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1. Introduction

A major challenge in the numerical study of dynamical systems is the control of the quality
of the approximation. The numerical results can become irrelevant if errors are propagated and
solutions are not related to orbits of the system. It is therefore important to determine the
conditions that avoid such outcome. There are two properties that are of great relevance in this
context.

The shadowing property consists in the approximation of orbits affected with a certain error
by true orbits.

The weak specification property, introduced by Bowen [7], can be summarized in the following
way: any two pieces of orbits can be ε-approximated by a periodic orbit as long as the times in
between the pieces are larger than a universal constant depending only on ε (cf. [10, page 193]).
This concept appeared in the study of ergodic theory related to statistical mechanics.

It is well-known that among uniformly hyperbolic systems we have the shadowing and the
weak specification properties. On the other hand, if one requires the stability of shadowing (or
the stability of weak specification) property under perturbations, then uniform hyperbolicity is
achieved. This has been proved recently for Hamiltonian systems (see [5] and references therein).

In the present paper we are interested in the case of geodesic flows. The projection of the
orbits of the flow into the manifold are the geodesics and there is a one-to-one correspondence
between closed orbits and closed geodesics. The case of stability of shadowing, weak shadowing
and weak specification for 2-dimensional closed manifolds is dealt in [6]. For geodesic flows on
surfaces, invariant KAM tori around elliptic orbits split the phase space and spoil the possibility
of having those properties. This is not the case in higher dimensions as KAM tori are not
hypersurfaces in energy level sets. Therefore, one has to improve the arguments in [6] to obtain
a multidimensional result.

In this work we extend the results for surfaces to any closed Riemannian manifold, showing
that generically the robustness of shadowing, of weak specification or of the shadowing property
allowing bounded time reparametrization, implies the hyperbolicity of the closure of the closed
orbits (Theorem 1 and Corollary 1.1). The proofs rely on the outstanding advances in the
dynamics of geodesic flows made by Contreras [8] and a new idea of combining arguments
with flavor of both hyperbolic dynamics (expansion, contraction and transversal intersection of
stable/unstable manifolds) and elliptic dynamics (twist maps, KAM tori and Birkhoff regions).
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Notice that we are only able to show the result for a residual set of metrics, in contrast to the
2-dimensional case.

Perturbing in the class of geodesic flows differs considerably from general Hamiltonians since
perturbations of the metric are not local in phase space. The Hamiltonian case [5] also uses
other perturbation techniques such as the pasting lemma and the suspension theorem for which
presently there are no geodesic flows versions. Moreover, there is no available C1-closing lemma
for geodesic flows, i.e. C2 on the metric (cf. [12] for a closing lemma for C1 metrics). This means
that there are no tools to extend hyperbolicity of the closure of closed orbits to the all phase
space.

The first result relating the C2-robustness of a certain property with hyperbolicity appeared
in [14]. It consists on the proof that for C2-stable expansive geodesic flows the closure of
the closed orbits is hyperbolic. More recently, Contreras [8] showed that C2-robustness of the
property of having all closed orbits hyperbolic implies hyperbolicity.

1.1. Statement of the results. In section 2 we introduce the geodesic flow and the Poincaré
section map. It includes also the definitions of shadowing, shadowing with bounded reparametriza-
tion, weak specification property and topological stability.

The set of C∞ Riemannian metrics on a closed connected smooth manifold M of dimension
n ≥ 2 is denoted by R∞. Define Per(g) to be the set of closed orbits for the geodesic flow on
the unit tangent bundle of a given g ∈ R∞.

Consider now the C2-interior of the set of metrics in R∞ such that all closed orbits are
hyperbolic (see definition in §2.2). It is denoted by F 2 and its elements are usually referred to
as Mañé star systems.

Theorem 1. If the geodesic flow of g ∈ R∞ satisfies any of the following properties:

(A) is stably shadowable;
(B) has the stable weak specification property;
(C) is stably shadowable with bounded reparametrization;

then g ∈ F 2.

The proof of the above theorem is contained in section 3. Notice that since (A) implies (C)
once we prove Theorem 1 (C) we obtain directly Theorem 1 (A). In any case we have included a
proof of Theorem 1 (A) without the need of introducing the notion of shadowing with bounded
reparametrization.

