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Abstract 31 

The accuracy of forecasting models for the prediction of an infrastructure’s 32 

deterioration process plays a significant role in the estimation of optimal 33 

maintenance, rehabilitation, and replacement strategies. Numerous approaches 34 

have been developed to overcome the limitations of existing forecasting models. 35 

In this paper, a direct comparison is made between different models using the 36 

same input data to derive conclusions of their distinct performance. The models 37 

selected for the comparison were Markov, Semi Markov and Hidden Markov 38 

models together with Artificial Neural Networks (ANN), which have been 39 

reported in literature as reliable deterioration prediction models. A quality of fit 40 

was performed to measure how well the observed data corresponded to the 41 

predicted values, and therefore objectively compare the performance of each 42 

model. The results demonstrated that the most accurate prediction was 43 

accomplished by the ANN model. Nevertheless, all models presented differences 44 

with respect to typical values of concrete decks life expectancy, which is 45 

attributed to the inherent difficulties of the database. Additionally, the problem of 46 

the visual inspection subjectivity was also regarded as one of the potential causes 47 

for the found deviations. Therefore, this article also discusses the shortcomings of 48 

current condition assessment practices and encourages future Bridge Management 49 

Systems to replace the classical methods by more sophisticated and objective 50 

tools.  51 

1. Introduction 52 

Bridge owners encounter great challenges to efficiently allocate funds to preserve 53 

and maintain their aging bridges. The ultimate goal of asset management 54 

programs consists on defining strategic and systematic processes to identify the 55 

sequence of maintenance, preservation, repair, rehabilitation and replacement 56 

actions/interventions to ensure the safety, serviceability, and functionality of 57 



bridges within available budgets over their service life [1]. Many Bridge 58 

Management Systems (BMS) have been developed in the last decades. Typically, 59 

the architecture of a BMS consists of a database and modules dealing with 60 

condition and structural assessment, deterioration prediction, lifecycle cost, and 61 

maintenance optimization [2]. Even though all modules are equally important, a 62 

reliable bridge condition assessment is needed as input for the deterioration 63 

prediction modules, which accuracy is a key element for the subsequent 64 

maintenance optimization strategies.  65 

Different condition assessment tools have been developed over the years such as 66 

visual surveys, probing, non-destructive techniques (NDT) and structural health 67 

monitoring (SHM) [3]. Based on these assessment tools, the damage is estimated 68 

and expressed through performance indicators (PIs), which are metrics that define 69 

qualitatively and/or quantitatively the condition state of the bridge elements [3]. 70 

Faleschini et al [3] classified the PIs in two main categories: operational and 71 

research indicators. Operational indicators are based on qualitative condition 72 

ratings, i.e. an adopted discrete scale where one value is defined as the as-built 73 

condition, and the remaining values represent the deviation from the as-built 74 

condition [4]. On the other hand, research indicators are based on a quantitative 75 

evaluation of the structural safety of the assets, i.e. computing the probability of 76 

failure for a given limit state [3].  77 

Due to the distinction between the PIs, different forecasting models have been 78 

developed to predict the deterioration over time and the remaining service life of 79 

bridge elements. For instance, a lot of research has been conducted on analytical 80 

deterioration models to describe common phenomena affecting reinforced 81 

concrete structures such as chloride-induced corrosion [5]–[8], carbonation-82 

induced corrosion [8], [9], alkali-aggregate reaction and freeze/thaw attack [10], 83 

[11], among others. Another approach has proposed using the reliability index as 84 



an indicator of the bridge performance and constructing a reliability profile, 85 

defined as the variation of the reliability index with time at a deterioration rate 86 

after the deterioration initiation time [12], [13].  87 

Even though research PIs and their related forecasting models represent a more 88 

quantitative measure of the deterioration phenomena, their practical application 89 

on BMS is still limited due to the large amount of assets that transportation 90 

agencies must manage. Therefore, operational PIs, i.e. condition ratings, have 91 

been predominantly the input parameters for deterioration models in existing 92 

BMS [2]. Literature on deterioration modelling approaches based on condition 93 

ratings is extensive and include, but is not limited to: deterministic models 94 

(multiple linear regression [14], polynomial regressions [14]–[16], ordinal logistic 95 

regression [17]), stochastic models (Markov models [18]–[21], Semi-Markov 96 

models [20]–[22], Hidden Markov models [20], [23]), Artificial Intelligent (AI) 97 

techniques (Artificial Neural Networks (ANNs) [24]–[26], fuzzy logic [26], [27], 98 

Case-based Reasoning (CBR) [28]), Bayesian networks [29] and Petri-Nets [30].  99 

Deterministic and stochastic Markov-chain models are the prevalent deterioration 100 

models currently used by most BMS [31], [32]. The main advantage of Markov-101 

chains over the deterministic models is their capability to reflect the uncertainty 102 

of the deterioration process while being computationally efficient and simple to 103 

manipulate networks with large number of assets [19]. Nevertheless, it has been 104 

broadly discussed that some of the Markov-chains assumptions significantly 105 

affect the prediction accuracy [18], [21], [28]. Therefore, the aim of this study is 106 

to objectively analyse the impact of those assumptions through a direct 107 

comparison of the prediction accuracy obtained by the Markov-chains model with 108 

other deterioration modelling approaches, namely Semi Markov models, Hidden 109 

Markov models and Artificial Neural Networks. These models were selected as 110 

they have arisen as an enhancement/alternative to the Markov-chains model, 111 



while fulfilling desired characteristics for BMS. Furthermore, the implementation 112 

