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Abstract: We have developed a new cationic solid lipid nanoparticle (SLN) formulation, composed
of Compritol ATO 888, poloxamer 188 and cetyltrimethylammonium bromide (CTAB), to load
perillaldehyde 1,2-epoxide, and surface-tailored with a monoclonal antibody for site-specific targeting
of human epithelial growth receptor 2 (HER2). Perillaldehyde 1,2-epoxide-loaded cationic SLN
(cPa-SLN), with a mean particle size (z-Ave) of 275.31 ± 4.78 nm and polydispersity index (PI)
of 0.303 ± 0.081, were produced by high shear homogenization. An encapsulation efficiency of
cPa-SLN above 80% was achieved. The release of perillaldehyde 1,2-epoxide from cationic SLN
followed the Korsemeyer–Peppas kinetic model, which is typically seen in nanoparticle formulations.

Pharmaceutics 2020, 12, 161; doi:10.3390/pharmaceutics12020161 www.mdpi.com/journal/pharmaceutics

http://www.mdpi.com/journal/pharmaceutics
http://www.mdpi.com
https://orcid.org/0000-0002-9737-6017
https://orcid.org/0000-0003-2603-1377
https://orcid.org/0000-0002-7747-9107
https://orcid.org/0000-0001-5505-3327
https://orcid.org/0000-0003-2545-0967
https://orcid.org/0000-0002-7524-9914
https://orcid.org/0000-0001-6527-6612
http://dx.doi.org/10.3390/pharmaceutics12020161
http://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/1999-4923/12/2/161?type=check_update&version=2


Pharmaceutics 2020, 12, 161 2 of 13

The lipid peroxidation of cPa-SLN was assessed by the capacity to produce thiobarbituric acid-reactive
substances, while the antioxidant activity was determined by the capacity to scavenge the stable radical
DPPH. The surface functionalization of cPa-SLN with the antibody was done via streptavidin-biotin
interaction, monitoring z-Ave, PI and ZP of the obtained assembly (cPa-SLN-SAb), as well as its
stability in phosphate buffer. The effect of plain cationic SLN (c-SLN, monoterpene free), cPa-SLN
and cPa-SLN-SAb onto the MCF-7 cell lines was evaluated in a concentration range from 0.01 to
0.1 mg/mL, confirming that streptavidin adsorption onto cPa-SLN-SAb improved the cell viability in
comparison to the cationic cPa-SLN.

Keywords: perillaldehyde 1,2-epoxide; Compritol ATO 888; cationic SLN; streptavidin adsorption;
MCF-7 cells

1. Introduction

The nonselective delivery of anticancer drugs to the tumor site remains a challenge in chemotherapy
and is the reason for the serious side effects of the classical treatments. Nanoparticles have partially
solved this limitation, by reducing the systemic distribution of anticancer drugs by passive targeting.
Cationic nanoparticles with a net positive surface charge have been proposed to further enhance
cellular interaction and increase the cellular uptake of the loaded drug [1–6]. Site-specific delivery can
be achieved via active targeting by surface modifying, such as with antibodies, aptamers and other
targeting moieties (e.g., transferrin, folate) tailored to specific receptors [7,8].

Traditional medicine has countless of examples of natural compounds with several health
benefits. Essential oils are indeed a source of phytochemicals of pharmaceutical and nutraceutical
interest, with monoterpenes being their main constituents [9]. Monoterpenes show antioxidant,
antimicrobial, analgesic, anxiolytic and anticancer properties, with an increasing interest as a source
of therapeutic alternatives [10–13]. Perillyl alcohol, a naturally occurring monoterpene found in the
essential oils peppermint and lavender, has been widely studied [14], demonstrating effectiveness
against a variety of human tumor cell lines [15–17]. The monoterpene showed cytotoxicity and
antitumor activity in various experimental models, and has already reached clinical trials for cancer
treatment [15,18]. The cytotoxicity of perillyl alcohol analogues, such as (-)-8,9-perillaldehyde
epoxide, (-)-perillaldehyde, (+)-limonene 1,2-epoxide and (-)-8-hydroxycarvotanacetone, has also been
thoroughly characterized [15]. The anti-tumoral activity of perillaldehyde 1,2-epoxide has also been
described by Andrade et al. [15,19]. The aim of this study has been the loading of perillaldehyde
1,2-epoxide into cationic solid lipid nanoparticles (cSLN) for site-specific delivery to breast cancer
cells. Solid lipid nanoparticles (SLN) have been selected as a delivery system due to their composition
in biocompatible and biodegradable lipids, with a reduced risk of cyto/genotoxic events [3,20,21].
Furthermore, these particles can be produced with cationic lipids so that the positive charge can then
be functionalized with a monoclonal antibody against human epithelial growth receptor 2 (HER2) [8].

