overlap 18 

of effects, the metal connectors hold-downs and angle-brackets only have been placed in CLT 19 

shear walls in each loading direction. In terms of performance, longitudinal direction presented 20 

a stiffer behaviour when compared to the transverse, where it was possible to verify greater 21 

sliding in the longitudinal direction and global rocking in the transverse direction. The results 22 

of this experimental campaign will be used for further analytical and numerical analyses, in 23 

order to help to implement more detailed seismic analysis, namely pushover, of CLT 24 

constructions. 25 
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1. Introduction 27 

In the search for new solutions based on wood derivatives and with the goal of taking the 28 

construction of wood to another level, Cross Laminated Timber (CLT), a competitive 29 

replacement for traditional structural materials such as steel, concrete and masonry, was 30 

created. It is a multi-layered shell product designed in Switzerland, in the early 1990s. The 31 

panels are prefabricated and have many advantages for both wall and floors. Being a relatively 32 

recent material, it is completely omitted on current European regulation EC5 [1]. On the other 33 

hand, there are already CLT handbooks for the Canadian [2] and US [3] markets [4]. In the last 34 

few years, full-scale tests on CLT buildings have been used to assess the performance of these 35 

structures for seismic regions [5] with the purpose of analyzing the global behavior of the 36 

structure after the tests were performed on individual elements: slabs and, in particular, walls. 37 

Nevertheless, it is also pertinent to evaluate the response of the connections materialized by 38 

metal devices like angle brackets and hold-downs based on cyclic tests.  39 

Among the tests performed on a shaking table, it is important to point out the SOFIE project, 40 

in which a three-story building, with 7 m x 7 m in plan and 10 m of total height, including the 41 

roof, was tested with three different configurations (variation of openings). The building was 42 

subjected to a series of 26 earthquakes, including the 1995 great Hanshin-Awaji earthquake (in 43 

Kobe), at the NIED Laboratory, in Tsukuba, in July 2006. The results showed that the building 44 

resisted to 15 destructive earthquakes without any serious damage and no significant torsion 45 

was recorded [6].  46 

Another high building with seven stories was tested, in 2007, in the shaking table of the E-47 

Defense laboratory in Miki, Japan. The building with 13.5 m x 7.5 m and a total height of 23.5 48 

m, was submitted to the Hanshin-Awaji earthquake in Kobe, the Italian earthquake of Nocera 49 

Umbra and the Kashiwazaki of the Japanese west coast. The walls of the building had 142 mm 50 

on the 1st and 2nd storeys, 125 mm on the 3rd and 4th and 85 mm in the others, including the 51 
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roof. All the floors were 142 mm thick. The tests performed provided excellent results, as the 52 

building behaved very well on large-scale earthquakes, with very low structural damage. 53 

However, relatively high floor accelerations (maximum acceleration of 3.8 g) were recorded 54 

[7].  55 

Two single-stories CLT models were tested in 2006, at the Dynamic Testing Laboratory of the 56 

Institute of Earthquake Engineering and Engineering Seismology at the Ss. Cyril and 57 

Methodius University, Skopje, Macedonia, using different earthquake records with PGA (Peak 58 

ground acceleration) of 0.6 g. As expected, no major damage was documented [8].  59 

More recently, another CLT full-scale building was tested on the shaking table of the National 60 

Laboratory for Civil Engineering (LNEC), in Portugal. In the scope of the SERIES project 61 

aimed to evaluate multi-stories timber buildings, researchers from Graz University, National 62 

Laboratory of Civil Engineering (LNEC), University of Trento and University of Minho, tested 63 

a three-story CLT building with 5.17 m x 6.79 m in plan and 7.74 m of total height, including 64 

the roof (with 5.36m at the second floor). In terms of CLT components, the walls were of 100 65 

mm (3-layers) panels, the floors had 150 mm (5-layers) and the roof 99 mm (3-layers). The 66 

steel connections used were angle brackets (AE116 Simpson Strong-Tie) and hold-downs 67 