Corollary 1.1. There is a set G1 ⊂ R2 where G1 is C2-open in R2 and G1 ∩ R∞ is C∞-dense
in R∞ such that if g ∈ G1 and the geodesic flow satisfies any of the properties:

(A) is stably shadowable;
(B) has the stable weak specification property;
(C) is stably shadowable with bounded reparametrization;

then Per(g) is uniformly hyperbolic.

The above corollary is a direct application of our Theorem 1 together with a result by Con-
treras [8, Theorem E] (see Theorem 2.5) stating the uniform hyperbolicity of the closure of the
closed orbits for a metric in G1 ∩F 2.

Notice that topological stability implies the shadowing property [17]. So, the above results
are also achieved by considering the robust topological stability property.

2. Preliminaries

In this section we introduce the setting and some essential tools available in the literature.
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2.1. Geodesic flow and Poincaré map. Let Rr, 2 ≤ r ≤ ∞, be the set of Cr Riemannian
metrics on a closed connected smooth manifold M of dimension n ≥ 2.

The geodesic flow ϕtg of g ∈ Rr is defined on the unit tangent bundle

SgM = {(x, v) ∈ TM : gx(v, v) = 1},

which is also compact. We shall denote by d(·, ·) the distance function in SgM . The transversal
Poincaré flow of g at (x, v) ∈ SgM is a family of C1-symplectomorphisms

P tg : Σ0 ∩ Ut → Σt, P tg(y, u) = ϕΘ(y,u,t)
g (y, u)

with

Θ(y, u, t) = min{s ≥ 0: ϕsg(y, u) ∈ Σt}
and Σt is a C1-family of transversals to the flow at ϕtg(x, v), t ≥ 0. We assume that Ut is a
sufficiently small neighbourhood of (x, v) for each t such that, by the implicit function theorem,
Θ is C1 and Θ(Ut, t) is bounded for a fixed t > 0.

Whenever (x, v) is periodic of period ` > 0 we say that the symplectomorphism

Pg := P `g

is the Poincaré map on the Poincaré section Σ := Σ0∩U`. Its derivative at (x, v) is the linearized
Poincaré map DPg(x, v) on T(x,v)Σ.

A closed orbit is the orbit of a periodic point.

2.2. Hyperbolic and q-elliptic closed orbits. A periodic point (x, v) is degenerate if the
associated linearized Poincaré map has an eigenvalue which is a root of unity (notice that the
eigenvalues are independent of the choice of the transversal and of the point in the closed orbit).

A periodic point (x, v) is called hyperbolic if the associated linearized Poincaré map has all
eigenvalues |λ| 6= 1. It is elliptic if it is non-hyperbolic and non-degenerate.

We define the strong stable manifold of (x, v) ∈ SgM as

W ss(x, v) := {(x̃, ṽ) ∈ SgM : lim
t→+∞

d(ϕtg(x̃, ṽ), ϕtg(x, v)) = 0}

and the stable manifold of the orbit

W s(γ(x,v)) :=
⋃
t∈R

W ss(ϕtg(x, v)),

where γ(x,v) stands for the orbit of (x, v) = γ0. For small ε > 0, the local strong stable manifold
is an embedded disk contained in the global stable manifold W ss(x, v) and is defined as

W ss
ε (x, v) := {(x̃, ṽ) ∈ SgM : d(ϕtg(x̃, ṽ), ϕtg(x, v)) < ε if t ≥ 0}.

By the stable manifold theorem, there exists an ε = ε(x, v) > 0 such that

W ss(x, v) =
⋃
t≥0

ϕ−tg (W ss
ε (ϕtg(x, v))).

Analogous definitions hold for unstable manifolds.
If a periodic point is elliptic and has precisely 2q eigenvalues with |λ| = 1, the point is said

to be q-elliptic, where 1 ≤ q ≤ n− 1. A q-elliptic closed orbit is the orbit of a q-elliptic periodic
point. A partially hyperbolic closed orbit is a q-elliptic closed orbit with q < n−1, and a totally
elliptic corresponds to q = n− 1.

