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Nearly twenty years ago, the ‘polymer-based magnetoelectrics’ concept changed thinking 

in multiferroic magnetoelectric materials research, resulting in a generation of new high-

performance materials and an increased focus on controlling structure, flexibility and 

electric output, as well as implementation into proof of concept applications. 

 

"To be, or not to be" is the opening phrase of a soliloquy speech by Prince Hamlet in the so-

called "nunnery scene" of William Shakespeare's world famous play Hamlet. Act III, Scene I. 

There are many "interpretations" of such speech, nevertheless the most accepted ones are 

related to viable solutions to some problems, our attitude towards a fracturing event, if we 

should risk or remain passive and if the reward deserves the sacrifices. Hamlet was considering 

the difficulties and pondering a state of being versus a state of not being – being alive and being 

dead. The play was written in 1599-1601, at the same time that William Gilbert suggested that 

magnetism was “the soul of the Earth” (1600) and long before Gowen Knight produced the 

first artificial magnets for scientific research and navigation (1740); Hans Christian Oersted 

proved experimentally the physical relationship between electricity and magnetism (1820); the 

enunciation of the possibility of magnetoelectric (ME) effect on moving crystals by Pierre 

Curie (1894);  the report of ME  in composites of piezoelectric and piezomagnetic phases 

(1994);  the renaissance of magnetoelectric effect (2005) and the publication of  the first book 

on polymer-based ME materials (PBMM) (2017), summarizing the main achievements in the 
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field. PBMM have already demonstrated strong potential for implementation into device 

applications, nevertheless it is still desirable materials to show higher performance, simpler 

processability and reliability.  

Some years ago PBMM emerged as a solution to solve the main problems associated to single-

phase multiferroics (low ME response at low temperatures) and ceramic-based (fragility, high 

dielectric losses and complicated processing procedures) ME materials1-3. Rapidly, they 

showed potential applicability in areas such as sensors, actuators, biomedicine and tissue 

engineering, energy harvesting (EH), antennas and memories2,4.   

Figure 1a shows that the first device applications to attract the interest of scientific community 

was area of sensors. This fact can explain the high number of papers published (1246) in less 

than 10 years in this specific area.  

  

Figure 1 | a, Number of publications (SCOPUS database) related with applications of 

polymer-based ME materials and the year in which the application has become a hot topic 

(paper with more than 100 citations).  The inset shows the difference between the total 

number of papers published on polymer-based ME materials and ceramic-based ME 

materials. b,  ME coefficient (α) reported for each device application and corresponding 

figure of merit (FOM) compared with the “technological competitor”, a device for the same 

application based on a different technology.  

 

In an intermediate place appear the activity of ME actuators (817 publications), exploring the 

wireless control of the electrical and/or mechanical response of a mechanism or system.  With 

less than 400 publications each, appear the contributions in the areas of memories, energy 
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harvesters, antennas and the most recent applications related to biomedicine and tissue 

engineering. 

Contrary to what it could be expected, the highest ME response reported in the literature for a 

PBMM device was not for energy harvesting (146 Vcm-1Oe-1) but for magnetic sensing 

(1kVcm-1Oe-1). Polymer-based ME materials developed for data memories exhibit an 

intermediate ME coupling, while antennas show the lowest ME response (50mV.cm-1Oe-1).  

Particularly interesting is the analysis of the figures of merit of the different polymer-based ME 

devices, when compared to a competitive technology well-stablished in the market. Thus, PBM 

magnetic field sensors exhibit a 15 kV.T-1 sensitivity (0.005 kV.T-1 for Hall sensors)5, PBM 

harvesters reveal a power output of 3.3 mW.Oe-1.cm-3 (3 mW.Oe-1.cm-3 for helical core 

magnetic harvester )6,7, PBM show 4 memory states (2 on traditional magnetic recording 

devices)8  and the relative permittivity is 13 in PBM antennas ( 2.2-15 for wide bandwidth 

antennas)9. Of course, other technologies could have been indicated for each application, the 

relevant presented ones indicating nevertheless the suitability of the state of the art of polymer-

based ME materials response, for a wide range of applications. All these interesting indicators 

show that the Achilles' heel regarding the implementation of PBMM in device applications is 

no longer related to the ME output of the polymer-based material. Thus, the main issues that 

should be addressed in order to “bridge the gap” to actual applications are related to 

processability, device integration and reliability10. In the case of sensing, the reduction of 

equivalent magnetic noise remains a problem that should be addressed11 while in the case of 