complexity of each model and the associated computational cost are also 113 

compared to provide recommendations for practice. To this end, a database 114 

containing inspections records from 766 different bridges with approximately 14 115 

inspections (time window of approximately 26 years) is employed to predict the 116 

evolution of concrete bridge decks condition over time through each adopted 117 

model. 118 

The present work is organized as follows: Section 2 provides a description of the 119 

employed database and the conducted filtering procedure. The following sections 120 

present a brief conceptual description of the selected deterioration models and 121 

their application to the database. For a more detailed explanation of the theory of 122 

the models the reader is referred to [20], [33]–[35]. Consequently, Section 7 123 

compares the different degradation patterns predicted by each model and uses 124 

some metrics to measure how well the observed data corresponds to the predicted 125 

values.  Section 8 presents a discussion on the prediction capabilities of the 126 

models compared to that reported on literature, and the drawbacks encountered 127 

for the individual and general development of the models. Finally, concluding 128 

remarks together with recommendations for future directions are provided. 129 

2. Database Pre-processing 130 

The models were implemented using inspection records of bridges retrieved from 131 

the National Bridge Inventory (NBI) database managed by the U.S. Department 132 

of Transportation, Federal Highway Administration (FHWA) [36]. According to 133 

the last ASCE’s Report Card for America’s Infrastructure [37], by 2016 there 134 

were 614.387 bridges in the USA , 9.1% of which had been declared as 135 

structurally deficient. Even though from a national perspective the condition of 136 

the nation’s bridges has improved over the last 10 years, the highest percentage 137 

of structurally deficient bridges reached until 24.9% for the state of Rhode Island 138 



[37]. The inspection records corresponding to Rhode Island were selected for the 139 

implementation of the deterioration models in the present work, granting that the 140 

records from any other state would similarly accomplish the aim of the work.  141 

The visual inspection (VI) method is the predominant non-destructive evaluation 142 

(NDE) technique used for bridge inspections which are carried out biennially by 143 

certified inspectors [38]. The VI method examines the bridge members to identify 144 

deficiencies; for instance, detect concrete deck defects such as cracking, scaling, 145 

spalling, leaching, delamination, and full or partial depth failures. The bridge 146 

inspector is responsible for assigning a condition rating that properly characterizes 147 

the general condition of the entire component being rated based on the severity 148 

and extent of the deterioration [39]. The NBI specifies a condition rating ordinal 149 

scale from 0 to 9 (Table 1), where 0 represents a failed condition and 9 represents 150 

an excellent condition. Condition rating of 4 is generally considered as the 151 

threshold rating where rehabilitation or replacement measures have to be done 152 

(structurally deficient) [1]. A separately condition rating is assigned for the three 153 

major bridge components namely substructure, superstructure and deck. Herein, 154 

the deck ratings were selected to develop the models. 155 

Table 1 156 

The database comprises inspections records from 766 different bridges by the year 157 

2017. The earliest inspections date from 1990, covering a span of approximately 158 

26 years. However, some bridges were built after that period (see Figure 1) or 159 

were not inspected biennially, resulting in a lower number of available 160 

inspections. Consequently, only bridges with the maximum possible number of 161 

records, i.e. 14 inspections, were used to build the models. It can be observed from 162 

Figure 1 that the predominant deck structure type corresponds to concrete cast-in-163 

place and concrete precast panels. Hence, the database was refined to contain only 164 

concrete bridge decks.   165 



Figure 1 166 

Further filtering was applied to the NBI database to remove inconsistencies before 167 

its implementation in the models. For instance, records without condition deck 168 

rating were removed, along with inspection records on bridges with reconstruction 169 

history which do not characterise a natural degradation trend. Additionally, there 170 

were cases where an improvement in the condition rating was observed. This 171 

effect can be attributed to non-recorded maintenance actions or visual inspection 172 

inaccuracy due to its inherent subjectivity. Both cases were herein studied, so a 173 

“Dataset 1” discarded the complete sequence of observations where improved 174 

transition were present; while a “Dataset 2” included the transitions towards better 175 

conditions up to two ratings assuming to represent the variability between 176 

inspectors  [38]. All models implemented in the present work except the Hidden 177 

Markov model used Dataset 1.  178 

Finally, bridge decks with a condition rating of “2” or lower are posted for reduced 179 

load or closed to traffic [26], so they were removed because they are not in a 180 

normal operation condition. It was also observed that following the filtering there 181 

was no records on bridge decks with a condition rating of “9”. Thus, the developed 182 

models were built to predict the deterioration from condition rating “8” to 183 

condition rating “3”. Table 2 presents information on the distribution of bridges 184 

according to their main structure type, functional class and recorded condition 185 

ratings for both considered datasets. It can be seen that there is a low number of 186 

very high and very low condition ratings in comparison with the number of 187 

available mid-condition ratings.  188 

Table 2 189 

3. Discrete Markov Models 190 

Discrete Markov models are stochastic processes that describe physical systems 191 

where the probability that a system will be in a given state j at time t2, may be 192 



obtained from a known state i at an earlier time t1, but is independent on its history 193 

before time t1 (i.e. Markov property) [40]. The probability of a transition between 194 

state i and j per unit of time is expressed as [20]: 195 

݆ܲ݅ = 1+ݐܺ}ݎܲ = ݐܺ |݆ = ݅0 } = 1ܺ}ݎܲ = ݆|ܺ0 = ݅ }, (1) 