(HTT22 Simpson Strong-Tie) with the corresponding nails and screws. The building was 68 

subjected to 32 seismic tests, in which the maximum ground acceleration was 0.5 g. At the end 69 

of these tests, the building presented minor damages (located in some connections and walls) 70 

with a decrease of the fundamental frequency from 3.98 Hz to 3.75 Hz [9].  71 

Popovski and Gavric [10, 11] used a different approach, based on quasi-static tests, on a CLT 72 

building with 6.0 m x 4.8 m in plan and a height of 4.8 m. Most of the connections used were 73 

angle brackets (BMF 116x48x3x116) and hold-downs (HTT4) but their number and location 74 

varied on each test performed. The specimen was tested under monotonic and cyclic lateral 75 

loading, in five different tests. All the tests showed that the main failure mechanisms were the 76 
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nails in the brackets at the bottom of the 1st floor story, as a consequence of sliding and rocking 77 

(uplift) deformations of the walls. Before the tests, the building registered a 13.5 Hz (E-W) and 78 

11 Hz (N-S) fundamental frequency. After all the tests, the values decreased to 10.13 Hz and 79 

7.63 Hz, respectively.  80 

Two other CLT buildings were analyzed with a different application of CLT panels. In plan 81 

and height, both buildings presented 6.0 m x 4.0 m with 5.82 m of height, where the only 82 

difference was the CLT panels around the openings. While in one building the openings were 83 

cut directly on the CLT panels, in the other the openings were materialized trough segments. It 84 

is also important to note that buildings only featured hydraulic jacks on the 2nd floor. The results 85 

presented a greater stiffness for the structure without segmentation of the panels, where it was 86 

possible to see cracks at the corners of the openings. On the other hand, with segmented walls, 87 

the structure presented a high deformation caused by the rotation of each wall panel [12]. 88 

Based on these results, it is established that the resistance to lateral loads is mostly related to 89 

the behavior of the connections in the shear walls, where it showed high impact on flexibility 90 

and therefore greater stiffness, strength and ductility. Accordingly, several configurations of 91 

the panels were studied in order to evaluate the response of the panel. In the SOFIE project, 4 92 

different configurations of walls were studied under quasi-static loading, where the influence 93 

of the metal connectors (in contact with the foundation and CLT panels), openings and the 94 

vertical loads were taken into account. The results showed that connectors have a great 95 

influence on the structural response, where ductility and dissipated energy is guaranteed by the 96 

metal connectors. Regarding the failure mode, damage was mainly located on metal 97 

connectors, where the configuration with door opening showed a local failure of wood in 98 

compression [13].  99 

Another study analyzed the influence of openings studied, two different configurations: the 100 

opening of a window and door (41% of the entire panel). The results obtained showed a 101 
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significant reduction of the shear stiffness, but at the level of the load capacity, did not obtain 102 

much difference [14].  103 

Similarly, with different walls ratio, a series of 12 CLT wall configurations were tested at 104 

Forintek in Vancouver. The results showed that the CLT walls containing angle brackets and 105 

hold-downs at each end of the wall, presented an improved performance under lateral loads. 106 

On the other hand, the use of diagonal screws to connect CLT floors and CLT walls can reduce 107 

the wall ductility [15]. In this context, additional research in this field has been carried out, 108 

aiming to increase the knowledge of the real behavior of the shear walls [16-18].  109 

Finally, with focus on the seismic performance of timber structures, two state-of-the-art 110 

reviews were performed. One with the purpose of discussing displacement-based seismic 111 

design and their applications to timber buildings [19] and, on the other hand, only for CLT 112 

structures, the discussion was conducted mainly for experimental tests, numerical models, q-113 

behavior factor and seismic design [20]. Given the facts mentioned, even with the research 114 

carried out, the regulations still do not provide a reliable method of seismic design, so there is 115 

still a need for adjustments between reality and design. 116 

In this way, an experimental program based on quasi-static tests was planned at the University 117 

of Minho, Portugal, using a 2-story building, aiming the analysis of the 3-D system 118 

performance when subjected to lateral loads. The main variables for the experimental program 119 

were the analysis of lateral resistance and deformability capacity of the structure, frequency 120 

response and the performance of connectors (mainly AE116 and HTT22 from Simpson Strong-121 

tie). The building was designed to obtain a non-symmetric response, with a clear distinction 122 

between the longitudinal (stiffer) direction and the transverse one and assuming that the center 123 

of mass had to be different from the center of stiffness. However, particularly in this 124 

experimental campaign, it was assumed that the metal connectors would be placed only in the 125 