PBM memories and with the continuing demand for ultra-high-density data storage 

applications, it is becoming increasingly important to scale down the dimension of multiferroic 

structures to nanoscale arrays such as nanodot arrays12,13, the nanostructuring of both polymer 

and magnetic phases will play a key role in this challenge.  PBM memories can also provide 

new variables for computing, interconnects and memory, relying on intrinsic parameters such 

as magnetization, strain and polarization, revealing collective switching, non-volatility and 

strong thresholding behaviour. This concept of collective switching has been recently reported 

on14 and should be extended to PBMM witch a magnetic/multiferroic (MF) state by allowing 

a successful switching on a volume of 1,000 nm3 with a stability of 100 kBT.  
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Figure 2 | Definition of a collective switch. a, Collective state switch for using the 

materials’ order parameter. The two states are given by values of ± Θ. b, Interconnect 

providing an input to and output when the switch carries a signal ± η. The state of the device 

is detected and transduced to the output ± ηout = R(± Θ). c, Example of a collective switch, 

a magnetoelectric spin–orbit logic device where the order parameters are 

ferroelectric/antiferromagnetic (FE/ AFM) of the magnetoelectric (ME), and the read-out is 

via spin–charge conversion. d, Potential order parameters, carriers and control variables are 

shown. The figure of merit λ = Esw/Δ E(Θ) allows identification of potential for an efficient 

logic device/switch. STT, spin-transfer torque. 

 

 

With respect to energy harvesting it is important to decrease the impedance, increase the current 

and enhance magnet and coil qualities15.  This is the only application in which the optimization 

of the ME response can still be essential for its successful implementation, once it is directly 

related with its efficiency. PBMM for antenna device applications need further and deeper 

studies that report their radiation pattern, power density, directivity, efficiency, gain and 

impedance, as has already reported for ceramic-based ME materials16. This is, in fact, one of 

the application with larger growth possibilities in the next years due to the high demand from 

end-use industries, attributed to the use of antennas for satellite communication, Wi-Fi routers 

and radar communications17,18. 

Mechanisms driving multiferroicity are far from being fully explored. Namely, there can be 

many ways to obtain a magnetic order to control a non-stabilized ferroelectric state. Some of 

them may lead to inherently improved ordering temperatures and polarization compared with 

those of the current spin-driven ferroelectrics10. Nevertheless, a PBMM device in which the 
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magnetization is controlled by an applied electric field, if possible at low voltages, close to 

room temperature and with ultrafast switching, remains unreported10. 

The time of simple material combination, marginal increase of the ME response, and 

conventional lab approaches heads towards the end. The challenges to be tackle are at the level 

of control electronics, integration into devices, miniaturization to the nanoscale level, 

multifunctional approaches and device’s FOM (better performance, new functionalities, 

cheaper materials).  

It is also time to solve the two main problems in this interesting research field: i) to improve 

integration for the in the need of using two magnetic fields (one AC and one DC) to obtain the 

ME response and; ii) to obtain higher ME response on PBM nanocomposites (in the same order 

of laminates). The first one can be solved with the incorporation of permanent magnets (DC 

field) or miniaturized AC coils in the ME device, thus making the device work in more realistic 

conditions. The second one requires a more disruptive approach such as the use of new 

phenomena to induce the ME coupling. The use of magnetic-ionic materials seems a good 

approach that has not yet been sufficiently explored. In this methodology the relation between 

the magnetic and the electric order would not be mediated by the stress but by the movement 

of ions within the ferroelectric polymer. 