The probability of transitioning from all possible pairs (i,j) during a single period 196 

of time, may be assembled in the transition probability matrix (TPM) of order (n 197 

x n), where n is the total number of condition states [20]: 198 

ܲ = ൦ ଵܲଵ ଵܲଶ ⋯ ଵܲ௡ଶܲଵ ଶܲଶ ⋯ ଶܲ௡⋮ ⋮ ⋱ ⋮௡ܲଵ ௡ܲଶ ⋯ ௡ܲ௡൪ (2) 

The elements of a TPM satisfy the following conditions [20]: 199 

i. 0 ≤ ௜ܲ௝ ≤ 1  for all ݅, ݆ 200 

ii. ∑ ௜ܲ௝௡௝ୀଵ = 1  for all ݅, ݆ 201 

iii. ݆ܲ݅ = 0   for ݅ > ݆ 202 

The third condition is assumed for the purpose of modelling deterioration. 203 

Therefore, the system will remain in the same state during the discrete period of 204 

time or will move to a more deteriorated state.   205 

There are different methods to estimate the transition probabilities. In this study, 206 

the percentage prediction method was used to derive the elements of the matrix 207 

[34]: 208 

௜௝݌ = ݊௜௝݊௜  (3) 

where: 209 

݊௜௝ is the number of bridges that moved from state i to state j during a single period 210 

of time; 211 

݊௜ is the total number of bridges in state i before the transition 212 



Through the application of Equation (3), the obtained TPM computed using the 213 

Dataset 1 described in Section 2 is equal to: 214 

ܲ =
⎣⎢⎢
⎢⎢⎡0.59 0.41 0 0 0 00 0.87 0.13 0 0 00 0 0.94 0.06 0 00 0 0 0.93 0.07 00 0 0 0 0.97 0.030 0 0 0 0 1 ⎦⎥⎥

⎥⎥⎤ (4) 

By means of a discrete Markov process, the state vector ܳ௧ which corresponds to 215 

a vector containing the element rating for any time ݐ, can be obtained as the initial 216 

condition state vector ܳ଴ multiplied by TPM to the power of 217 : [18] ݐ 

ܳ௧ = ܳ଴ × ܲ௧  (5) 

For a newly constructed bridge element at the time of the first inspection, the 218 

initial state vector will be equal to ܳ଴ = [1 0 0 0 0 0] [18]. Finally, the estimation 219 

of the condition rating as a function of time ܴ௉,௧ is obtained as [18]: 220 

ܴ௉,௧ = ܳ௧ × ܴᇱ (6) 

Where ܴᇱ is a vector of condition ratings which for the processed database is 221 

equivalent to ܴᇱ = [8 7 6 5 4 3]. Consequently, a deterioration curve can be 222 

constructed by computing the expected value of condition rating for each discrete 223 

time step over the lifetime of the network of bridges.   224 

4. Semi Markov models 225 

Aging is mathematically defined as an increasing probability of transition to a 226 

worse condition state as time progresses [20]. Semi Markov models are an 227 

extension of discrete Markov models where the aging effect can be captured 228 

through the random time that is inserted between state transitions [20]. This 229 

random time is referred as sojourn (or waiting) time and is denoted as ௜ܶ௝ , with 230 

probability density function (PDF) designated by ௜݂௝, and survival function (SF) 231 

designated by ௜ܵ௝  [33]. In order to estimate the transition probabilities in a Semi 232 



Markov process, it is necessary to calculate the sum of the sojourn times in the 233 

states ( ௜ܶ→௞), i.e. the time the process will take to move from state ݅ to ݇, which 234 

can be expressed as [33]: 235 

௜ܶ→௞ = ෍ ௝ܶ,௝ାଵ௞ିଵ௝ୀଵ  (7) 

With ݅ = {1,2, ⋯ , ݊ − 1}; ݇ = {2,3, ⋯ , ݊}. Accordingly, the single step transition 236 

probabilities can be determined as [9]: 237 

௜ܲ,௜ାଵ௧,௧ାଵ = ݐ)ܺ]ݎܲ + 1) = ݅ + (ݐ)ܺ |1 = ݅] = ଵ݂→௜(ݐ)ଵܵ→௜(ݐ) − ଵܵ→௜ିଵ(ݐ) (8) 

where ଵ݂→௜(ݐ) and ଵܵ→௜(ݐ) are the PDF and SF of the sum of the sojourn times 238 

from state 1 to state ݅ respectively. The TPM of the Semi Markov process is hence 239 

populated after generating all the transition probabilities using Equation (8):   240 

ܲ௧,௧ାଵ = ⎣⎢⎢
⎢⎡ ଵܲଵ௧,௧ାଵ ଵܲଶ௧,௧ାଵ 0 ⋯ 00 ଶܲଶ௧,௧ାଵ ଶܲଷ௧,௧ାଵ ⋯ 0⋯ ⋯ ⋯ ⋯ ⋯0 ⋯ ⋯ ௡ܲିଵ,௡ିଵ௧,௧ାଵ ௡ܲିଵ,௡௧,௧ାଵ0 0 ⋯ 0 1 ⎦⎥⎥

⎥⎤
 (9) 

For the present work, the distribution of the sojourn times is assumed to follow a 241 

two parameter Weibull distribution. Therefore, the PDF and SF of the sojourn 242 

times are given by [33]: 243 

௜ܵ(ݐ) = ݁ି(ఒ೔௧)ഁ೔  (10) 

௜݂(ݐ) = ఉ೔ିଵ݁ି(ఒ೔௧)ഁ೔(ݐ௜ߣ) ௜ߚ௜ߣ  (11) 