CLT shear walls in each loading direction. The simplification was carried out looking at the 126 
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numerical prediction of the experimental tests in a finite element model, aiming a 127 

representation with greater accuracy of the in-plane behavior of the metal connectors. In fact, 128 

the out-of-plane connectors have low resistance values, and therefore, can be considered as a 129 

safety factor in the seismic design. Nevertheless, it is important to note that due to the technical 130 

limitations of the hydraulic jacks, the loading and displacement were not sufficient to reach 131 

failure of the building. Apart from these, only a cyclic test was performed, where the 132 

reservation of all instrumentation and space were the main reasons. The following sections 133 

present and discuss the preparation works, the tests performed and the results obtained.  134 

2. Experimental Program 135 

2.1. Building description 136 

The building had a plan of 4.5 m x 9.1 m, with two floors, with a total height of 5.04 m. Several 137 

partition walls and openings were included (a staircase on the 1st floor and on the external 138 

walls), with the purpose of creating an asymmetric structure prone to torsion. The CLT panels, 139 

were produced by Stora Enso Wood Products Ltd. These panels were made of spruce, with an 140 

approximate density of 470 kg/m3. In terms of thickness, the CLT panels for the walls had 100 141 

mm (5-layers of 20 mm) and the floors’ CLT panels had 120 mm (3-layers with 40 mm). 142 

Several metal connectors were installed on the structure, mainly the angle bracket (AE116 - 143 

shear resistance) and the hold-down (HTT22 - uplift resistance). However, as they play an 144 

important role in final results and to avoid a possible overlapping of effects, the connectors 145 

were applied only to the shear walls where the test were performed. A panoramic image and 146 

plans of the building, with the location of the main connectors inserted in the tests are presented 147 

in Figure 1.  148 
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Figure 1. Panoramic image (a) and building plans, with location of main connectors in the 149 

tests under longitudinal (a) and transversal (b) direction. (dimensions in mm). 150 

The connections between the CLT wall panels were connected with LVL (laminated veneer 151 

lumber) spline joints, with the introduction of screws to ensure the continuity of the wall. The 152 

same connection method was used on floors. Regarding the openings in the walls, several 153 

windows and doors were included, as depicted in Figure 2. However, knowing that the 154 

openings can result in structural disorders, the percentage of openings in each façade is shown 155 

in Figure 2. 156 

 
(a) 

  

 
(b) (c) 
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(a) (b) 

  
(c) (d) 

Figure 2. Building facades (dimensions in mm): (a) façade A-A’; (b) façade C-C’; (c) façade 157 

B-B’; (d) façade D-D’; (e) spline joint. (note that the plotted percentage values concern the 158 

relative area of the openings within each façade). 159 

In terms of vertical loads, for representation of a real building, in addition to own weight, the 160 

remaining dead loads and the live-loads [21] (combinations of the seismic action of Eurocode 161 

8 [22]) were placed over the building as additional masses, by distributing drums of water over 162 

the floors. A total of 2 kN/m2 and a 1.7 kN/m2 were applied for the first and second floors, 163 

respectively.  164 

2.2. Setup and Instrumentation 165 

The test setup was based on the need to have two lateral load additions in both directions of the 166 