When the device performances of PBMM materials would be reported in detail, manufacturing 

processes and device integration will remain the final step to commercial applications. Being 

polymer based materials, printing technologies may be used in PBMM to promote reduced cost 

of assembly, easy integration into devices and the possibility to obtain multifunctional 

materials over flexible and large areas19.  The lead-free PBMM approach will allow the 

fabrication of products that are ecofriendly and safe20,21. 

  

a) b) 
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Figure 3 | PBMM to be or not to be. a, Potential applications of PBMM. b, Schematic  

representation of the main challenges of PBMM materials. 

 

Another key issue lies in in the diversification of the materials used in ME composites. 90% of 

the works are related to polyvinylidene fluoride (PVDF) and its copolymers1,22. Polymers such 

as aromatic polyimides23, cellulose21 and poly(lactic acid) (PLLA)24  can open new application 

possibilities, namely on high-temperature, biocompatible and biodegradable devices, 

respectively.    

Finally, and although there is still room for more fundamental research, the progress in PBMM  

can open other variety of applications (Figure 3a) such as low-voltage radio frequency MEMS 

switches and resonators, film-type speakers, flexible displays, soft haptic devices, actuators for 

millimeter-scale robotics, droplet ejectors and medical imaging transducers20. In particular, 

novel aspects of electric field control of magnetic domain switching are highly appealing. 

However, there are still some further studies needed to achieve breakthroughs and to push this 

area to real applications12,25. Other innovative approaches still need to be optimized such as 

wearable PBMM, neuro PBMM nanotransducers and energy harvesters for wireless sensors 

and structural health monitoring. 

To be or not to be is no longer an existential question in this area, it represents a bifurcation in 

today's research in this field. The traditional and conservative way which will lead to expected 

results and consequent stagnation, and another more challenging route which will certainly 

lead to a deeper understanding of the ME coupling in polymer based materials and to the 

successful implementation of PBMM on nowadays and future applications (Figure 3b). 

William Shakespeare, also in Hamlet (Act 2, Scene 2), wrote “that there is nothing either good 

or bad, but thinking makes it so” so … let´s think and act in a right way to make polymer-

based ME materials a key enabling technology. 

References 
 

 (1) Martins, P.; Lanceros-Mendez, S. In Magnetoelectric Polymer-Based Composites; 
Wiley-VCH Verlag GmbH & Co. KGaA: 2017, p 255. 
 (2) Martins, P.; Lanceros-Méndez, S. Advanced Functional Materials 2013, 23, 3371. 
 (3) Zhao, W.; Liu, Z.; Wei, P.; Zhang, Q.; Zhu, W.; Su, X.; Tang, X.; Yang, J.; Liu, Y.; Shi, J.; 
Chao, Y.; Lin, S.; Pei, Y. Nature Nanotechnology 2017, 12, 55. 
 (4) Kosub, T.; Kopte, M.; Hühne, R.; Appel, P.; Shields, B.; Maletinsky, P.; Hübner, R.; 
Liedke, M. O.; Fassbender, J.; Schmidt, O. G.; Makarov, D. Nature Communications 2017, 8. 
 (5) Reis, S.; Castro, N.; Silva, M. P.; Correia, V.; Rocha, J. G.; Martins, P.; Lanceros-Mendez, 
S. IEEE Transactions on Industrial Electronics 2017, 64, 4828. 



