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Numerical Simulations on
Heterogeneous Systems:
dynamic workload and power
management
Abstract. Numerical simula ons are among the most relevant and computa onally demanding applica-

ons used by scien sts and engineers. As accuracy requirements keep increasing so does the correspond-

ing workload and, consequently, the demand for addi onal compu ng power. HPC systems are thus a

fundamental tool to allow for a me effec ve execu on of such simula ons; performance maximiza on

is therefore a per nent and crucial subject of research. Over the last decade HPC has undergone a ma-

jor shi , resul ng on heterogeneous parallel compu ng systems, which integrate devices with different

architectures, exposing different instruc on sets, programming and execu on models, and ul mately,

delivering significantly different performances. This heterogeneity raises a variety of challenges to appli-

ca on developers, such as performance and code non-portability, performance imbalances and disjoint

memory address spaces. These challenges not only widen the gap between peak and sustained perfor-

mance, but also significantly reduce development produc vity. Addi onally, numerical applica ons o en

exhibit dynamic workloads, with unpredictable computa onal requirements, which, together with asso-

ciated code divergence and branching workflow, further aggravates the heterogeneity challenge — this

is defined as the Two-fold Challenge. The increasing scale in HPC systems also leads to a fast growing

power consump on, with power management solu ons being of crucial importance. The design of such

solu ons becomes harder within the two-fold challenge context.

This thesis addresses the Two-fold Challenge in the context of numerical simula ons and HPC systems,

focusing on op mising sustained performance and power consump on. A variety of mechanisms is

proposed and validated across different parallel compu ng paradigms. These mechanisms include a uni-

fied execu on and programming model, a transparent data management component and heterogeneity-

aware dynamic load balancing and power management systems. The contribu ons of this thesis are di-

vided into three areas: efficient and effec ve applica on development and execu on on heterogeneous

single-nodes with mul ple compu ng devices, load and performance imbalances in heterogeneous dis-

tributed systems and power-performance trade-offs in heterogeneous distributed systems. In order to

foster the adop on of proposed mechanisms, some were designed and integrated into a widely used nu-

merical simula on library — OpenFOAM. Experimental results assert the effec veness of the proposed

approaches, resul ng on significant gains in performance and reduced power consump on in mul ple

scenarios.
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Simulações Numéricas em
Sistemas Heterogéneos: carga
dinâmica e gestão de potência
Resumo. Simulações numéricas são uma das mais importantes e computacionalmente exigentes apli-

cações usadas por cien stas e engenheiros. A carga computacional destas aplicações é proporcional aos

requisitos de precisão da simulação, que por sua vez, têm aumentado significa vamente, resultando numa

maior exigência a nível de poder computacional. Os sistemas de computação de alto desempenho (High

Performance Compu ng (HPC)) são uma ferramenta fundamental, que permitem executar estas aplicações

em tempo ú l. Obter o desempenho máximo destes sistemas é portanto uma área de inves gação de

elevada importância e per nência. Na ul ma década, a computação de alto desempenho tem sido alvo

de consideráveis mudanças, resultando em sistemas computacionais paralelos e heterogéneos. Estes

sistemas são compostos por disposi vos com diferentes arquiteturas, instruc on sets e modelos de pro-

gramação e execução, resultando em desempenhos significa vamente diferentes. Esta heterogeneidade

levanta vários desafios, nomeadamente, código da aplicação e desempenho não portáveis entre dispos-

i vos, diferenças de desempenho e espaços de endereçamento de memória disjuntos. Estes desafios,

não só aumentam a diferença entre o pico de desempenho e o desempenho ob do, mas também re-

duzem significa vamente a produ vidade. Mais ainda, as aplicações numéricas exibem, frequentemente,

cargas dinâmicas, cujos requisitos computacionais são imprevisíveis. Este dinamismo, combinado com

a divergência do código e com o controlo de fluxo condicional, agrava as complexidades associadas à

heterogeneidade do sistema, sendo referido como Two-fold Challenge. O progressivo aumento da dimen-

são dos sistemas HPC tem também, como consequência, um rápido aumento do consumo de potência.

Sistemas de gestão de potência são portanto de extrema importância, no entanto, o desenvolvimento

destes sistemas torna-se complexo perante o Two-fold Challenge

Esta tese aborda o Two-fold Challenge no contexto de simulações numéricas e sistemas HPC, focando-se

na o mização do desempenho e potência consumida. Vários mecanismos são propostos e validados em

diferentes paradigmas de computação paralela. Nomeadamente, modelos unificados de execução e pro-

gramação, sistemas transparentes de gestão de dados e sistemas de balanceamento de carga e gestão

de energia baseados na heterogeneidade do sistema. As contribuições desta tese são divididas em três

áreas: desenvolvimento e execução eficiente de aplicações em sistemas heterogéneos com um único nó e

múl plos disposi vos, desbalanceamento de carga computacional e desempenho em sistemas heterogé-

neos distribuídos e compromissos entre desempenho e potência consumida em sistemas heterogéneos

distribuídos. De forma a promover o uso dos mecanismos propostos, parte destes foram desenvolvidos e

integrados numa conceituada biblioteca de simulações numéricas — OpenFOAM. Resultados experimen-

tais validam a eficácia dos mecanismos propostos, resultando em ganhos significa vos de desempenho

e redução de potência consumida em múl plos cenários.
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Chapter

1 Introduction

Contents
1.1 Context and Mo va on,

1.1.1 -Tier Parallelism,
1.1.2 Heterogeneous Systems and Dynamic workloads,
1.1.3 Power Consump on Challenge,
1.2 Facing the Challenges,
1.3 Goals and Contribu ons,

1.3.1 Main Contribu ons,
1.3.2 Experimental Context,
1.4 Thesis Structure,

Civiliza on is a progress from an indefinite, incoherent homogeneity toward a

definite, coherent heterogeneity.

Herbert Spencer



In this ini al chapter, a detailed discussion on the context and mo va on of this thesis is provided. An

overview of the state of today’s compu ng systems is presented, together with the iden fica on of a set

of challenges that emerged from the way compu ng technologies evolved. It also introduces a hierarchical

taxonomy that categorizes the paradigms of parallel compu ng. In the final sec ons, a brief overview of

how this thesis will approach the iden fied challenges is provided, defining the research hypothesis, goals

and contribu ons of this thesis.

1.1 Context and Mo va on
Numerical computer simula ons extend the human capability to acquire knowledge on fundamental as-

pects of physics. They allow studying the behaviour of complex physical systems that are imprac cal

to assess either by analy cal or experimental methods. Weather forecas ng, financial market forecast-

ing, medical and health-care development, image synthesis and rendering, aircra aerodynamics are just

some of the examples of a vast set of applica ons that make use of numerical simula ons. The value

and accuracy of these simula ons are correlated with their workload which has a direct impact on the

computa onal effort. For instance, larger refined models of a city in weather forecas ng yield a more

accurate and wider weather predic on, a larger pixel sampling and resolu on in a physically based ren-

dering algorithm results in higher-quality photo-realis c images. This results in a generalized demand for

compu ng power in order to enable higher quality and complex simula ons [ ].

Numerical Simula on by nature.com

A numerical simula on is a calcula on that is run on a computer following a program that implements a mathe-
ma cal model for a physical system. Numerical simula ons are required to study the behaviour of systems whose
mathema cal models are too complex to provide analy cal solu ons, as in most non-linear systems.

Given the compu ng complexity and volume of the data associated with these applica ons, their exe-

cu on mes easily achieve the order of days or weeks, largely depending on the compu ng resources

available. High Performance Compu ng (HPC) systems are a fundamental tool used by scien sts and

engineers to implement and run numerical simula ons as they offer higher levels of compu ng capabil-

i es. HPC systems performance delivery is fundamentally based on parallel compu ng and scalability

provided by stand-alone sophis cated servers and by large-scale clusters with thousands of compute

nodes. Maximizing the extracted performance from these systems is, therefore, a per nent and crucial

subject of research and development.

In the last decades, driven by the surge in computa onal requirements, HPC systems have been subject

to significant change in architectural design and development. Manufacturers consistently increased the

CPU transistor count and devised sophis cated approaches to organize chip space in order to further

increase performance (e.g. vectoriza on, superscalar, etc). However, limited by the power wall, chip



Clusters, Supercomputers and HPC Systems

Cluster is a core architectural concept based on a set of computers connected by a local network providing
extended parallel compu ng capabili es. Supercomputer is a large-scale compu ng infrastructure based on
the cluster concept and used in the solving of complex and large scien fic problems. HPC systems are comput-
ing pla orms targeted to deliver higher levels of computa onal power aimed to solve complex computa onal
problems. HPC systems range from standalone compute servers to large-scale supercomputers.

manufacturers adopted new architectures and embraced parallelism within the chip as the mainstream

approach to overcome the physical limita ons [ ], [ ]. Mul -core CPUs quickly became ubiquitous as

well as sophis cated compu ng paradigms such as mul -threading.

With the introduc on and development of programmable shaders, along with advancements in floa ng-

point support, GPUs became able to compute highly-parallel scien fic tasks with substan ally higher

performance than common CPUs due to its many-core architecture. With the introduc on of highly pro-

duc ve programming models, such as CUDA and OpenCL, these co-processing devices became general

purpose scien fic compu ng devices and ubiquitous across HPC systems. Intel also pursued the many-

core co-processing approach with the first Intel Xeon PHI device that consisted in a -core chip with

wide-SIMD capabili es and x compa ble. Intel con nued to develop these micro-architectures and

recently released a new many-core self-hosted device with codename Knights Landing (KNL) with

cores.

Figure . : Processor and co-processor family system share from June Top supercomputer list

Sophis cated mul -core CPUs, many-core GPUs and Xeon PHI’s are common devices equipped in stan-

dalone HPC compute servers and supercomputer nodes. This mul tude of devices fundamentally revolu-

onized the plurality in terms of HPC technology, outse ng theHeterogeneous Compu ng Era [ ]. This is

clearly observed in Figure . that illustrates the processor and co-processor family systems share in the

Top supercomputer list. Compute nodes are heterogeneous as they are composed of devices that are

designed with different architectures, using different instruc on sets, programming and execu on mod-

els, and ul mately deliver significantly different performances. Clusters are rendered heterogeneous as

the many-core is the main CPU



they can be easily extended with nodes with more efficient CPU architectures and new sophis cated co-

processing devices. Figure . briefly illustrates some examples of heterogeneous supercomputers and

their architectures present in the top places of the Top supercomputers list . For instance, the

Pleiades from NASA, is composed by four different Intel architectures and a NVIDIA GPU architecture.

Supercomputer Architectures

Stampede2

Marconi

Pleiades

Jureca

Electra  

Thunder

Mistral

Skylake KNL

Skylake

Broadwell

Broadwell KNL

Haswell Ivy Bridge Sandy Bridge Tesla K40

Haswell KNL Tesla K40

Broadwell

HaswellBroadwell

Haswell
E5-2699v3

KNC Tesla K40

Tesla K80 Quadro M6000

Haswell
E5-2697v3

Figure . : Some examples of heterogeneous supercomputers in the top places of the June
Top Supercompu ng list.

1.1.1 4-Tier Parallelism
With the adop on of parallelism as the mainstream paradigm to increase performance and considering

the current structure of HPC systems, a hierarchical parallel compu ng structure can be defined using a

-Tier hierarchical taxonomy:

• Tier- Inter-node parallelism in a distributed memory system where nodes compute concurrently.

Each node has its own memory addressing space.

• Tier- Intra-node parallelism within a single compute node with mul ple compute devices, also

known as inter-device parallelism or in some cases hybrid execu on where devices (e.g CPU and

GPU) compute concurrently. Typically each device has its own memory space.

• Tier- Intra-device parallelism, parallelism within device where cores compute concurrently. Mem-

ory space is typically shared across cores.

• Tier- Intra-core parallelism, a typical example is Single Instruc on Mul ple Data (SIMD) execu on

also known as vectoriza on. In some devices, dedicated registers are used. GPUs also promote

SIMD execu on using a massive mul -threading approach.

A Tier- could be defined as the Instruc on Level Paralellism (ILP) within core considering superscalar

execu on and instruc on pipelining.

Note that some heterogeneous supercomputers may have some restric on policies that limit the use of different architectures
simultaneously.



1.1.2 Heterogeneous Systems and Dynamic workloads
With the embracing of parallelism and with the advent of the heterogeneous era, several challenges

emerge that not only affect the applica on development produc vity but also severely impact the ex-

tracted performance of today’s compu ng systems. These challenges are further aggravated in the pres-

ence of dynamic workload applica ons such as numerical simula ons. This sec on briefly describes the

challenges posed by parallel heterogeneous systems and in par cular the impact of combining them with

dynamic workloads.

The Heterogeneity Challenge

A cluster can be fairly easily extended by adding more compute nodes with similar architectures, but o en

from newer and more sophis cated genera ons offering more compu ng capabili es. This same exten-

sibility, however, renders the system heterogeneous in the sense that different genera ons of hardware

with different levels of performance coexist across nodes leading to performance imbalances. These per-

formance imbalances are also originated from the diversity of devices that cons tute a node. Resource

idling and underu liza on along with poor scalability are the major consequences of an imbalanced sys-

tem [ ], [ ].

In the presence of mul ple devices with different architectures, one of the major challenges is the perfor-

mance non-portability across devices. For instance, an applica on op mized for the CPU may deliver far

less performance in a GPU and vice-versa [ ]. This is due to the different execu on models and associ-

ated device architecture details that are designed to address different types of workloads. Programmers

need to re-design their applica ons in order fully benefit from each device compu ng capabili es.

In devices with disjoint memory address spaces – such as GPUs and other co-processors – applica on

data must travel through a limited bandwidth bus (PCI-Express), which results in a poten al performance

bo leneck. Data transfers must be explicitly managed and minimized for consistency and efficiency pur-

poses[ ]. This not only affects performance, but significantly reduces produc vity. Moreover, these de-

vices are typically used with libraries and programming tools (CUDA, OpenMP, Intel TBB, etc) developed

by each of the different manufacturers that reflect the differences in execu on models and architectures

of their devices. Programmers need to comply with these divergent programming models resul ng in

non-portable code.

Dynamic Workload Challenge

Most numerical computer simula ons are data-parallel. Data-parallel applica ons distribute data to com-

pute units that apply some computa onal opera on (or kernel) on the assigned data in parallel. Data

is typically defined by a set of work units that represent some en ty, object or modelling element, for



instance, a cell of a discre zed domain in Finite Volume (FV) Computa onal Fluid Dynamics (CFD) simu-

la ons [ ].

Data-parallel applica ons can be classified in two types — sta c or dynamic. In sta c (also known as

regular) applica ons, the workload is the same for the en re execu on. The number of work units is

known a priori, typically defined in the start of the applica on and divided across compu ng resources or

submi ed to a queue for processing. These applica ons exhibit a constant and predictable computa onal

effort requiring simpler scheduling and par oning heuris cs in order to be efficiently distributed across

computa onal resources.

With dynamic applica ons, each of the data elements can be subdivided, merged or generate more

work units, rendering the computa onal effort unpredictable and irregular [ ], [ ]. The distribu on of

dynamic workloads across parallel compu ng resources becomes a far more complex challenge due to

an unpredictable number of work units and/or an unknown number of opera ons per work unit. If an

uniform distribu on of workload is applied, each compute unit will receive the same amount of work units.

However, since each work unit may require an arbitrary amount of computa onal effort, the system will

be imbalanced and resource idling occurs.

A sub-type of dynamic applica ons can be defined as irregular applica onswhen the genera on of work

results in code divergence and branching workflow. These applica ons will significantly hinder the per-

formance in many-core devices, such as the GPU [ ]. The massively threaded execu on model favours

well defined and regular code, but with irregular workloads, arbitrary (uncoalesced) memory accesses and

unpredictable complex execu on pa erns will poten ally result in significant performance losses.

Applica on workload types: sta c, regular, dynamic and irregular

Data-parallel applica ons can be classified in two main types — sta c or dynamic. Sta c applica ons, also
known as regular applica ons, exhibit a constant and predictable computa onal workload across the whole
compute me. The number of work units is known a priori, typically defined in the start of the applica on and
divided across compu ng resources or submi ed to a queue for processing. Examples of sta c data-parallel
applica ons are matrix mul plica ons and decomposi ons, where the number of elements is known and the
opera ons per element can be determined and thus so the global number of opera ons. CFD simula ons
with sta c meshes can also be considered sta c applica ons as they require a uniform computa onal effort
along the run me.

With dynamic applica ons the workload is generally unpredictable and irregular across the run me. Each of
the data elements can be subdivided, merged or generate more work units resul ng in an unpredictable amount
of computa onal effort associated with each of the work units. For instance, a CFD simula on with Adap ve
Mesh Refinement is considered a dynamic applica on since each cell can be recursively subdivided or merged
along the simula on depending on fluid flow or other proper es. A sub-type of dynamic applica ons can be
defined as irregular applica ons when the genera on of work results in code divergence and branching work-
flow. These applica ons are typically characterized by irregular data structures, irregular control flow and/or
irregular communica on pa erns with uncoalesced memory accesses. An example of an irregular applica on
is the Monte-Carlo physically based rendering engine. The workload associated with processing a pixel is un-
predictable since both direc on and length of the path of the pixel ray are stochas cally generated and scene
dependent.



Yet, dynamic data-parallel applica ons cons tute the largest percentage of numerical computer simula-

ons, not only because they are typically associated with complex real-world data and models but also

because they are expressed using irregular algorithms such as random walks [ ], [ ], graph and sparse

matrix algorithms [ ], [ ], par cle simula ons [ ]–[ ], meshing techniques [ ], [ ], among others.

The per nence of these applica ons renders the study and development of workload scheduling algo-

rithms crucial.

The Two-fold Challenge

As discussed in the two previous sec ons, Applied Scien sts (ASs) rely on HPC systems to perform

numerical simula ons. These systems, however, are heterogeneous and pose a number of challenges

that need to be addressed in order to be efficiently used. Furthermore, numerical simula ons are prone

to exhibit a dynamic and unpredictable workload behaviour that is hard to be efficiently distributed and

executed. The combina on of these two compu ng features results in a further enlargement of the

complexity of the individual challenges iden fied — this is defined as the Two-fold Challenge.

The workload that needs to be scheduled is now dynamic and unpredictable, which aggravates the per-

formance imbalance issue among the heterogeneous compu ng units. Compu ng units with less perfor-

mance and already causing imbalance may sustain a workload increase which will substan ally increase

the idling of faster units. Dynamic genera on of work will also promote code divergence and branch-

ing which aggravates the performance portability issue. In the presence of mul ple devices, accoun ng

for different execu on models becomes a more complex task when compu ng divergent and branched

workflow. Data management becomes also non-trivial since the data required by devices is poten ally

arbitrary.

Indeed, these two compu ng features – resource heterogeneity and dynamic workload – are relevant

topics but boost each other and correlate in hindering produc vity and performance extrac on. No ce

that all these challenges are addressed either by a computer scien st or an AS. The la er is a non-

expert programmer that usually has basic programming skills and computer science knowledge. Design

and development of mechanisms to counter the challenges posed by the combina on of these features,

specifically, in relevant applica ons like numerical simula ons, is, therefore, a per nent research area.

1.1.3 Power Consump on Challenge
The increasing scale of HPC systems leads to a fast-growing power consump on that is becoming one

of the major concerns in developing and maintaining these systems [ ]. The cost of energy required

to power a supercomputer tends to surpass the cost of the system itself, resul ng in a huge economic

impact but also the inherent consequences in terms of environment. Power management becomes of

crucial importance where HPC solu ons – either hardware and so ware – need to be re-evaluated in



terms of power-efficiency [ ]. Since compu ng devices are based on electrical integrated circuits, power

consump on has a close correla on to performance. A power management system must seek to reduce

power consump on but also maintain acceptable levels of performance.

However, powermanagement becomes a far more difficult challenge in systems exposed to the two-fold

challenge. Each of the mul ple devices that co-exist in a system may exhibit different power consump-

ons and different performances. Any strategy to reduce power consump on becomes non-trivial where

the power manager needs to account for the impact of power changes and the subsequent impact on

performance that is par cular to each device. In the presence of dynamic workloads, designing of such

strategy becomes even more complex given the unpredictability of the workload generated by the appli-

ca on.

1.2 Facing the Challenges
Performance imbalances are caused by a plurality of devices and architectures and by the dynamic na-

ture of the workload associated with many applica ons, such as the numerical simula ons addressed

throughout this thesis. These issues can be addressed by rising awareness on each Compu ng Unit (CU)

performance using performance models and combine that informa on with run me Dynamic Load Bal-

ancing (DLB). These features will provide heterogeneity-aware workload par oning and redistribu on

that will assign and migrate work according to performances and current system load. This will minimize

resource idling thus increasing u liza on and scalability.

Compu ng Unit (CU)

A Compu ng Unit is an abstrac on used in this document that represents a device or a set of devices that
perform computa on. For instance, a single CPU core, a CPU, a GPU, a cluster compute node, etc.

The diversity of devices’ compu ng models also causes the applica on implementa on and op miza on

to be non-portable. Both performance op miza ons and code implementa on can not be efficiently and

transparently applied to mul ple different devices. In order to address this issue, an unified execu on

and programming model can be proposed. The unified execu on model will account for the different

par culari es of each device and provide an execu on workflow that is both transparent to the user

and accounts for the code divergence and irregular workflow of dynamic applica ons. This will increase

produc vity and will try to improve the performance of devices that do not favour dynamic and irregular

applica ons. The unified programming model should be device agnos c and hide code primi ve details

from the programmer, fundamentally increasing produc vity.

The disjoint memory address spaces of co-processors results in explicit data management for consis-

tency and efficiency purposes. By designing and integra ng a data management system, transparent

data transfers can be performed and op miza on mechanisms such as locality-aware scheduling can be



applied. Data management is accessed by an API that is part of the unified programming model, therefore

providing device agnos c data management and further increasing produc vity.

Power consump on is one of the most concerning aspects in today’s compu ng systems. Heterogeneous

systems and dynamic workloads further hamper the power management challenge. A dynamic and

adap ve heterogeneity-aware power assignment is thus required that will account for dynamic changes

of the workload and perform power assignment decisions while weighing performance impact. The

power decisions can be supported by a performance model combined with a power model resul ng in

a unified power-performance efficiency mechanism.

1.3 Goals and Contribu ons
The research hypothesis put forward by this thesis is that the challenges raised across the -Tiers of

parallelism by the heterogeneity of resources, the dynamic nature of the computa onal workload and

the huge power consump on of current HPC systems can be effec vely addressed by a though ul

combina on of the above described mechanisms. In par cular:

• a unified execu on and programming model for heterogeneous systems, fully integrated with a

transparent data management system, will effec vely address the performance portability chal-

lenge, while simultaneously increasing programming produc vity and promo ng u liza on of HS

among AS;

• dynamic load balancing and heterogeneity aware scheduling, properly grounded on robust and

light weight performance models, will address the above iden fied two-fold challenge, op mizing

resource u liza on and orchestra on towards minimiza on of applica on execu on me;

• appropriate heterogeneity aware power management mechanisms can effec vely limit power con-

sump on while increasing performance when compared with an uniform distribu on of the avail-

able power budget.

The major goal of this thesis is thus to design, integrate and assess these techniques and provide tools

to efficiently and produc vely develop numerical computer simula ons in state of the art HPC systems.

The contribu ons of this thesis cover different systems combined with different applica ons and address

their issues in a scien fic and engineering perspec ve by improving and integra ng exis ng techniques.