2. Materials and Methods

2.1. Materials

Compritol ATO 888 (glycerol behenate) was obtained as a gift from Gattefosse (Saint-Priest, France),
Poloxamer 188 (trade name: Kolliphor® P188) was bought from BASF (Ludwigshafen, Germany), the
ErbB2/HER-2 monoclonal antibody (CB11) was obtained from ThermoFisher Scientific (Wilmington,
USA) and cetyltrimethylammonium bromide (CTAB) was purchased from Sigma (Sintra, Portugal).
Perillaldehyde, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), doxorubicin
(purity > 98%), Trolox, thiobarbituric acid (TBA), butylated hydroxytoluene (BHT), dimethyl sulfoxide
(DMSO), methanol, hexane, ethyl acetate, hydrogen peroxide (30%) and potassium hydroxide were
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purchased from Sigma Chemical Co. (St. Louis, MO, USA). Double-distilled water was used throughout
the work, after filtration in a MiliQ system (Millipore, Merck KGaA, Darmstadt, Germany).

2.2. Synthesis of Perillaldehyde 1,2-epoxide

The synthesis of perillaldehyde 1,2-epoxide was carried out as described by Andrade et al. [19],
who analyzed the product by infrared and 1H- and 13C-NMR [15]. Briefly, a solution of 7.5% (m/v)
perillaldehyde in methanol was mixed with hydrogen peroxide (30%) in a 250 mL flask, and kept in an
ice bath (0–4 ◦C), to which a volume of 5 mL of potassium hydroxide (0.5 g/mL) was added dropwise.
The reaction medium was stirred for a period of four hours, after which it was removed from the ice
bath and the aqueous phase was extracted by washing it with 50 mL of dichloromethane. The organic
phase was washed twice with 50 mL double-distilled water, dried with anhydrous sodium sulfate and
concentrated in an IKA rotary evaporator (Staufen, Germany). Purification was done in a silica gel
column chromatography, using a mixture of hexane/ethyl acetate (9:1) as eluant. A yield of 77.8% was
obtained for perillaldehyde 1,2-epoxide.

2.3. Production of Cationic Solid Lipid Nanoparticles (cSLN)

2.3.1. Non-Functionalized cSLN

The production of cationic SLN (cSLN) was carried out by hot high-shear homogenization, as
described by Souto et al. [8], using glycerol behenate as solid lipid and poloxamer 188 as surfactant.
Compritol (glycerol behenate) [5.0% (w/v)] was melted at 80 ◦C and then dispersed in an aqueous
solution composed of 0.25% (w/v) poloxamer 188 and 0.5% (w/v) CTAB, heated up at the same
temperature to produce an emulsion under stirring at 8000 rpm for 10 min in an Ultra-Turrax
(Ultra-Turrax ®, T25, IKA, Staufen, Germany). The obtained emulsion was diluted (2:1) in cold water,
kept at 4 ± 0.5 ◦C and further processed at 5000 rpm for five more minutes. The obtained particles
were transferred to siliconized glass vials and stored at 4 ± 0.5 ◦C for further studies. For the loading
of cSLN with the synthesized perillaldehyde 1,2-epoxide (cPa-SLN), nanoparticles were produced as
described, by adding the drug [0.5% (w/w)] to the melted lipid [4.5% (w/v)] prior to emulsification.
Weightings were done in an analytical balance (Mettler Toledo, Giessen, Germany) with a readability
of 0.005 mg.