A heteroclinic point is a point in the intersection W s(γ1) ∩ W u(γ2) of two hyperbolic (or
partially hyperbolic) closed orbits γ1 and γ2.
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Let (x, v) ∈ SgM be a q-elliptic point and Pg the associated Poincaré map on a transversal Σ.
Then T(x,v)Σ = Es ⊕ Eu ⊕ Ec is the decomposition into stable, unstable and center subspaces
invariant under DPg(x, v). The restriction of the linearized Poincaré map to Es corresponds to
the eigenvalues |λ| < 1, the restriction to Eu to the ones |λ| > 1 and the remaining 2q correspond
to Ec with |λ| = 1.

The local strong stable W ss, unstable W su and center W sc manifolds are local embeddings
(dimensions n − q − 1, n − q − 1 and 2q, respectively) which are invariant under the Poincaré
map, and whose tangent spaces are the Es, Eu and Ec, respectively. Moreover, the Poincaré
map restricted to the center manifold Pg|W sc is locally a symplectomorphism.

We refer to [6, section 2.1] for more details and basic definitions concerning dynamical prop-
erties of the above flows.

2.3. Generic properties. As a consequence of the bumpy metric theorem [1] (cf. [9, section
2], [11, Theorem 2]), generically all periodic points are non-degenerate and the following holds.

Proposition 2.1. There is a Cr-residual set G ⊂ Rr, 2 ≤ r ≤ ∞, such that if g ∈ G, the closed
orbits of ϕtg with period less than a fixed bound are finite and are partially hyperbolic, hyperbolic
or totally elliptic.

The following lemma is a result by Contreras [8, section 3 and Theorem 4.1] (based on
techniques developed by Arnaud and Herman [3]).

Lemma 2.2. There is a C∞-residual set G0 ⊂ R2 such that if g ∈ G0 and γ is a q-elliptic closed
orbit for ϕtg, q ≥ 2, then there exists a 1-elliptic closed orbit γ̃ near γ whose Poincaré map Pg
on the 2-dimensional central manifold W sc is an area-preserving twist map.

For g ∈ R2, ε > 0 and D ⊂M , consider the set

Bε(g,D) = {g′ ∈ R2 : ‖g − g′‖C2 < ε, g′ = g on D}.
We want to realize perturbations by metrics in Bε(g, γ) for some orbit γ of the geodesic flow of g.
So we fix transversals Σ and Σ′ at p and p′, respectively, both on γ and consider the associated
transversal Poincaré flow P tg .

Take the set G1 ⊂ R2 as defined in [8]. This set is C2-open in R2 and G1 ∩R∞ is C∞-dense
in R∞. Denote by Sp(2n,R) the set of symplectic linear maps in R2n.

Theorem 2.3 ([8, 15]). Let g ∈ G1 ∩ R4 and ε > 0. There exists δ > 0 such that for any
simple geodesic segment γ ⊂ T ∗M of length 1, any linear map δ-close to DPg in Sp(2n− 2,R)
is realizable as DPĝ for some ĝ ∈ Bε(g, γ). Moreover, for every tubular neighborhood W of γ
and any finite set T of transverse geodesics, the support of ĝ − g can be contained in W \ V for
some small neighborhood of the transverse geodesics T .

The above theorem is the version of Franks’ lemma for geodesic flows in any dimension
manifolds. While its two-dimensional counterpart holds for all smooth metrics [9], for n ≥ 3
dimensional manifolds it is proved only for a residual set G1.

Given a simple closed curve γ ∈ TM , we define the set R∞γ containing all C∞ metrics that

have γ as an orbit of ϕtg.

Endow this set with the C2-topology and let

Bε,γ(g,D) = {g′ ∈ R∞γ : ‖g′ − g‖C2 < ε, g = g′ on D}.
Moreover, for any g ∈ R∞γ consider the map

Tγ : g 7→ trDPg|γ
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that gives the trace of the linearized Poincaré map at γ. Below we also use the notation
Bδ(a) = {y ∈ R : |y − a| < δ}, and π : TM →M the canonical projection.

Lemma 2.4. Let g ∈ G1 ∩ R∞, ε > 0 and γ a closed orbit for ϕtg. Then, there is δ > 0 such
that for any tubular neighbourhood W ⊂M of πγ,

Bδ(Tγ(g)) ⊂ Tγ(Bε,γ(g,D)),

where D = (M \W ) ∪ πγ.