The following sec on briefly introduces the main contribu ons and a detailed discussion is provided in

the following chapters.



1.3.1 Main Contribu ons
The contribu ons of this thesis are divided in three main areas, each targe ng a different er or set of

ers. Each area tries to address a set of challenges that are common to a par cular goal and system

resource configura on. The main contribu ons of this thesis are as follows:

Handling Heterogeneous Single-Node Systems (HSNS) The challenges in single node mul -device sys-

tems (Tier- , and ) are addressed by proposing a unified task-based programming and execu on

model tailored to efficiently execute data-parallel regular and irregular applica ons. The integra on

of persistent kernels is proposed as an intra-device scheduling mechanism along with transparent

data par oning and a device agnos c programming model. The proposed mechanisms are imple-

mented and evaluated with mul ple applica ons and various configura ons of CPUs and GPUs. A

direct comparison to a state-of-the-art framework is also performed.

Contribu on I

This contribu on that is supported by a scien fic paper published in the Parallel Processing Le ers journal pub-
lished byWorld Scien fic.
R. Ribeiro, J. Barbosa, and L. P. Santos, ”A Framework for Efficient Execu on of Data Parallel Irregular Ap-
plica ons on Heterogeneous Systems”, Parallel Processing Le ers, vol. , no. , p. , Jun. .
DOI: . /S

Run me heterogeneous-aware load manager for Heterogeneous Distributed Systems (HDS) This con-

tribu on evaluates the combina on of a DLB system with an applica on-oriented performance

model as a mean to increase resource u liza on in performance and workload imbalanced systems.

The contribu on targets distributed-memory systems (Tier- ) and the designed approach is directly

integrated and evaluated in a widely used CFD library (OpenFOAM). It is based on a defini on of

a Performance Model combined with a decision model that performs educated decisions on how

to assign data parallel workload, converging to a balanced computa onal effort and thus increasing

resource u liza on. Evalua on is performed across mul ple combina ons of sta c and dynamic

workload with homogeneous and heterogeneous resource configura ons.

Contribu on II

This contribu on is supported by a scien fic paper published in the proceedings of the conference Interna onal
Conference on Computa onal Science - ICCS , part of the Lecture Notes in Computer Science book series by
Springer.
R. Ribeiro, L. P. Santos, and J. M. Nóbrega, ”nSharma: Numerical Simula on Heterogeneity Aware Run me
Manager for OpenFOAM”, in Lecture Notes in Computer Science, Springer Interna onal Publishing, , pp.

– , volume . DOI: . / - - - - _

Run me heterogeneous-aware power-adap ve scheduler for HDS Power management is expressed as

an op miza on problem in order to improve power efficiency and performance in power-limited



scenarios. The proposed model is formulated based on two merged objec ves: power consump-

on minimiza on and performance maximiza on. Heterogeneity awareness is provided by a perfor-

mance model and power assignment decisions are adap vely performed at run me. The approach

is evaluated with CFD simula ons with dynamic workload running on HDS (Tier- parallelism, e.g.

mul ple CPU genera ons and KNL nodes). Power consump on reduc on and performance be-

haviour are discussed as well as assessments on energy consump on.

Contribu on III

This contribu on that is supported by a scien fic paper published in the proceedings of the conference Inter-
na onal Conference on High Performance Compu ng & Simula on - HPCS .
R. Ribeiro, L. P. Santos, and J. M. Nóbrega, ”Run me heterogeneous-aware power-adap ve scheduling in
OpenFOAM”, in Interna onal Conference on High Performance Compu ng & Simula on (HPCS), .

1.3.2 Experimental Context
This work’s hypothesis, goal and contribu ons are clearly presented throughout Sec on . . The focus

is on heterogeneous parallel compu ng systems and on the efficient and produc ve development and

execu on of numerical computer simula ons. There is, however, a major technological shi on the ex-

perimental contexts used to validate the proposed hypothesis between the first and the remaining two

contribu ons as iden fied in Sec on . . . The former proposes a specific framework for the develop-

ment and execu on of irregular applica ons on heterogeneous systems. This framework was conceived

and developed within the context of this thesis and requires applica ons to be developed in compliance

with the proposed programming and execu on model. The la er contribu ons propose two plugins

wri en in C that integrate onto OpenFOAM in a transparent manner for the OpenFOAM applica-

on developer. The reason for this shi in the experimental approach is very pragma c. As the work

progressed from its very early ini al stages the team engaged on a collabora on with the University’s In-

s tute of Polymers, whose researchers o en use OpenFOAM over parallel systems to solve CFD-related

problems. It was felt by all that this thesis’ results could be useful for this community, in par cular if the

proposed techniques could be applied in a straigh orward (eventually transparent) manner. A decision

was therefore made to adopt OpenFOAM as the experimental use case.

OpenFOAM is a large and complex CFD simula on framework, with extensions and plugins developed

on an open source approach by many prac oners, widely distributed both geographically and ins tu-

onally. Adap ng OpenFOAM (or a subset) to the ini ally proposed heterogeneous framework would be

an unfeasible task. The reason for this is essen ally based on some of the principles that defined the ini-

al framework. These principles resulted in specific applica on requirements that OpenFOAM does not

meet out-of-the-box (such as loosely-coupled data-parallel execu on). On the other hand, developing



OpenFOAM specific plugins (as is the case of nSharma and RHeAPAS, see Chapters and ) was deemed

feasible, although complex, and their seamless integra on with OpenFOAM promotes their adop on by

OpenFOAM applica on developers. This was therefore the path followed throughout this thesis second

and third contribu ons. The author believes that this technological choice has no impact on the scien fic

validity of the presented findings, with the added benefit of facilita ng knowledge transfer from computer

science researchers to parallel CFD simula ons users.

1.4 Thesis Structure
This thesis document is organized in six chapters, two for introductory content and background, three

for main contribu ons and a final concluding chapter.

Chapter — Introduc on This chapter provides the context and mo va on of this thesis and iden fies

some of the challenges posed by heterogeneous systems. It also defines the thesis hypothesis and

outlines its contribu ons.

Chapter —BackgroundAn overview of hardware and so ware standard solu ons is discussed, including

a straigh orward categoriza on of modern HPC architectures, followed by the most commonly

used APIs and developing tools to work with them. The final sec on discusses the main issues

with these technologies in the context of heterogeneous parallel systems and how they can be

addressed.

Chapter — Heterogeneous Single-node Systems This chapter describes the first contribu on of this

thesis where an approach to address the challenges emerged from single-node heterogeneous

parallel systems are addressed.

Chapter — Heterogeneous Distributed Systems An approach to tackle the challenges posed by mul -

node heterogeneous systems is proposed. The proposed mechanisms are essen ally based on a

dynamic load balancing technique, designed to handle dynamic workloads in systems with perfor-

mance imbalances across compu ng nodes.

Chapter — Power Scheduling in Heterogeneous Distributed Systems This presents the third and last

contribu on, focusing on the power management challenges of heterogeneous distributed systems.

It proposed a heterogeneity-aware power-adap ve scheduler based on the solving of an op miza-

on problem. It is recommended to read the Chapter before this chapter.

Chapter — Conclusions and Future workGeneral conclusions are provided asser ng the successful val-

ida on of the thesis hypothesis. The future work is also discussed, where a new model is proposed

for development and assessment.
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This chapter provides a brief overview of hardware and so ware architectures, including standards and

manufacturer tools. It provides a straigh orward categoriza on of modern HPC architectures, followed

by the most commonly used APIs and developing tools to work with them. The focus this chapter is on

technology that is actually used in today’s systems. The final sec on discusses the main issues with these

technologies in the context of heterogeneous parallel systems and how they can be addressed. Detailed

related work will be discussed in each of the contribu on chapters.

2.1 Modern HPC Architectures
Modern HPC systems are composed by a plurality of devices that can be categorized in three main

architectures: mul -core CPUs, many-core CPUs and many-core co-processors (which include GPUs).

These devices are used both by single node HPC systems or across nodes of a cluster. Single node

systems are typically composed by one or more mul -core CPUs and in mul ple cases, a high number

of co-processors (e.g. NVIDIA DGX- with GPUs). The nodes that compose any of the systems in the

Top [ ] list are composed of one or more devices from one or more of these categories.

2.1.1 Mul -core CPUs
Mul -core CPUs are designed to be as general purpose as possible. Manufacturers try to develop and

enhance CPUs based on complex trade-offs in order to efficiently compute the widest possible range of

applica ons. This results on a chip endowed with extremely complex features but, as a consequence,

limited parallelism. Looking at the list of supercomputers, Intel has the larger processor share followed

by IBM (PowerPC) and Fujitsu (SPARC). The most recent Intel micro-architecture already used in some

systems is codenamed Skylake.

Skylake chips were introduced in mid- , built with nm with a core count from to with Intel’s

Hyper-threading technology resul ng on to virtual processors. With base opera ng frequencies

ranging from . GHz to . GHz and a Thermal Design Power (TDP) between W and W , these

devices perform out-of-order execu on with to pipelining stages, branch-predic on, specula ve

and superscalar execu on. The chip also includes three levels of associa ve cache with more than MB

per core for the second and third level. Each core is equipped with mul ple scalar and vector arithme c

units that provide SIMD opera ons, which in this latest architecture version has been extended to -bit

registers (AVX- ). In terms of theore cal performance, the Skylake based Intel Xeon Pla num , for

instance, has peak double precision of about Giga Floa ng-point Opera ons Per Second (GFLOPS)

typically in high-end servers such as supercomputer nodes, chip versions with to cores are used
high-end versions have an average of W



.

To get an insight on the performance differences across older mul -core CPUs that s ll coexist in the same

system, the NASA Electra supercomputer, for instance, is composed of mul ple Skylake nodes together

with Broadwell nodes. The Broadwell nodes are composed of Intel Xeon Broadwell E - v CPUs

(launched in Q ) with cores, . GHz of base frequency and two bit arithme c vector units,

resul ng in , GFLOPS .

2.1.2 Many-core CPUs and Co-processors
Intel Xeon Phi, formerly known as Intel Many Integrated Core, is a family of x -compa ble many-core

devices targe ng high-performance massively parallel compu ng by devo ng more transistors to a higher

number of simpler cores.

The first produc on model, s ll present in mul ple HPC systems, is an external device connected to the

main system by a PCI-Express bus. Its micro-architecture is codenamed Knights Corner and provides a

core count ranging from to cores with an hyper-threading of and from to GB of dedicated

memory. They operate between . to . GHz of base clock frequency with most versions exhibi ng a

TDP of W. Cores are connected using a ring topology and each core is based on a modified version

of an Intel Pen um Core with two levels of cache and -bit vector opera ons. The theore cal peak

performance of a Intel Xeon Phi SE P is GFLOPS .

The second genera on of the Xeon Phi architecture is codenamed Knights Landing and was deployed as

an external board but also as a standalone self-hosted CPU. They are s ll targeted for massively parallel

compu ng however they can be configured without any other main device. These devices pack a slight

increase in core count from to cores and also an increase in base frequency delivering . to . GHz

of clock speed. The core arrangement is slightly more sophis cated where the modified Intel Atom based

cores are organized in les interconnected by a D mesh. The chip also contains new banks of high

bandwidth memory – known as Mul -Channel DRAM (MCDRAM) – of GB each. Communica on

approach between les and the use of the MCDRAM can be configured at boot me with different

modes that introduce some flexibility in exploi ng chip performance. The theore cal peak performance

of a Intel Xeon Phi is GFLOPS .

. (GHz) x (cores) x / (DP AVX) x (FMA units) x (FMA); frequency of AVX units is variable, so actual theore cal
performance may be slightly different

. (GHz) x (cores) x / (DP AVX) x (FMA units) x (FMA))
. (GHz) x (cores) x / (DP AVX) x (FMA unit) x (FMA)
. (GHz) x (cores) x / (DP AVX) x (FMA units) x (FMA)



2.1.3 GPUs
GPUs dominate the share in Top co-processors with NVIDIA as the main manufacturer. NVIDIA

GPUs are mostly external devices connected through PCI-Express bus and dedicated memory. Most

of the transistors are devoted to data-parallelism providing a Single Instruc on Mul ple Threads (SIMT)

execu on and programming model.

The chip is composed of a set of mul processors that create, schedule and execute groups of threads

called warps. Each mul processor contains mul ple execu on cores and special func on units that will

concurrently execute the instruc ons of the warp. The programming model defines a grid of threads

which is divided into blocks which in turn are internally organized into warps . In a typical implementa on

of a GPU applica on, each thread is associated with a data-parallel work unit and is then executed in an

instruc on lock-step with the other threads in the warp in a SIMD way. This architecture differs from

vector processing in the sense that each thread execute its own instruc on allowing programmers to

write thread-level parallel code for independent threads [ ].

Contrary to mul -core CPUs, there is no branch-predic on nor specula ve execu on, these devices are

designed for maximum throughput by efficiently managing thousands of threads and resor ng to memory

latency hiding mechanisms (e.g. fast context switching). The latest most commonly available versions of

NVIDIA chips are based on the Pascal micro-architecture. For instance, the Tesla P has a total of

(simple) cores, GB of dedicatedmemory and opera ng at a base frequency of . GHz resul ng in a TDP

of W. According to the manufacturer, it has GFLOPS of peak double precision performance.

These are the most commonly used devices in HPC but several others architectures coexist contribut-

ing to the heterogeneous ubiquity, such as AMD mul -core CPUs, AMD GPUs, Xilinx and Altera Field-

programmable gate arrays (FPGAs), Texas Instruments Digital Signal Processors (DSPs), among others.

2.2 Parallel Programming Models
Sharedmemory and distributedmemory are two basemodel abstrac ons commonly referred to in parallel

programming [ ]. Shared memory allows mul ple compu ng units to access the same memory space,

using it for communica on purposes and data sharing. This model is typically used with mul -core and

many-core CPUs along with mul -threaded programming where each thread has access to node system

memory. Since data is shared across threads, data consistency is maintained by the programmer using

warps are a hardware scheduling unit, not part of the programming model
in recent architecture, like NVIDIA Volta, independent thread scheduling is allowed where a program counter and call stack

are maintained per thread.
a thread within warp with a different instruc on from the other threads will diverge and execute its instruc ons while the

others wait



data concurrency primi ves provided by the programming tools.

Distributed memory is typically associated with clusters where each of the nodes has its own physically

separated memory space. Communica ons are performed explicitly using programming primi ves that

transfer data between nodes using a communica on protocol. Since nodes are connected by a network,

all data transfers and synchroniza on signals travel through the network. The distributed memory con-

cept may also be applied to mul ple GPUs and other co-processors on the same node, each having

its own memory space. Communica ons are typically performed over a PCI-Express bus and it is the

programmer responsibility to ensure data consistency and synchroniza on orchestra on. However, for

simplifica on purposes, in the scope of this document distributed memory systems will always refer to

clusters with network node inter-connec ons.

The following sec ons provide a brief overview of the APIs that are considered of standard and wide

use when developing parallel numerical simula ons in HPC systems. These development tools originate

either from standards defined by commi ees of major hardware and so ware vendors or proposed by

individual ones in order to use their devices.

Parallel APIs
In distributed memory systems, the MPI [ ] standard is the main-stream tool to develop parallel appli-

ca ons. MPI defines an API that allows for orchestra on and communica on between processes that

are hosted in different nodes and/or in the same node. The API provides point-to-point and collec ve

communica on primi ves that essen ally include data transfers and synchroniza on mechanisms. It is

designed basically for the distributed memory paradigm where eachMPI process (also known as rank) has

its own memory space and it is responsible to handle its own data and execu on flow. In a pure-MPI ap-

plica on, each MPI rank will be bond to a core resul ng in mul ple ranks per node. This mapping can be

performed automa cally or explicitly controlled by the programmer using process affini es. MPI can also

be used in order to perform concurrent execu on among mul -core CPUs and many-core co-processors.

The Xeon Phi Knights Corner run me me system allows the MPI library to launch processes allocated

within the device and run applica ons concurrently in a distributed memory approach.

Withmul -core andmany-core devices, the sharedmemory approach is typically used and combinedwith

mul -threaded processing. High-level APIs such asOpenMP [ ] are widely used where the programmer

by the means of compiler direc ves can specify por ons of code that are due to run in parallel. OpenMP

is then responsible to transparently create and manage threads using a master-slave threading approach.

The API will create a specified or automa cally detected number of threads and assign each one to a

core . Intel TBB [ ] is a more recent shared-memory library with an increasing adop on that provides

thread-core affinity can also be specified



a more robust and feature-rich parallel library. It provides concurrent data structures, synchroniza on

features, task scheduling, among others. Cilk Plus [ ] andMicroso Task Parallel Library (TPL) [ ] are

similar libraries, however, Cilk Plus support has been recently deprecated by Intel and TPL is specific to

Microso .NET technologies. Lower level APIs can also be used to perform thread level parallelism such

as PThreads [ ], Boost C [ ] and C Standard Libraries [ ].

NVIDIA GPU applica ons are typically developed using the compu ng pla orm CUDA [ ] which pro-

vides a compiler, run me API and other developments tools. The applica on is developed using exten-

sions to C/C where the programmer defines data transfer policies and func onal rou nes – known as

kernels – to be executed by the device and a compu ng resource requirement specifica on – all using

explicit code tags. A kernel call will create a grid that is subdivided into blocks of threads, both grid and

a block can be organized in , and D abstrac ons. Each thread has a local memory and each thread

block has an on-chip shared memory space accessible to all threads in the scope of the block. All threads

have access to the device global memory.

GPUs as co-processors have their ownmemory, whichmeans data to be computedmust bemigrated from

host to device memory through PCI-Express channels. Up un l the latest Pascal micro-architecture, data

consistency andmemory fault between host and device was explicitly managed by the programmer. With

the advent of the Pascal architecture in , a transparent memory page-fault system was introduced

providing automa c data consistency and migra on between host and devices.

These programming models can be combined together providing full hybrid compu ng across mul ple

ers. Each MPI process can perform mul -threaded parallel execu on by using any available threading

API. It can also be responsible to host a CUDA applica on and offload data and computa on to the

device. For instance, in a cluster composed of N nodes and each node composed by a mul -core CPU

and a GPU. The programmer can instruct the MPI library to create N ranks, one per each node, where

each rank will use OpenMP to perform mul -threaded processing within the corresponding node and

use CUDA to offload computa on to the corresponding GPU. Each rank will create a thread per core

for the mul -core CPU and issue kernel execu ons and data transfers to the GPU [ ]. In this scenario,

the programmer is responsible to write the structure and coordina on of all the execu on flow and data

management.

Programming Models for Heterogeneous Systems
In a combined effort between mul ple hardware and so ware vendors, OpenCL standard [ ] was pro-

posed in an a empt to develop a unified API able to support mul ple parallel compu ng devices. OpenCL

is based on C and its execu on and programming model is similar to CUDA’s. Using a host-device plat-

C and above



form approach, the API resorts to command-queues that issue data transfers and kernel execu ons to

available devices as well as synchroniza on primi ves. Work assignment granulari es and device orches-

tra on are explicitly defined by the programmer. Data management depends on device type, with most

GPUs requiring programmer explicit management. It supports NVIDIA GPUs, AMD GPUs, mul -core

CPU and co-processors, among other devices. However, OpenCL is just a standard and manufactur-

ers provide their own implementa on based on the corresponding device and not always provide full

compliance.

Other programming standards have been proposed with the same goal, such as the OpenACC [ ] that

has a similar programming model to OpenMP also suppor ng computa on offload to devices. Both

OpenCL and OpenACC are restricted to single node systems.

2.3 Power Management
The power consump on of a processor, W, can be modelled by two components: sta c and dynamic

power dissipa on. Sta c power dissipa on depends on voltage and leakage current and it occurs re-

gardless of system ac vity — for this reason, dynamic power will be considered in this work as the main

source of power dissipa on and consump on. The dynamic power dissipated can be modelled as:

W ∝ C× v2 × f ( . )

where C is the capacitance being switched per cycle, v is the supplied voltage and f is the opera ng fre-

quency [ ]. C is constant, so both frequency and voltage affect the power consumed. Frequency and

voltage are strictly correlated. The frequency will define the maximum voltage required to operate (lower

frequencies require lower voltages), on the other hand, reducing the voltage will reduce the maximum

frequency allowed. Power consump on is also related with mul ple architectural details and configu-

ra ons such as the number ac ve cores, thread placement, reduced switch ac vity, etc [ ]. It can be

controlled using mul ple techniques such as Dynamic Voltage and Frequency Scaling (DVFS), thread

packing, dynamic concurrency thro ling, among others that can be used together in a synergis c way to

reduce consump on[ ].

Since frequency and voltage are two of the most influencing factors in power consump on, DVFS mecha-

nisms have been widely used to tackle power consump on. In a mul -core CPU, opera ng frequency and

voltage are changed and accessed using a kernel driver (e.g. acpi-cpufreq, intel_pstate, pcc-cpufreq, etc)

that implements the Advanced Configura on and Power Interface (ACPI) specifica on[ ]. According

to this specifica on, different pairs of frequency-voltage are defined and applied to the chip processing

and device driver
OpenACC is available in commercial compilers with incipient support is other commonly used compilers.



units. These pairs are known as Processor Performance States (P-states) and range from P0 to Pn, with the

higher index corresponding to a lower power consump on.

DVFS can be automa cally applied by the opera ng system using power governing policies or explic-

itly defined using command-line tools. Power governing policies (governors) are generic to most of the

drivers except for the intel_pstate that provides its own governors. In general, governors are based on

simple models that perform frequency change decisions based on CPU load, CPU u liza on and generic

parametriza ons . For instance, the ondemand governor performs periodic checks on CPU-usage sta s-

cs and calculates a new frequency with a linear func on based on the usage of the last period. Auto-

ma c power management is also applied in GPUs by adjus ng clock frequencies depending on device

load. DVFS can also be explicitly performed using manufacturers tools.

Some of these drivers and tools provide interfaces to specify frequency per core in mul -core systems.

However, specifying voltage and frequency per core arises severe hardware architectural complexi es,

resul ng in the unclear behaviour of the chip. The support and informa on provided by the manufactures

to this feature are also unclear. The discussion of these architectural complexi es is out the scope of

this work, therefore, for simplicity, the discussion in terms of power consump on in this work is always

in regard to the full processing chip. All the poten al changes in frequency are applied equally to all

processing components of the chip.

2.4 Addressing the Challenges
The available programming models provide the basic required tools to develop applica ons for current

market devices. Most of them are tailored to a single associated device architecture and designed to

be as flexible and as general purpose as possible. However, when combining mul ple available devices

together, mul ple challenges emerge that raw standard programming models do not address.

Most common scien fic applica ons are data-parallel where the workload is essen ally propor onal to

the input data. They also generally resort to some type of itera ve methods where the applica on

is defined in mul ple itera ons over data and/or computed data with data dependencies within and

between itera ons (see Infobox Applica ons and Data-dependencies). Typically, these applica ons are

developed following sta c and uniform distribu ons of workload, where the input data is equally divided

across CUs for parallel processing. In distributed memory systems (Tier- ), nodes equipped with more

recent and sophis cated CPUs and/or a GPU will poten ally deliver far more performance, finishing the

assigned work much faster than a neighbour node with older processors and no co-processors. In the

presence of data dependencies, faster nodes will thus have to wait on slower nodes in order the get newly

h ps://www.kernel.org/doc/Documenta on/cpu-freq/governors.txt



computed data and con nue with the computa on. This will result in node idle mes and subsequently

resource underu liza on and poor scalability.