 244 

The parameters ߣ௜ and ߚ௜ are estimated from historical observations recorded in 245 

the Dataset 1. To this end, two intervals of time are defined, namely u and v (u ≠ 246 

v), and the probabilities of the bridge deck to remain in a certain condition rating 247 

i for more than u and v years are assessed, i.e. ݔ௜,௨ and ݔ௜,௩ respectively [33]. These 248 

probabilities are computed from the relative frequency of events similarly as for 249 

the Markov process [21], and the results for the selected intervals are shown in 250 



Table 3. Subsequently, the parameters ߣ௜ and ߚ௜ are derived from the following 251 

expressions [33]:  252 

ቊܵ௜(ݑ) = ݁ି(ఒ೔௨)ഁ೔ܵ௜(ݒ) = ݁ି(ఒ೔௩)ഁ೔ ⟹ ቊln[ܵ௜(ݑ)] = [(ݒ)௜ܵ]ఉ೔ln(ݑ௜ߣ)− = ఉ೔(ݒ௜ߣ)− ⟹ ln ቆln[ܵ௜(ݑ)]ln[ܵ௜(ݒ)]ቇ = ௜ߚ ln ቀݒݑቁ (12) 

 253 
௜ߚ 254  = ln(ln[ܵ௜(ݑ)] − ln[ܵ௜(ݒ)])ln(ݑ) − ln(ݒ)  ; ௜ߣ  = ݑ1 (− ln[ܵ௜(ݑ)]) ଵఉ೔  (13) 

Once both parameters are evaluated for every i, the TPM for the Semi Markov 255 

process can be computed. 256 

Table 3 257 

5. Hidden Markov models  258 

Monitoring data from historical inspections frequently contains measurement 259 

errors and selection biases [23], which affect the accuracy of the deterioration 260 

predictions. To address this issue, Hidden Markov models (HMM) have been used 261 

to incorporate the bias of the observations into the forecasting models [20], [23]. 262 

HMMs assume that there is some true condition state which is “hidden” to the 263 

observer [20]. In other words, the sequence of true states ଵܵ, ܵଶ, ⋯ , ܵ௡ at the 264 

inspection times ݐଵ, ,ଶݐ ⋯ ,  ௡ is hidden behind the sequence of the observed states 265ݐ

ଵܸ, ଶܸ, ⋯ , ௡ܸ [20]. Therefore, considering the bias in the monitoring data allows 266 

the unobserved true condition states to be captured [23].  267 

The sequence of the true states follows a simple Markov chain, so the probability 268 ܽ௜௝  representing the probability of moving to state ௝ܵ  depends only on the state ௜ܵ  , 269 

which can be expressed as ܽ௜௝ = ௧ାଵݍൣܲ = ௝ܵห ݍ௧ = ௜ܵ] [35]. On the contrary, the 270 

observed sequence does not hold the Markov property [20]. The conditional 271 

probability of the observations given the true states corresponds to [20]: 272 

݁௜௝ = ]ݎܲ ௞ܸ = ݆| ܵ௞ = ݅] (14) 



These probabilities are collected in an error or misclassification matrix where 0 ≤273 ݁௜௝ ≤ 1 , and ∑ ݁௜௝௡௝ୀ଴ = 1 [20]: 274 

ܧ = ൦݁ଵଵ ݁ଵଶ ⋯ ݁ଵ௡݁ଶଵ ݁ଶଶ ⋯ ݁ଶ௡⋮ ⋮ ⋱ ⋮݁௡ଵ ݁௡ଶ ⋯ ݁௡௡൪ (15) 

The probability of correctly identifying the condition state corresponds to ݁௜௜ , 275 

while for all  ݅ ≠ ݆ there exists a misclassification reflecting the variability in the 276 

inspections [20]. This variation is attributed to the fact that the condition rating is 277 

a qualitative measure affected by the subjectivity of the inspectors. This 278 

phenomenon was investigated by the FHWA [38] who conducted a study to 279 

evaluate the reliability of the visual inspections. Forty-nine bridge inspectors 280 

completed routine and in-depth inspections to the same bridges. The results 281 

showed that 95% of the element condition ratings vary within ±2 rating points 282 

around the mean, and 68% of these ratings vary within ±1 rating point [38]. The 283 

error probabilities referred as emission probabilities in the formal notation for 284 

Hidden Markov models may be assessed by expert judgement or by  maximum 285 

likelihood [20].  286 

One of the basic problems involved when using HMMs is to adjust the parameters 287 

of the model , i.e. the sequence of the states , the transition probabilities ܽ௜௝  and 288 

the emission probabilities ݁௜௝, to maximize the probability of the observation 289 

sequence given the model [35].  There is no analytical solution to maximize the 290 

probability of the observation sequence; hence, an iterative procedure such as the 291 

Baum-Welch algorithm can be used to locally maximize the observation sequence 292 

given a selected model , and re-estimate the model parameters ̅ߣ until a stopping 293 

criterion is reached [35]. The mathematical description of this procedure is not 294 

herein presented, for a detailed explanation the reader is referred to [35], [41].  295 



Matlab [42] function “hmmtrain”  was used to estimate the transition and emission 296 

probabilities for the Hidden Markov model using the Baum-Welch algorithm. An 297 

initial estimation of the transition and emission probabilities matrices together 298 

with the sequence of observations are the inputs of the function. The initial guess 299 

for the transition probability matrix is computed with the same procedure 300 

described in Section 3 but using the Dataset 2; in this manner the model includes 301 

the inspectors’ variability as explained in Section 2. The obtained matrix is equal 302 

to: 303 

ܽ௜௝ =
⎣⎢⎢
⎢⎢⎡ 0.521 0.4455 0.0335 0 0 00.0014 0.8566 0.1335 0.0085 0 00.0044 0.0205 0.9044 0.0615 0.0092 00 0.024 0.0477 0.8747 0.0536 00 0 0.043 0.037 0.897 0.0230 0 0 0 0 1 ⎦⎥⎥