2.3.2. mAb-Functionalized cSLN

The functionalization of cPa-SLN was carried out as previously described, and following the
method proposed by Petersen et al. [22]. Firstly, the ability of the produced cationic nanoparticles
to bind streptavidin was evaluated by incubating cPa-SLN with the protein at decreasing ratios
(1:5, 1:10, 1:15, 1:20 and 1:25), for a period of one hour at room temperature. The formation of
the cPa-SLN-Streptavidin (cPa-SLN-S) complexes was monitored by determining z-AVE and ZP, as
described in 2.4. The monoclonal antibody (mAb, CB11) was dispersed in PBS (pH 7.4), diluted
down to 1 mg/mL and biotinylated using a Biotinylation Kit (Biotin Conjugation Kit (Fast, Type A)
Lightning-Link®). Aliquots of biotinylated antibody were stored at −20 ◦C until further use. cPa-SLN-S
complexes were mixed with a biotinylated antibody and incubated at room temperature over at
least one hour to complex with the mAb, and form cPa-SLN-SAb complexes. The formation of the
cPa-SLN-SAb complexes (i.e., the adsorption of mAb onto the cPa-SLN-S surface) was monitored by
measuring z-AVE and ZP, as described in Section 2.4.

2.4. Mean Particle Size, Polydispersity Index and Zeta Potential

Immediately after the production of each nanoparticle batch, the mean particle size (z-Ave) and
polydispersity index (PI) were determined by dynamic light scattering (DLS, Zetasizer Nano ZS,
Malvern, Worcestershire, UK). Prior to the analysis of cSLN and cPa-SLN, particles were diluted with
MilliQ water and measured at a 1 mg/mL of solid lipid concentration. Prior to the analysis of cPa-SLN-S
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and cPa-SLN-SAb, particles were diluted in a phosphate buffer saline (PBS, pH 7.4) and measured at a
1 mg/mL of solid lipid concentration. Zeta potential (ZP) was recorded in a laser Doppler anemometry
Zetasizer Nano ZS (Malvern, Worcestershire, UK) using the Smoluchowski equation. Dilutions were
performed prior to analysis, as described for the recording of z-Ave and PI. Measurements were done
in triplicate (n = 3) (10 runs per measurement, 30 in total), and data were expressed as the arithmetical
mean ± standard deviation (SD).

2.5. Encapsulation Efficiency (EE)

The encapsulation efficiency (EE) of perillaldehyde 1,2-epoxide in cPa-SLN was determined
as an indirect measure of the amount of drug quantified in supernatant [23]. Briefly, cPa-SLN
was firstly ultra-centrifuged for 1 h at 100,000 g in a Beckman Optima™ Ultracentrifuge (Optima™
XL, Indianapolis, IN, USA) and the quantification of perillaldehyde 1,2-epoxide, determined in the
supernatant in a UV spectrophotometer Shimadzu UV-1601 (Shimadzu Italy, Cornaredo, Italy), at
245 nm. The following equation was used to calculate EE% [24]

EE% =
WPa −Ws

WPa
× 100 (1)

where WPA is the mass of perillaldehyde 1,2-epoxide used for the production of SLN, and WS is the
mass of perillaldehyde 1,2-epoxide quantified in the supernatant.

2.6. In Vitro Release Profile of cPa-SLN

Vertical Franz diffusion cells were used to determine the in vitro release profile of perillaldehyde
1,2-epoxide from cPa-SLN. Prior to the assay, cellulose membranes with an average pore size of 0.22
µm (MERCK KgaA, Darmstadt, Germany) were firstly soaked for 2 h in PBS (pH 7.4), and then placed
between the donor and acceptor compartments. A volume of 1 mL of freshly prepared cPa-SLN was
placed onto the top of the donor compartment. The acceptor compartment, containing 5 mL of a PBS
buffer, was kept under magnetic stirring at 37 ◦C over the course of the assay. At pre-determined
time intervals, a volume of 200 µL was sampled with a syringe, being the same volume replaced with
the PBS buffer to ensure sink conditions. The cumulative amount of perillaldehyde 1,2-epoxide was
analysed in a UV spectrophotometer Shimadzu UV-1601 (Shimadzu Italy, Cornaredo, Italy) at 245 nm.
Four kinetic models, namely the zero order, first order, Higuchi and Korsmeyer-Peppas models, have
been used for the mathematical fitting of the recorded values [25]. The obtained R2 values were used
for the selection of the most appropriate model.