Applica ons and Data dependencies

Data dependencies are arguably the most challenging aspect of parallel compu ng. With impact in every
er of parallelism, from ILP to supercomputers scalability, they not only dictate applica on performance but

work scheduling strategies as well. The level of data dependencies of an applica on ranges from embarrass-
ingly parallel work, where there are basically no dependencies between data items, to ghtly-coupled parallel
work, where all the work units may require informa on from any other work units at any me. An applica on
with data dependency characteris cs in between these two, can be classified as loosely-coupled applica on.
In a data-parallel task-scheduling strategy, embarrassingly parallel work units can be easily submi ed to a
queue and dequeued for processing in any arbitrary out-of-order fashion (e.g. image pixels in a pathtracer
engine). However, in a ghtly-coupled applica on, a queueing approach may be unfeasible or inefficient and
the scheduling strategy must account for applica on data dependencies resul ng in completely different ap-
proaches (e.g. some parallel CFD simula ons are ghtly-coupled and typically resort to shadow or halo layers
between processor boundaries to elide dependencies, impac ng par oning decisions and scheduling design).

The performance imbalance issue may also arise among devices (Tier- ). Different devices exhibit dif-

ferent performances depending on hardware architecture combined with applica on characteris cs and

implementa on. Code divergence, memory access pa erns, communica on-computa on ra o, are some

of the features that define the workflow of an applica on which will impact device performance depend-

ing on the number of cores, cache models, execu on model, etc. For instance, in a data-parallel task-

scheduling approach, the task granularity becomes of crucial importance leading to tricky trade-offs that

will define overall performance. Tiny tasks will increase parallelism and device throughput but dealing

with a large number of tasks will incur in overheads from task crea on and scheduling, increased com-

munica on and synchroniza on costs. Large tasks will counter these overheads, but will significantly

reduce the degrees of freedom of a scheduling algorithm resul ng in devices wai ng for each other due

to performances differences.

Data-parallel task-scheduling vs Func onal task-scheduling

A data-parallel task-scheduling approach divides the computa on into mul ple tasks that perform the same
computa on to different data. Each task corresponds to a set of data elements e.g. a block of a block matrix
mul plica on, that is concurrently assigned to compute resources. In a Func onal task-scheduling approach,
tasks correspond to computa onal func ons or kernels applied to the same or different data e.g. a pipelined
execu on – reading a matrix can be executed in parallel with the processing of a previous matrix.

Moreover, the performance imbalance issue is further aggravated in the presence of dynamic workloads

typically present in numerical computer simula ons. Having different performances across CUs becomes

harder to address since the workload that needs to be properly scheduled is now dynamic and unpre-

dictable. A sta c strategy that distributes the work across resources quickly becomes obsolete a er a

few itera ons due to new work generated at run me leading to huge performance losses.

Tackling the performance imbalance issue requires informed workload decomposi on and re-distribu on



mechanisms that exis ng APIs and run me systems do not provide. The decomposi on process is es-

sen al in a parallel compu ng system but finding the ideal sub-problem size is a challenging task. This

requires a mechanism able to accurately model CU performances and provide that informa on to the par-

oning system in order to devise a balanced workload par on. Es ma ng and measuring is influenced

by several details that are par cular to each CU but also related to applica on opera ons and behaviour.

Such performance modelling mechanism must also be as less intrusive as possible in order to minimize

measurement overhead and clu ering. In addi on to the performance model, DLB mechanisms are re-

quired in order to redistribute the workload at run me. Thesemust perform adap veworkloadmigra on

decisions considering system load imbalances and devise a new balanced computa onal effort. Redis-

tribu on of work units poten ally requires migra ng complex data-structures across distributed and/or

disjoint memory, requiring new data-migra on rou nes and subsequent communica on overhead mini-

miza on.

The paralleliza on and op miza on approach of an applica on is typically associated with a specific

architecture. However, given the plurality in terms of execu on models in modern compu ng devices,

programmers need to re-think their approaches when using different devices. For instance, an applica on

that was designed and op mized for the CPU, will poten ally deliver far less performance when executed

in the GPU and vice-versa. With dynamic workload applica ons, performance non-portability also be-

comes a more compromising factor in maximizing efficiency. Massively parallel devices, designed for

well structured and homogeneous work, will be severely affected by divergent code paths and sca ered

memory accesses generated by dynamic workload. This performance portability issue is not accounted

for in standard programming models that are designed to express the execu on model associated with

a par cular device or compu ng infrastructure. Furthermore, maintaining mul ple implementa ons and

developing new ones based on either architectural development and/or applica on requirements is highly

counter-produc ve.

Unified execu onmodels can be proposed that comprise the details of mul ple architectures. Combined

with an expressive and suitable API, this approach can provide a unified view of all the compu ng units

and be complemented with dynamic workload scheduling while hiding the complex and diverse nuances

of each device. It can be seen as a generic and automa c op miza on tool that will increase produc vity

and poten ally increase the performance extracted.

Communica ons between CUs play a crucial role in performance due to their disjoint memory address

spaces. Transferring data between nodes in a network is one of the major bo lenecks in scalability. Simi-

larly, co-processors are typically designed with their own memory, physically separated frommain system

memory. Applica on data must travel through a limited bandwidth bus (PCI-Express), which results in a

poten al performance bo leneck. In several devices, the available developing tools shi most of the data

handling to the programmers. Data transfers must be explicitly managed and minimized for consistency

and efficiency purposes. Commonly, the parallel approach and/or the algorithm must be reconsidered in



order to minimize data transfers, avoiding synchroniza on points or to mi gate these bo lenecks with

other opera ons. These tasks can be delegated to a data management system that will perform auto-

ma c data transfers while minimizing communica ons by exploring data locality. The system can also try

to overlap communica on and computa on that will mi gate communica on overhead. Using an API,

the programmer can register the data and the system will be responsible for all the management which

will significantly increase developing produc vity. In the case of devices where data transfers are auto-

ma c (e.g. GPUs with Pascal architecture and above) these challenges are par ally addressed, however,

delega ng memory transfers to the driver results in loosing control of which and when data transfers

occur. This inhibits op miza ons such as data pre-fetching and computa on overlap.

GPUs and other co-processing devices are deployed as co-processing boards and are typically used with

libraries and programming tools developed by each of the different manufacturers. Despite the efforts

of these manufacturers to use common languages such as C or C and standard specifica ons such as

OpenCL, an applica on implementa on code is not portable. This is due to several reasons, the most

obvious one is the differences between execu on models and architectures of each of the devices that

are reflected in the programming models. To best express the features of their devices, manufacturers

added specific primi ves in the programming models and development tools, resul ng in non-portable

code.To address this issue, a device-agnos c programming model can be proposed that will hide specific

primi ves inherent to each device. It may work as wrapper offering a unified API to the programmer.

This API may also provide access to all the features discussed above. The goal is to increase produc vity

allowing the programmer to focus on developing the problem.

Finally, the power consump on of large scale systems is converging to cri cal levels of impact and sus-

tainability. In fact, reducing power requirements has been marked as one of the major goals for the

forthcoming exascale era, with power efficiency having more focus when designing and op mizing HPC

solu ons. Addressing this challenge is not exclusively related to power itself, it also requires consider-

ing the performance impact since both are correlated. This challenge, however, is also aggravated by

the heterogeneous nature of HPC systems and dynamic workload applica ons. Devising a strategy to

reduce power consump on becomes non-trivial when facing a plurality of devices each with different

power requirements, power usages, performances, tools, etc. It becomes even harder if the workload,

which requires power for processing, is unpredictable. Different power consump on per CU, different

performances per CU and an arbitrary workload results in an extremely complex decision process with

mul ple trade-offs that current out of the box power management systems do not address.

Power management in these condi ons can be achieve by proposing a power model that will es mate

the power consump on of each CU. This will raise awareness for the different devices in the system

but will also enable run me predic ons of power consump on with dynamic workloads. This informa on

can then be combined with a performance model in order to es mate performance impact. The resul ng

model can be used in a decision or op miza on process that will devise run me power assignment



decisions towards minimiza on of power consump on and maximum performance.

Summarizing, performance and power modelling, DLB, data management systems, unified programming

and execu on models, among others, are some of the techniques that are required for programmers to

face the challenges posed by Heterogeneous Systems (HS) and dynamic workload applica ons. These

techniques are not provided by the set of standard tools used by the developers and this thesis hy-

pothesizes their use in order to increase produc vity, performance, scalability and, ul mately, cost-

effec veness. Some approaches to these techniques have been proposed and evaluated in literature

and will be individually discussed in detail in the following chapters along with the proposed approaches

by this thesis.
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This chapter discusses an approach to address the challenges emerged from single-node heterogeneous

parallel systems. It proposes a run me system composed of a programming and execu onmodel, together

with workload scheduling mechanisms and data management tailored for irregular applica ons. The run-

me system is evaluated with mul ple compute resource configura ons as well as different regular and

irregular workloads.

3.1 Introduc on
In this chapter the par cular challenges exhibited within single node mul -device systems (Tier- and

below) are addressed. These systems are composed by mul ple devices, including mul -core CPUs —

that also act as the host device for the node – along Intel Xeon PHI’s, GPUs, DSPs, FPGAs, that are

usually packaged as co-processing boards. Although heterogeneity is now ubiquitous, some challenges

emerge from this plurality of devices and, in par cular to HSNS, from the architectural differences and

execu on models. In order to fully leverage the whole system, addressing these challenges is of crucial

importance.

As discussed in Sec on . , co-processors have disjoint address spaces between themselves and the

host CPU, usually interconnected by PCI-Express bus which is a poten al performance bo leneck. In

some devices, data transfers must be explicitly coded, while in others (e.g. Pascal GPUs and above) data

is automa cally transferred. In both scenarios, data transfers must be managed and minimized for op-

miza on and efficiency purposes. The different architectures typically exhibit different execu on and

programming models and are made available with different development tools, severely impac ng on

both code and performance portability. Applica ons are also designed and op mized to fully u lize each

device compu ng capability according to the device specific architecture and execu on model, reduc-

ing development produc vity. Moreover, the applica on’s workload has to be distributed and balanced

among the mul ple devices (Tier- ), and, within each device, among its mul ple processing units (Tier- ).

Addressing these issues requires the development and adop on of Tier- and Tier- scheduling mecha-

nisms towards maximum performance extrac on.

These challenges are aggravated if the target applica ons exhibit a dynamic behaviour. In this contri-

bu on a par cular set of dynamic applica ons are targeted which exhibit certain characteris cs that

par cularly hinder the performance of HSNS. These applica ons are defined as irregular applica ons

and are characterized by irregular data structures, irregular control flow and/or irregular communica on

pa erns [ ]. These par cular workflows cause load imbalance, code divergence and uncoalesced mem-

ory accesses, all poten ally resul ng on significant performance losses in HSNS. They par cularly hamper

the performance in wide SIMT devices, such as GPUs. The hardware work dispatch units within these

devices are op mized for homogeneous regular workloads, maintaining high u liza on of SIMT lanes



and thus exhibi ng remarkable performance improvements over CPUs for regular applica ons. Irregular

applica ons, however, have the poten al to follow different code paths and perform sca ered memory

accesses within the same lane (See Sec on . . ), resul ng on code divergence, increased memory ac-

cess latencies and resource underu liza on. In order to fully exploit these devices, maximum levels of

occupancy should be guaranteed.

Irregular applica ons cons tute an important class of algorithms that are present in well-known scien fic

applica ons, such as n-body simula ons, data mining, decisions problems, op miza on theory, pa ern

recogni on and meshing among others [ ], [ ]. A par cularly relevant subset of irregular applica ons

are Monte Carlo simula ons [ ], widely used in many knowledge areas, such as financial engineering

and valua on [ ], [ ] or physically based simula on of light transport within complex media [ ], [ ],

among many others. Monte Carlo simula ons perform mul ple Markov random walks within the domain

and then average the results of such random walks in order to obtain an es mate of the metric of interest.

Since both the direc on and the length of the randomwalk are stochas cally generated, this results on an

irregular workload, exhibi ng load imbalances, control flow divergence and irregular memory accesses.

A framework is proposed that specifically addresses development and execu on of data parallel irreg-

ular applica ons in heterogeneous single node systems towards increasing its efficient u liza on while

maintaining high programming produc vity. The framework is essen ally composed by a unified task-

based programming and execu on model for data parallel irregular applica ons, together with high-level

programming abstrac ons and scheduling mechanisms that transparently par ons the data domain into

tasks and deals with all Tier- and Tier- workload distribu on and balancing. The Tier- scheduling

resorts to persistent kernels and a queuing system that will also orchestrate the work leveraging Tier-

parallelism (SIMD). A data management strategy is also proposed that transparently guarantees that re-

quired data is readily available on each task’s addressable memory space. These components and their

integra on in a framework cons tute part of the hypothesis of this thesis towards the efficient harnessing

of the combined challenges posed by Tier- , Tier- and Tier- systems and dynamic irregular workloads.

The main contribu ons are thus the unified execu on and programming model and the integra on

of persistent kernels on the proposed framework as the solu on to handle irregular workloads. An

implementa on of the framework is presented, together with an experimental assessment of its ability to

efficiently handle regular and irregular workloads and a comparison with a state-of-the-art compe ve

framework. Valida on of the above hypothesis is performed in CPU GPU heterogeneous pla orms

and with emphasis on scheduling irregular workloads within the GPUs. Four case studies are used: a

regular matrix mul plica on, an irregular n-body problem using the Barnes-Hut algorithm, an irregular

path tracing based renderer and an irregular simula on of light transport with fluorescence within mul -

layered ssues.



3.2 Related Work
Several programming models and frameworks have been proposed that aim at hiding some of the chal-

lenges posed by HS in order to increase development produc vity. HMPP [ ] is one of the first

CPU GPU programming models aiming at handling devices and use them without the need to re-write

the applica ons. The model introduces per-device Codelets as a means to express the applica on func-

onality, along with primi ves for execu on and data transfers. However, it lacks a run me system and

scheduling policies that hide some of the remaining challenges such as load balancing.

Harmony [ ] proposes several techniques to address HS challenges and approach the associated com-

plexity. The work assesses and validates some solu ons presen ng results of a unified execu on model,

control decisions and a shared address space. Merge [ ], is focused on portability issues providing a

compiler and run me system and following a map-reduce approach for scheduling. The authors claim

that Merge is applicable to different HS and applica ons are easily extensible and can easily target new

architectures. These approaches are focused on the challenges that the plurality of architectures pose,

such as code portability and produc vity. However, they do not properly address data management,

scheduling and load balancing.

XKappi [ ], Legion [ ],Qilin [ ],MDR [ ] and StarPU [ ] are frameworks that provide high-level pro-

gramming abstrac ons for mul -device systems, integrated data management and enhanced scheduling

mechanisms. Both XKappi and Legion target mul -device execu ons with focus on data parallel schedul-

ing. Techniques such as locality aware work stealing and task-dependency Direct-acyclic Graph (DAG)

scheduling are explored coupled with a suitable programming model. In addi on, Legion provides a more

sophis cated support for irregular data structures accoun ng for applica ons such as graphs process-

ing. Qilin provides enhanced compiling features and a performance modelling mechanism while MDR

focuses on scheduling, proposing a scheduling approach en rely based on online history-based perfor-

mance modelling together with an analy cal model for communica ons.

StarPU has more advanced data-management and sophis cated scheduling techniques. It provides a

unified execu on model combined with a virtual shared memory and a performance model working to-

gether with dynamic scheduling policies. The run me also provides several data-management features:

automa c work decomposi on and data transfers, communica on and computa on overlapping, data

pre-fetching and data locality aware scheduling, among others. The scheduling resorts to an hetero-

geneous tailored algorithm known as the Heterogeneous Earliest Finish Time (HEFT) [ ]. The data

management system used in this contribu on is strongly inspired on that of StarPU; it uses the same

cache protocol with lazy consistency and keeps the programmer agnos c to data movements.

Some of the challenges of HS have been preliminary addressed in [ ], where a framework is proposed

that provides an unified programming and execu on model combined with a data management system.



The contribu ons proposed in this chapter use some of the developments described in this work, com-

bined with mechanisms to efficiently execute irregular applica ons.

These frameworks address some of the challenges associated with HS, however, they do not tackle

the specific issues associated with irregular applica ons. Tier- scheduling and work decomposi on are

based on previously sampled informa on where the performance of a small subset of work is generalized

for the whole domain – irregular applica ons are par cularly sensi ve to these generaliza ons, since the

workload varies among data elements in an unpredictable manner. Tier- scheduling is also not properly

considered. Irregular data parallel workloads require performing some fundamental opera on to each

data element an unknown number of mes; e.g., on a pathtracer the length of the path per pixel, i.e.,

the number of rays, is unknown and varies unpredictably across screen space – path tracing can thus be

seen as tracing a previously unknown number of rays. In the GPUs for instance, this irregularity would

lead to code divergence and huge resource underu liza on.

Some approaches have been proposed in literature that transparently map irregular applica ons to wide

SIMT devices, balancing the workload across the device CU and allevia ng the programmer from the

need to explicitly deal with this issue. Cederman et al. [ ] evaluates the use of dynamic load balancing

methods based on queues with lock-free and work-stealing mechanisms within the GPU. Tzeng et al. [ ],

inspired by the proposals of Aila and Laine [ ], introduced a taskmanagement system based on persistent

kernels and queues, which maximizes CUs u liza on and load balance. Persistent kernels produce and

consume work using a queuing system, avoiding the mul -pass approach and allowing load redistribu on

through a task dona on/stealing mechanism. So shell [ ] also proposes a three- er scheduling model

for the GPU that aims to replace the current built-in scheduling systems. It also works on top of a

persistent kernel approach similar to Tzeng’s, proposing an aggrega on scheme of threads and work

items, sor ng work items by priority and using queues to manage work items.

The Tier- scheduling approach in this contribu on is inspired by Tzeng’s task management system, in-

tegrated in the proposed framework that provides transparent access to the task system through the

proposed programming model and API.

3.3 Proposed Approach
In order to address the discussed challenges posed by the HS, a framework is proposed that encom-

passes mul ple features that work together at run me. The aim of the framework is to increase produc-

vity whilst transparently improve performance by increasing resource u lisa on. This sec on provides

a detailed descrip on of the proposed programming and execu ons models, programming interface and

system architecture that compose the framework, in par cular how they tackle the challenges posed

when efficiently exploi ng heterogeneous systems with irregular applica ons.



3.3.1 Programming and Execu on Model
The proposed framework uses a host-device system model, with applica ons being composed by a host

control program (HCP) plus one or more computa on kernels and respec ve data sets (Figure . ). The

HCP runs on the CPU and is responsible for data registra on and par oning, synchronisa on and en-

forcement of dependency constraints among compu ng kernels. Kernels express the applica on func-

onality and are executed on the system devices (including the mul -core CPU). They apply some compu-

ta on to all elements of a data set; in this sense, kernels express data parallel problems and the applica on

of a kernel to one data element is referred to as a basic work unit. Basic Work Units (BWUs) within the

same job are assumed to exhibit no data dependencies among them. It is the programmer’s responsibility

to provide implementa ons of the kernels for each device architecture.

Application
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Job
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Job

Kernel

...

 Data item

APIHCP
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Figure . : Applica on specifica on and HCP components. Applica on jobs and dependency constraints
are submi ed to the system by implemen ng the HCP using the API

An applica on consists on one or more jobs, each consis ng on applying a computa on kernel to a data

set. The run me system par ons the job data set into blocks of BWUs, referred to as tasks, whose

execu on is dispatched onto available devices. The data set par oning and dispatching is transparent

to the applica on programmer. Dependency constraints among jobs must be explicitly specified by

the HCP using system primi ves, otherwise they may execute concurrently. Tasks are executed out-of-

order and completely transparent to the applica on programmer. Par oning is, however, dependent

on applica on specific data representa on; the programmer is thus required to implement a provided

interface for a callback method that will of create arbitrarily sized data par ons upon system demand;

this method, renders the run me system independent on data representa on.

Data domains are used as a mechanism to transparently manage data. These, inspired by Par oned

Global Address Space based languages such as Chapel [ ], encapsulate all the informa on required for

the system to manage user data, including data loca on and transfers. Hierarchic data par oning is

internally supported by a hierarchy of sub-domains, which represent smaller regions of the data set. The

run me system converts domain global indexes to task local sub-domain indexes, thus transparently

suppor ng arbitrarily sized tasks; only the no on of domain is exposed to the programmer. The data



management system uses aMSI cache coherence protocol, similar to StarPU [ ], to enable data repli-

ca on and ensure consistency among replicas, which combined with lazy data transfers reduces data

movement overheads. Data pre-fetching and overlapping of asynchronous data transfers with compu-

ta on are also supported to further reduce communica on overheads . The run me system does not

ensure data consistency among concurrent jobs, i.e., if different jobs update the same data, they must

be explicitly serialized by the HCP using system primi ves.

In order to effec vely handle both regular and irregular workloads the run me system supports two types

of kernels: consumer and consumer-producer kernels. The choice of the type of the kernel depends

on the applica on and will define the internal execu on model of the run me. Consumer kernels are

associated with regular applica ons and imply the complete processing of a data element. In regular

workloads the imbalances among BWUs within the same task are unlikely and thus there is no need for

further complexity. Consumer-producer kernels are used within a persistent kernel and are targeted for

irregular workloads by addressing the highly unbalanced computa onal andmemory demands across data

elements. On wide SIMD/SIMT architectures this would result on increased u liza on of the devices’

CUs.

3.3.2 Consumer vs Consumer-producer Kernels
Irregular data parallel workloads require performing some fundamental opera on to each data element

an unknown number of mes; e.g., on a pathtracer the length of the path per pixel, i.e., the number

of rays, is unknown and varies unpredictably across screen space – path tracing can thus be seen as

tracing a previously unknown number of rays. The consumer-producer kernel will basically define the

BWU using this sub-opera on rather than the complete processing of a data element. This is basically

the main difference between the two types of kernels: the consumer kernel processes the whole data

element while the consumer-producer kernel fragments this opera on into mul ple iden cal ones. A

consumer-producer kernel applies this BWU to a data element and, if required by the algorithm, dynam-

ically generates a number of new BWUs, which are then rescheduled within the device by resor ng to a

queuing system. This approach is used to address the Tier- scheduling challenge and allows balancing

the irregular workload and increasing resource u liza on within each device.

In the pathtracer example, a consumer kernel would follow the en re path, eventually leading to imbal-

ances when paths have different lengths; a consumer-producer kernel would follow a single segment of

the path, i.e., a ray (and, eventually, associated shadow rays), genera ng a new BWU (a new path seg-

ment) at each intersec on point un l the path finishes. By rescheduling the newer genera ons of BWUs

Modified-Shared-Invalid
Note that, even though some devices support transparent data transfers, only by having control of what and when is trans-

ferred allows for these op miza ons



within the device, imbalances at Tier- level due to the irregularity of the workload can be minimized. It is

the responsibility of the applica on programmer to decide whether a consumer or a consumer-producer

kernel is to be used for each job.

Note that consumer kernels are launched by the run me system which transfers all the required data

automa cally to the device. This means that the consumer kernel allows the applica on programmer to

freely map the task workload onto the device resources. This also grants him complete control over the

device and enables the use of lower level programming tools, such as CUDA [ ], or highly op mized

libraries, such as CuBLAS [ ] or the Intel Math Kernel Library [ ]. Consumer-producer kernels, on the

other hand, are under control of a running a persistent kernel [ ], which calls the consumer-producer

kernel, provided by the applica on programmer, in order to process BWUs – thus precluding the u liza-

on of such third party libraries.