⎥⎥⎤ (16) 

 304 

Note that the transitions to better states are allowed but the increase is attributed 305 

to imperfect inspections rather than an improvement in the quality of the structure 306 

resulting from maintenance.  307 

For the emission probability matrix it is assumed that the inspectors’ 308 

misclassifications could be 2 condition ratings based on the FHWA findings 309 

[38]. The most likely values for the emission probabilities will be estimated 310 

through the Baum-Welch algorithm, so for the initial guess all the non-zero 311 

elements of the matrix are assumed to be equal: 312 

݁௜௝ =
⎣⎢⎢
⎢⎢⎡
1/3 1/3 1/3 0 0 01/4 1/4 1/4 1/4 0 01/5 1/5 1/5 1/5 1/5 00 1/5 1/5 1/5 1/5 1/50 0 1/4 1/4 1/4 1/40 0 0 1/3 1/3 1/3⎦⎥⎥

⎥⎥⎤ (17) 

 The sequence of observations corresponds to the succession of condition ratings 313 

along the years from each bridge deck. The transition and emission probabilities 314 

obtained through the Baum-Welch algorithm were:  315 



ܽపఫതതതത = ⎣⎢⎢
⎢⎢⎡0.826 0.146 0.028 0 0 00.019 0.919 0.02 0.042 0 00.064 0.034 0.673 0.101 0.128 00 0.032 0.001 0.943 0.024 00 0 0.064 0 0.907 0.0290 0 0 0 0 1 ⎦⎥⎥

⎥⎥⎤ (18) 

 316 

݁పఫതതത =
⎣⎢⎢
⎢⎢⎡0.091 0.904 0.005 0 0 00 0 0.999 0.001 0 00 0 0.138 0.808 0.054 00 0 0 1 0 00 0 0 0 1 00 0 0 0 0 1⎦⎥⎥

⎥⎥⎤ (19) 

  

Note that for the lower condition states, the obtained emission probabilities 317 

indicate that the true conditions are correctly observed by the inspector, while for 318 

the better condition ratings the inspectors tend to assign lower than the true 319 

condition. This effect is in accordance with the FHWA research [38] which 320 

concluded that inspectors are hesitant to assign high condition ratings for better 321 

condition elements. 322 

Based on the transition and emission probabilities previously obtained, the Matlab 323 

function “hmmgenerate” is used to generate random sequences of emission 324 

symbols (the observed states) and random sequences of states (true or hidden 325 

states) during a 100-year period. Then, the average of 10000 sequences of states 326 

is computed.  327 

6. Artificial Neural Networks  328 

Artificial Neural Networks (ANN) are information-processing techniques 329 

conceptually motivated by the way the densely interconnected and parallel 330 

structure of the human brain processes information [24]. Several types of ANN 331 

have been applied to solve the bridge deterioration modelling problem. One of the 332 

most widely used model that has demonstrated great capabilities to solve the 333 

prediction deterioration problem are multilayer perceptron networks (MLP). This 334 



model is based on fully connected, layered, feed-forward networks [24], that 335 

utilize back propagation technique for training. Additionally, other approaches 336 

have been developed such as i) case base reasoning which looks for previous cases 337 

that are similar to the current problem and reuse them to solve the problem [28] 338 

ii) ensemble of neural networks which is composed of a series of individual ANNs 339 

working in parallel so predictions are made by collecting and combining the 340 

outputs of individual networks through a weighting process [26] iii)  Elman neural 341 

networks integrated with a backward prediction model which generates missing 342 

condition ratings when the input data is insufficient [43]. 343 

A MLP network has been used in the present work to model the deterioration of 344 

bridge decks based on Dataset 1. The input parameters for the network correspond 345 

to the variables that more significantly influence the condition of the bridge deck. 346 

The selection of the input variables is a crucial issue considering that the nature 347 

of the problem cannot be captured with only a few variables, but can be over-348 

fitted with redundant variables [26]. The NBI database comprises of 116 different 349 

bridge attributes (full list refer to [4]). Hence, a first selection of the potential 350 

influential parameters based on literature review and engineering judgement 351 

comprised 12 attributes namely age, structure length, deck width, skew angle, type 352 

of design and/or construction, functional classification, design load, maintenance 353 

responsibility, kind of material and/or design, wearing surface, ADT (Average 354 

Daily Traffic) and ADTT (Average Daily Truck Traffic) . Afterwards, statistical 355 

analysis was performed to validate the significance of the association and the 356 

correlation of the independent variables with the dependent variable. However, 357 

the database possesses complex multidimensional data so that the evidence 358 

obtained from the traditional statistical tests was not sufficiently strong to draw 359 

consistent conclusions. Therefore, the predictors selection was done through a 360 

variance-based sensitivity analysis that computes the importance of each predictor 361 

in determining the neural network, i.e. how much the network predicted value 362 



changes for different values of the independent variables [44]. The strength of this 363 

method is that it can deal with nonlinear responses and produces good estimations 364 

when the size of the dataset is large. After conducting the sensitivity analysis, the 365 

obtained normalized importance of the independent variables is shown in Figure 366 