2.7. In Vitro Lipid Peroxidation Assay

To 1 mL of egg yolk homogenate (1% w/v) in phosphate buffer (pH 7.4), a volume of 0.1 mL ferrous
sulphate (FeSO4, 0.17 mol/L) was added. To the obtained mixture, increasing concentrations of cPa-SLN
(1, 2, 3, 4, 5 and 10 µg/mL, solid lipid) were added, which were then incubated at 37 ◦C for 30 min.
After cooling, a volume of 0.5 mL of each mixture was centrifuged with 0.5 mL of trichloroacetic acid
solution (15% m/v) for 10 min at 1200 rpm. The collected supernatant (0.5 mL) was mixed with the same
volume of thiobarbituric acid solution (0.67% m/v) and incubated for 60 min at 95 ◦C. After cooling, the
formation of TBARS was quantified by spectrophotometry by measuring the supernatant at 532 nm,
and the results were expressed as malondialdehyde equivalents (MDA Eq) of the substrate. Trolox
(standard antioxidant) was used as positive control, at 50 µg/mL, against water as the negative control.

2.8. In Vitro Antioxidant Activity of cPa-SLN

The antioxidant activity of cPa-SLN was determined as the ability of the loaded drug to scavenge
the stable radical DPPH• [26]. Briefly, cPa-SLN was firstly dissolved in 0.1 mM of a DPPH methanolic
solution to achieve concentrations of cPa-SLN of 1, 2, 3, 4, 5 and 10 µg/mL of solid lipid. Then, 20 µL
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of samples were placed in the microplate wells. Finally, 200 µL DPPH methanolic solution (0.1 mM),
were added to each of the wells. Methanol and butylated hydroxytoluene (BHT, 0–6 µg/mL) were used
as negative and positive controls, respectively. The microplates were incubated at 25 ◦C for 30 min,
and then read at 517 nm in a multiplate reader (DTX 880 Multimode Detector, Beckman Coulter Inc.).
The antioxidant activity (AA) as the measure of the percentage of scavenging of free radicals was
calculated from the recorded optical densities (OD), using the following equation:

AA% =
OD of negative control −OD of sample

OD of negative control
×100 (2)

By plotting the concentration in the X-axis (µg/mL) against AA% in the Y-axis (% inhibition), the
linear regression equation was obtained and the IC50 value determined.

2.9. Cell Culture and MTT Assay

The cytotoxicity of cSLN (blank) and cPa-SLN was tested in MCF-7 cells obtained from
ATCC (Pensabio Biotecnologia, São Paulo, Brazil). Cells were cultured in RPMI-1640 medium
supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 100 µg/mL streptomycin and
100 U/mL penicillin, and further incubated at 37 ◦C in a 5% CO2 atmosphere. Consumables
for cell culture were obtained from Sigma Chemical Co. (St. Louis, MO, USA). For the
3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay [27], cells were
incubated in 96-well plates (0.1 × 106 cells/mL; 100 µL/well) for 24 h. Solutions of cSLN (blank)
and cPa-SLN in dimethyl sulfoxide (DMSO 0.7%) at increasing concentrations (1, 2, 3, 4, 5 and 10 µg/mL
of solid lipid) were added to each well, and incubated for more 72 h at 37 ◦C in a 5% CO2 atmosphere.
A solution of DMSO 1% was set as the negative control, whereas a doxorubicin solution (100 µg/mL)
was set as the positive control. At the end of the incubation period, test solutions were removed.
An MTT solution (150 µL) at 0.5 mg/mL was added to each well, and incubated for three hours at
37 ◦C in a 5% CO2 atmosphere. Cell viability was determined as the ability of viable cells to reduce the
yellow dye MTT to the purple formazan. The obtained precipitate was dissolved in 150 µL DMSO, and
the absorbance was read at 595 nm using a multiplate reader (DTX 880 Multimode Detector, Beckman
Coulter Inc.). The results were expressed as percentage of cell growth inhibition (%GI) as follows:

%GI = 100×
[

AbsTest

AbsNegative Control
× 100

]
(3)

2.10. Statistical Analysis

Data obtained are expressed as the mean ± SEM, and the differences among experimental groups
were evaluated using a one-way analysis of variance (ANOVA) followed by the Dunnet post-test.
Values of p < 0.05 were considered significant. All statistical analyses were carried using the GraphPad
program 5.0® (Intuitive Software for Science, San Diego, CA, USA).