CLT building, one in each floor. Thus, in order to achieve accurate experimental results, the 167 
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main concerns of the test setup were: i) to have a rigid steel base to ensure an adequate fixation 168 

of the building to the reaction floor of the lab, including the fixation of the CLT panels of the 169 

first floor to the base with angle-brackets (AE116) and hold-downs (HTT22), as discussed 170 

above (see Figure 3a); ii) steel structure to place and fix two hydraulic jacks responsible for 171 

applying the lateral loads in both axes of the building (see Figure 3b); the hydraulic jacks, 172 

placed in the middle of the façades, included one hinge in each extremity, to avoid other 173 

deformations and stresses (see Figure 3c); iii) steel plate to ensure that the load applied by the 174 

hydraulic jacks on the CLT floors is distributed (see Figure 3d).  175 

 176 

Figure 3. Setup used in the tests: (a) Steel base structure; (b) Steel structure to fix the 177 

hydraulic jacks and (c) respective hinges; (d) Steel plate placed on the floors. 178 

The instrumentation system included 12 accelerometers, 4 on each level, in order to determine 179 

the natural frequencies of the CLT building. On the ground floor, the accelerometers were 180 

placed in each corner of the building, while, on the 1st and 2nd  floor they were located only in 181 

two corners, at the intersection of facades A-A’ and D-D’ (see Figure 2) and at the intersection 182 

of facades B-B’ and C-C’ (see Figure 2). This information was crucial to analyze the behavior 183 

of the structure and to recognize if the damage in the building was induced by the tests 184 

performed. For the measurement of the displacement during each test, 24 LVDTs (Linear 185 

Variable Differential Transformer) were placed in demarcated positions, ensuring that not only 186 
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the global deformation of the building, in each direction, was measured but also that the in-187 

plane deformation, rotation of the floors, uplift of the walls panels and sliding were accurately 188 

registered. Figure 4 shows the location of: LVDTs; hydraulic jacks; and accelerometers, 189 

applied at different levels of the building. 190 

 
(a) (b) 

 
Figure 4. Instrumentation used in the tests under longitudinal (a) and transverse (b) direction. 191 

2.3. Frequencies estimation and definition of connectors 192 

Connections play an important role in the performance of CLT buildings and this case is no 193 

exception. The connections between the different CLT panels are crucial to ensure an adequate 194 

overall behavior of the system, keeping the different structural elements connected, while the 195 

local behavior of joints is fundamental to assure the deformability, ductility, and energy 196 
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dissipation capacities needed. The connections used represented the common techniques used 197 

in practice, based on the use of angle brackets as shear connectors, hold-downs taking the uplift 198 

forces (tension) and adding screws to increase the stiffness of the connections. The metal 199 

connectors used, angle brackets and hold-downs, were supplied by Simpson Strong-tie, while 200 

the screws were from Rothoblaas (see Figure 5). To ensure a perfect distribution of the forces 201 

introduced by the hydraulic jacks at the floors level, steel plates, screwed to the CLT panels, 202 

were placed in both floors. Table 1 and Table 2 summarizes the different types of connections 203 

used and their locations. 204 

 
HTT22 AE116  NP20/120/240 M12 & M16 CNA4.0×60 

 
HBS6.0×80 & HBS6.0×100 VGZ9.0×240 

 
EVO8.0×60 HBS8.0×220 

Figure 5. Connectors used in the CLT building. 205 

Table 1. Main connectors used in the CLT building. 206 

Location Type Reference Description 

Ground floor 

[CLT-to-Steel] 

Angle bracket AE116 
14 × CNA4.0×60 (A) 

2 × M12 (B) 

Hold-down HTT22 
14 × CNA4.0×60 (A) 

1 × M16 (B) 

1st floor 

[CLT-to-CLT] 

Angle bracket AE116 
14 × CNA4.0×60 (A) 

7 × CNA4.0×60 (B) 

Hold-down HTT22 
14 × CNA4.0×60 (A) 

1 × M16 (B) 

Perforated 

plate 
NP20/120/240 14 × CNA4.0×60 (staircase) 
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M12 - Threaded road ∅12 (8.8 Grade); M16 - Threaded road ∅16 (8.8 Grade) 