Proof. This follows from Theorem 2.3. �

Finally, we include a result that states the uniform hyperbolicity of the closure of the set of
closed orbits for generic Mañé star systems.

Theorem 2.5. ([8, Theorem E]) There is a set G1 ⊂ R2 where G1 is C2-open in R2 and G1∩R∞
is C∞-dense in R∞ such that if g ∈ G1 ∩F 2, then Per(g) is uniformly hyperbolic.

2.4. The shadowing property. Fix δ, T > 0. A pair of sequences [(xi, vi), (ti)]i∈Z, where
(xi, vi) ∈ SgM , ti ∈ R, ti ≥ T , is a (δ, T )-pseudo-orbit of ϕtg if

d(ϕtig (xi, vi), (xi+1, vi+1)) < δ, i ∈ Z.
Write

ς(n) =


t0 + t1 + . . .+ tn−1, n > 0

−(tn + . . .+ t−2 + t−1), n < 0

0, n = 0.

For t ∈ R, take

(x0, v0) ? t = ϕt−ς(i)g (xi, vi), ς(i) ≤ t < ς(i+ 1).

Denote by Rep the set of all increasing homemorphisms τ : R→ R such that τ(0) = 0, called
(time) reparameterizations. For each ε > 0 let

Rep(ε) =

{
τ ∈ Rep :

∣∣∣∣τ(t)− τ(s)

t− s
− 1

∣∣∣∣ < ε, s, t ∈ R
}
,

of the reparameterizations ε-close to the identity.
A (δ, T )-pseudo-orbit [(xi, vi), (ti)]i∈Z is ε-shadowed by some orbit of ϕtg if there is (x̃, ṽ) ∈

SgM and a reparameterization τ ∈ Rep(ε) such that

(1) d(ϕτ(t)
g (x̃, ṽ), (x0, v0) ? t) < ε, t ∈ R.

The geodesic flow of g is said to have the shadowing property if for any ε > 0 there exist
δ, T > 0 such that any (δ, T )-pseudo-orbit [(xi, vi), (ti)]i∈Z is ε-shadowed by some orbit of ϕtg.

Finally, the geodesic flow of g is stably shadowable if there exists a C2-neighborhood V ⊂ R∞
of g such that ϕtĝ for any ĝ ∈ V has the shadowing property.

2.5. Shadowing with bounded reparametrization. Shadowing with bounded reparametrization
corresponds to the use of reparametrizations far from the identity but still bounded.

Given any L > 0, define

Rep′(L) = {τ ∈ Rep : |τ(t)| < L, t ∈ R} .
A (δ, T )-pseudo-orbit [(xi, vi), (ti)]i∈Z is ε-shadowed with bounded reparametrization by an orbit
of ϕtg if there is L > 0, (x̃, ṽ) ∈ SgM and a reparametrization τ ∈ Rep′(L) such that

(2) d(ϕτ(t)
g (x̃, ṽ), (x0, v0) ? t) < ε, t ∈ R.
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The geodesic flow of g is said to have the shadowing with bounded reparametrization property if
for any ε > 0 there exist δ, T > 0 such that any (δ, T )-pseudo-orbit [(xi, vi), (ti)]i∈Z is ε-shadowed
with bounded reparametrization by some orbit of ϕtg.

Finally, we say that the geodesic flow of g is stably shadowable with bounded reparametrization
if there exists a C2-neighborhood V ⊂ R∞ of g such that ϕtĝ for any ĝ ∈ V has the shadowing
with bounded reparametrization property.

2.6. The specification property. Consider a ϕtg-invariant compact set Λ ⊂ SgM . A specifi-
cation S = (σ, P ) consists in a finite collection σ = {I1, . . . , Im} of bounded disjoint intervals
Ii = [ai, bi] of the real line and a map P :

⋃
Ii∈σ Ii → Λ such that for any t1, t2 ∈ Ii we have

ϕt2g (P (t1)) = ϕt1g (P (t2)).

The specification S is K-spaced if ai+1 ≥ bi + K for all i ∈ {1, · · · ,m} and the minimal of
such K is called the spacing of S. If σ = {I1, I2}, then S is said to be a weak specification. Given
ε > 0, we say that S is ε- shadowed by (x, v) ∈ Λ if d(ϕtg(x, v), P (t)) < ε for all t ∈

⋃
Ii∈σ Ii.