3. Results and Discussion

From the p-menthane derivatives described by Andrade et al. [15], perillaldehyde 1,2-epoxide
was selected due to its high cytotoxic profile (growth inhibition (GI%) > 95%), and was tested in
a concentration of 25 µg/mL in colon carcinoma (HCT-116), ovarian adenocarcinoma (OVCAR-8),
glioblastoma (SF-295) and promyelocytic leucemia (HL-60) cell lines [19]. Literature states that GI%
= 0 means no cytotoxicity, while 1 < GI% < 50 is low cytotoxicity, 51 < GI% < 75 is moderate
cytotoxicity and GI% > 75 is cytotoxicity [28]. To reduce the cytotoxicity of the compound while
increasing site-specific delivery, we proposed the loading of perillaldehyde 1,2-epoxide into cationic
solid lipid nanoparticles (SLN), to be surface tailored to HER2 receptors. The loading of the selected
monoterpene into Compritol cSLN resulted in particles with the characteristics summarized in Table 1.
The high-shear homogenization method has been previously shown to produce SLN of a low mean
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size and polydispersity [8], and the possibility to operate at a temperature compatible with the thermal
stability of the selected drug [15,29].

Table 1. Mean particle size (z-AVE), polydispersity index (PI), zeta potential (ZP) and encapsulation
efficiency (EE%) of perillaldehyde 1,2-epoxide into cationic SLN.

Batch z-Ave (nm) PI ZP (mV) EE%

cSLN 217.89 ± 5.33 0.293 ± 0.049 +67.91 ± 3.41 −

cPa-SLN 275.31 ± 4.76 0.303 ± 0.081 +65.57 ± 2.23 81.64 ± 1.06

The nonsurface modified cationic SLN showed a very high positive net charge in both batches,
due to the presence of CTAB (0.5% m/v) on the surface. Both z-Ave and PI increased with the loading
of the monoterpene, showing a slightly broad distribution with a PI above 0.24 (values below this limit
are considered monodispersed). A slight decrease of ZP was found with the loading of perillaldehyde
1,2-epoxide, attributed to its lipophilic character, and confirming its loading within the lipid matrices.

Due to its lipophilic character, more than 80% of the drug was encapsulated within Compritol
matrices. As SLN are of a crystalline nature, it is expected that a modified release profile can be
achieved for the loaded drug. The release profile of cPa-SLN was evaluated over the course of 24 h,
and the results are shown in Figure 1.
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Figure 1. Cumulative percentage release of perillaldehyde 1,2-epoxide from cPa-SLN over 24 h.

About 12% of the drug was released within the first two hours (11.90 ± 1.52%), while at the end of
the 24-h period, 83.40 ± 2.79% of the drug was released. The depicted profile cPa-SLN translates a
controlled release of perillaldehyde 1,2-epoxide from the cationic particles. To further elucidate which
mechanisms are behind such releases, four mathematical models were used to fit the recorded values
(Figure 2).

From the values obtained for R2, the best model describing the release of perillaldehyde 1,2-epoxide
from cPa-SLN was shown to be Korsmeyers–Peppas, with a R2 of 0.9791, the closest straight-line results.
This model describes the drug release from the nanoparticles accordingly to Mt/M∞ = k′tn, where
Mt is the cumulative amount of the drug released at time t, M∞ is the cumulative amount of the drug
released at an infinite time, k′ is the constant that is governed by the physicochemical properties of
the nanoparticle matrix and n is the diffusional release exponent indicating of the mechanism of the
drug release. Indeed, n = 0.5 stands for Fickian diffusion, whereas 0.5 < n < 1.0 means a non-Fickian
diffusion. The shape of the particles plays a significant role on the drug release. For particles of a
spherical shape, the drug release becomes independent of time and reaches a zero-order release, known
as Case II transport, achieved as n approaches 1.0. In such cases, a diffusional exponent n = 1.0 is
indicative of non-Fickian transport. If n > 1.0, super Case II transport is followed [30]. The second-best
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fitting model was Higuchi, with a R2 of 0.9535. The Higuchi model describes the fraction of the drug
released from a matrix being proportional to the square root of time, i.e., Mt/M∞ = kH t