A final crucial feature in consumer-producer kernels is the scheduling of work in batches of SIMD width

length. Since consumer-producer kernels are target for wide SIMD/SIMT architectures, BWUs are auto-

ma cally grouped in sets of simd-width length. The benefit of this grouping is, on one hand, to match

the execu on model of the GPU, for instance, where simd-width instances of threads are simultaneously

scheduled and executed in lock-step (warp), and, on the other hand, to promote coherent execu on from

which SIMT devices will leverage. For instance, in the path tracing example and in a NVIDIA GPU, the

consumer producer kernel groups path segments that have been extracted from a task and simulta-

neously executes them. Since neighbour primary rays of a pathtracer will hit neighbour geometry, the

GPU is able to benefit from data coherence and increased performance is achieved.

3.3.3 Programming Interface
The HCP is the entry point to the framework and it is where the programmers specify all the data

and func onal requirements of the applica on. The API defini on leverages the object oriented in-

heritance paradigm providing higher flexibility to the programmer when expressing their applica ons.

Code . illustrates a simplified example of a HCP for the pathtracer applica on. Domains for the

resul ng pixels radiance and for the geometry are created and linked to the corresponding user data

structures (Lines and ). A job is then created, domains are associated and device kernels are speci-

fied (Lines to ). The job is then added for execu on and the HCP is instructed to wait for the job

to finish (Lines to ). Finally, the computa on results, stored onto a domain, are gathered to host

memory (Lines ). Note that, apart from associa ng the kernels to devices, the HCP is agnos c to any

computa onal resource details as well as any work par oning and scheduling policies.



Pathtracer host control program

HCP_PATHTRACER() {

RGB* pixelsRadiance = new RGB[PIXEL_COUNT];

Geometry *geometry = new Geometry();

(...)

Domain<RGB>* d_pixelsRadiance = new Domain<RGB> (”RAD”, pixelsRadiance,

dim_space(0, PIXEL_COUNT));

Domain<char>* d_geometry = new Domain<byte> (”GEO”, geometry, dim_space(0,

GEOMETRY_SIZE));

Job_PATHTRACER* t = new Job_PATHTRACER();

t->associate_domain(d_pixelsRadiance,d_geometry,...);

t->camera = CAMERA;

t->SPP = SPP;

(...)

t->associate_kernel(CPU, &CPU_pathtracer_kernel);

t->associate_kernel(GPU, &GPU_pathtracer_cpkernel);

AddJob(t);

WaitForAllTasks();

GetDomain(d_pixelsRadiance);

}

Code .

Code . presents a high level excerpt of a consumer kernel for pathtracer on the GPU. Within the kernel,

the appropriate domain is gathered from the run me system, followed by gathering the appropriate BWU

– on this example this is represented by the first ray the kernel will have to trace and shade (Lines and ).

Then the itera ve intersect and shade of the sample path is performed, using Russian roule e to stochas-

cally decide whether the path should con nue or not. The result of this BWU is then wri en onto the

domain. Code . illustrates a consumer-producer kernel for the same applica on and device. The main

difference is the loop removal since the processing of a sample is now transformed into a sequence of

an unknown number of basic units. A er intersec on and shading, and depending on the result of the

Russian roule e (Line ), a new BWU is created and submi ed to the run me system for scheduling

within the device (Line ). This new BWUwill be computed by the same consumer-producer kernel and

the required data (e.g. pixel id) is inherited from the current task. Finally, the result is accumulated onto

the domain.



Pathtracer GPU consumer kernel

GPU_pathtracer_ckernel(TASK* task) {

Domain<RGB> pixelsRadiance;

task->GetDomain(”RAD”, pixelsRadiance);

RayHit hit;

RGB result_rad;

Ray ray = getRay(task);

do {

Intersect(ray, hit, ...);

} while (ShadeAndRussianRoullete(result_rad,...));

int pixel_id = getPixelID(task);

pixelsRadiance->at(pixel_id) = result_rad;

}

Code .

Pathtracer GPU consumer-producer kernel

GPU_pathtracer_cpkernel(TASK* task) {

Domain<RGB> pixelsRadiance;

task->GetDomain(”RAD”, pixelsRadiance);

RayHit hit;

RGB result_rad;

Ray ray = getRay(task);

Intersect(ray, hit, ...);

if (ShadeAndRussianRoullete(result_rad,...))

newBWU();

int pixel_id = getPixelID(task);

pixelsRadiance->at(pixel_id) += result_rad;

}

Code .



Together with the data par oning method and addi onal kernels for each supported device architecture,

these code blocks illustrate all the func onality the applica on programmer has to provide in order to

benefit frommul -device data management and dynamic workload distribu on and balancing. To further

increase transparency, a generic specifica on of kernels can be provided that would support different

architectures therefore further reducing the user provided code and programming effort.

3.3.4 System Architecture
Figure . illustrates the run me system architecture and how the different modules cooperate with each

other. All the communica on between the applica on and the framework is done through the API, which

is one of the main en es along with the Scheduler, Performance Model (discussed in Sec on . . ) and

Data Management System. The system has a central job queue from where the Scheduler dequeues

jobs upon device request and, using the data par oning methods and the informa on provided by the

Performancemodel, produces the proper sized task and assigns it to the device. Each device in the system

has its own queue and associated control thread running on the host, enabling asynchronous data and

control flow using system messages. This distributed-like system increases scalability since the devices

will request work asynchronously and process tasks’ data concurrently. The devices’ queues support an

execu on window of tasks enabling computa on overlapping with data transfers and data pre-fetching.

The kernel that runs on the device can be of two types depending on the type of the applica on as

discussed in Sec on .
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The detailed descrip on of the workflow in Figure . is as follows: ( ) The HPC provided by the program-

mer uses the run me API to define and submit applica on jobs and dependency constraints; ( ) using

the API, the user will register and gather data to the Data Management System (DMS); ( ) the number

of data elements to process is provided as well as user-provided informa on to the performance model

if applicable; task execu on informa on is also provided from the devices to the Performance Model;

( ) applica on-specific data par on methods defined; ( ) jobs are enqueued in the main queue; ( ) the

scheduler dequeues and enqueues jobs or tasks from the main queue; ( ) the scheduler assigns a job

to a device, reasoning about job workload and device compute capabili es which will poten ally trigger

data par oning methods to create a properly sized task; ( ) task is enqueued in device queue; ( ) the

device controller signals data movements required for the task; ( ) the device controller signals for task

execu on using the user-provided kernel.

Each device architecture supported by the framework requires the development of a Device API (D_API)

implementa on, allowing the framework to perform low level opera ons such as ini a ng computa ons

or copying data to/from the device. The Device API is transparent to applica on programmers, but

explicitly managed by the framework developers. For instance, a system with three NVIDIA GPUs and

two CPUs requires two Device API implementa ons, one for the GPUs and another for the CPUs. For

each of these implementa ons, alterna ve programming and execu on environments might be selected;

for example, either CUDA or OpenCL might be used to control the GPUs.

3.4 Workload Scheduling
One of the major goals of this contribu on is to devise and evaluate scheduling mechanisms that allow

for increased performance in Tier- and Tier- parallel systems. In other words, the goal is to minimize

execu on me and, in this chapter, the proposed approach to achieve this is to increase resource u liza-

on by keeping the workload distribu on well balanced among available computa onal resources. Tier-

scheduling consists in par oning the job’s workload into tasks and assigns them to individual devices,

whereas Tier- scheduling distributes a given task BWUs among the device internal computa onal units.

In the proposed framework, each of the two parallel ers is addressed with different mechanisms. Even

though scheduling is a major component of the proposed framework it is transparent to the applica on

programmer.

3.4.1 Tier-3 Scheduling
Tier- scheduling is performed by resor ng to a demand driven strategy, where tasks are assigned upon

device request. When a device finishes a task it signals the scheduler, indica ng that it is available

for further processing. The scheduler then fetches a job, decides the new task size by applying the



par oning strategy described below, applies the data par oning method to get the proper sized task

and submits the task for execu on to the reques ng device.

Demand driven has been preferred over the HEFT scheduling algorithm [ ], which is used by StarPU,

since the la er makes its decisions based on an ini al sampling of the workload behaviour. However, the

behaviour of irregular workloads is mostly unpredictable by defini on and thus the authors of this work

conjecture that HEFT is not appropriate for this kind of workloads. The demand driven behaviour is more

suitable approach to copewith a wide range of workload profiles and with devices with diverse compu ng

power. By par oning a job’s workload into a number of tasks larger than the number of devices and

then assigning tasks on demand it adapts to both the workload requirements and the devices’ capabili es.

However, scheduling overheads are also dependent on the number of tasks. A heterogeneous system is

expected to have devices with very different compu ng powers, which would require a large number of

tasks in order to maintain load balance, severely impac ng on scheduling overheads. The total number

of tasks can be reduced by tailoring the task size to the rela ve compu ng power of the device where it

is being scheduled; this is the responsibility of the work par oning strategy.

Let Cd represent the compu ng capability of device d, defined according to some performance model. Re-

sults presented on Sec on . are based on the devices’ theore cal peak performances, as announced

by the respec ve manufacturers. This might not be the metric that guarantees the best results, par c-

ularly for irregular workloads. However, it is beyond the scope of this work to select and evaluate the

most appropriate performance modelling technique. In fact, the proposed framework takes a modular

approach towards the performance model, allowing it to be replaced without impac ng on the remaining

run me system architecture. This modularity assures that more efficient performance models and appro-

priate metrics, eventually resor ng to dynamic approaches, can be used in the future. Cd is normalized

according to Equa on . to represent rela ve compu ng capability with respect to the other devices

present on the heterogeneous system. Tdevices is the total number of compu ng devices.

C̄d =
Cd

max (C1, ..., CTdevices)
( . )

The size of the task to assign to the reques ng device, expressed in terms of the number of data elements

to process (or BWUs ), is then given by Equa on .

N

dd
× C̄d ( . )

where N is the job’s total number of BWUs and dd is a system constant that allows control over the tasks’

granularity, assuring that the total number of tasks is significantly larger than the number of devices, as

required for a demand driven strategy to be able to properly balance the workload.

For instance, consider a system composed by a GPU and a CPU where the performance model dictates



that the normalized rela ve compute capabili es are . and . to the GPU and CPU, respec vely, and

let dd be equal to . Upon receiving a work request, the scheduler will fetch a job, say with BWUs,

and assign a task with BWUs if the reques ng device is a GPU or with BWUs if it is a CPU.

3.4.2 Tier-2 and Tier-1 Scheduling
Tier- and Tier- scheduling are targeted to make use of the consumer-producer kernels and applies only

to irregular workloads; for regular workloads, the programmer can use consumer kernels having complete

control over the device as described on Sec on . . . Tier- scheduling exploits the fact that irregular

workloads can be seen as applying some fundamental opera on to each data element an unknown and

unpredictable number of mes; the BWU is thus redefined as this fundamental opera on, rather than the

complete processing of a data element. This view enables a work-spawn strategy where the execu on

of a BWU leads to the poten al spawning of one or more dynamically generated new BWUs. In order

to efficiently handle this mechanism within a SIMD/SIMT device, a generic pipeline is implemented that

features most of the techniques proposed by Tzeng et. al [ ].

A GPU is a SIMT device that schedules bundles of threads with the same cardinality as a SIMD lane

– on most NVIDIA GPUs these bundles contain threads and are referred to as warps. Since warps

are executed in lockstep, code divergence and uncoalesced memory accesses should be minimized for

performance maximiza on. However, irregular applica ons tend to exhibit divergence and unpredictable

memory accesses. In order to address these issues, the consumer kernel is replaced with built-in persis-

tent kernel implementa on. Note that this means that the run me system manages the kernel execu on

within the device, whereas with consumer kernels the applica on code has complete control of kernel

execu on within the device.

The execu onmodel of the persistent kernel follows a SIMD lane programming approach that cooperates

with the hardware scheduler to manage these lanes. As illustrated in Figure . , each lane is endued with

two local queues for ge ng work to consume and to store locally generated new BWUs, respec vely

Local Inbox Queue (LIQ) and Local Outbox Queue (LOQ). Work is shared among different SIMD lanes

by using a device Global Inbox Queue (GIQ) with a try-lock mechanism to avoid conten on. This fetch

of work from a shared queue enables Tier- scheduling since each lane will be computed by a different

stream mul processor. Each lane will fetch a bundle of BWUs (on NVIDIA GPUs) and call the user-

provided consumer-producer kernel, using a callback mechanism, in order to process all fetched BWUs .

Dynamically generated BWUs are stored on the LOQ and eventually moved to the GIQ in order to allow

execu on on other SIMD lanes. This enables transparent access to SIMD lane programming and Tier-

scheduling by the applica on programmer, which is now able to maximize applica on code convergence

and coalesced memory accesses assuming that all BWUs will be executed within a single lane.

The details of the workflow as illustrated in Figure . as follows: (A) if space available in local inbox
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queue (LIQ) try-lock global inbox queue (GIQ) and dequeue tasks; (B) Retrieve tasks and execute them

using the user-provided consumer-producer kernel; (C) If there is not enough room in local outbox queue

(LOQ) and in LIQ to store all secondary tasks, force GIQ lock and enqueue all the elements from the LOQ;

(D) Store generated tasks in LOQ; (E) Enqueue in LIQ elements from LOQ. If LIQ is full try-lock GIQ

3.5 Evalua on Approach
This sec on presents the evalua on approach and methodology of the proposed model and associated

framework. It describes the applica ons used, namely a regular applica on – matrix mul plica on (MM)

– and three irregular applica ons – a Barnes-Hut n-body simula on (BH), a pathtracer (PT) and a Fluo-

rescence simula on (FL). It also describes some of the metrics used and the compu ng system.

3.5.1 Applica ons
As a regular applica on, only the consumer kernel is provided for the matrix mul plica on. In order to

compute an element Cij of the result matrix, the kernel performs a dot product between the row Ai and

column Bj of the factor matrices. The kernel uses the CuBLAS [ ] and the Intel Math Kernel Library

[ ] op mized libraries for the GPUs and CPUs kernels, respec vely. A reference version execu ng on a

single GPU was developed with CuBLAS for performance comparison purposes.

As an irregular applica on, the Barnes-Hut (BH) algorithm [ ] casts an n-body simula on as an hierar-

chical problem, reducing its complexity to O(N log(N)). The goal is to compute the force exerted on each

par cle of the data set by all other par cles of the same set. The BH algorithm orders the par cles by

resor ng to an octree (in dimensions). When compu ng the resul ng force, if a voxel is farther away



from the par cle being processed than a given threshold, then all the par cles contained in that voxel

are approximated by their center of mass and the sub-tree associated with the voxel can be pruned.

The unpredictability of which nodes of the octree will be visited for each par cle renders the workload

irregular.

A consumer kernel will, for each par cle in the data set, traverse the octree, deciding which nodes to

visit and which to prune and finally compu ng the resul ng force – the basic work unit is thus compu ng

the force for one par cle of the data set. A consumer-producer kernel entails visi ng one node of the

octree and deciding which of its children to visit and which to approximate. All those children nodes that

have to be visited result on the genera on of new basic work units, which will be rescheduled within the

device by the run me system. On wide SIMD/SIMT devices, such as the GPUs, basic work units will be

executed in groups with the same cardinality as the SIMD lane width ( for current NVIDIA GPUs). In

order to increase coherence within each SIMD lane, par cles are ini ally sorted such that neighboring

par cles have high probability of being scheduled onto the same SIMD lane [ ]; neighboring par cles

have high probability of visi ng the same regions of the octree.

Monte Carlo Path Tracing (PT) is a well known ray tracing based rendering algorithm. It entails following

light paths from the eye into the scene; at each intersec on point radiant flux is gathered from the light

sources using a given number of shadow rays and the con nua on of the path is stochas cally decided

using Russian Roulle e; if con nued, a new ray is spawn, its direc on being stochas cally determined.

The Russian Roulle e path termina on approach and the stochas c direc on of each new ray render

the workload irregular. On wide SIMD/SIMT architectures, coherent path tracing [ ] is used, where

the random numbers used to decide about path termina on and new ray direc on are the same for all

threads within a SIMD lane. This will make paths within the same SIMD lane coherent (same length, same

overall direc ons), which results on perceivable image ar facts; these ar facts are eliminated by shuffling

the paths on the image plane before tracing them, thus avoiding spa al neighborhood among coherent

paths [ ].

A consumer kernel entails processing the whole path, whereas a consumer-producer kernel processes a

segment of the path, i.e., one ray plus associated shadow rays and, if the path is con nued, generates

a new basic work unit with the new ray. The image plane is divided into mul ple pixels and in order

to increase image convergence mul ple samples (i.e. light paths) are taken per pixel (SPP). Each sample

is processed independently and the more samples, the be er the image convergence, but the workload

increases andmore irregular paths are processed. The SPP parameter will be used to express theworkload

size as it is one of the parameters with major impact in image rendering and also impacts algorithm

irregularity, which is addressed in this work. The basis pathtracing code was extended from the SmallLux

renderer (recently re-branded as LuxCoreRender)[ ]; a reference version of SmallLux running on a single

GPU is used for performance comparison purposes.

The Monte Carlo simula on of light transport with fluorescence in mul -layered ssues (FL) is frequently



viewed as a reference method, whose results can be used to validate other less demanding methods [ ].

It is based on following a packet of photons along random walk steps within a mul -layered media with

complex structure, the size of each step being stochas cally generated according to the media op cal

proper es. A er each step a frac on of the photon packet’s energy is absorbed and a new step and

sca ering direc on are stochas cally chosen according to the current ssue layer proper es. When a

boundary between different layers, or between a ssue layer and the exterior, is crossed by the packet it

might be either en rely transmi ed into the new layer or reflected back into the same layer; this decision

is once again made by resor ng to a stochas c process and the op cal proper es of both layers. The

random walk is con nued un l the photon packet exits the ssue or its termina on is decided by Russian

Roulle e.

Fluorescence emission is simulated by deciding, a er each step, whether a frac on of the absorbed

energy, as given by the quantum yield op cal property of the ssue layer, is re-emi ed as a new fluores-

cent photon packet with a different wavelength; this decision is made by resor ng to Russian Roulle e.

Fluorescent photon packets are propagated through the media using Monte Carlo simula on, with the

same algorithm as the original excita on packets, except that they will not generate further fluorescent

packets since their wavelength will not trigger this phenomenon. The basic work unit for a consumer

kernel entails simula ng all steps of a photon packet and respec ve fluorescent packets un l they exit

the media or are terminated by the Russian Roulle e process. The consumer-producer kernel processes

a single step of a photon packet random walk; a new basic work unit is created if the random walk is

con nued and an addi onal one is created for each emi ed fluorescent packet.

Even though PT and FL resort to Monte Carlo simula ons, the associated workloads exhibit some fun-

damental differences. The former entails tracing rays through the scene D volume, which is a compu-

ta onal expensive procedure, whereas the la er does not involve any tracing. In fact, FL just requires

advancing the photon packet posi on along the random walk step direc on; boundary crossing among

layers is verified by checking the Z coordinate, since the modelled layers are aligned with the XY plane

and thus all boundaries are perpendicular to the Z axis. Consequently, the basic work unit for the con-

sumer producer kernel involves much less computa on for FL than for PT. Addi onally, for FL all photon

packets are shot into the media through the same infinitesimal point, i.e., all random walks have the same

origin. This is in contrast with the PT applica on where all paths ini ate at different points of the image

plane. This par cularity hinders the applica on of coherence increasing techniques, such as the coher-

ent path tracing technique used for PT. On wide SIMD/SIMT architectures, and for the consumer kernel,

threads within a SIMD lane are thus expected to be more incoherent for FL than for PT, exhibi ng larger

code divergence, load imbalance and irregularity of memory accesses; the consumer producer kernel has

the opportunity to minimize load imbalances within a device since new basic work units are rescheduled

a er each random walk step.

Furthermore, in FL a photon packet can contribute to any voxel within the grid embedded in the ssue,



whereas in PT a path only contributes to the pixel where it is originated: conten on in memory writes,

which are solved by resor ng to atomic opera ons, is thus much more frequent in FL than in PT. Also,

each task in PT requires a number of memory management opera ons, such as dynamic alloca on and

data copying, which is not required in FL. This is due to the fact that each task entails genera ng a le

of the image plane which is dynamically allocated by each device; such requirements do not exist in FL,

where the above referred grid of voxels is only allocated once on each device, given that any thread

can write to any voxel and the grid is much smaller than the finely sampled image plane. Such memory

management opera ons represent an implementa on penalty that might harm PT’s efficiency. Finally,

PT basic work units with the consumer-producer kernel have a branching factor of , i.e., a er tracing a

ray in the path if the random walk con nues a single new task is generated with the new secondary ray.

FL can have a branching factor of , since a new fluorescent photon packet can be created; the higher

branching factor will impact on the results.

3.5.2 Heterogeneous Systems Metrics
Speedup, S(p), and efficiency, E(p), are two metrics o en used to report and analyse the performance

of homogeneous parallel systems with p processors. If Tp and T1 are the execu on mes of the parallel

and uniprocessor systems, respec vely, then these are given by Equa ons . and . . S(p) is a measure

of how faster the parallel system is than a sequen al one and E(p) cons tutes a measure of resource

u liza on.

S(p) =
T1
Tp

( . )

E(p) =
S(p)

p
( . )

The problem with the above metrics is that they are defined for the homogeneous case, where all p

processors are iden cal. Similar metrics have been defined for the heterogeneous case [ ], [ ] and are

used on this work to analyse the experimental results.

Let W define the workload associated with solving a given problem and Tdev be the execu on me of

that workload on a given device. Then the device’s observed compu ng capacity, Cdev for that problem is

given by Cdev =
W
Tdev
. Iden cally, if the execu on me of that workload on a given heterogeneous set D of

devices is TD, then CD = W
TD
. The heterogeneous speedup, Sh(D), rela vely to the execu on me on some

given single reference device ref (e.g. the slowest) is then given by Equa on . :

Sh(D) =
Tref
TD

=
CD

Cref
( . )

Intui vely, the compu ng capacity available on the set D of devices is given by the sum of the individual



capaci es of all devices in D, i.e., C∗D =
∑

i∈D Cdevi = W
∑

i∈D
1

Tdevi
. Heterogeneous efficiency can now be

defined as the ra o of used compu ng capacity over the available capacity:

Eh(D) =
CD

C∗D
=

1
TD∑

i∈D
1

Tdevi

( . )

In Sec on . . a strong scalability analysis is performed (constant problem size, i.e., constantW) by using

Eh(D) for different heterogeneous sets of devices D. Equa on . shows that if, due to algorithmic and

implementa on penal es, the used compu ng capacity, CD, grows at a lower rate than C∗D , then Eh(D) will

become smaller as the number of devices in D increases.

3.5.3 Compu ng System
The compu ng system used to assess the proposed framework is equipped with two Intel Xeon CPU

E , each running at . GHz with six cores and GB of memory RAM. The pla orm is also equipped

with a NVIDIA Fermi GTX with CUDA cores and . GB of memory, plus two NVIDIA Tesla

C , with CUDA cores with GB of memory. The code was compiled with the GNU C compiler

. and NVCC compiler, provided by CUDA toolkit . , in a LINUX opera ng system.

3.6 Results
This sec on presents and discusses experimental results with respect to scheduling of irregular workloads,

performance scalability and a comparison with a state of the art framework – StarPU.

3.6.1 Scheduling Irregular Workloads
Irregular applica ons imply unbalanced computa onal demands across data elements, which, on wide

SIMD architectures, would result on severe resource under-u liza on. Consumer-producer kernels are

thus proposed as the means to avoid this poten al performance penalty at the Tier- parallelism level.