We say that Λ has the weak specification property if for any ε > 0 there exists a K = K(ε) ∈ R
such that any K-spaced weak specification S is ε-shadowed by a point of Λ. In this case ϕtg|Λ
is said to have the weak specification property. The geodesic flow of g is said to have the weak
specification property if SgM has it.

The geodesic flow has the stable weak specification property if there exists a C2-neighbourhood
V ⊂ R∞ of g such that ϕtĝ for any ĝ ∈ V has the weak specification property.

2.7. The topological stability property. Consider the geodesic flows ϕtg : SgM → SgM

and ϕtg̃ : Sg̃M → Sg̃M associated to the metrics g, g̃ ∈ R∞, respectively. We say that g̃ is
semiconjugated to g if there exist a continuous and surjective map h : Sg̃M → SgM and a
continuous real map τ : Sg̃M × R→ R such that

(a) for any (x, v) ∈ Sg̃M , τ(x,v) : R→ R is an orientation preserving homeomorphism where
τ((x, v), 0) = 0 and

(b) for all (x, v) ∈ Sg̃M and t ∈ R we have h(ϕtg̃(x, v)) = ϕ
τ((x,v),t)
g (h(x, v)).

We say that the geodesic flow of g is topologically stable if for any ε > 0 there exists δ > 0
such that for any metric g̃ such that g̃ is δ-C1-close to g there exists a semiconjugacy from Sg̃M
to SgM , i.e. there exists h : Sg̃M → SgM and τ : Sg̃M × R → R satisfying (a) and (b) above,
and

d(h(x, v), (x, v)) < ε, (x, v) ∈ Sg̃M.

Notice that the notion of topologically stability does not define an equivalence relation. Fur-
thermore, the set of systems semi-conjugated to a given metric might not be an open set.
This motivates the following definition: g is C2-robustly topologically stable if there exists a
C2-neighbourhood V ⊂ R∞ of g whose elements have topologically stable geodesic flows.

2.8. The Kupka-Smale theorem revisited. A proof of the Kupka-Smale theorem for geo-
desic flows is included in [9, section 2] (notice that the statement there differs from the one
presented in [13]). We explain below how to obtain a sharper version of the theorem to be used
in the sequel.

Let Jrs (2n− 2) be the set of r-jets of symplectic automorphisms of R2n−2 which fix the origin
and r ≥ 1. One can identify J1

s (2n− 2) with Sp(2n− 2,R). A set Q ⊂ Jrs (2n− 2) is said to be
invariant if for all σ ∈ Jrs (2n− 2), σQσ−1 = Q.

Theorem 2.6. (Kupka-Smale [11, 9]) Let Q ⊂ Jrs (2n− 2) be open, dense and invariant. Then,
there exists a residual subset KS ⊂ Rr+1 such that for all g ∈ KS we have:
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(i) The r-jet of the Poincaré map of every closed geodesic of g belongs to Q;
(ii) All heteroclinic points of hyperbolic closed geodesics of g are transversal.

The proof of (ii) of Theorem 2.6 is in [9] and it is based on the construction of a perturba-
tion [9, Lemma 2.6] that guarantees the transversality. One first obtains a Hamiltonian local
perturbation of the geodesic flow with the transversality property (see [13]) related to a per-
turbed unstable Lagrangian manifold. A perturbed metric is then constructed such that this
manifold is inside the energy level set. As it is Lagrangian it is invariant and coincides with
the unstable manifold elsewhere for the geodesic flow. This means that the new metric has the
transversality property.

Theorem 2.7. Under the conditions of Theorem 2.6, there are no heteroclinic points for any
pair of periodic points consisting in a hyperbolic point and a 1-elliptic point.

Proof. We follow the arguments in the proof of Theorem 2.5 in [9], using the same notation, to
obtain the empty intersection property. Let Hr+1

N be the set of Cr+1 Riemannian metrics g such
that the r-jet of the Poincaré map of every closed orbit of g with period less or equal than N
belongs to Q (with 1-jets partially hyperbolic, hyperbolic or totally elliptic). By [9, Corollary
2.2] generically there are only a finite number of them. Let Kr+1

N be the subset of Hr+1
N of those

metrics g such that for any pair of:

(i) hyperbolic closed orbits γ and η of g with period less or equal than N , the submanifolds
W s
N (γ) an W u

N (η) are transversal, where W s
N (γ) is given by those points θ ∈W s(γ) with

dW s(γ)(θ, γ) < N (analogous definition for W u
N (η));

(ii) periodic points consisting in a hyperbolic point η and a 1-elliptic point γ of g with period
less or equal than N , the submanifolds W u

N (η) an W s
N (γ) do not intersect (analogously,

we can switch the role of the stable/unstable manifolds).