 207 

Table 2. General fasteners used in the CLT building. 208 

Quantity Location 

EVO8.0×60 + M12 Steel plate-floors 

2 × (HBS6.0×80) spaced to 150 mm  Wall-to-wall (spline joints) 

2 × (HBS6.0×100) spaced to 150 mm Floor-to-floor (spline joints) 

HBS8.0×220 spaced to 150 mm Wall-to-wall 

VGZ9.0×240 spaced to 150 mm Floor-to-wall  

M12 - Threaded road ∅12 (8.8 Grade) 

In the definition and design of the AE116 shear connections used in the CLT building, the 209 

methodology proposed by Eurocode 8 [22] was adopted. In this method, the horizontal forces 210 

are determined from the total mass of the building and the spectral acceleration of the building 211 

for the respective period. Horizontal forces were applied independently in longitudinal and 212 

transverse directions, where two separate analyses were carried out with the same seismic 213 

demand. The total mass of the building admitted was 27 tons and, as the EC8 does not provide 214 

a simplified method to define the period for CLT structures, the Rayleigh method was applied 215 

with help of a finite element software RFEM [23] to the quantification of relative stiffness. 216 

Periods of 0.277 seconds (frequency of 3.60 Hz) and 0.385 seconds (frequency of 2.60 Hz) 217 

were obtained, for the longitudinal and transverse direction, respectively. In terms of seismic 218 

demand, the response spectrum was defined by NTC 2008 [24]. The location defined was the 219 

south of Italy (Calabria), with the goal of obtaining a spectrum with high seismic action. 220 

Regarding the behavior factor used, a value of 2 (ductility class medium) was assumed, 221 

according to working documents aimed to prepare a new version of Eurocode 8, chapter 8 [25, 222 

26]. Under these circumstances, a peak ground acceleration of 0.42 g was found. Thus, as both 223 

periods were in the area of constant spectral acceleration (horizontal behavior), the seismic 224 

base shear force used for the design was 138 kN. On the other hand, the connectors HTT22, 225 

were the main responsible for the uplift resistance. In order to improve the performance under 226 



13 

lateral loads [15], connectors HTT22 were introduced near all openings and at all corners of 227 

the shear walls (see Figure 1b and Figure 1c).  228 

2.4. Monotonic Tests 229 

The quasi-static monotonic tests carried out consisted on the application of a displacement 230 

under a constant rate, on each floor, respecting the ISO/FDIS 21581:2010 [27]. Two hydraulic 231 

jacks were used, one in each floor, to apply the displacements under a constant rate of 232 

0.08 mm/s and 0.04 mm/s on the second and first floor, respectively. Due to technical 233 

limitations, namely the load capacity of the hydraulic jack installed on the second floor, the 234 

criterion adopted to stop the tests was a load value of 300 kN in that hydraulic jack. Two tests 235 

were performed: one for each direction, longitudinal and transverse. 236 

2.5. Cyclic Test 237 

The cyclic test, was also based on the loading procedure standardized by ISO/FDIS 21581:2010 238 

[27], where the analysis was only in the transverse direction. Therefore, contrary to what 239 

happened with the monotonic tests, the loading procedure was, here, performed by force 240 

control, in which 0.90kN/s was admitted on the 1st floor and 1.80kN/s on the 2nd floor. 241 

Consequently, on the cyclic test, when the need for greater displacement of the hydraulic jacks 242 

occurred, the limitation was given by the maximum displacement of the 1st hydraulic floor of 243 

100mm (50mm positive and 50mm negative). Concerning the values to be reached for each 244 

step, this was achieved based on the ultimate displacement (lu). Due to the lack of definition 245 

of this value, a final displacement equal to the total height of the building divided by fifteen 246 

(H/15), according to the standard, was admitted. Since this factor is quite conservative, the 247 

number of cycles of the fourth and fifth steps of the loading procedure was changed to three 248 

(see Figure 6). In relation to the inserted connections, they were equal to the ones in the 249 
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monotonic test in the transverse direction, although all connections AE116 and HTT22 used 250 

were removed and new ones were introduced. 251 

 252 

Figure 6. Loading procedure defined by ISO/FDIS 21581:2010 for cyclic tests [27]. 253 