7 
 

 (6) Lasheras, A.; Gutiérrez, J.; Reis, S.; Sousa, D.; Silva, M.; Martins, P.; Lanceros-Mendez, 
S.; Barandiarán, J. M.; Shishkin, D. A.; Potapov, A. P. Smart Materials and Structures 2015, 24. 
 (7) Yuan, S.; Huang, Y.; Zhou, J.; Xu, Q.; Song, C.; Yuan, G. IEEE Transactions on Power 
Electronics 2017, 32, 5365. 
 (8) Lu, P.; Shang, D.; Shen, J.; Chai, Y.; Yang, C.; Zhai, K.; Cong, J.; Shen, S.; Sun, Y. Applied 
Physics Letters 2016, 109. 
 (9) Raj, P. M.; Sharma, H.; Reddy, G. P.; Altunyurt, N.; Swaminathan, M.; Tummala, R.; 
Nair, V. Journal of Electronic Materials 2014, 43, 1097. 
 (10) Fiebig, M.; Lottermoser, T.; Meier, D.; Trassin, M. Nature Reviews Materials 2016, 1. 
 (11) Wang, Y.; Li, J.; Viehland, D. Materials Today 2014, 17, 269. 
 (12) Chen, D.; Gao, X.; Liu, J. M. MRS Communications 2016, 6, 330. 
 (13) Tokura, Y.; Kawasaki, M.; Nagaosa, N. Nature Physics 2017, 13, 1056. 
 (14) Manipatruni, S.; Nikonov, D. E.; Young, I. A. Nature Physics 2018, 14, 338. 
 (15) Narita, F.; Fox, M. Advanced Engineering Materials 2017. 
 (16) Nan, T.; Lin, H.; Gao, Y.; Matyushov, A.; Yu, G.; Chen, H.; Sun, N.; Wei, S.; Wang, Z.; Li, 
M.; Wang, X.; Belkessam, A.; Guo, R.; Chen, B.; Zhou, J.; Qian, Z.; Hui, Y.; Rinaldi, M.; McConney, M. E.; 
Howe, B. M.; Hu, Z.; Jones, J. G.; Brown, G. J.; Sun, N. X. Nature Communications 2017, 8. 
 (17) market, M. a. Metamaterial Market by Material Type (Electromagnetic, Terahertz, 
Photonic, Tunable, and FSS ), Application (Communication Antenna, Windscreen, Solar Panel, Sensing, 
Display, and Medical Imaging),, 2017. 
 (18) Research, M. I. M. Global Antenna Market - Segmented by Type, End-user Industry, 
Application, and Region - Growth, Trends and Forecast (2018 - 2023), 2018. 
 (19) Oliveira, J.; Correia, V.; Castro, H.; Martins, P.; Lanceros-Mendez, S. Additive 
Manufacturing 2018, 21, 269. 
 (20) Khan, A.; Abas, Z.; Soo Kim, H.; Oh, I. K. Smart Materials and Structures 2016, 25. 
 (21) Zong, Y.; Zheng, T.; Martins, P.; Lanceros-Mendez, S.; Yue, Z.; Higgins, M. J. Nature 
Communications 2017, 8. 
 (22) Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. Progress in Polymer Science 2014, 39, 
683. 
 (23) Maceiras, A.; Martins, P.; Gonc¸alves, R.; Botelho, G.; Venkata Ramana, E.; 
Mendiratta, S. K.; San Sebastián, M.; Vilas, J. L.; Lanceros-Mendez, S.; León, L. M. European Polymer 
Journal 2015, 64, 224. 
 (24) Barbosa, J.; Correia, D. M.; Gonçalves, R.; Ribeiro, C.; Botelho, G.; Martins, P.; 
Lanceros-Mendez, S. Advanced Healthcare Materials 2016, 5, 3027. 
 (25) Carvell, J.; Cheng, R.; Dowben, P. A.; Yang, Q. Applied Physics Letters 2013, 103. 

 

 

 

 

ACKNOWLEDGMENTS 

The authors thank the FCT - Fundação para a Ciência e Tecnologia - for financial support under 

framework of the Strategic Funding UID/FIS/04650/2013 and project PTDC/EEI-

SII/5582/2014. Funds provided by FCT in the framework of EuroNanoMed 2016 call, Project 

LungChek ENMed/0049/2016 are also gratefully acknowledged as well as the FCT grant 



8 
 

SFRH/BPD/96227/2013 (PM).  The authors also acknowledge funding by the Spanish Ministry 

of Economy and Competitiveness (MINECO) through the project MAT2016-76039-C4-3-R 

(AEI/FEDER, UE) and from the Basque Government Industry Department under the 

ELKARTEK and HAZITEK program. 

 

 