Figure . presents performance comparisons for the consumer and consumer producer-kernels, labelled

as C_kernel and CP_kernel, respec vely, for the BH, PT and FL applica ons with different problem sizes

and using a single GPU. Speedup of the consumer-producer kernel over the consumer kernel is also

presented in the rightmost axis. Note that PT plot in the middle depicts PT throughput, expressed in

MRays/s, instead of execu on me. Throughput will be used throughout this work for PT because it

provides an abstrac on to the light transport model details and algorithms’ implementa on. A further

reason to use throughput is that the performance of PT will be compared to a reference path tracing

version using SmallLux (Table . ). SmallLux uses a slightly different light transport model that results

on tracing different numbers of rays; by repor ng rays per second, for the same scene and rendering
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Figure . : Performance comparison between C-Kernel and CP-Kernel on a single GPU. Note the le -
handed y-axis and x-axis in log scale and right-handed y-axis in linear scale.

parameters, performance comparisons can be made.

The consumer-producer approach provides a significant speedup for both the pathtracer ( % be er)

and fluorescence ( % be er), while performing about % worse in the BH applica ons. While the

basic work unit for the BH consumer-producer kernel consists on a very light task (deciding, for one

node of the octree, whether its children have to be visited and compu ng the resul ng force for those

that are not), for PT this is a demanding task, requiring tracing a ray and associated shadow rays as well

as shading computa ons. An hypothesis is that the workload associated with each BH basic work unit

is not enough to compensate the overheads associated with queuing and scheduling the dynamically

generated basic work units. In order to verify this hypothesis a parameterizable synthe c workload is

added (SW – compu ng the Fibonacci sequence up to a given index, whenever an octree node is visited)

to the Barnes-Hut consumer and consumer-producer basic work units.
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Figure . : Load impact in performance, expressed in terms of speedup of the consumer-producer kernel
over the consumer one. Number of shadow rays per shading point in PT (upper horizontal axes) and
synthe c load for BH (lower horizontal axes). Note that both horizontal axes are in log scale.

Figure . depicts the observed speedups for both BH and PT applica ons – actual values in Table . .

Note that in BH, as the SW increases the consumer-producer kernel becomes more effec ve (maximum

of % faster) than the consumer kernel, which corroborates the above cited hypothesis. The PT result

also corroborates the above conclusions. As the load per basic work unit increases (expressed as the

number of shadow rays cast per shading point to assess the visibility of the light sources), speedup

increases although at a marginal rate compared to BH (Table . ); this is due to the fact that, even with

only one shadow ray per point, the load associated with each basic work unit is enough to overcome the



Table . : Speedup of the consumer-producer kernel over the consumer kernel with load impact in per-
formance as workload is increased per BWU in BH and PT.

BH PT

synthe c load speedup shadow rays speedup

. .

. .

. .

. .

. .

overheads associated with the queuing system. Given that without synthe c workload the consumer-

producer kernel is not effec ve for BH, results obtained with this applica on will not be further reported

on this Subsec on. BH results with the consumer kernel without synthe c workload will be presented

in Sec on . . to demonstrate that the proposed framework can s ll effec vely handle this kind of

workloads.
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Figure . shows the speedup obtained with the consumer-producer kernel over the consumer kernel

for the PT and FL applica ons with different configura ons of mul ple heterogeneous devices and for

different problem sizes. For a single GPU the lines are the same as in Figure . . Note that Figure . tries

to illustrate the speedup of using consumer-producer kernel with mul -devices – mul -device (Tier- )

scheduling is assessed in detail in the Sec on . . . In PT for mul ple-device configura ons the achieved

speedup increases monotonically with the problem size to a maximum of . x with three GPUs and

SPPs. As for the FL case, the speedup increases un l a certain workload and then stabilizes with a

maximum of . x with three GPUs – see Sec on . . for a discussion on why is the speedup obtained



Table . : Performance values with mul -device configura ons. C stands for CPU and G for GPU.

App Workload C G C+G 2xG C+2xG 3xG C+3xG

MM (sec) k x k DP . . . . . . .

BH (sec) k par cles . . . . . . .

PT (MRays/sec) SPP . . . . . . .

FL (sec) M Photons . . . . . . .

with FL significantly larger than that of PT. These results clearly show that the consumer producer kernel

provides a clear gain over the consumer approach, and that this gain is sustainable in the presence of

mul ple heterogeneous devices. Also note that using this mul plicity of heterogeneous devices requires

no addi onal programming effort from the applica on developer, which is this work main goal.

Consumer vs Consumer-Producer

The applica on programmer is responsible for selec ng whether a consumer or a consumer-producer

kernel is used to implement a given job. A consumer kernel has the advantages of allowing the u liza on

of op mized third party libraries and having an associated execu on and programming model familiar

to most programmers. A consumer-producer kernel explicitly handles load imbalances within a device,

but exhibits overheads associated with queue management. The la er should be preferred over the

former whenever the applica on workload is expected to be irregular, in the sense that it exhibits unpre-

dictable workload and memory access pa erns, which vary across elements of the data domain, and the

workload per basic work unit mi gates the queue management overhead. In situa ons where irregular

applica ons do not fulfil this last condi on, the consumer kernel can be effec vely used instead, which

will be demonstrated in the next sec on.

3.6.2 Performance Scalability
The goal of the proposed framework is to allow efficient execu on of irregular data parallel applica ons

while maintaining high programming produc vity by hiding from the programmer many of the details as-

sociated with such systems; this is achieved by complying with the proposed programming and execu on

model.

Figure . presents the performance gain for the selected applica ons execu ng on increasing numbers

of computa onal devices – actual values shown in Table . . Since it is a regular applica on, the consumer
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Table . : Performance values with mul -device configura ons compared to a reference version running
on a single GPU. PT values differ from Table . because a single shadow ray was used per shading point.
C stands for CPU and G for GPU.

App Workload C G Ref (G) C+G 2xG C+2xG 3xG C+3xG

MM (sec) k x k DP . . . . . . . .

PT (MRays/sec) SPP . . . . . . . .

kernel is used for the matrix mul plica on. Also, since the consumer-producer kernel is not able to

provide performance gains with respect to the consumer kernel for BH, due to the very light workload

associated with each BWU, results are reported using the consumer kernel; the goal is to verify whether

performance gains are s ll obtained as the number of heterogeneous devices increases. The consumer-

producer kernel is used for the irregular PT and FL applica ons.

The MM plot clearly shows that the regular matrix mul plica on has increased performance as more

devices are added. The horizontal dashed line depicts the execu on me of the same problem on a single

GPU using a reference version developed using CUBLAS (the same library used within the framework

provided kernel); there is no performance penalty associated with using this framework for a single GPU

and there is a clear gain as more devices are added to the system, since performance scales without any

programmer effort (see Tables . and . ). With the four devices working together, the run me system

is able to extract about x speedup compared to the single (mul core) CPU configura on.

The BH applica on plot clearly shows that the execu on me decreases as more devices are added,



achieving a maximum . x speedup compared with the CPU configura on (see also Table . ). Consid-

ering that the consumer kernel is being used for this highly irregular applica on, this result shows that

consumer kernels can s ll be used effec vely to handle irregular workloads. This is par cularly useful

when an applica on would exhibit a very light workload per BWU under a consumer-producer model,

insufficient to compensate the associated overheads. In such cases, the consumer kernel can s ll be

used and performance will s ll increase with the number of devices.

The PT plot depicts the PT throughput, expressed in MRays/s, and clearly shows that performance in-

creases significantly as devices are added to the system (the ver cal axis is in log scale). Table . com-

pares the achieved performance with that obtained with a reference single GPU pathtracer based on

SmallLux. Note that the values reported for PT are slightly different from those reported on Table .

because now a single shadow ray is being shot per shading point, whereas previously several shadow

rays were used. It is clear that the proposed approach suffers no performance penaliza on compared to

the reference SmallLux and that ray throughput increases with the number of devices.

Finally, for the FL applica on a similar result is achieved, with performance increasing with the number

of devices and achieving a remarkable speedup of . x to the single CPU. These larger performance

gains obtained with FL when compared to PT result from the minimal memory management overheads

associated with the former (as explained in Sec on . . ) and a large gain when using GPUs compared

to the CPU (according to Table . the GPU is . x faster than the CPU for FL and only x faster for PT).

A . x speedup can also be observed when adding a Tesla C to a GTX (the Tesla has one less

SM) and . x speedup when adding another Tesla to the GTX Tesla configura on (addi onal tests

were performed that reveled a . x speedup from one Tesla to xTesla) – overheads associated with

increasing the number of devices are thus minimal for the FL case.

Performance scalability is achieved with minimum programmer effort: adding devices with the same

architectures only requires registering them through the HCP, while adding devices with different archi-

tectures (supported by the framework through the device API) requires providing the respec ve kernels.

Programming produc vity is thus preserved, while enabling efficient execu on of regular and irregular

applica ons on heterogeneous systems.

In order to measure how effec vely the proposed framework uses the resources available on the parallel

heterogeneous system a strong scalability analysis is performed using the heterogeneous efficiencymetric

introduced in Sec on . . . Strong scalability analysis entails studying how the system efficiency varies

with the number of devices for a fixedworkload (i.e., problem size). Efficiency is expected to decreasewith

the number of devices, since overheads (such as devices’ idleness due to load imbalances, communica on

and run me system management costs) increase. However, if efficiency decreases in a very sublinear

manner, the system is deemed scalable for fixed problem size. Ideally, the above men oned overheads

would be measured directly; this is however not possible, since mul ple management opera ons occur

concurrently and asynchronously. Efficiency analysis provides thus a robust tool to assess the impact of



Table . : Strong scalability: heterogeneous efficiency for the four case studies. k x k matrix for MM,
k par cles in BH, SPP for PT and M photons in FL. C stands for CPU and G for GPU.

Applica on C+G 2xG C+2xG 3xG C+3xG

MM % % % % %

BH % % % % %

PT % % % % %

FL % % % % %

such overheads.
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Figure . : Strong scalability: heterogeneous efficiency for the four case studies. k x k matrix for MM,
k par cles in BH, SPP for PT and M photons in FL.

Figure . illustrates the varia on of heterogeneous efficiency for the four applica ons with different de-

vices’ configura ons – Table . shows the corresponding values. These results show that high efficiency

values (above %) are maintained for all applica ons. MM exhibits slightly lower efficiency values than

the others because it has a very low computa on–communica on ra o, i.e., the number of arithme c

opera ons performed per byte read from memory is very low. There is also a drop in efficiency every

me a CPU is added to a mul ple GPU configura on. This happens because the CPU exhibits a much

lower compu ng capacity (in the terms defined in Sec on . . ) than the GPUs for these applica ons,

as can be clearly seen in Figure . by comparing the C and G bars. It becomes thus extremely difficult

for the run me system to maintain the same efficiency level when a rela vely less powerful device is

added – remember however that this does not represent a loss in performance for the general case, just

a loss in efficiency. Note that the efficiency reported for BH is lower than for PT and FL; however, the

consumer kernel is being used for this irregular applica on. These results confirm that the conclusions

drawn above with respect to irregular applica ons with light workloads per BWU: the consumer kernel

can s ll be used, even though efficiency values will be lower than for more adequate irregular workloads.

Heterogeneous efficiency for all four case studies across different workloads and number of devices is
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Figure . : Heterogeneous efficiency with mul ple workloads and mul ple-device configura ons. Con-
sumer kernel for MM and BH, consumer-producer kernel for PT and FL. C stands for CPU and G for
GPU.

depicted in Figure . . In the general case efficiency increases with the workload and values within the

range of % to % are achieved for the maximum tested workloads. It can thus be concluded that the

proposed approach scales well with problem size within the range of devices and workloads evaluated.

In the general case efficiency decreases as the number of devices increases, par cularly when the CPU

is added to a configura on based only on GPUs. This is strong scalability and has been discussed before;

overheads are expected to increase with the number of devices and the CPU contributes with a reduced

compu ng capability compared to the GPUs, making it harder to maintain very high efficiency levels.

Efficiency, nevertheless, drops sublinearly with the number of devices.

PT and FL achieve higher efficiency than MM and BH across a wide range of problem sizes, with FL

s ll struggling for smaller workloads. MM presents the worst efficiency values and its scalability is the

poorest across both dimensions: workload and number of devices. This is due to the low computa on-

communica on ra o. However, it s ll exhibits an average % efficiency and for the highest workload

efficiency ranges from % to %, which are reasonable values considering the memory access over-

heads. BH’s efficiency ranges between and % for all problem sizes, except for very small workloads,

with maximum values being achieved with two and three GPUs. This is a very posi ve result since a

consumer kernel is being used for an irregular applica on, given that BH exhibits very low workload per

BWU. PT consistently achieves efficiency values above % for all workloads and system configura ons.

Even at low workloads PT performs well given the workload associated with each BWU and in spite of

the memory management costs associated with tasks assignment as described in Sec on . . . Finally,

FL has very low memory management overheads which enables the system to achieve an average of

% efficiency above million photons. This is very close to the ideal case, demonstra ng that with the



proper amount of work to suit available computer power and in the absence of implementa on penal es

(such as dynamic memory alloca on per task), the overhead of the framework is properly compensated

by the gains obtained with an effec ve intra-device scheduling.

3.6.3 Comparison with StarPU
In order to further validate the approach, a comparison of the proposed run me systemwith a state of the

art heterogeneous system scheduling framework – StarPU [ ] – is provided. Both run me systems have

similar data-management mechanisms, but StarPU does not explicitly target irregular workloads, uses a

different inter-device scheduling strategy and ignores intra-device scheduling. StarPU scheduling is based

on the Heterogeneous Earliest Finish Time (HEFT) algorithm [ ] and in a history-based performance

modelling. TheHEFT has demonstrated to achieve good results with regular workloads on heterogeneous

systems, but it does not address irregular workloads. We implemented the PT applica on in StarPU

using the typical algorithm equivalent to C_kernel and compare with the proposed run me system using

the consumer-producer execu on model. In StarPU, it is the user’s responsibility to specify the task

granularity, therefore mul ple grain sizes were tested and selected the one achieving the best results

( tasks for most of the device configura ons).

Figure . illustrates the speedup of the proposed approach over StarPU with mul ple device configu-

ra ons and different workloads. With a single mul -core CPU the framework achieves a fairly constant

speedup of . x. The different tasks’ sizes in both frameworks results on different behaviours that jus-

fy this speedup. The remaining configura ons clearly show the benefit of using intra-device scheduling

mechanisms. With a single GPU a consistent increase in speedup is observed up to . x. Adding a

CPU reduces the speedup because the gain with the CPU is lower and constant, but for the remaining

configura ons the speedup increases consistently achieving a maximum of about . x with SPP.

The persistent kernel approach is able to balance the load within the GPU, which increases resource u -

liza on and also leverages the coherence exhibited by the algorithm. These results clearly show that the

proposed approach consistently achieves larger performance than StarPU for irregular workloads and

that this performance gain increases with the workload size, thus favoring larger problem sizes. Also,

even though speedups are reported only for up to devices (one mul -core CPU and three GPUs), the

data suggests, specially for larger workloads, that no inflec on point is about to be reached and that ad-

di onal devices would s ll exhibit significant speedups over StarPU. This conclusion has to be validated

once access to a system endowed with more compu ng devices is available. Combined with a suitable

and unpredictability tailored inter-device scheduling the proposed approach is thus able to deliver more

performance and to efficiently exploit the available compu ng resources when compared with a state of

the art system designed for regular workloads such as StarPU.
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3.7 Conclusions and Future Work
This contribu on presents a framework for efficient execu on of data parallel irregular applica ons on

heterogeneous systems while maintaining high programming produc vity. The Tier- , Tier- and Tier-

parallelism levels are addressed. The framework integrates a unified programming and execu on model

with data-management and scheduling services, that keep the programmers agnos c to HS par culari es,

allowing them to concentrate on the applica on func onality.

Part of the results concentrate on the programming model and on Tier- scheduling showing that both

regular and irregular applica ons scale well as more devices are added to the compu ng system. They

also show that Tier- and Tier- scheduling, based on consumer-producer kernels, is able to sustain

significant performance gains over consumer kernels for irregular applica ons, as long as the workload

per basic work unit is enough to compensate the overheads associated with queuing and scheduling the

large number of dynamically generated tasks. If the applica on exhibits a very low workload per basic

work unit, then consumer kernels can s ll be used.

The proposed framework has proven to enable efficient exploita on of HS for irregular applica ons, while

requiring minimal programming effort: using addi onal devices with architectures already exploited by

the applica on only requires registering them through the HCP, while adding devices with different archi-

tectures (supported by the framework through the device API) requires providing the respec ve kernels.

Expanding the framework support to new device architectures requires developing API implementa ons

for those architectures, a task to be entailed by the framework developers, not applica on programmers.

The run me systemwas further validated and compared with a heterogeneous system (Tier- ) scheduling

framework – StarPU. Results reveal that our approach is able to outperform a state of the art run me sys-

tem designed for regular workloads. This is, to the best of our knowledge, the first published integrated

approach that successfully handles irregular workloads over heterogeneous systems.

The future work in this contribu on includes extending the proposed framework to support other archi-



tectures such as DSPs and Intel PHI’s, and to further assess the scalability of the proposed mechanisms

with systems with a larger number of devices.
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This chapter describes an approach to tackle the challenges posed by mul -node heterogeneous systems.

The approach is essen ally based on a dynamic load balancing approach, designed to handle dynamic

workloads in systems with performance imbalances across compu ng nodes. The approach is integrated

into a widely used numerical simula on library and evaluated in mul ple systems with different imbalance

levels.

4.1 Introduc on
The contribu on discussed in this chapter will address Tier- parallel compu ng systems. These systems,

typically known as clusters or supercomputers, are composed by mul ple nodes connected by a network

interface in a distributed memory layout. Clusters are one of the most widely available parallel systems

and provide a cost-effec ve, extensible and powerful compu ng resource. One of the most important

branch of applica ons executed in these systems are CFD simula ons which will be the main target of

this contribu on.

CFD simula ons have become a fundamental engineering tool, witnessing an increasing demand for

added accuracy and larger problem sizes, being one of themost compute intensive engineering workloads.

The most common approaches to CFD, such as Finite Elements (FEs) and FVs, entail discre zing the

problem domain into cells (or elements) and then solving relevant governing equa ons for the quan es

of interest for each cell. Since each cell’s state depends on its neighbours, solvers employ some form

of nearest neighbour communica on among cells and iterate un l some convergence criteria are met.

Typically, CFD problems are unsteady, requiring an outer loop which progresses through simula on me

in discrete steps. Domain decomposi on is used to make available a suitable degree of parallelism, i.e., the

set of discrete cells is par oned into subsets which can then be distributed among the computa onal

resources. Such very compute intensive type of workloads are obvious candidates to exploit the inherent

parallel compu ng capabili es of Tier- systems.

These systems can be fairly easily extended by adding more nodes with iden cal architectures, but of-

ten from newer genera ons offering more compu ng capabili es. This extensibility renders the system

heterogeneous in the sense that different genera ons of hardware, with diverse configura ons, coexist

in the same system. An addi onal source of heterogeneity is the integra on on current supercompu ng

clusters [ ] of devices with alterna ve architectures, programming and execu on models, such as the

new highly parallel Intel KNLs and the massively parallel GPUs [ ].

However, this heterogeneity results in different performances across nodes, poten ally leading to severe

load imbalances. Sta c and uniform workload distribu on strategies, as typically used by CFD so ware,

will result on the computa onal units wai ng on each other and resources underu liza on. Properly

distribu ng the workload and leveraging all the available compu ng power is thus a crucial feature, which



has been revisited in the latest years due to increasing systems’ heterogeneity [ ].

The load distribu on problem is further aggravated in the presence of dynamic workloads. CFD solvers

o en refine the problem domain discre sa on as the simula on progresses through me, allowing for

higher accuracy in regions where the quan es of interest exhibit higher gradients. In the scope of

this work, these applica ons will be referred to as adap ve applica ons. This refinement entails spli ng

and merging cells, resul ng on a new domain discre sa on. Given that the computa onal effort is in

general propor onal to the number of cells, its distribu on across the problem domain also changes.

Not accoun ng for this refinement and maintaining the ini al mapping throughout the whole simula on

would lead to load imbalances and huge performance losses.

The combina on of the differences in compu ng power provided by the heterogeneous CUs with the

differences in compu ng requirements from dynamic workloads, defines one of the main challenges

iden fied in this thesis — the two-fold challenge (Sec on . . ). The adop on of DLB is proposed as a

means to address this compu ng imbalance as a whole and allows for fully leveraging all the available

compu ng power and improve execu on me. The proposed mechanisms in this chapter will address

the par culari es of Tier- parallelism and target the most impac ng challenge on these systems — the

load and performance imbalances.

This contribu on will thus focus in combining DLBwith HS in the context of CFD simula ons by integrat-

ing DLB mechanisms in a widely used applica on: OpenFOAM. OpenFOAM is a free and publicly avail-

able open-source so ware package, specifically targe ng CFD applica ons [ ]. It is an highly extensible

package, allowing applied science experts to develop scien fic and engineering numerical simula ons in

an expedite manner. OpenFOAM includes a wide range of func onali es such as simula on refinement,

dynamic meshes, par cle simula ons, among others. OpenFOAM large set of features and extensibility

has made it one of the most used and leading open-source so ware packages across the CFD community.

It has also been made available in mul ple supercomputers and compu ng centres, along with technical

support. OpenFOAM parallel distributed memory model is based on a domain decomposi on approach,

however, there is li le to no support for either HS or DLB, which is addressed by this work by integra ng

and evalua ng all proposed mechanisms into this package. More details on OpenFOAM are presented

below.

Providing such support is of crucial importance, however, this task is too complex to be handled by the

CFD applica on developer. This complexity has two different causes: i) efficient mapping of the dynamic

workload onto a vast set of heterogeneous resources is a research level issue, far from the typical concerns

of a CFD expert, and ii) execu on me migra on of cells (par cularly dynamically refined meshes of

cells) across memory spaces requires a deep understanding of OpenFOAM’s internal data structures

and control flow among lower level code func ons and methods. Integra on of these facili es with

OpenFOAM by computer science experts is proposed as the best solu on to provide efficiency and

robustness, while simultaneously promo ng reuse by the CFD community.



The OpenFOAM Challenge

Open Source Field Opera on and Manipula on (OpenFOAM) is a powerful C so ware package developed
for CFD and other mul -physics engineering problems. The library addresses the three main stages of
a numerical simula on (pre-processing, solving and post-processing) and it is centred on the concept of
applica ons that are subdivided in solvers and u li es. Specific solvers are developed to solve a par cular
con nuum mechanics problem, while u li es are mainly related to data manipula on and analysis.

OpenFOAM, originally known as FOAM, was created in the Imperial College London, however, its devel-
opment path suffered from severe fragmenta on resul ng in mul ple development par es and forks. Its
development started in the later s and in , Henry Weller together Hrvoje Jasak, founded Nabla Ltd as
the main development party. In , the team diverged, and Weller founded OpenCFD Ltd. Simultaneously,
Jasak founded Wikki Ltd and developed a fork — foam-extend. In , OpenCFD was acquired by SGI and
then by the ESI Group in . Two years later, Weller le the ESI Group and con nued the development
at CFD Direct Ltd on behalf of the OpenFOAM Founda on Ltd, to which the copyright of OpenFOAM was
transferred at some point. The maintained and distributed forks are thus the CFD Direct, ESI Group and the
foam-extend forks.