2.  367 

The variables with the lowest importance were sequentially removed until the 368 

performance of the network reached its optimal value. The final parameters 369 

selected as input variables were age, structure length, deck width, functional 370 

classification, kind of material and/or design, and ADTT. The quantitative 371 

variables were standardized, and the categorical variables were transformed into 372 

a binary system before employing them in the model.  373 

Finally, Matlab Neural Network Toolbox [42] was used for the development of 374 

the MLP model. The network was trained with a Bayesian regularization 375 

backpropagation training function, for its ability to reveal potentially complex 376 

relationships. 70%, 15% and 15% of the input data was randomly allocated for 377 

training, validating and testing the network respectively. The number of hidden 378 

layers and the number of neurons in each layer were selected to be 3 and 20 379 

respectively, after several iterations to obtain the best network performance. The 380 

maximum number of epochs during the training was set on 10000. The activation 381 

function for the hidden layers was the hyperbolic tangent sigmoid transfer 382 

function, while the output layer uses a linear transfer function. The obtained 383 

weights and biases from the ANN model are available for the public domain as 384 

supporting information.    385 

7. Results  386 

This section provides lifetime deterioration curves developed from the four 387 

previous presented models. To enable the comparison a single plot with the 388 



degradation curves representing the average condition of the bridge decks 389 

belonging to the network is shown in Figure 3. It can be noted that due to the 390 

variability in the inspections, the initial condition state for the ANN model starts 391 

in a different state than state “8”. It can also be observed that the three Markov 392 

processes predict a higher deterioration rate for the early years of the bridge decks 393 

compared to the ANN. In general, the ANN model maintains a good condition 394 

rating for longer than the rest of the models. However, at the end of the studied 395 

period, the hidden Markov model predicts the highest condition ratings. This 396 

effect can be explained by the fact that when considering the variability in the 397 

inspections, the model assigns a true condition rating higher than the observed for 398 

the better states and hence the accumulated deterioration at the end of the period 399 

is lower.  400 

It can be seen that the deterioration curves developed by the different models 401 

produce distinct degradation paths over the lifetime of the bridge decks. It is 402 

difficult to determine which of the models provide a better representation of the 403 

overall deterioration process of the bridge decks within the network. Hence, as an 404 

attempt to quantitatively measure the fitness of each model, the predictions are 405 

compared against the average condition rating recorded in the respective database 406 

per age (D1 average condition represented as dots in Figure 3). The metrics used 407 

to quantify how well the models matched the measured data were the mean square 408 

error (MSE), the mean absolute error (MAE) and the accuracy factor [45]. MSE 409 

is more sensitive to outliers than MAE which has led some authors to recommend 410 

the use of the latter for model fitness evaluation [46]. On the other hand, the 411 

accuracy factor indicates how much the predictions differ from observed data, 412 

where a value of “1” indicates a perfect model and can be expressed as [45]: 413 

ݎ݋ݐ݂ܿܽ ݕܿܽݎݑܿܿܣ = 10ଵ/௡ ෍ ฬlogଵ଴ ൬݁ݑ݈ܽݒ ݀݁ݒݎ݁ݏܾ݋݁ݑ݈ܽݒ ݀݁ݐܿ݅݀݁ݎ݌ ൰ฬ௡
௜ୀଵ  (20) 

 414 



Table 4 415 

It is observed from Table 4 that the lowest errors and best accuracy factor are 416 

reached by the ANN model, while the highest errors and worst accuracy factor 417 

correspond to the Semi Markov model. Based on the MSE measure the Markov 418 

and the Hidden Markov models have approximately the same accuracy; 419 

nevertheless, the MAE measure indicates that the Hidden Markov model provides 420 

a better representation of the data than the Markov model. Likewise, the accuracy 421 

factor also suggests that the predictions obtained from the HMM diverge less from 422 

the measured data than the Markov model predictions.   423 

8. Discussion 424 

Overall, all the models evidenced a distinct degradation pattern that concluded, at 425 

the end of the studied period, with a varying condition rating among the models. 426 

The worst condition was predicted by the Semi Markov model followed closely 427 

by the Markov model, reaching a rating of 4 which is generally considered as the 428 

threshold level to perform rehabilitation or replacement measures. ANN model 429 

was also approaching the rating 4 while the Hidden Markov model was entering 430 

condition rating 5. As mentioned in Section 7, the better condition predicted by 431 

the HMM resulted from considering the variability in the inspections. However, 432 

the selection of this model might conduct to inadequate maintenance activities 433 

considering that typical values of concrete decks life expectancy in the US are 434 

between 24-48 years [47]. In general, all the models are not in line with this 435 

experience.  436 

Even though Semi Markov models have been proposed extensively and its 437 

advantages over Markov chain models have been highlighted [20], [22], there 438 

were no significant differences among the obtained results. In fact, it was found 439 

that the Semi Markov model differed the most with the observed condition ratings. 440 



This might be attributed to the lack of historical data to appropriately estimate the 441 

parameters of the distribution of the waiting times. Some studies have employed 442 

expert judgement to define these parameters [33]. However, this approach adds 443 

subjectivity to the deterioration modelling. Maximum likelihood estimation 444 

(MLE) method has also been employed for parameter estimation [20]. 445 

Nonetheless, MLE can be heavily biased for small samples which is the case for 446 

the estimation of the waiting times for the worst condition states, where the 447 

available data is limited due to the reconstructive efforts performed to prevent 448 

bridges from reaching structurally deficient conditions (as seen in Table 2). 449 

Therefore, the estimation of the parameters for the Semi Markov model poses a 450 

higher complexity on its implementation from a mathematical point of view than 451 