1
2 , where

Mt is the cumulative amount of the drug released at time t, M∞ is the cumulative amount of the drug
released at an infinite time, and kH is the Higuchi dissolution constant, which is governed by the
physicochemical properties of the nanoparticle matrix. If the release profile follows this model (Fickian
diffusion), it means that a straight line with kH as a slope will be obtained when plotting x = kH against
y = Mt/M∞. The modified release profile is achieved because of the solid state of the lipid core, as
previously confirmed by us [2]. Besides, we have also confirmed by DSC and x-Ray diffraction that
cationic surfactant CTAB forms a stabilizing layer on the SLN surface, and is not part of the inner
matrix, solely composed of solid lipid and the drug. These results were confirmed by the decrease of
ZP over storage time, which means that CTAB may suffer some adsorption from the surface during its
shelf life [31].
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Figure 2. Mathematical fitting models of the release profile of perillaldehyde 1,2-epoxide from cPa-SLN
over 24 h.

Due to the vulnerability of lipid materials to free radicals, SLN can suffer lipid peroxidation.
However, it is estimated that perillaldehyde 1,2-epoxide, as a monoterpene derivative, can neutralize
the free radicals eventually resulting from lipid peroxidation. Increasing concentrations of cPa-SLN (1,
2, 3, 4, 5 and 10 µg/mL) were assayed, and the results are depicted in Figure 3. As shown in Figure 3,
the increasing concentration of the particles increased the neutralizing capacity attributed to the higher
amount of the drug available to reduce the product formation generated by lipid peroxidation, i.e.,
the MDA (nmol MDA Eq/mL), when compared to the negative control (p < 0.05). The six tested
concentrations (1, 2, 3, 4, 5 and 10 µg/mL) revealed an antioxidant effect, i.e., the capacity of cPa-SLN to
inhibit the Fenton reaction. This property is also linked to the capacity of terpenes in preventing DNA
damage by neutralizing reactive oxygen species (ROS), widely reported as a major cause of cancer [32].
The capacity of cPa-SLN to neutralize ROS was also confirmed using the DPPH test, and as expected,
was shown to be concentration-dependent (Table 2). The absorbance decay of the sample test was
correlated with the absorbance decay of the control test, resulting in the percentage scavenging of free
radicals translated as the antioxidant activity [23]. For the positive control (BHT), 78.11% scavenging
of DPPH radicals was recorded at the highest-tested concentration (6.0 µg/mL); similar results were



Pharmaceutics 2020, 12, 161 8 of 13

previously reported [23,33]. By plotting the obtained results, a linear regression (y = 3.9814 x − 3.9867)
with R2 = 0.9856 was obtained, and the IC50 was calculated as 195.08 µg/mL.
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Figure 3. Effect of cPa-SLN (1, 2, 3, 4, 5 and 10 µg/mL) on the amount of malondialdehyde equivalents
(MDA Eq.) produced in the presence of the free radical FeSO4 inducers, performed in triplicate. Trolox
and water were used as the positive and the negative control, respectively. Data are presented as
mean ± SEM. * p < 0.05 when compared to the negative. One-way ANOVA with Dunnet post-test
was applied.

Table 2. Evaluation of antioxidant activity (% scavenging of free radical DPPH) of perillaldehyde
1,2-epoxide from cPa-SLN.

µg/mL AA%

1 0.59 ± 0.03
2 4.24 ± 0.02
3 7.39 ± 0.10
4 11.27 ± 0.05
5 14.93 ± 0.11

10 21.27 ± 0.12

From the results depicted in Table 2, increasing the concentration of lipid nanoparticles, the
amount of the viable drug also increases, considering that more than 80% of the drug is loaded in
the lipid matrices and is released in a time-dependent fashion (Figure 2). Our results confirm that
cPa-SLN shows some antioxidant capacity (even if used at low concentration of particles) that can be
exploited together with the antitumoral activity of perillaldehyde 1,2-epoxide in site-specific delivery.
For a successful active targeting and site-specific delivery, the surface-modification of the particles is
needed. The first step has been the streptavidin binding into cPa-SLN (cPa-SLN-S). Streptavidin is a
protein purified from Streptomyces avidinii, showing high affinity for biotin, and is highly resistant to
temperature variations, extreme pH values, organic solvents and proteolytic enzymes. It is usually
recommended for the displaying of immobilized biotinylated antibodies [34,35].