OpenFOAM is considered the most used free CFD library and it is in the top of the most used CFD libraries.
It has an ac ve development and support with several reported issues being submi ed and resolved per
week. OpenFOAM is a complex so ware package with over . million lines of code sca ered over about
half a million files. It makes full use of C object inheritance and polymorphism features, together with
C templates. The parallel execu on approach is based on the distributed memory model using MPI and
domain decomposi on. Two levels of the development can be iden fied: (i) Solver development, where new
solvers are developed or adapted and (ii) core development, related to the development of the OpenFOAM
core func onality. Given the complexity of the package, the la er is far more challenging, requiring a
deeper understanding of the whole architecture of the library. Its open-source development approach
also contributes to its complexity as a large percentage of the components were developed by a variety of
programmers and applied experts.

Another challenging aspect of the development, not only of OpenFOAM but any CFD so ware package, is
the inherent behaviour of fluid mechanics and their simula on. For instance, convergence is a major issue
in CFD simula ons that requires knowledge and insight on the specific physical phenomena being simulated.
Any change applied to a simula on code, par cularly parallel code, may promptly result in a non-convergent
simula on. A non-convergent simula on will not only provide incorrect physical results, but it may also result
in residual overflow and/or unstable code execu on.

To approach the above hypothesis, this work proposes nSharma — Numerical Simula on Heterogene-

ity Aware Run me Manager — a run me manager that provides OpenFOAM with heterogeneity aware

DLB features. nSharma monitors the heterogeneous resources performance under the current load, com-

bines this data and past history using a performance model to predict the resources behaviour under new

workload resul ng from the refinement process and makes informed decisions on how to re-distribute

the workload. The aim is to minimize performance losses due to workload imbalances over HS, there-

fore contribu ng to minimize the simula on’s execu on me. DLB minimizes idle mes across nodes by

progressively and in an educated way assigning workload, which can be itself dynamic, to the available

resources. nSharma package integrates in a straigh orward manner with current OpenFOAM distribu-

ons, enabling the adop on of heterogeneity aware DLB. To best of author’s knowledge, this is the first

implementa on and integra on of heterogeneous-aware DLB mechanism in OpenFOAM.



4.2 Related Work
Libraries suppor ng the development of CFD simula ons, include OpenFOAM[ ], ANSYS Fluent[ ],

ANSYS CFX[ ], STAR-CCM [ ], among others. OpenFOAM is distributed under the General Public

Licence (GPL), allowing modifica on and redistribu on while guaranteeing con nued free use. This mo-

vated the selec on of OpenFOAM for the developments envisaged in this work. The authors see no

reason why this document’s higher level assessments and results can not be applied to other similar CFD

libraries. This generaliza on should, however, be empirically verified on a per case basis.

Domain decomposi on requires that the mesh discre za on is par oned into sub-domains. This is a

challenging task impac ng directly on the workload associated with each sub-domain and on the volume

of data that has to be exchanged among sub-domains in order to achieve global convergence. Frame-

works that support mesh-based simula ons most o en delegate mesh par oning to a third-party so -

ware. ParMETIS [ ] and PTSCOTCH [ ] are two widely used mesh par oners, which interoperate

with OpenFOAM. ParMETIS has been used within this work’s context because it provides a more straight-

forward support for Adap ve Mesh Refinement (AMR).

ParMETIS includes methods to both par on an ini al mesh and re-par on a mesh that is sca ered

across CUs disjoint memory address spaces, avoiding a poten al full re-loca on of the mesh in run me.

The (re)par oning algorithms op mize for two criteria: minimizing edge-cut and element migra on.

These criteria are merged into a single user-supplied parameter (ITR), describing the intended ra o of

inter-process communica on cost over the data-redistribu on cost. ParMETIS also provides an interface

to describe the rela ve processing capabili es of the CUs, allowing more work units to be assigned to

faster processors .nSharma calculates these parameters in order to control ParMETIS’ repar oning and

thus achieve efficient DLB.

Some frameworks providing DLB to itera ve applica ons have been proposed. DRAMA [ ] provides a

collec on of balancing algorithms that are guided by a cost model which aims to reduce the imbalance

costs. It is strictly targeted for finite element applica ons. PREMA [ ] is designed to explore an over-

decomposi on approach to minimize the overhead of stop-and-repar on approaches. This approach

is not feasible in some mesh-based numerical simula ons (due to, for instance, data dependencies) and

no men on to HS support could be found. Zoltan [ ] uses callbacks to interface with the applica on

and integrates with DRUM [ ], a resource monitoring system based on sta c benchmark measured

in MFLOPS and averaged per node. The resource monitoring capabili es of nSharma are much more

suitable to account for heterogeneous compu ng devices – see next sec on. Zoltan is not ed to any

par cular CFD framework. It does not enforce any par cular cost func ons and uses abstrac ons to

maintain data structure neutrality. This however comes at the cost of requiring the CFD applica on

developer to provide all data defini ons and pack/unpack rou nes, which in a complex applica on like



OpenFOAM is an programming intensive and error prone task.

nSharma integrates with OpenFOAM, accessing its data structures and migra on rou nes. Although

this op on implies some code portability loss (across alterna ve libraries), it avoids the mul ple costs of

data (and even conceptual) transforma ons together with overheads of code binding between different

so ware packages. This allows direct exploita on, assessment and valida on of DLB techniques for

OpenFOAM applica ons on HS. The results on conceptually more abstract design op ons, such as the

performance model and the decision making mechanism, should s ll generalise to alterna ve so ware

implementa ons, although empirical verifica on is required.

Some of the above cited works can handle HS. They do so by using high-level generic metrics, such as

vendor announced theore cal peak performances or raw counters associated to generic events such as

CPU and memory usage [ ], [ ]. The associated performance models are however generic, ignoring

both the characteris cs of CFD workloads and emerging devices par cular execu on models and com-

pu ng paradigms, and thus tend to be inaccurate [ ]. This work proposes a performance model which

explicitly combines the workload par culari es with the heterogeneous devices capabili es. The design

of this performance model is strictly coupled with the requirements of the proposed DLB mechanisms.

FuPerMod [ ] explores Func onal Performance Models, extending tradi onal performance models to

consider performance differences between devices and between problem sizes. It is based on speed

func ons built based on observed performances withmul ple sizes, allowing the evalua on of a workload

distribu on [ ]. Zhong applied these concepts to OpenFOAM [ ] and validated it in mul -core and

mul -GPU systems. This contribu on introduces a similar performance model ghtly integrated with the

remaining DLB mechanisms.

Mooney et al. [ ] addressed AMR in OpenFOAM and proposed a simple approach to perform automa c

load balancing on homogeneous systems and directly integrated in OpenFOAM. The work focused on

moving boundaries and re-meshing and presented some ini al results. Because OpenFOAM does not

support migra on of refined meshes, Mooney et al. also proposed and implemented a mechanism to

enable such migra on. This mechanism is used in this contribu on as discussed in the following sec ons.

4.3 nSharma’s Architecture
OpenFOAM simula ons are organized as solvers, which are itera ve processes evalua ng, at each itera-

on, the quan es of interest across the problem domain. Each itera on includes mul ple inner loops,

solving a number of systems of equa ons by using itera ve linear solvers. Within this work, solver refers

to OpenFOAM general solvers, rather than the linear solvers. Since OpenFOAM parallel implementa on

is based on a zero layer domain decomposi on over a distributed memory model, the solver’s mul ple

processes synchronize o en during each itera on, using both nearest neighbour and global communica-



ons.

nSharma is fully integrated into OpenFOAM and organized as a set of components, referred to as mod-

ules or models. The Online Profiling Module (OPM) acquires informa on w.r.t. raw system behaviour.

The Performance Model (PM) uses this data to build an approxima on of each CU performance and

to generate es mates of near future behaviour, in par cular for different workload distribu ons. The

Decision Model (DM) decides whether workload redistribu on shall happen, based on this higher level

informa on and es mates. The Repar oning Module (RM) handles the details of (re)par oning sub-

domains for (re)distribu on across mul ple processors, while finally load redistribu on mechanisms carry

on the cells migra on among compu ng resources, therefore enforcing the decisions made by nSharma.

The whole DLB mechanism is ghtly coupled with OpenFOAM itera ve execu on model. This allows

nSharma to learn about system behaviour and also allows for progressive convergence towards a globally

balanced state - rather than trying to jump to such a state at each balancing episode. Dynamic workloads

are also handled by OpenFOAM and nSharma itera ve model, with impact on the whole system balanced

state and simula on execu on me being handled progressively.

Note that the run me is fully integrated in the OpenFOAM so ware package and distributed as a plug-in.

The mechanisms introduced operate transparently, meaning that no ac on is required to the OpenFOAM

end-user apart from some parametriza on. This way, nSharma enables the use of DLB in HS with no

effort, substan ally increasing produc vity which is one of the main challenges iden fied in this thesis.

4.3.1 Online Profiling Module
The OPM instruments OpenFOAM rou nes to measure execu on mes, crucial to es mate the CUs

rela ve performance differences. This has been achieved by thoroughly analysing OpenFOAM workflow

and opera ons, and iden fying a set of low-level rou nes that fundamentally contribute to the applica on

execu on me. It has been empirically verified that these mes correlate well with the computa onal

effort, enabling nSharma to monitor only the parts of the simula on that are relevant to the associated

performance modelling. The selec ve profiling nature also allows for a low instrumenta on overhead

without any addi onal analy cal models or benchmarking.

The procedures are registered and measured using a simple API that defines two types of procedures:

a Sec on and an Opera on. Sec ons represent a block procedure, e.g. solve pressure equa on, and

they may contain mul ple other Sec ons, Opera ons, synchroniza ons, etc. Opera ons exist within

Sec ons and represent the lowest level procedure. There are two types of Opera ons: an IDLE type

Opera on which is a synchroniza on or a memory transfer, and a BUSY type Opera on that represents

a computa onal task without any synchroniza ons or network communica ons. Each CU will measure

its own rou nes and upon central request, will only send per nent informa on to a master en ty. Each

CU will also compute the accumulated me for each BUSY opera on, required for the model. This



categoriza on of execu on me allows to measure performance individually, otherwise execu on me

would be clu ered by dependencies and communica ons.

4.3.2 Performance Model
The PM characterizes the system’s – and its individual components, such as each CU – performance

and provides es mates of future performances under different workload distribu ons. Workload and

performance characteriza on requires the defini on of a work unit, upon which problem size can be

quan fied. OpenFOAM uses Finite Volumes, with the problem domain discre sa on being based on

cells that are combined to define the computa onal domain. With this approach problem size is o en

characterized by the number of cells, which is, therefore, the work unit used by nSharma.

Each CU performance is characterized by the average me required to process one work unit, denoted

by rp (where p indexes the CUs). For each itera on i and CU p, the respec ve performance index (rip) is

given by the ra o of the itera on’s total busy me over the number of cells assigned to p, Ni
p:

rip =

∑B
j β

j,i
p

Ni
p

( . )

where Ni
p is the number of cells assigned to CU p and βj,ip is the busy me for each opera on j from

the set of opera ons B captured by the OPM. The actual metric used for balancing decisions, r̃ ip, is a

weighted average over a window of previous itera ons, which smooths out outliers and, for dynamic

workloads, takes into account different problem sizes (different numbers of cells assigned to each CU at

each itera on).

To es mate the execu on me of the next itera on, Ti+1
p , with an arbitrary number of cells, Ni+1

p , the PM

uses the the above described metric mul plied by Ni+1
p :

Ti+1
p = r̃ ip × Ni+1

p ( . )

4.3.3 Decision Module
It is theDM role to assess the system balancing state and decide whether a load redistribu on step should

take place. It is also the DM who decides what load to redistribute. Assessing and making such decision

is referred to as a balancing episode. Since these episodes represent an overhead, it is crucial to decide

when should they occur. nSharma allows them only at the beginning of a solver itera on, and defines a

period, expressed in number of itera ons, for their frequency. The unpredictability of dynamic workloads

makes it unprac cal to define an op mal balancing period, therefore it is auto-tuned in execu on me,

as described below.



At the beginning of a new solver’s itera on i, the Rela ve Standard Devia on (RSD), among the CUs

busy mes for the previous itera on i− 1 is calculated:

RSDi−1 =
σ i−1∑B
j β

j,i−1
p

∗ 100 ( . )

standard devia on, σ, is well known as a good, light-weight, indicator of a system’s balancing state. A

linear regression is then computed over the last few itera ons RSD in order to es mate its rate of change,

which is used to update the period. Also, a normaliza on of the magnitude of the RSD is added to the

contribu on to update the period. Therefore, the load balancing period is adjusted based on how fast

the system’s balancing state changes and how much it changes.

When a load balancing episode is triggered the DM will compute, for each CU p, how many cells, Ni+1
p , to

assign to it in the next itera on. It will devise a new load distribu on, where all CUs will take, the same

amount of me to process the assigned work units, according to each CU execu on rate, r̃ ip. Since the

total number of cells N is known, a well-determined system of P linear equa ons can be formulated (see

Equa on . ) and solved to find Ni+1
0 , . . . ,Ni+1

P−1 – the number of cells to assign to each CU.

r̃ i0 × Ni+1
0 = r̃ i1 × Ni+1

1

r̃ i1 × Ni+1
1 = r̃ i2 × Ni+1

2

...

r̃ iP−2 × Ni+1
P−2 = r̃ iP−1 × Ni+1

P−1

Ni+1
0 + Ni+1

1 + ...+ Ni+1
P−1 = N

( . )

A er compu ng this new distribu on, a decision has to be made as to whether it will be applied or not,

by taking into account the cells migra on cost, m. The goal is that the remaining simula on execu on

me a er the load redistribu on must be smaller than not migra ng. The next itera on i + 1 expected

execu on me without load redistribu on is given by (note that Ni
p and Ni+1

p are the same):

Ti+1 = max
p∈{0,...,P−1}

(̃r ip × Ni
p) ( . )

whereas with the new load distribu on it is:

Tdist
i+1 = r̃ ip × Ni+1

p ( . )

(no need for max because Tdist i+1 is approximately the same for all p, according to Equa on . ). Let n be

the number of remaining itera ons and δ represent some addi onal execu on overheads independent

on workload redistribu on. Then the condi on:

(
n× Ti+1 + δ

)
>

(
m+ n× Tdist

i+1 + δ
)

( . )



expresses that migra on will only take place if it is expected to reduce the total remaining execu on me,

while taking into account the cost of actually enforcing the migra on m. This cost is es mated by keeping

track of the costs of previous migra ons and using a linear regression to es mate the cost of any arbitrary

decomposi on.

Ti+1 >
m

n
+ Tdist

i+1 ( . )

Equa on . (a simplifica on of the condi on equa on above) makes it clear that a load redistribu on

should only be enforced if the cost of migra ng cells can be properly amor zed across the remaining n

itera ons. Consequently, towards the end of the simula on, as n gets smaller, the cells migra on impact

on execu on mes is progressively higher and load redistribu on will become propor onally less likely.

4.3.4 Repar oning Module
nSharma repar oning module interfaces with ParMETIS (see Sec on . ), by carefully parametrising the

relevant methods and by extending some func onality. ParMETIS’ repar oning method is used, which

takes into account the current mesh distribu on among CUs and balances cells’ redistribu on cost with

the new cells’ par on communica on costs during the parallel execu on of the next itera ons. The

rela onship between these two costs is captured by the ITR parameter. nSharma learns this parameter

by reques ng mul ple decomposi ons with different ITR values in ini al itera ons, assessing the most

effec ve ones and converging to a single one. Besides ITR, this method also receives a list of each CU

rela ve compu ng power, given by ωp = Ni−1
p /N, as evaluated by the Decision Module (Sec on . . ).

OpenFOAM does not na vely support migra on of refinedmeshes, which required integra ng such sup-

port (based on Kyle Mooney’s approach [ ]). Since each refined cell is always a child of a single original

(non-refined) cell and since the refined hierarchy is explicitly maintained, par oning is applied to the orig-

inal (non-refined) coarse mesh; a er par oning, the refined mesh is considered to performmigra on. To

ensure that the original non-refined coarse mesh reflects the correct workload, weights for each coarse

cell are provided to ParMETIS based on the number of child cells, which will be used by ParMETIS in

devising new par ons. The RM also performs communica on topology-aware repar oning in order

to tackle heterogeneous communica ons. nSharma maintains a Communica on Graph (CommGraph),

with nodes represen ng sets of CUs that share with each others the same communica on medium. The

RM requests to ParMETIS a higher level par oning based on the CommGraph nodes, and then further

requests a new par oning for each such node whenever it includes more than one CU. This hierarchical

repar oning leverages ParMETIS boundary minimiza on mechanisms, poten ally reducing slower links

communica ons.



Figure . : damBreak geometry and a subset of the simula on result with ranks (each color represents
the cells assigned to a different rank) and AMR. Cell distribu on devised using ParMETIS and default
parametrisa on.

Figure . : windAroundBuildings simula on illustra on. First plot shows cells distribu on over ranks
(each color represents the cells assigned to a different rank), second plot illustrates the pressure at me-
step and the two last plots show examples of velocity stream lines. Cell distribu on devised using
ParMETIS and default parametrisa on.

4.4 Results
For experimental valida on, the damBreak simula on was selected as the base case study among those

distributed with OpenFOAM tutorials. It uses the interDyMFoam solver to simulate the mul phase flow

of two incompressible fluids – air and water – a er the break of a column of water driven by gravity.

Adjustable me-step was disabled and all other parameters are the same as distributed in the package.

For dynamic workloads, AMR subdivides a cell into new cells according to the interface between the

water and air; cells will thus be refined (and unrefined) following the evolu on of the two phases’ interface.

Figure . shows the geometry and a subset of the simula on result with MPI processes (ranks) and

AMR. Each colour represents the cells assigned to a different rank and the illustrated cell distribu on

was devised using ParMETIS and default parametrisa on.

Addi onally, a fairly different case study was used in order to further validate nSharma capabili es. The

windAroundBuildings simula on, illustrated in Figure . , uses the simpleFoam solver to simulate the wind



Table . : Compu ng systems and system configura ons used in evalua on

System SeARCH Stampede2

Tag - Ivy Bridge E - v @ . GHz, cores p/node

Tag - Ivy Bridge E - v @ . GHz, cores p/node

Tag - Nehalem E @ . GHz, cores p/node
Nodes

Tag KNL - Intel Xeon Phi @ . GHz, cores p/ node

Tag KNL - Intel

Xeon Phi @

. GHz (”Knights

Landing”), cores

p/ node

Homogeneous I Heterogeneous I Heterogeneous II Homogeneous II
Mul -node

configura ons
Mul ple ’s Pair(s) of Pair KNL Mul ple KNL ’s

Network Myrinet (myri) Myrinet (myri) Ethernet (eth) Intel Omni-Path (OPA)

behaviour across a small city composed by mul ple different buildings. Pressure and velocity and the

main proper es assessed by this simula on. Figure . first plot shows cells distribu on over ranks

(each color represents the cells assigned to a different rank) — the number of cells is sta c throughout

the simula on, no AMR was applied. The second plot illustrates the pressure at me-step and the

two last plots show examples of velocity stream lines. Cell distribu on devised using ParMETIS and

default parametrisa on along with the required changes to compute in parallel.

Note that these solvers require frequent local and global communica ons. As the degree of parallelism

is increased, more sub-domains are created, increasing the number of cells in sub-domains boundaries

and, consequently, increasing communica ons among sub-domains, with network bandwidth and latency

impac ng significantly in the simula on’s performance.

Four hardware configura ons were used from two different clusters – SeARCH cluster (Universidade

do Minho, Portugal) and Stampede (Texas Advanced Compu ng Center, USA). Configura ons are de-

scribed in Table . . OpenFOAM . . was used, compiled with GNU C Compiler in SeARCH and with

Intel C Compiler in Stampede . Each MPI process is associated to one CU, which in this chapter is de-

fined as a processing core: the number of used cores is equivalent to the number of processes. MPI

terminology refers to processes as ranks, and this terminology is maintained throughout this sec on. For

the Homogeneous I and Heterogeneous I, the Myrinet network interface is used, however, the Myrinet

network cards installed in SeARCH only support up to ports which means that each node is limited

to ranks ( cores).
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Figure . : nSharma gain with SeARCH Homogeneous and Heterogeneous I

4.4.1 Performance Gain
Performance gain is hereby defined as the reduc on in execu on me achieved by using nSharma and

quan fied as the ra o between the execu on mes without and with nSharma, respec vely. Figure .

illustrates such gain for itera ons of the damBreak simula on in SeARCH. The first row depicts re-

sults obtained with nodes, the second row results obtained with nodes. Results in the first column

were obtained with a sta c workload (no AMR) and problem size of K cells (Heterogeneous I config-

ura on), whereas in the second and third columns dynamic workloads (AMR) were used with K cells

(Homogeneous and Heterogeneous I configura ons, respec vely).

nSharma achieves a significant performance gain for all experimental condi ons. For sta c workloads,

the gain increases with the number of ranks, with a maximum gain of . gain with nodes and ranks

and . with nodes and ranks. This gain is basically a consequence of nSharma’s heterogeneous

awareness, which allows remapping more cells to the more powerful cores, which would otherwise

be wai ng for the processing cores to finish execu on.

For homogeneous hardware and dynamic workloads (second column), performance gain is due to moving

cells from overloaded cores to underloaded ones, with such fluctua ons due to AMR. Significant gains

are s ll observed for all experimental condi ons, but this gain suffers a slight decreases as the number of

ranks increases for nodes. This is due to an increase in migra on and repar oning costs (see Figure

. ), propor onal to the increased number of balance episodes required in a dynamic workload scenario

(see Figure . ). The communica on overheads also increase from to nodes sustaining more sub-

domains and more communica ons over a limited bandwidth network. In Figure . , an significantly

higher number of cells is used, mi ga ng these overheads and resul ng in higher speedup.
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Figure . : Busy RSD with and without nSharma for nodes and ranks.
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Figure . : Execu on me percentage breakdown for nodes

The last column illustrates the combina on of dynamic workload with HS. The gain is mostly constant

with the number of ranks. It is lower than with sta c workloads or homogeneous hardware, because the

decision making process is much more complex requiring a much higher level of adaptability, i.e more

frequent balancing episodes and larger volumes of data migra on (see Figures . and . ).

Figure . illustrates the accumulated busy RSD (as described in Sec on . . ) with and without nSharma

for the same experimental condi ons, nodes and ranks. The grey area represents the total number

of cells and the ver cal lines are balance episodes. Clearly nSharma results in a large RSD reduc on,

i.e. reduced busy mes varia on across ranks, thus enabling significant performance gains. This can be

clearly seen around itera on number for the sta c case, where a large RSD reduc on occurs.

Figure . illustrates, for the nodes cases of Figure . , the percentage of execu on me spent in

different algorithmic segments: Profiler represents me used by the OPM, nSharma me for decision

making, parMe s represents repar oning, redistribute is cells migra on cost and simula on represents

the me dedicated to the actual simula on. The side slim bars represent the performance gain, which is

the same as in Figure . . The ver cal axis goes up to only %, the remaining % are simula on me

and add-up to the illustrated.

The overheads associated with profiling and decision making are negligible in all experimental condi ons.

Repar oning (ParMETIS) and redistribu on costs increase with the number of ranks. Both exhibit an

increasing overhead in all cases which is ghtly related to the fact that the numbers of migrated cells and

balancing episodes (see Figure . ) increase with the hardware configura on and the workload complex-

i es (homogeneous versus heterogeneous and sta c versus dynamic, respec vely). Nevertheless the



overheads associated with DLB are below %, allowing for very significant performance gains.