Markov chain model. Hence, unless sufficient data for reliable parameter 452 

estimation of the waiting times is available, Semi Markov models will not 453 

improve the prediction capabilities of Markov chains.   454 

On the other hand, the Hidden Markov model enabled the inclusion of inspections 455 

variability which has been demonstrated to take place due to the subjective 456 

inspection procedure. Even though the HMM revealed a satisfactory accuracy 457 

compared to the rest of the models, the actual hidden process can never be 458 

observed [20], hence the model was fully determined by the data-based estimation 459 

of the emission probabilities which conducted to an unrealistic result when 460 

compared to typical values of concrete decks life expectancy as previously 461 

mentioned. The emission probabilities could have been determined also by expert 462 

judgement [20]. However, this involves a subjective estimation approach. 463 

Consequently, the estimation of the additional matrix increases the complexity of 464 

the implementation of HMM compare to Markov chain models.  465 

Finally, ANN model demonstrated a superiority in the prediction accuracy. The 466 

most influencing parameters affecting the bridge decks condition were identified 467 



to construct a MLP network which was able to correctly identify the condition 468 

ratings on average in 95% of the cases when exposed to the training data. The 469 

lowest percentage of correctly predicted values was obtained for the worst 470 

condition rating due to the low number of inspection records on the database to 471 

appropriately train the network for transitions to this rating. Nonetheless, the 472 

number of datapoints was sufficient to obtain satisfactory predictions. These  473 

results are in accordance with the literature review where the ANNs have always 474 

demonstrated great predictive capabilities [24], [26]. However, the training of the 475 

network involves high computational cost in comparison with Markov chain 476 

models, which can be seen as a limitation considering that the database is 477 

periodically updated providing further knowledge about bridges that should be 478 

employed in predicting their future condition, but that will imply variations on the 479 

inputs to train the ANN and consequently the weights and biases should be once 480 

again found.    481 

In general, the reliability of the predictions might have been affected by the 482 

inherent limitations of the models and aggravated by the accuracy of the database, 483 

which was found to contain data imbalance and deterioration trends that might not 484 

be realistic despite the filtering performed to remove effects from maintenance 485 

actions before developing the models (Section 2). For instance, some of the deck 486 

ratings over the complete span of 26 years did not vary significantly or did not 487 

vary at all. This behaviour differs from what is expected and might be related with 488 

regular and minor maintenance activities that are not recorded in the database. 489 

This latter effect is particularly evidenced in several bridge decks with 70 years 490 

age having ratings of 6 or 7. On the contrary, newly built bridges (0-5 years old) 491 

documented a deck rating of 6, i.e. satisfactory condition but with deterioration 492 

including cracks and around 2% of spalling or delamination in the deck area; 493 

which meant an unforeseen high deterioration rate at an early stage (decrease of 494 

3 condition ratings in less than 5 years). As a consequence of the inconsistent 495 



deterioration trends observed in the NBI database, some studies have applied 496 

additional filtering to the data [15], [16]. For instance, in [15] a maximum and 497 

minimum age for each condition rating was imposed and data points outside the 498 

limits were removed. Similarly, in [16] it was assumed that any bridge deck 499 

should be reconstructed after the average age at which reconstruction works take 500 

place e.g. 30 years. Therefore, any deck rating assigned after that age should be 501 

eliminated. Nevertheless, these approaches are based on expected deterioration 502 

trends so might introduce subjectivity to the predictions depending on the selected 503 

ranks or might restrict the available data for the development of the models.  504 

9. Conclusions and future directions 505 

Four different deterioration models namely Markov models, Semi Markov 506 

models, Hidden Markov models and Artificial Neural Networks were 507 

implemented in the present work to predict and compare the degradation of bridge 508 

decks based on condition ratings retrieved from the NBI database. The Markov 509 

model herein applied consisted in a homogeneous Markov chain which is the most 510 

frequent model used in the BMS. The simplicity in its implementation together 511 

with its capabilities to capture the randomness of the deterioration process are 512 

some of the main reasons for its selection. However, in a homogeneous Markov 513 

chain the transition probabilities are not time dependent which is one of the 514 

features that has been widely criticized. For this reason, alternative deterioration 515 

modelling approaches were implemented to compare and analyse the impact of 516 

the Markov chains assumptions on the prediction results. It was shown that all 517 

models exhibited a distinct deterioration curve. However, there were no 518 

significant differences among the results obtained by Markov and Semi Markov 519 

models. Nevertheless, the Semi Markov presented higher errors and worse 520 

accuracy factor than the Markov model. Furthermore, it was found that the 521 

predictions obtained by the Hidden Markov model provided a better 522 



representation of the observed condition ratings than the Markov model. Amongst 523 

all, the ANN model achieved the lowest errors and best accuracy factor. In 524 

addition to the higher prediction accuracy, the feature of employing the 525 

parameters affecting bridge deck deterioration for assessing the condition, makes 526 

ANN model a more convenient alternative to be implemented on existing BMS 527 

to predict the condition of individual bridge decks.  528 

While the study focused on Rhode Island, in future works, the models and 529 

methodologies herein presented can be replicated in other regions using NBI data 530 

or other similar databases, in order to analyse if different deterioration trends are 531 

obtained. Accordingly, the impact of the inspection and condition assessment 532 

practices performed by each state on the development of deterioration models can 533 

be investigated.  Moreover, additional deterioration modelling approaches such 534 

as more advanced AI techniques and Petri-nets could be included as part of the 535 

comparison. 536 

Finally, the deviation of the predictions from the typical values of concrete decks 537 

life expectancy as well as some challenges encountered during the development 538 

of the models are attributed to i) an unbalanced and scattered database ii) minor 539 

non-recorded maintenance actions preserving the condition without increasing the 540 

rating iii) shortcomings of VI as primary condition assessment tool, i.e. assessing 541 