To evaluate the capacity of cPa-SLN to bind streptavidin and produce the cPa-SLN-S complex,
cPa-SLN were first diluted with PBS (1 mg/mL) and mixed, in different ratios, with aqueous streptavidin
solution, as described by us [8], following the monitoring of z-Ave and ZP (Figure 4). While the
amount of mAb successfully attached to biotin and then to the surface of cationic SLN could not be
directly quantified, the amount of streptavidin and biotinylated antibody was optimized by a stepwise
monitoring of the z-Ave and ZP of the obtained complexes, as well as their immediate stability in PBS.
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given as a mean from three measurements of three independent experiments.

Although not statistically significant, a stepwise decrease in the z-AVE was shown with the
increasing ratio of cPa-SLN—Streptavidin, i.e., the higher the amount of protein bound to the surface
the higher the particle size (Figure 4, upper). The ZP decreased from 65.57 ± 2.23 mV (cPa-SLN) down
to 53.06 ± 3.08 mV (5:1 w/w), which means that a stepwise decrease in the ZP was shown with the
increasing amount of streptavidin. Although the decrease of ZP is associated with the increased risk of
aggregation of particles in dispersion, the values remained well above +50 mV, ensuring a sufficient
number of repulsive forces to maintain the electrostatic stability of the dispersions. Our results confirm
the binding capacity of cPa-SLN to streptavidin. To further check the binding of the obtained complexes
with the monoclonal antibody (cPa-SLN-SAb), 10 µg of biotinylated mAb was mixed with cPa-SLN-S
complexes, obtained with ratios of 25:1, 15:1 and 10:1 in PBS. The z-Ave and ZP were again monitored
(Figure 5).

The further increase in z-Ave with the antibody attachment up to 327.33 ± 6.21 nm and decreasing
of ZP down to 51.04 ± 6.21 mV confirmed the binding and formation of cPa-SLN-SAb complexes.
Again, the high ZP values ensure their stability in aqueous dispersion. Besides, proteins adsorbed onto
the nanoparticles’ surface can also provide some stereochemical stabilization, which was confirmed as
no phase separation was seen.

For their further use as carriers in chemotherapy, the cytotoxicity of cPa-SLN-SAb (10:1 ratio) was
checked in comparison to the non-surface modified particles (cPa-SLN) in MCF-7 cells (Figure 6). The
cytotoxicity assay confirmed that the surface modification of the particles as the effect of the cationic
lipid was attenuated, as shown by the increase in cell viability from 56.33 ± 1.99% when treated with
cPa-SLN, to 63.30 ± 1.45% when treated with cPa-SLN-SAb, at the highest-tested concentration. We
also observed that, at the lowest concentration, a drop of about 20% in cell viability occurred. This
effect was attributed to the presence of CTAB in the formulations [36].
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binding ratios. Results are given as mean from three measurements of three independent experiments.
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Figure 6. Evaluation of the cytotoxic activity of cPa-SLN and cPa-SLN-SAb in MCF-7 cell line using the
MTT assay at 24 and 48 h.

4. Conclusions

The present study showed that the cytotoxic effect of perillaldehyde 1,2-epoxide against MCF-7
cell lines could be ameliorated when surface-modifying the particles with streptavidin. The particles
exhibited some antioxidant capacity, attributed to the encapsulated monoterpene derivative. The
cationic character of these particles provided a binding pathway via streptavidin to monoclonal antibody.
The particles showed a modified release profile following the Korsemeyer–Peppas mathematical fitting.
To further evaluate the affinity of mAb to HER2 receptors, the assessment of the targeting potential of
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the developed complexes and their cell internalization is planned, together with in vivo studies in a
suitable animal model.
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