The first three plots of Figure . presents nSharma performance gain for dynamic workload, nodes,

fixed number of ranks and increasing problem size for alterna ve hardware configura ons: SeARCH

homogeneous, SeARCH Heterogeneous II and Stampede homogeneous (see Table . ). Par cularly, for

Heterogeneous II ( KNL) configura on, plus ranks are used from KNL and respec vely),

which corresponds to the use of all available CUs. The performance gain associated with the introduc-

on of DLB increases consistently with the problem size. Larger problems have the poten al to exhibit

more significant imbalance penal es with dynamic workloads, due to larger local fluctua ons in the num-

ber of cells. nSharma is capable to effec vely handle this increased penalty, becoming more efficient as

the problem size increases. Based on the observed data, this trend is expected to con nue. No inflec-

on point should be reached and nSharma performance gain will keep increasing with the workload, i.e.

exactly when the poten al for load imbalances becomes higher.
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Figure . : First three plots show an increasing problem size for four SeARCH nodes, KNL and
four Stampede nodes and dynamic workload. Last plot shows an increasing number of nodes using
the maximum number of ranks, dynamic workload and about million cells

The last plot of Figure . shows the performance gain for an increasing number of homogeneous nodes

(from to nodes and using the maximum number of ranks) with dynamic workload and about million

cells. The gain is substan al – ranging between . and . x – as nodes increase which provides some

insight on the behaviour the nSharma when scaling computa onal resources as long as the workload

is enough to compensate the communica on and migra on overheads men oned above. This is an

important results since this type of simula ons tend to be performed in large scale compu ng systems.

Figure . illustrates the results with the windAroundBuildings simula on with Heterogeneous I config-

ura on nodes and sta c workload. This shorter test tries to validate the performance gain of nSharma

with a significantly different geometry and workflow, revealing a consistent gain as ranks are increased

(between . x to . x), corrobora ng with the results from the damBreak discussed above.

4.4.2 Efficiency Gain
Strong and weak scalability based on parallel efficiency are evaluated in this sec on. Parallel efficiency

is evaluated with respect to the ming results achieved with only rank and without nSharma (DLB is
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Figure . presents performance gainwith nSharma (bars) and parallel efficiencywith andwithout nSharma

(lines), using KNL nodes of Stampede (up to ranks). For the strong scaling case – le plot –

nSharma performance gain is around , except for ranks. In this la er case, the workload per rank

is so low (the number of cells ranges from to per rank) that incurred overheads (par oning

and cells migra on) significantly impact on the load redistribu on benefits. For the weak scaling case –

right plot – problem size increases at the same rate as number of ranks, thus the workload per rank is

kept constant; performance gain is quite consistent, since increasing DLB costs are compensated by the

added workload.

The scalability curves in Figure . illustrate that OpenFOAM without DLB exhibits very low efficiency

even for increasing problem size. Two major penal es contribute to this: aforemen oned parallel com-

munica ons costs and load imbalance due to dynamic workloads. nSharma addresses the load imbalance

penalty in a very effec ve manner, roughly doubling efficiency for most configura ons – the ( , K)

case of strong scalability can not be taken into account due to the very scarce load per rank. This clearly

illustrates that introducing DLB mechanisms results in a very significant reduc on of execu on me,

sustained by an increase in efficiency, i.e. a be er u liza on of the parallel compu ng resources.
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Figure . : Speedup in combining a node and a KNL by using nSharma

4.4.3 Heterogeneity and Dynamic Load Balancing
Effec ve exploita on of the raw compu ng capabili es available on heterogeneous systems is hard, with

load balancing being one of the main challenges, specially for dynamic workloads.

Figure . details the performance speedup when combining a KNL node – with two different core

configura ons, one with the full cores (knl) and another with only cores (half-knl) – with a -core

node. Speedup is illustrated w.r.t to the execu on me obtained with the node for sta c (le )

and dynamic (right) workloads. By adding a KNL node to a node ( knl and half-knl) yields

no significant performance gain, with a severe deteriora on for the dynamic workloads. This is due the

imbalance introduced by the large compu ng power differences between the nodes (as illustrated by the

white bars).

By enabling nSharma, the whole system capabili es will be assessed and more load is assigned to

node, reducing its idle me and increasing resource u liza on. Performance gains between % to %

are observed (*-nSh bars). The gain is more substan al with dynamic workloads where the poten al for

load imbalances is larger: heterogeneous resources plus execu on me locally varying number of cells.

nSharma works at its best under these more challenging condi ons, effec vely rebalancing the workload

and efficiently exploi ng the available resources .

4.5 Conclusions and Future Work
This contribu on proposes and assesses the integra on of heterogeneity aware DLB techniques on CFD

simula ons running on distributed memory heterogeneous parallel clusters (Tier- systems). Such sim-

ula ons most o en imply dynamic workloads due to execu on me mesh refinement. Combined with

Note that the results indicate that the performance with half-knl is higher than using knl (full chip). This is due to the lack of
op miza ons in OpenFOAM targeted for this device. This is thus out of the scope of this thesis and not considered per nent for
this discussion



the hardware heterogeneity such dynamics cause a two-fold load imbalance, which impacts severely on

system u liza on, and consequently on execu on me, if not appropriately catered for. The proposed

approach has been implemented as a so ware package, designated nSharma, which fully integrates with

the latest version of OpenFOAM.

Substan al performance gains are demonstrated for both sta c and dynamic workloads. These gains are

shown to be caused by reduced busy mes RSD among ranks, i.e. compu ng resources are kept busy

with useful work due to a more effec ve workload distribu on. Strong and weak scalability results further

support this conclusion, with nSharma enabled execu ons exhibi ng significantly larger efficiencies for a

range of experimental condi ons. Performance gains increase with problem size, which is a very desirable

feature, since the poten al to load imbalances under dynamic loads grows with the number of cells.

Experimental results show that performance gains associated with nSharma are affected by increasing

the number of ranks for larger node counts. This is due to inherent increase of load migra on costs asso-

ciated with a growing number of balancing episodes. Future work will necessarily imply addressing this

issue, to allow for increased number of parallel resources by further mi ga ng load migra on overheads.

Addi onally, nSharma will be validated against a more extensive set of case studies and heterogeneous

devices; upon successful valida on it will be made publicly available in order to foster its adop on by the

large community of OpenFOAM users.
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This chapter focuses on the power management challenges of heterogeneous distributed systems. It

describes the formula on of an op miza on problem that aims at reducing power consump on while

minimizing performance degrada on, including scenarios with limited power supply. The proposed formu-

la on uses some of the mechanisms described in the previous chapter resul ng in a heterogeneity-aware

power-adap ve scheduler, integrated into a widely used numerical simula on library. Results are evalu-

ated with mul ple configura ons and different scenarios.

5.1 Introduc on
As discussed in the previous chapter, engineering and scien fic computer simula ons have become a

fundamental tool to analyse complex phenomena and design/verify sophis cated engineering artefacts.

Over me both problem size and intended accuracy have increased steadily, resul ng in huge workloads

which require extended compu ng capabili es in order to produce results in an appropriate me-frame.

Such intensive workloads emphasize the need for larger and powerful parallel supercomputers, further

mo va ng the forthcoming exascale compu ng era [ ], [ ]. This shi in compu ng capabili es poses

several challenges, including a fast-growing power consump on, with the consequent huge environmen-

tal and economic impact. The cost of energy required to power such system will quickly surpass the cost

of the physical system itself. Power management becomes of paramount importance, with hardware and,

especially, so ware solu ons requiring re-evalua on in terms of power-efficiency to be able to operate

under a power limited system.

A common approach to address these power limita ons is the adop on of hardware overprovisioning:

more parallel compu ng resources are installed than the organiza onal power budget allows to operate

simultaneously at Thermal Design Power (TDP). TDP is the average maximum power in Wa s that the

cooling system needs to dissipate – it can also be understood as the average maximum power drawn

by a device under any workload. An overprovisioned system requires that opera ng power limits are

enforced by power management so ware mechanisms which, within a given power budget, will cap the

power available to each CU [ ], [ ]. Limi ng power consump on can be accomplished by reducing

the CU opera ng frequency, which obviously impacts its performance. A very simple sta c strategy is

to uniformly cap the power available to every CU, e.g. if the available power budget is s% of the total

system TDP, then each node can only use up to s% of its TDP.

However, such uniform and sta c power alloca on strategy can only be op mal if both the available

resources and the workload compu ng requirements are themselves also uniform and sta c, which is

seldom the case. Today’s compu ng systems are rendered heterogeneous in the sense that different

genera ons of hardware coexist in the same system along with a plurality of different devices. This

heterogeneity makes the CUs non-uniform with respect to compu ng capabili es, compromising the



op mality of uniform power alloca on.

This is further aggravated by the presence of dynamic workloads. In CFD simula ons, results’ accuracy

and relevance are influenced by the discre sa on’s level of detail, which also determines problem size and

thus computa onal effort. This discre sa on can be locally refined as the simula on progresses through

me, allowing for higher accuracy in regions of the problem domain where the quan es of interest

exhibit more significant local varia ons; this progressive refinement process generates dynamic workloads

and computa onal requirements will unpredictably vary in run me among CUs. These imbalances are

not accounted for by a sta c power alloca on strategy.

Dynamic workloads execu ng on heterogeneous parallel systems require dynamic power management

mechanisms. By dynamically and at run me migra ng power among CUs according to their rela ve

performances and current workload distribu on will allow for a more efficient distribu on of power, while

maximizing performance within a given the power budget. This contribu on proposes RHeAPAS, which

provides power consump on op miza on, targe ng heterogeneous parallel systems in the context of

CFD simula ons. This is achieved by integra ng power scheduling mechanisms in a widely used CFD

applica on: OpenFOAM.

The proposed run me is achieved by leveraging the work done in the previous chapter, being deployed as

an addi onal and innova ve func onality of nSharma. It builds on top of nSharma’s resource monitoring

and performance model components, as well as on its integra on with OpenFOAM. RHeAPAS combines

these es mates with a power consump on model based on the CUs’ opera ng frequencies and current

workload. Amul -objec veminimiza on problem is then solved: find the frequencies configura on for all

CUs that will produce the minimum execu on me (maximum performance), while simultaneously using

the least amount of total power from the allowed power budget. Integra ng RHeAPAS, through nSharma,

into current OpenFOAM distribu ons enables the adop on of power-adap ve scheduling by the CFD

community, providing a validated implementa on integrated into a widely used scien fic and industrial

applica on. Note that this contribu on only address and discusses power assignment and performance

trade-offs — the workload re-distribu on and migra on features of nSharma are not applied and are not

part of this contribu on.

The contribu ons of this work are summarized as follows:

. proposal of a power consump on model integrated with a performance model targe ng heteroge-

neous distributed system with dynamic workloads in the context of CFD simula ons;

. proposal of the integra on of the power consump onmodel with the performancemodel, targe ng

heterogeneous distributed systemwith dynamic workloads in the context of CFD simula ons. Such

integra on abides to power budgets while striving for performance op miza on;

. experimental results analysis and valida on in mul ple parallel heterogeneous system configura-

ons used by the CFD community;



. deployment of the proposed solu ons as an available and free-to-use open-source package, inte-

grated into a widely used scien fic and industrial CFD applica on (OpenFOAM), therefore promot-

ing the adop on of op mized power consump on technologies in CFD simula ons.

To the best of author’s knowledge, this is the first implementa on and integra on of power management

solu ons in OpenFOAM.

5.2 Related Work
Dynamic Voltage and Frequency Scaling (DVFS) mechanisms [ ] are commonly used to control CUs’

power consump on, such as with CPUMISER [ ] and PART [ ], which propose a performance model

based on clock cycles per instruc on, instruc ons execu on rate and memory accesses to decide on

frequency scaling for me intervals, using a user-supplied performance loss parameter to minimize energy

u liza on. In this work, the user specifies the power-cap and the performance is maximized according

to power limita ons and system resources.

Ji er [ ] performs decisions based on MPI cri cal path analysis and scales frequency such that all CUs

meet at the same point in me. Adagio [ ] , Conductor [ ], GEOPM [ ] also make decisions based

on MPI cri cal paths combined with task models. However, CFD dynamic workloads resul ng from cells

refinement, render MPI cri cal path analysis imprac cable as results become poten ally obsolete across

itera ons. Addi onally, current OpenFOAM nearest neighbour and global communica ons make task

model scheduling unfeasible due to data dependencies. In this work, scaling frequency decisions are

made and applied on a per itera on basis given the dynamic nature of the workload.

Nornir [ ] and LEO [ ] target single compute nodes and use machine learning to predict performance

and power consump ons for a set of possible configura ons; the most appropriate configura on is se-

lected by solving a minimiza on problem. Dynamic workloads are considered, but high overheads are

incurred if the workload varies rapidly rela ve to the me taken for decision making. The focus is on sup-

por ng generic applica ons, resor ng to no specific or dynamic knowledge on the applica on behaviour.

In this work, similar minimiza on techniques are used, but applied to parallel distributed systems coupled

with an applica on-specific performance and power model; by exploi ng previous knowledge on Open-

FOAM computa on pa erns, es mates of the workload near future behaviour incur reduced overhead

and a ain improved accuracy.

PaViZ [ ] proposes a power-adap ve scheduler that distributes a power budget across distributed re-

sources targe ng visualiza on workloads. The associated performance model includes mul ple visualiza-

on specific details to es mate near future performance. Es mates are then normalized across nodes,

resul ng in a percentage of the power budget to allocate to each node. This work follows a similar ap-

proach by using a performance model targe ng CFD workloads, solving a power and execu on me



minimiza on problem constrained by a user-supplied power budget.

Solu ons targe ng heterogeneous parallel systems are scarce, with some authors addressing heteroge-

neous single nodes composed of mul ple devices (Tier- ). DAG-task scheduling mechanisms [ ], [ ]

are not suited for CFD simula ons involving global data dependencies. Tsoi and Luk [ ] profile and

interpolate performance and power consump on for mul ple core and frequency configura ons in a

CPU GPU FPGA node and select one configura on based on a floa ng point opera ons per joule met-

ric. Wang and Ren [ ] also target single node GPU CPU using DVFS and itera ng through all possible

combina ons. Liu et al. [ ] discuss power-aware analy cal models to map mul ple applica ons into a

CPU GPU node and s ll meet applica ons’ ming requirements, while simultaneously reducing power

and energy consump on by applying DVFS techniques.

None of the above approaches accounts for dynamic workloads and none assesses scalable distributed-

memory heterogeneous systems or provides valida on with large scien fic and industrial applica ons.

Addi onally, all aim at generic applica ons resor ng to sta c performance es mates based on generic

metrics. The current work addresses these issues and focuses on itera ve CFD simula ons, using applica-

on specific performance and power models, which allow for increased accuracy and reduced overhead

performance es mates across different devices.

As described in Sec on . , there are other libraries available suppor ng the development of CFD numer-

ical simula ons, and the same reasoning is applied as why OpenFOAM was selected as the main target

applica ons. The author sees no reason why conceptual results, such as the power consump on model,

and result analysis presented in this document cannot be applied within the context of other similar CFD

simula on libraries.

5.3 RHeAPAS
OpenFOAM simula ons are organized as solvers, which typically iterate through me in discrete me

steps evalua ng, at each itera on, the quan es of interest across the cells’ mesh that discre zes the

problem domain. Each itera on includes mul ple inner loops and both local and global communica ons.

With parallel domain decomposi on, the ini al cells’ mesh is decomposed into disjoint subdomains, which

are assigned each to a given CU. When applying dynamic mesh control, cells are subdivided and merged

according to local varia ons across itera ons. Since the workload is ghtly correlated to the number of

cells, mesh refinement is the main reason why the workload varies across CUs and from itera on to iter-

a on. This contribu on proposes a mechanism to devise a power schedule for the next itera on which

minimizes that itera on’s execu on me and power consump on, thus catering for dynamic workloads.

RHeAPAS strongly builds on top of nSharma. It maintains its component-based so ware architecture in

order to seamlessly integrate with OpenFOAM and fully reuses two of its components: the OPM and



the PM. The former acquires informa on with respect to raw system behaviour, while the la er uses this

data to quan ta vely characterize each CU performance. RHeAPAS introduces a new component, the

Power-Adap ve Scheduler (PAS), which uses these performance es mates to devise a power schedule,

specifying the CUs’ frequencies to be set for the next itera on using each CU power API. The following

sec ons summarize the details elaborated in the previous chapter.

5.3.1 Online Profiling Module
This module is responsible for measuring raw ming data by instrumen ng OpenFOAM. As discussed

in Sec on . . , by thoroughly analysing OpenFOAM’s code flow a set of low-level rou nes has been

iden fied, whose execu on mes strongly correlate with the whole OpenFOAM applica on ming – this

correla on has been empirically verified. This selec ve profiling approach allows for reduced instrumen-

ta on overhead, compared to actually measuring the whole solver code.

A short API has been developed which allows for registering the rou nes to be measured and to inter-

nally classify them as either some form of communica on (synchronisa on, memory transfer, etc.) or

computa on. This classifica on allows measuring and analysing performance individually for each CU,

otherwise, execu on me would be clu ered by dependencies and communica ons. These techniques

and API should be agnos c to the par cular so ware package being used (other than the iden fica on of

the set of representa ve low-level func ons) and can be seamlessly integrated into any other simula on

so ware.

5.3.2 Performance Model
The PM quan fies the performance of each CU used by the applica on at run me. This quan fica on

takes into account the specificity of CFD workloads by using a domain-related defini on of work unit,

upon which workload size can be measured. OpenFOAM is based on Finite Volumes and discre zes the

problem domain using the no on of cells. Most OpenFOAM low-level rou nes exhibit a computa onal

cost propor onal to the number of such cells, which are therefore used as the work unit; workload size

is quan fied as the number of cells.

The performance of each CU p during itera on i is defined as the average me required to process one

work unit, denoted by rip, and given by (same as Equa on . ):

rip =

∑B
j β

j,i
p

Ni
p

( . )

where Ni
p is the number of cells assigned to CU p and βj,ip is the busy me for each opera on j from the

set of opera ons B captured by the OPM. To es mate performance in the near future (e.g. the next

itera on) the PM uses a weighted average over a window of previous itera ons, denoted as r̃ ip. This



averaging smooths out outliers and, for dynamic workloads, takes into account different workload sizes

as the mesh refinement process refines and merges cells at each CU.

Given the number of work units assigned to each CU, Ni+1
p , the PM es mates the execu on me for the

next itera on, Ti+1
p , for all p ∈ {0, 1, ..., P − 1}, with P being the number of CUs, as given by (Same as

Equa on . ):

Ti+1
p = r̃ ip × Ni+1

p ( . )

Dynamic workloads, resul ng from the mesh refinement process, are accounted for by two mechanisms:

(i) compu ng r̃ ip as an average over a window of itera ons integrates into a single metric poten al varying

behaviours for different numbers of work units and (ii) re-es ma ng Ti+1
p at the beginning of each itera on

allows for a regular accommoda on of the new workload characteris cs. The system’s heterogeneity, on

the other hand, is taken into account by measuring and calcula ng independent r̃ ip metrics per CU.

5.3.3 Power-Adap ve Scheduler
An overprovisioned system is characterized by an upper bound on the available power, referred to as

the power budget, which has to be distributed across CUs. This power budget is either denoted by τ if

expressed in Wa s, or denoted by s if expressed as a percentage of the maximum power, i.e., the sum of

all the CUs’ TDP. A sta c and uniform power management policy consists of assigning each CU the same

percentage s of its TDP. This can be achieved by specifying a maximum capped opera ng frequency, f capp ,

to each CU p. This power assignment approach can be defined as a power management strategy and it

will be referred to as Uniform Distribu on of Power (UDP).

As discussed in Sec on . , power dissipated is correlated with the opera ng frequency. This rela on-

ship between frequency used and power consumed can thus be expressed as a func on, Φp(W) = f,

that translates the power assigned to a CU to the corresponding frequency f. Φp depends on each CU

hardware details and can be modelled in mul ple ways, for example, by a tabular func on with observed

power consump on for each f, or a linear regression based on some observa ons. The frequency corre-

sponding to a capped power supply, f capp , can thus be defined as f capp = Φp(s× TDPp).

Genera ng a power schedule, i.e. a specifica on of the power to be used by each CU during the next

itera on i+1, is formulated as a minimiza on problem pursuing two objec ves: minimiza on of (i) power

usage and (ii) execu on me. Let Wi+1 be the P-elements vector specifying the opera ng power for

each CU p, Wi+1
p , over itera on i + 1. Clearly, given the power budget τ, it is required that

∑P−1
p=0 W

i+1
p =∥∥Wi+1

∥∥
1
≤ τ. In the following a model is developed, inspired in Equa on . , to es mate each CU

execu on me given its allocated power, Ti+1
p (Wi+1

p ). Note that due to global synchronisa on the itera on

execu on me is given by Equa on . .

Ti+1(Wi+1) = max
p∈{0,...,P−1}

Ti+1
p (Wi+1

p ) ( . )



It is well known from reference course books [ ] that the me required to process a single cell is given

by Equa on . ,

rp =
#Ip

IPCp × fp
( . )

where, for each CU p, #Ip represents the average number of instruc ons required to compute a cell and

IPCp is the number of instruc ons per clock cycle .

#IP and IPCp are applica on and CU dependant and approximately constant across all itera ons, therefore

their ra o can be inferred using known values for rp and fp. A set of k ini al itera ons is computed at

fcapp , which allows the performance model to calculate r̃ kp (see Sec on . ). By using r̃ kp , #Ip/IPCp can be

approximated by:

#Ip
IPCp

= r̃ kp × fcapp ( . )

The power consumed by a CU can be modelled as described in Equa on . (Sec on . ). Since power

dissipated is correlated with the opera ng frequency, this rela onship between frequency used and

power consumed can thus be expressed as a func on, Φp(W) = f, that translates the power assigned to

a CU to the corresponding frequency. Φp depends on each CU hardware details and can be modelled

in mul ple ways, for example, by a tabular func on with observed power consump on for each f , or a

linear regression based on some observa ons.

From Equa ons . , . , . , and replacing fp with Φp, execu on me based on power is given by:

Ti+1
p (Wi+1

p ) = r̃ kp × fcapp × 1

Φp(Wi+1
p )

× Ni+1
p ( . )

Equa on . presents the minimiza on problem to be solved (for simplicity index i+ 1 has been omi ed),

which searches for the scheduleW that yields the minimum execu on me and the minimum total power.

A scalariza on technique, using the coefficients α1 and α2, has been applied to combine both objec ve

func ons.
minimize

W∈RP
α1 × T(W) + α2 × ∥W∥1

subject to ∥W∥1 ≤ τ

T(W) ≤ T(Wcap)

f minp ≤ Φp(Wp) ≤ f maxp , ∀p ∈ {0, . . . , P− 1}

( . )

The first constraint ensures that the given power budget limit is not exceed. The second constraint

For mul -cores CUs, with frequency set per-socket or per-node, rp = #Ip/(cp × IPCp × fp), where cp is the number of cores.
k is parametrized and empirical valida on revealed a value of about itera ons to be acceptable for most cases.
Typically, frequency is defined in steps ranging from fminp to fmaxp .



ensures that es mated execu on me is less or equal than with uniform power capping – minimiza on

could otherwise increase execu on me in favour of reduced power consump on. The final constraint

ensures that Wp is within the CU allowed frequency range. Note that f maxp is the upper limit instead

of f capp . This is a crucial condi on, since it allows selec ng large frequencies for CUs with intensive

workloads, allowing for higher performance than uniform cap. Each CU power Wp is then mapped to the

corresponding opera ng frequency using Φp. In the absence of dynamic workloads, and since compute

resources are sta c along the whole simula on, the schedule is computed only once.