a bridge condition only by VI is significantly subjected to variability of the 542 

condition ratings as demonstrated by [38],  In order to overcome the latter 543 

limitation, NDE technologies have been used to more objectively detect and 544 

characterize the deteriorated condition of bridge elements. For instance, in [48] 545 

several NDE methods namely electrical resistivity, half-cell potential, ground 546 

penetrating radar, impact echo, and chain drag, were combined to enable the 547 

identification of different deterioration phenomena for a complete assessment of 548 

concrete decks. Moreover, when a particular defect has been detected, e.g. active 549 



corrosion, condition assessment can be accompanied by additional measurements 550 

such as chloride content or carbonation depth which serves for the quantification 551 

of the severity of the deterioration phenomena. At present, NDE technologies are 552 

being used but surveying large amounts of bridges for BMS is still cost- and time-553 

consuming, usually involving traffic disruption and uncertainties in their 554 

measurements which need to be carefully addressed.  Similarly, structural health 555 

monitoring (SHM) systems are also a powerful and reliable technique for short- 556 

and long-term bridge condition assessment. Nevertheless, SHM systems are often 557 

costly and their complexity resulting from data acquisition, structural modelling, 558 

big data analysis, and routine maintenance required for long-term operation limit 559 

their prompt adoption on BMS.  560 

Despite the current challenges for integrating NDE/SHM assessment tools into 561 

the BMS, research efforts should be undertaken in this direction so bridge 562 

condition assessment could move from operational indicators (i.e. condition 563 

ratings) to research indicators, which address from a quantitative perspective the 564 

structural safety and serviceability of a bridge, Consequently, deterioration 565 

modelling could be more realistic considering that the input parameters will be 566 

based on quantitative resistance measures.  567 
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Figure 1. Distribution of bridges by year of construction and deck structure type 732 
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Figure 2. Normalized importance of the independent variables 734 
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Figure 3. Deterioration curves for bridge decks 736 
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Table 1. Condition rating system for decks used in the National Bridge 738 
Inventory (NBI) [36] 739 

Code Condition Description 
9 Excellent As new 
8 Very good No problems noted 
7 Good Some minor problems 
6 Satisfactory Structural elements show some minor deterioration 

5 Fair All primary structural elements are sound but may have minor section 
loss, cracking, spalling or scour 

4 Poor Advanced section loss, deterioration, spalling or scour 

3 Serious 
Loss of section, deterioration, spalling or scour have seriously 

affected primary structural components. Local failures are possible. 
Fatigue cracks in steel or shear cracks in concrete may be present 

2 Critical 

Advanced deterioration of primary structural elements. Fatigue cracks 
in steel or shear cracks in concrete may be present or scour may have 

removed substructure support. Unless closely monitored it may be 
necessary to close the bridge until corrective action is taken 

1 “Imminent” failure 

Major deterioration or section loss present in critical structural 
components or obvious vertical or horizontal movement affecting 

structure stability. Bridge is closed to traffic but corrective action may 
put back in light service 

0 Failed Out of service, beyond corrective action 
  740 



Table 2. Distribution of bridges according to selected parameters for each dataset 741 

Main Structure Type 
Functional Class Condition Ratings Kind of material 

and/or design 
Type of design and/or 

construction 
 D1 D2  D1 D2  D1 D2  D1 D2 

Concrete 18 34 Slab 12 25 RPI Arterial 4 8 CR 8 104 127 
Concrete 
continuous 10 14 Stringer/Multi-

beam or Girder 167 208 RP Arterial 7 7 CR 7 984 1260 

Steel 119 149 Girder and 
Floorbeam System 5 5 RMi 

Arterial 5 7 CR 6 1385 1769 

Steel 
continuous 24 27 Tee beam 7 9 RMa 

Collector 9 14 CR 5 418 648 

Prestressed 
concrete 42 56 Box Beam or 

Girders - Multiple 16 21 RMi 
Collector 2 5 CR 4 137 204 

Wood or 
Timber 0 1 Frame 6 9 R Local 15 17 CR 3 24 24 

Other 5 7 Truss - Thru 1 4 UPI Arterial  43 53    
   Arch - Deck 2 3 UP Arterial  18 25    
   Suspension  1 1 UPF 

Arterial 36 47    
   Other 1 3 UM Arterial  43 55    
      U Collector 19 28    
            U Local 17 22       

Rural Principal (RP); Rural Principal Interstate (RPI); Rural Minor (RMi); Rural Major (RMa); Urban Principal 
Interstate (UPI); Urban Principal (UP); Urban Principal Freeways (UPF); Urban Minor (UM) 
Dataset 1 (D1) comprises a total of 218 bridges; Dataset 2 (D2) comprises a total of 288 bridges  
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Table 3. Input parameters for the Semi Markov process 743 

CR u [years] ݔ௜,௨  [%] v [years] ݔ௜,௩ [%] ߚ௜ 1/ߣ௜ ߣ௜ 
8 30 0.000 50 0.000 0.950 3.178 0.315 
7 30 0.110 50 0.028 0.950 13.029 0.077 
6 30 0.396 50 0.222 0.950 32.548 0.031 
5 30 0.309 50 0.149 0.950 25.361 0.039 
4 30 0.592 50 0.426 0.950 59.125 0.017 
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Table 4. MSE and MAE accuracy measures  746 

Model MSE MAE Accuracy factor 

Artificial Neural Network  0.2068 0.3154 1.3552 

Markov process 0.3336 0.5371 2.3312 

Hidden Markov model 0.3302 0.4219 1.7521 

Semi Markov process 0.4276 0.6086 2.6763 
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