3. Results and discussion 254 

The main results obtained in the experimental program are described and discussed. Two 255 

experiments have been performed under monotonic loading and one with cyclic loading, and 256 

the results were separated in three groups: load-deformation response, dynamic analysis and 257 

damages observed. 258 

3.1 Load-deformation response 259 

Table 3 and Figure 7 show the deformability of the building at different levels, concerning the 260 

results of the measurement of displacement (LVDTs) for the center of the facades A-A’ and C-261 

C’ (location of the hydraulic jacks) and the farthest point in relation to the hydraulic jacks, 262 

region where greater displacements were obtained (intersection of facade B-B' and D-D'). It is 263 

important to note that the monotonic tests were stopped when the criterion of the limitation for 264 

the load applied by the hydraulic jack of the second floor (300 kN) was reached. Contrarily to 265 

the monotonic tests, for the cyclic test, due to the greater need of displacement, the hydraulic 266 

jacks of the first floor determined the stopping criterion, only having 100 mm of maximum 267 

displacement (50 mm for each direction). However, due to loss of displacements in the 268 

introduced hinges, the maximum displacement reached in the 1st floor was 30 mm. 269 
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Table 3. Lateral deflection (mm) measured during the tests performed 270 

Test 
Monotonic 

Longitudinal  

Monotonic 

Transverse  

Cyclic 

Transverse 

Location Hydraulic jacks 

1st story 

Sliding 8.0 (0.32% h) 14.1 (0.56% h) 7.4 (0.30% h) 

In-plan 

deformation 
34.5 (1.37% h) 47.4 (1.88% h) 30.0 (1.19% h) 

Rocking 7.9 (0.31% h) 16.6 (0.66% h) 15.9 (0.63% h) 

2nd story  Sliding 0.9 (0.03% h) 2.2 (0.09% h) 2.9 (0.12% h) 

 
In-plan 

deformation 
45.9 (1.82% h) 74.3 (2.95% h) 52.4 (2.08% h) 

 Rocking 1.6 (0.06% h) 2.7 (0.11% h) 2.3 (0.09% h) 

Location intersection of facades B-B 'and D-D' 

1st story 

Sliding 30.4 (1.21% h) 16.5 (0.66% h) 12.7 (0.50% h) 

In-plan 

deformation 
34.5 (1.37% h) 57.4 (2.28% h) 37.3 (1.48% h) 

2nd story  

Sliding 5.1 (0.20% h) 6.4 (0.25% h) 5.5 (0.22% h) 

In-plan 

deformation 
46.6 (1.85% h) 84.4 (3.35% h) 57.8 (2.29% h) 

h – Story height 

 
(a) 

  
(b) (c) 
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Figure 7. Lateral deformability of the building at different levels: (a) Monotonic test under 271 

longitudinal direction; (b) Monotonic test under transverse direction; (c) Cyclic test under 272 

transverse direction. 273 

By analyzing Table 3 and Figure 7, transverse direction generally obtained greater sliding, 274 

rocking and in-plane wall deformation. It is important to note that, for the, stiffer, longitudinal 275 

direction, it presented greater slip of the base. On the other hand, the smaller values of 276 

displacement in cyclic test when compared to the monotonic test in the same direction, resulted 277 

from the lower load reached during the test. In these circumstances, it is possible to conclude 278 

that the longitudinal direction obtained a greater sliding behavior, and with this, more friction 279 

between the panels and the steel base was verified. In relation to transverse direction, as a 280 

consequence of a less in-plane stiffness, the global rotation was more evident. To better 281 

understand the behavior of the building (and as happened in the tests performed by Popovski 282 

[10]) it is important to point out the sliding occurred at the ground floor and 1st floor. This slip 283 

results from the stiffness differences between the steel base and the 1st floor walls. Although 284 

on a smaller scale, it also happens between the 1st and 2nd floor walls.  On the other hand, the 285 

in-plane deformation, where it represents most of lateral deformation, occurred due to the shear 286 

and flexural deformation and to the global rocking of the CLT panels. Consequently, 287 

overlapping force-displacement graphs (see Figure 8) of the tests performed, the standard 288 