Since the stable and unstable manifolds of a closed orbit depend continuously on compact
parts in the C1 topology we conclude that Kr+1

N is an open subset of Rr+1. Meaning that, in
case (i), we have persistence of transversal intersection and, in case (ii), we have persistence of
empty intersection of stable/unstable manifolds. If we prove that Kr+1

N is a dense subset of the

Cr+1 metrics, then the residual subset of the theorem is defined by
⋂
N∈NK

r+1
N .

In [9] it was proved that the set defined as our set Kr+1
N but only satisfying (i) is dense in the

Cr+1 metrics. Now, we show that our ‘smaller’ subset Kr+1
N is also dense. To do that, we first

observe that Cr+1-generically (hence, by Baire’s category theorem, Cr+1-densely) there are only
a finite number of partially hyperbolic closed orbits with period less or equal than N . Therefore
our task of perturbing the metric to unstick non-transversal intersections of stable/unstable
manifolds of a pair hyperbolic/1-elliptic closed orbits can be achieved performing a finite number
of perturbations.

Lemma 2.8. Kr+1
N is dense in Rr+1.

Proof. We begin by assuming that the geodesic flow of g has only a finite number of partially
hyperbolic closed orbits of period less or equal than N . If there exist partially hyperbolic closed
orbits γ and η of g with period less or equal than N such that the submanifolds W s

N (γ) and
W u
N (η) do not intersect, then they will never intersect.
Now, perturb locally the metric in order to have W u

N (η) non-intersecting (i.e. transversal to)
the initial W s

N (γ) in a small open subset intersecting a (compact) fundamental domain K of
W u(η).

It can be used the same idea mentioned right after Theorem 2.6. Firstly one finds a local
Hamiltonian perturbation yielding an empty intersection between the Lagrangian unstable man-
ifold of the hyperbolic closed orbit and the isotropic stable manifold of the 1-elliptic closed orbit.
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Indeed, W u(η) and W s(γ) can become disjoint using a perturbation along the 2-dimensional
central manifold W c(γ). The realization of this effect for a perturbed metric is again obtained
as in [9, Lemma 2.6].

Cover K with a finite number of those small open subsets and unstick all intersections. Finally,
we observe two facts: a) our perturbations will cause a change in the new stable/unstable mani-
folds but do not change the future of W s(γ) neither the past of W u(η); b) once all intersections
are removed in a fundamental domain it will spread through the whole manifold.

Finally, we obtain that all intersections are removed under arbitrarily small perturbation on
the metric. �

This completes the proof of Theorem 2.7. �

3. Proofs

3.1. Proof of Theorem 1 (A). Assume that there is a q-elliptic closed orbit (q ≥ 2).
Following Lemma 2.2, there is nearby a 1-elliptic closed orbit. The Poincaré map restricted

to the 2-dimensional invariant central manifold W sc of this 1-elliptic closed orbit is an area-
preserving twist map.

Consider a pseudo-orbit constructed in W sc and assume that the eigenvalues of the linearized
Poincaré map restricted to W sc are equal to e±iρ with ρ irrational. Then, by a straighforward
adaptation of the proof of [6, Proposition 4.1(a)], there can not exist a shadowing orbit in W sc.
So, there is ε > 0 such that for any δ, T > 0 we can find a (δ, T )-pseudo-geodesic [(xn, vn), (tn)]n∈N
which is not ε-shadowed by any orbit of g in W sc.

It remains to consider the case that the shadowing orbit is outside W sc. Since the central
manifold is normally hyperbolic, the unstable directions will drive away the orbit from an ε-
neighbourhood of the pseudo-orbit, thus shadowing with reparametrization near the identity is
not possible.

By restricting the metric g to the residual set G1 ∩ R∞, we can use Lemma 2.4 in order to
perturb g and get ρ irrational for the new metric. Thus, the shadowing properties can not stably
hold.