ASTM-E2126:2012 [28] has been applied to quantify the parameters of elastic shear stiffness 289 

(Ke), yield load (Pyield) and yield displacement (Δyield), as can be seen in the Table 4. However, 290 

in the cyclic test, for the application of the standard, the positive envelope curve has been used, 291 

as can be seen in the Figure 8. The load values reached in each hydraulic jack are also listed.  292 

In addition, the results of the comparison between the monotonic and cyclic test in transverse 293 

direction were added in Table 4 for the same load magnitude.  294 
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 295 

Figure 8. Force-displacement on top of the CLT building registered during the tests. 296 

Table 4. Mechanical parameters with application of the ASTM-E2126:2012. 297 

Tests 
Force (kN) 

1st story/2nd story 

Ppeak 

(kN) 

Δpeak 

(mm) 

Pyield 

(kN) 

Δyield 

(mm) 

Ke 

(N/mm) 

Monotonic Longitudinal 228.4/300.0 528.4 45.9 408.8 5.6 63241 

Monotonic Transverse 147.7/300.0 447.7 74.3 347.5 19.2 14911 

Monotonic Transverse(a) 142.2/266.8 409.0 60.1 328.3 21.4 15312 

Cyclic Transverse 136.3/272.7 409.0 52.3 328.8 29.1 9910 

Ppeak - Maximum load; Δpeak - Maximum displacement; Δyield - Yield displacement; Pyield 

- Yield load; Ke - Elastic shear stiffness; (a) Load magnitude of the cyclic test. 

By looking at Figure 8 and Table 4, one can demonstrate that the CLT building is stiffer in the 298 

longitudinal direction when compared to the transverse direction, with a significant increase of 299 

the load capacity of the structure in that direction. On the other hand, when analyzing the tests 300 

in the transversal direction, the cyclic test presents lower values of resistance. Regarding the 301 

comparison between the monotonic and cyclic test in the transverse direction with same load 302 

magnitude, the results demonstrates the decrease of the resistance of the cyclic test. This 303 

decrease can be considered normal given that the cyclic test is more aggressive to the structure, 304 

in which there occurred a decrease in maximum displacement (around 13%), yielding 305 

displacement (around 36%) and elastic shear stiffness (around 35%). However, it is important 306 

to note that the value of yielding load is close. 307 
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3.2 Dynamic analysis  308 

In relation to the results of the dynamic identification, Table 5 shows the natural frequencies 309 

for the cases with and without additional masses and before and after each test performed. 310 

Table 5. Natural frequencies obtained during the tests. 311 

Test 

Natural frequency (Hz) 

Transverse direction (mode 1) Longitudinal direction (mode 2) 

before after Δ (%) before after Δ (%) 

Identification* 8.2 5.0 38.6% 19.2 12.5 34.9% 

Mono. Longitudinal 5.0 4.9 2.4% 12.5 11.0 12.2% 

Mono. Transverse 6.0 4.9 18.5% 6.4 5.8 9.8% 

Cyclic Transverse 5.6 4.6 18.1% 5.8 4.9 15.8% 

*before and after the introduction of additional masses  

Analyzing the values presented in Table 5, for the direction in which the tests were performed, 312 

the transverse tests obtained greater damage (reduction of 18.5% and 18.1%) when compared 313 

to longitudinal test (reduction of 12.2%). In relation to the additional masses inserted in the 314 

building, the natural frequency decreased on 38.6% and 34.9% for the transverse and 315 

longitudinal direction, respectively. 316 

3.3 Damages observed 317 

The damages observed during the tests were very similar for all the tests performed, where the 318 

difference was given by the level of damage imposed on the building. In this way, and as 319 

expected, the damages observed during the test in the transverse direction, were more severe, 320 

due to the fact that this loading direction is the one with less stiffness. On the other hand, with 321 

the longitudinal direction being the stiffest, practically insignificant damages were found 322 

between the walls of the 2nd floor and the 1st floor. In this context, as the building suffered 323 

global rotation, the first visible damages concentrated at the base, where the hydraulic jacks 324 

were located (see Figure 9). 325 
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(a) (b) 