3.2. Proof of Theorem 1 (B). Several authors obtained hyperbolicity from the hypothesis
that the system has the stable specification property (see [16, 2]). We point out that their argu-
ments were supported on a change of index argument in the hyperbolic closed orbits. However,
in the symplectic setting such situation is impossible to happen because the index is constant
and equal to n− 1. In [5] this problem was solved using a pasting lemma available for Hamilto-
nians but not available for the geodesic flow. Here, we obtain similar results for geodesic flows
through a new approach that we explain in the following.

Notice first that given two q-elliptic closed orbits, 1 ≤ q ≤ n − 2, and under the weak
specification property we must have non-empty intersection between the stable manifold of
one with the unstable manifold of the other. Clearly, this intersection cannot be transversal.
Therefore, considering solely Kupka-Smale geodesic flows (see §2.8) with the weak specification
property, we conclude that q-elliptic closed orbits cannot exist. Consider then the case of a
totally elliptic closed orbit (i.e. q = n−1) on geodesic flows with robust weak specification. But
this implies by Lemma 2.2 the existence of a 1-elliptic closed orbit. So, under stability of weak
specification the periodic points can only be hyperbolic.

We shall start by deducing some consequences of the weak specification property. Let g ∈ R∞
and γ0 = (x, v) ∈ SgM be a periodic point. Recall that we denote the spectrum of DPg(γ0)
outside the unit circle by S0(g, γ0) and by γ the orbit of the point γ0.

The next result is an adaptation of [2, Theorem 3.3].
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Lemma 3.1. Let g ∈ R∞. If ϕtg has the weak specification property, then for every distinct

periodic points γ0, η0 ∈ SgM such that S0(g, γ0) 6= ∅ and S0(g, η0) 6= ∅, we have that

W u(γ) ∩W s(η) 6= ∅.

Proof. Denote by ε(γ0) the size of the local strong unstable manifold W su
ε(γ0)(γ0) of γ0 and by

ε(η0) the size of the local strong stable manifold W ss
ε(η0)(η0) of η0. Let ε = min{ε(γ0), ε(η0)}

and K = K(ε) be given by the weak specification property. If t > 0, take I1 = [0, t] and
I2 = [K + t,K + 2t].

Now, define P (s) = ϕs−tg (γ0) if s ∈ I1 and P (s) = ϕs−K−tg (η0) if s ∈ I2. Note that this is a

K-spaced weak specification. Under these conditions there exists ζt0 which shadows this weak
specification,

d(ϕsg(ζ
t
0), P (s)) ≤ ε if s ∈ I1 ∪ I2.

Using the change of variable u = t− s, we have

d(ϕ−ug (ϕtg(ζ
t
0)), ϕ−ug (γ0)) = d(ϕt−ug (ζt0), ϕ−ug (γ0)) ≤ ε, u ∈ [0, t],

and with u = s−K − t,
d(ϕug (ϕK+t

g (ζt0)), ϕug (η0)) ≤ ε, u ∈ [0, t].

If ξt0 = ϕtg(ζ
t
0) we can assume that ξt0 → ξ0. By taking limits in the previous inequalities we

obtain
d(ϕ−ug (ξ0), ϕ−ug (γ0)) ≤ ε for every u ≥ 0, and

d(ϕug (ϕKg (ξ0)), ϕug (η0)) ≤ ε for every u ≥ 0.

The first one says that ξ0 ∈W su
ε (γ0) ⊂W u(γ) and the second one says that ϕKg (ξ0) ∈W ss

ε (η0),
hence ξ0 ∈W s(η). �

The proof of the next result differs substantially from the one in [5] for Hamiltonians.

Proposition 3.2. Let g ∈ R∞. If ϕtg has the stable weak specification property, then S0(g, γ0) 6=
∅ for any periodic point γ0.

Proof. Let V be a C2-neighbourhood of g wherein the weak specification property holds. Sup-
pose, by contradiction, that there exists a totally elliptic periodic point γ0 of ϕtg. We can
approximate the metric g by g̃ ∈ G0 ∩ V so that the analytic continuation of the totally elliptic
periodic point γ0 remains a totally elliptic periodic point. Now, using Lemma 2.2, we obtain a
1-elliptic periodic point γ̃0 near γ0. The case n = 2 is contained in [6, Theorem 1 (c)].
Assume that n > 2. By [8, Theorem A] we obtain a nontrivial hyperbolic basic set Λg1 for a met-
ric g1 ∈ V such that we still have a continuation of the 1-elliptic periodic orbit γ̃ (also denoted
by γ̃). Further perturbing using the Kupka-Smale theorem (Theorem 2.6) we get g2 ∈ KS ∩ V
yelding a continuation of the 1-elliptic periodic orbit γ̃ (again denoted by γ̃) and a continuation
Λg2 of the nontrivial hyperbolic basic set.
Let η0 ∈ Λg2 be a hyperbolic periodic point and so dimW s(η) = n. As dim(SgM) = 2n− 1 and
since γ̃0 is a 1-elliptic periodic point, we have that dimW u(γ̃) = dimW s(γ̃) = n− 1. To obtain
a transversal intersection between W u(γ̃) and W s(η) one must have

dim[W u(γ̃) ∩W s(η)] = dimW u(γ̃) + dimW s(η)− dim(SgM),

which can never happen in our context. Indeed, since the stable/unstable manifolds intersect
transversally (cf. Theorem 2.6 and Theorem 2.7), one has W u(γ̃)∩W s(η) = ∅. But this contra-
dicts Lemma 3.1.

�
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The previous proof easily entails the following result.

Lemma 3.3. Let g ∈ R∞ such that ϕtg has the stable weak specification property for a neigh-
bourhood V of g. Then, every Kupka-Smale metric in V has all closed orbits of hyperbolic type.

The lemma below is a direct consequence of Theorem 2.6.

Lemma 3.4. Let g ∈ R∞ and let γ be a non-hyperbolic closed orbit of ϕtg. Then, there exists
g̃ ∈ R∞ arbitrarily close to g such that g̃ is a Kupka-Smale metric exhibiting elliptic closed
orbits.

Proof. Let γ be a non-hyperbolic closed orbit of ϕtg. If γ is q-elliptic with 1 ≤ q ≤ n− 1, there

exists an arbitrarily C2-close Kupka-Smale metric g̃ ∈ KS such that the analytic continuation
of the elliptic closed orbit γ is still a q-elliptic closed orbit for the Kupka-Smale metric g̃. �

We can now prove Theorem 1 (B). Given a metric g ∈ R∞ satisfying the stable weak specifi-
cation property on a neighborhood V, we need to show that all its closed orbits are hyperbolic.
Hence, g ∈ F 2. Suppose that there is a non-hyperbolic closed orbit γ. By Lemma 3.4 there
exists a Kupka-Smale metric g̃ ∈ V such that ϕtg̃ has a non-hyperbolic closed orbit, which
contradicts Lemma 3.3.

3.3. Proof of Theorem 1 (C). Let L > 0 and fix η > 0 such that any ĝ ∈ R∞ being η-C2-
close to g still has the shadowing property with reparametrization τ ∈ Rep′(L). Take any closed
orbit γ of ϕtg and suppose, by contradiction, that γ is q-elliptic (q ≥ 2). By Lemma 2.2 there
exists a 1-elliptic closed orbit γ̃ near γ whose Poincaré map Pg on the 2-dimensional central
manifold W sc is an area-preserving twist map.
As in the proof of Theorem 1 (A), for any δ > 0 we will consider a δ-pseudo-orbit constructed
in W sc and assume that the eigenvalues of the linearized Poincaré map restricted to W sc are
equal to e±iρ with ρ irrational.
Let σ > 1 be the largest eigenvalue of DPg. Take γ̃0 = γ̃ ∩W sc and ε < ε̂ σ−L, where ε̂ > 0
is the radius of a domain of linearization of Pg in a neighborhood of γ̃0. The true orbit which
ε-shadows the δ-pseudo-orbit cannot be in the central manifold, so it must have hyperbolic
expansive components but surely dominated by σ. Considering neighborhoods of radius ε and
σLε from the 1-elliptic closed orbit we know that the true orbit will remain in the region between ε
and σLε < ε̂ for at least bLc iterates. This contradicts the fact that g has the shadowing property
with reparametrization τ ∈ Rep′(L).
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