Figure 9. Rocking of the building on longitudinal (a) and transverse (b) monotonic tests. 326 

In terms of in-plane walls deformation, as non-metal connectors (angle-brackets and hold-327 

downs) were placed just in relation to the load application, the building suffered a significant 328 

lateral translation in internal walls (see Figure 10).  329 

 
(a) (b) 

Figure 10. Translation of the internal walls on (a) longitudinal and (b) transverse tests. 330 

The highest damage observed was located in the metal connectors. For the most part, the 331 

connectors have been damaged as a consequence of sliding and rotation (see Figure 11a) and 332 

uplift (see Figure 11b and Figure 11c). Moreover, in some cases, AE116 connectors underwent 333 

a small uplift, in which the screws that connect the steel structure of the base were virtually 334 

undamaged. On the other hand, because the center of the mass is different from the center of 335 

stiffness, the hold-downs presented out-of-plane rotation (see Figure 11d). In addition, through 336 

the monotonic tests, it was possible to observe damage (plasticization) of the metal connectors 337 



20 

on the ground floor. However, the same behavior did not happen on the connectors of the 1st 338 

floor due to the limitation of the hydraulic jack of the 2nd floor. 339 

 
(a) (b) 

 
(c) (d) 

Figure 11. Damages of the metal connectors: sliding and rotation (a), uplift (b and c) and out-340 

of-plane rotation (d). 341 

In the case of damages between floors, in transverse direction, the uplift (see Figure 12a) and 342 

sliding (see Figure 12b) of the CLT panels of the second floor, in relation to the ones on the 343 

first floor, were visible on angle-bracket connectors.  344 

 
(a) (b) 
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Figure 12. Sliding (a) and uplift (b) of nails in the connectors AE116. 345 

Finally, as a consequence of a less in-plane stiffness of the transverse direction, in the 346 

monotonic test, the lintels over the openings on the ground floor wall in the façade B-B’ (see 347 

Figure 13) cracked by tension perpendicular to the grain.  348 

 
(a) (b) (c) 

Figure 13. Cracks on top left corner of the openings 1500x2000 (a and b) and 900x2000 

(c) on the ground floor wall in the facade B-B' during the monotonic transverse test 

4. Conclusions 349 

A non-symmetric 2-storey full-scale structure with large openings was tested for platform-type 350 

buildings. The performance, at global and local levels, in each loading direction, was analyzed. 351 

In the longitudinal direction, since the structure is stiffer, no significant damage was registered. 352 

This can be explained by the technical limitation of the hydraulic jack used in the second floor. 353 

In the first monotonic test, under a lateral load in the longitudinal direction of the building, the 354 

damage observed was concentrated in the metal connectors (angle-brackets and hold-downs), 355 

with signs of sliding, rotation and uplift on the ground floor. In the transverse direction, with 356 

short shear walls, more damages were observed. The rotation of the overall structure was 357 

visible and the lintels over the larger openings cracked by tension perpendicular to the grain. 358 

Finally, yet significantly, in the cyclic test in the transverse direction, the damages were very 359 

similar to the monotonic test in the same direction, but in the former, more severe damages 360 



22 

were observed in the angle brackets on the first floor. The fundamental frequencies of the CLT 361 

building were measured through dynamic identification. Measurements were done, with and 362 

without additional masses, before any load tests, and always before and after each test, 363 

monotonic and cyclic, performed. However, although the building's load capacity was not 364 

reached in the tests performed, it was possible to verify accumulated damage to the building. 365 

Under those circumstances, the prediction will be essential in the implementation of the 366 

pushover method in CLT structures, where the goal is related to the application of the N2 367 

method to several study cases. 368 
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