5.4 Results
Experiments use the same damBreak simula on distributed with OpenFOAM tutorials with the interDyM-

Foam solver simula ng themul phase flow of two incompressible fluids – air and water – of a falling block

of water. For dynamic workloads, adap ve mesh refinement is applied at each itera on (cells are subdi-

vided into new cells) according to the interface between water and air; cells will thus be refined (and

unrefined) following the evolu on of the two phases’ interface.

The mesh is decomposed using ParMETIS, that creates as many equally sized par ons as there are

MPI ranks — par oning is independent of compu ng capabili es. The assignment is the same as in

the previous chapter where each MPI rank is responsible for a compu ng core. A CU is defined as a

compute node composed of mul ple cores. Each CU is therefore responsible for a set of par ons,

whose numbers of cells can evolve differently for dynamic workloads. Since itera on execu on me is

propor onal to the number of cells and determined by the last rank to finish the itera on, the cell count

of the core with the most cells is defined as the number of cells of that CU:

Ni
p = max

d∈{0,...,cp−1}
Ni
p,d ( . )

This aggrega on of cp cores into a single CU facilitates results analysis and avoids using more sophis -

cated mechanisms requiring per-core frequency scaling. The author sees no reason why the results and

discussion provided in this Sec on cannot be, in general, extended to alterna ve defini ons of CUs.

Experimental results were collected using three configura ons from the SeARCH cluster (Universidade

do Minho, Portugal), as described in Table . . OpenFOAM . . was used, compiled with the GNU C

Compiler. Frequency scaling is applied per node using the ACPI CPUFreq driver.

The NLopt library [ ] is used to solve the minimiza on problem. Since T(W) (Equa on . ) is defined

using the max func on, which is not differen able, it is replaced by a new decision variable Z and a

new constraint: Tp(Wp) ≤ Z,∀p ∈ {0, . . . , P− 1}. The objec ve is moved to the constraints, producing

mathema cally equivalent results at the cost of some minimiza on overhead. The coefficients α1 and

α2 are equally defined as . . Φp(W) (discussed in Sec on . . ) is approximated using a linear func on



Table . : SeARCH Compu ng nodes and system configura ons used in evalua on

Node Tag Descrip on fmin fmax TDP

x Ivy Bridge E - v , cores . GHz . GHz W

x Nehalem E , cores . GHz . GHz W

KNL Intel Xeon Phi , cores . GHz . GHz W

Configura on Descrip on Network

Homogeneous Mul ple ’s Myrinet

Heterogeneous I Pair(s) of Myrinet

Heterogeneous II Pair KNL Ethernet

based on the TDP and corresponding frequency, fmaxp , as provided by the manufacturers:

Φp(W) =
f maxp ×W

TDPp
( . )

Experimental results are collected for three different levels of power capping, associated with different

percentages of TDP: %, % and %. For each of these scenarios, results achieved with a UDP are

compared against results obtained with the proposed power-adap ve mechanisms. For the la er, the

first itera ons are executed at f capp to build the performance model.

5.4.1 Performance and Power
Performance gain is defined as the ra o between the execu on me obtained with UDP over the exe-

cu on me obtained with power adap ve scheduling for the en re simula on me span, i.e. how many

mes the la er is faster than the former.

Used power is always presented as a percentage of the power budget:
∑

p W
i
p/τ×100; the reported values

are averages over all the itera ons, except in Figure . .

Figure . illustrates the results for mul ple heterogeneous configura ons with sta c (first row) and dy-

namic (second row) workloads. The first two columns use ( ranks) and nodes ( ranks), respec vely,

with Heterogeneous I configura on; the last column uses Heterogeneous II configura on ( KNL,

ranks). The le y-axis shows power used (lower is be er), the right y-axis performance gain (higher is

be er) and the x-axis represents the different power capping levels, s.
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Figure . : Power used and performance gain for ( and nodes) Heterogeneous I and II with sta c and
dynamic workload in SeARCH. K cells for sta c K cells for dynamic.

For the no power limita on case ( %), the power used ranges from . % to . %. For Heteroge-

neous I with sta c workload power savings arise from reducing the power assigned to the stronger

nodes while assigning enough power to the nodes to prevent performance deteriora on. For the

dynamic case, less power is assigned to nodes with smaller workloads, properly modulated by the rela ve

performances. For the Heterogeneous I configura on with nodes and dynamic workload, the power

used was iden cal to UDP because the cells assigned to the stronger node were refined, whereas

those assigned to the slower nodes sustained much less refinement; remember that refinement oc-

curs along the interface between air and water and the actual assignment to CUs of the cells laying on

this interface is not a parameter being controlled and depends on many factors, including the number

of nodes in the system. The same reasoning applies to the Heterogeneous II (last column) configura on,

where the KNL is slower than the , and the la er power is reduced. No performance gain is expected

when there is no power cap, since UDP does not limit power usage. The challenge is to a ain significant

power savings without impac ng on performance (performance gain ≈ 1), which has been achieved.

For a cap of %, the power budget is significantly reduced, preven ng addi onal power savings. Perfor-

mance gains ranging from . x to . x are s ll observed. Power is migrated from stronger (and/or with

less workload) to weaker (and/or with more workload) nodes, which run on higher frequencies compared

to the UDP, increasing performance. For instance, with two Heterogeneous I nodes and sta c workload,

the UDP limits the power of the slower node to W, whereas the proposed model increases it to

W. The W extra are migrated from the faster node which does not require it. Therefore, instead

of reducing power usage, the model decides to use all the available power to reduce the unavoidable per-

formance deteriora on arising from power capping.

The % case is more representa ve in terms of power budge ng, with the power scheduler balancing
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Figure . : Power assignment and itera on execu on me along simula on. Ni
p, in the first four rows y-

axis, is according to Equa on . . mesteps with homogeneous ( ) nodes, dynamic workload
and a % power budget.

performance gain with power usage reduc on. For nodes results show about % of power used along

with a performance gain of . x (sta c) and . x (dynamic). For nodes, similar results are observed

for the sta c load. In the dynamic load case, the power used is % and performance gain is slightly less,

following the same reasoning as for an equal need for power for each node. In general, the model proves

to be slightly less effec ve with Heterogeneous II, due to the short range of frequencies supported by

the KNL node – between . GHz and . GHz – that significantly reduces the model decision space.

Overall, performance gain increases with the power cap confirming the effec veness of the model by

properly alloca ng power to where it is most needed under a limited power scenario. The results also

reveal that the model is able to successfully reduce power that is wasted by powerful and/or less loaded

nodes, par cularly when the allowed power budgets are s ll large.

5.4.2 Dynamic Behaviour
The top rows of Figure . detail the power assignment per node ( homogeneous nodes) as me

progresses through the simula on ( itera ons) with dynamic workload and a % power budget.

The le axis illustrates the number of cells (dark shaded area) per node according to Equa on . , and

the right axis presents the power assigned to each node at each itera on, ranging from Φ−1
p (fminp ) to

Φ−1
p (fmaxp ). The hatched area emphasizes the node with max

p∈{0,...,P−1}
Ni
p at itera on i. The Figure . last

row shows itera on execu on me (le axis) and total power used across all nodes (right axis).
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Figure . : Increasing number of cells in the x-axis. % power budget, nodes, Heterogeneous I with
sta c load, and Homogeneous I and Heterogeneous I with dynamic workload

The first few itera ons use the maximum allowed power to learn the performance model. Significantly

more power is then assigned to the second node, which has more cells due to refinement. Between

itera ons and , nodes and get further refined and more power is progressively assigned.

Around itera on , node reduces the number of cells and power is promptly deallocated with similar

behaviour at the end of the simula on. Node has the least number of cells across the whole simula on

so minimum power is assigned.

Roughly between itera on and , node has the maximum number of cells which thus dictates

execu on me (note that the dashed area indicates the node with maximum cells). In this segment, the

power assigned to this goes above the power assigned to UDP ( W) which results in the performance

gain illustrated in the last row. The same behaviour is observed for the rest of the simula onwith different

nodes. The power scheduler ability to adapt to variable and unpredictable workloads is clearly illustrated,

as well as how the model is able to extract performance gains with effec ve and educated power budget

distribu on.

5.4.3 Scaling Problem Size and Resources
Figure . shows the results for an % power budget with increasing problem size (number of cells, x-axis)

for nodes, Heterogeneous I with sta c load, and Homogeneous I and Heterogeneous I with dynamic

workload. The results are fairly consistent across configura ons and reveal an increasing reduc on in

power used as well a minor increase in performance gain as workload increases. In-depth analysis of the

results revealed that, for the sta c load and heterogeneous case, as the problem size increases so does

the computa on to communica on ra o; the performance model becomes more accurate resul ng on a

more effec ve power schedule.

For dynamic load and heterogeneous configura on, only two of the nodes performed refinement, with

one of them sustaining more cells than the other. This gap between these two nodes increased substan-

ally with the number of ini al cells – from % for K to % for K. This results in significantly

less power assigned to the node with fewer cells as the number of ini al cells increases. The last plot
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Figure . : Weak scaling based analysis, homogeneous nodes increasing in the x-axis. K, K,
K and K as number of cells respec vely, and dynamic workload.

shows the combina on of dynamic load with heterogeneous configura onwhere results vary significantly

as the number of cells increase. As the ini al number of cells changes, the nodes responsible to perform

refinement also changed resul ng in different power scheduling decisions considering different node

performances – for K and K the two performed refinement whereas for K and K, a

and a performed refinement. These results demonstrate that the proposed mechanisms sustain

an increased effec veness with large workloads, which is a fundamental result in the context of CFD

simula ons.

Figure . illustrates weak scalability analysis with the number of cells ( K, K, K and K)

increasing linearly with the number of nodes ( ( ranks) to ( ranks)). Results show a slight reduc on

in power used as nodes are added, especially for the % case. This is because adding more nodes

will increase the number of nodes that can have their power reduced without affec ng performance

(performance is dictated by the node with more cells), therefore leading to a reduc on in required power.

Similar reasoning can be applied to the performance gain. Performance gain results from nodes with

more workload running with more power compared to UDP. Once the maximum power is assigned

to these nodes, adding more nodes will have no effect, resul ng in the same performance. In fact, a

reduc on in performance gain is observed as a consequence of the severe impact in the computa on to

communica on ra o due to the increased number of ranks (added workload is not enough to compensate

the increased communica on overhead). Nevertheless, performance improvements range from . x to

. x.

5.4.4 Energy Saved
Power and execu on me are two fundamental components that directly contribute to minimize the

energy consump on. By reducing the me required to execute the applica on and thus the me during

which energy is being consumed, and/or by reducing the power delivery rate, yields a combined reduc on

of energy consumed. Total energy consumed, E, is calculated based on the sum of the energy consumed

by each individual itera on: E =
∑

i

(∑
p W

i
p × Ti

)
; where Ti is itera on’s i execu on me. E was evaluated

for UDP (EUDP) and RHeAPAS (ERHeAPAS), and their differences normalized, resul ng in the percentage of



energy saved (Esaved) by using RHeAPAS: Esaved = (EUDP − ERHeAPAS) /EUDP × 100.

Figure . shows Esaved; the first two rows illustrate the heterogeneous configura ons (same as in Figure

. ). For sta c loads and no power limit, energy savings over % are observed, essen ally due to the

reduced power usage. Used power increases with total available power, resul ng in less energy saved for

higher power availability. The third row illustrates increasing problem size (same as in Figure . ), clearly

demonstra ng higher energy savings for larger problems. The last row illustrates the increasing number

of nodes (as in Figure . ) where consistent energy savings of around % are observed for the three

power limits. Overall, the proposed mechanisms prove to be substan ally more effec ve than a UDP in

mul ple scenarios and a ending to different power caps.
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Figure . : Energy consump on reduced for the same configura ons of the previous plots. In the first
two rows, K cells for sta c K cells for dynamic. % limit of power for the third row and the last
row is a weak scaling with homogeneous nodes with increasing cells ( K, K, K and K)
and dynamic workload.

5.5 Conclusions and Future Work
This contribu on proposes and assesses a run me power scheduler, which op mizes power consump-

on for overprovisioned heterogeneous clusters, in the context of CFD simula ons. Such simula ons

o en imply dynamic workloads due to execu on me mesh refinement that combined with hardware

heterogeneity, result in non-op mal power consump on and/or performance degrada on when a power

supply limit is applied. The proposed approach combines power usage reduc on with execu on me

minimiza on by formula ng an op miza on problem that devises a power schedule sa sfying both ob-

jec ves while a ending to a power limit. The proposed approach has been implemented as an addi onal

so ware component of nSharma, which fully integrates with OpenFOAM.

Results, in general, show a substan al reduc on in power used for sta c and dynamic workloads with no

performance deteriora on. When the power budget is significantly reduced, performance improvements



are observed when compared to a uniform distribu on of power. These gains are shown to be the result

of adap vely assigning the power to where it is most needed. Power from faster nodes and/or nodes

with less workload is migrated to slower and busier nodes, resul ng in an overall reduc on in power used

and performance gain. Assessments with mul ple problem sizes are also included, revealing an increased

effec veness as problem size increases. Increasing number of compute units are also evaluated, demon-

stra ng a consistent reduc on in power used along with performance improvements, however, the la er

slightly affected by the computa on to communica on ra o. Since power supply and performance basi-

cally define the energy consump on of an applica on, an energy saved analysis reveals that a substan al

reduc on in energy is observed, in many cases over %.

Experimental results show that the effec veness of the proposed model is, in some cases, affected by

the range of frequencies available for each compute unit. Future work will account for available ranges,

producing be er results when compute units with a short range of frequencies is present. Addi onally,

the run me will be validated against a more extensive set of case studies and heterogeneous compu ng

units; upon successful valida on, RHeAPAS will be made publicly available to be integrated into clusters

running OpenFOAM.
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In this final chapter, the general conclusions achieved in the thesis are iden fied. The three contribu ons

are discussed altogether and related to this thesis hypothesis. The future work is also discussed, with a

new model being proposed for development and assessment.

6.1 Conclusions
This thesis addresses the heterogeneous nature of today’s parallel compu ng systems in the context of

numerical computer simula ons with focus on dynamic workloads. It approaches the mul ple challenges

that these systems pose, par cularly when compu ng dynamic and irregular workloads originated from

large and complex numerical simula ons such as CFD simula ons with adap ve mesh refinement. The

challenges include performance imbalances originated from nodes or devices with different compu ng

capabili es, performance non-portability, disjoint memory address spaces, non-portable code and emerg-

ing challenges related to power management. These challenges are further aggravated with the dynamic

and unpredictable nature of the workload since it produces an arbitrary amount of computa onal ef-

fort as well as code divergence and branching workflow that current compu ng so ware solu ons and

paradigms do not address.

The heterogeneous challenges posed by current compu ng systems together with dynamic workloads

form a Two-fold Challenge that this thesis proposes to address using a combina on of mechanisms that

are designed, implemented and validated across a conceptual -Tier parallel hierarchy defined in this

document. These mechanisms include a unified execu on and programming model, transparent data

management systems, heterogeneity aware dynamic load balancing and heterogeneity aware power man-

agement. This thesis hypothesis is thus that these techniques can be used to face the mul ple challenges

raised across the ers of parallelism in order to increase the development produc vity, compute effi-

ciency and a proper balance between performance extracted and power used.

The contribu ons of this thesis were organized in three main parts:

Heterogeneity challenges in Tier- , and parallel systems In this contribu on, single node mul -device

(Tier- ) systems were addressed and a unified task-based programming and execu on model tai-

lored to efficiently execute data-parallel regular and irregular applica ons was proposed. Among

other mechanisms, the execu on model includes the integra on of persistent kernels combined

with a tailored API allowing users to express irregular applica ons towards increasing the perfor-

mance extracted from the Tier- and parallel levels. Results reveal a gain of up to % in some

applica ons along with consistent levels of parallel efficiency as resources are added.

Heterogeneity challenges in Tier- parallel systems In this contribu on the challenges with mul -node

distributed memory systems (Tier- ) were addressed and the proposed approach is directly inte-

grated and evaluated with a widely used CFD library (OpenFOAM). The contribu on evaluated



the combina on of a DLB system with an applica on-oriented performance model as a mean to

increase resource u liza on in performance and workload imbalanced systems. Speed-ups larger

than were achieved with some configura ons and an increased parallel efficiency when compared

with the out-of-the-box simula on me results.

Power-management in Tier- heterogeneous systems The fast-growing power consump on was ad-

dressed in this contribu on by devising and solving an op miza on problem in order to improve

power efficiency and performance in power-limited scenarios. The proposed model is formulated

based on two objec ves: power consump on minimiza on and performance maximiza on. Het-

erogeneity awareness is provided by a performance model and power assignment decisions are

adap vely performed at run me. Reduc ons in power consump on over % were observed in

some configura ons with fairly acceptable adap vity to dynamic workloads and resources variabil-

ity. Gains over % in energy are also observed in some configura ons.

These contribu ons show that unified programming and execu onmodels are an effec ve way of increas-

ing produc vity and performance by hiding the main hurdles that heterogeneous parallel systems pose

to applied science experts. They provide a mechanism for transparent handling of mul ple architectures

with different performance levels offered by different compu ng units. These unified run me systems

must provide a data-management system in order to further enhance produc vity and also increase

scheduling opportuni es to push forward performance boundaries. Special focus was set on scheduling

and how persistent kernels may be explored in order to increase the performance of irregular applica ons

in highly parallel architectures. Results revealed substan al gain when using these tools as long as the

applica on sustains enough computa onal effort to mi gate the workload management overheads.

Results also show that Dynamic Load Balancing (DLB) techniques are capable of substan ally increas-

ing the performance of a complex state-of-the-art CFD so ware package in heterogeneous distributed

memory systems. By resor ng to a thorough combina on and design of a profiling mechanism, a tailored

performance model, a decision module and a repar oning module, a run me system can be integrated

into a numerical simula on package allowing it to effec vely account for the differences in performance

across nodes including par cularly challenging scenarios like dynamic workload simula ons.

Finally, this document describes a formula on of an op miza on problem that distributes a power budget

and tries to minimize power consump on while also minimizing the performance penalty. It explores

some of the modules used in DLB techniques, such as the tailored performance model, and the results

show that power consump on can be effec vely reduced without affec ng performance. The model

also considers limited power supply scenarios which allows for the model to increase the performance

when compared to simpler power limita on approaches. This further increases the benefits of using such

op miza on formula ons in heterogeneous systems resul ng in not only power consump on reduc on

but also a reduc on in energy used as a consequence of shorter execu on mes.



It is thus the author belief that the results presented in this document validate the hypothesis put forward

by this research work. The mechanisms iden fied were able to effec vely address the mul ple challenges

that parallel heterogeneous systems pose, in par cular, they were able to address the two-fold challenge

defined by combining these challenges with dynamic workloads. The next sec on discusses the future

work and it proposes an approach to extend the op miza on problem used in RHeAPAS (Sec on . ) in

order to include dynamic load balancing.

6.2 Future Work
In general, the compu ng pla orms used in experimenta on throughout the thesis may be classified

as small-medium sized systems. Although the author believes that the variety of systems used are the

minimum required to validate the proposed goals of this thesis, larger and more heterogeneous systems

should be tested. This includes valida on with hundreds of nodes as well as systems with a larger num-

ber of different devices (higher heterogeneity levels). Larger scale systems poten ally introduce other

challenges (e.g. higher communica on overheads) that need to be accounted for in the proposed mech-

anisms. Analysing other different compu ng devices will also provide a be er insight in how the models

can be further developed to increase the support for arbitrary heterogeneity. For instance, RHeAPAS

could benefit from a generic mechanism that would account for the different frequency steps that each

individual device poten ally has.

Specific to the contribu ons described in Chapter and , the current prototype implementa on re-

quires some changes and subsequent re-compila on of the OpenFOAM solvers. This can be completely

removed by integra ng the required changes in the OpenFOAM core libraries, omi ng thus any changes

to the solvers required to the OpenFOAM programmers. An extremely limi ng feature in OpenFOAM

is the requirement of having at least one cell assigned to each instanced rank (no zero-sized par ons).

This inhibits nSharma to simply deac vate a CU that is too slow to have any benefit in assigning any

work to it. Enabling this in OpenFOAM would significantly increase the benefit of using the proposed

mechanisms.

It is crucial that the physical simula on results are not affected by nSharma or RHeAPAS, therefore, the

simula on results achieved (e.g. velocity, pressure, etc) need to be properly validated. This requires the

implementa on of a thorough methodology to compare the results achieved with the proposed mech-

anisms against the out-the-box simula on values. It is also required to further validate the proposed

mechanisms with more simula ons cases as well as different OpenFOAM solvers. Since the mesh repar-

oning and cell migra on is related with the mesh geometry and cell distribu on in space, it is required

to further assess the behaviour of nSharma with different meshes and simula on workflows.

Regarding the op miza on problem used in RHeAPAS, note that the coefficients α1 and α2 are equally

defined as . in the experimental tests. This means that the same weight is given to both objec ves: per-



formance and power consump on. Further tests with different values for these coefficients can be made

in order to assess their impact on the results. Finally, the contribu ons in Chapter are useful essen ally

to system administrators and managers. An interface is thus required that connects the tools used by

these administrators to the mechanisms proposed in order to be transparently used and parametrized

according to system characteris cs.

6.2.1 Combining Power Management with Load Balancing
In Chapter a formula on of an op miza on problem is proposed in order to find the best trade-off

between power and performance that would minimize the power used. Solving the op miza on problem

consists on findingW (power assigned to each CU) that minimizes two combined func ons, the es mated

execu on me T(W) and the total power used ∥W∥1 (Equa on . ). Since no dynamic load balancing is

used in this contribu on, the number of cells assigned to each CU is known at the start of each itera on

and it is used in Equa on . to es mate the execu on me with a provided Wp.

This approach can be extended by adding a new set of unknowns to the minimiza on problem that

represent the number of cells Ni+1
p assigned to each CU p, i.e., allowing for cell migra on among CUs. The

Ni+1
p in Equa on . can parametrized resul ng in:

Ti+1
p (Wi+1

p ,Ni+1
p ) = r̃ kp × fcapp × 1

Φp(Wi+1
p )

× Ni+1
p ( . )

Subsequently, Equa on . becomes:

Ti+1(Wi+1,Ni+1) = max
p∈{0,...,P−1}

Ti+1
p (Wi+1

p ,Ni+1
p ) ( . )

And finally, by adding the new set of unknowns to the op miza on problem the following is achieved

(for simplicity index i+ 1 has been omi ed):

minimize
W∈RP,N∈NP

α1 × T(W,N) + α2 × ∥W∥1

subject to ∥W∥1 ≤ τ

∥N∥1 = Ntotal

∥N∥0 = P

T(W,N) ≤ T(Wcap,N)

fminp ≤ Φp(Wp) ≤ fmaxp , ∀p ∈ {0, . . . , P− 1}

( . )

Note that the constraints ∥N∥1 = Ntotal and ∥N∥0 = P have been added in order to ensure that all the

cells are assigned and no zero-sized domains are created, respec vely.

Solving this problemwill thus search for the bestW andN that combinedwill minimize execu on me and



power consump on. Note that T(W,N) is based on the performance model, therefore the performance

of each CU will also be a defining factor on how to devise N, which is the main purpose of a dynamic

load balancing mechanism. The decisions of this model are significantly different from the previous model.

The system has now the ability to migrate cells among CUs, balancing between assigning cells to the

fastest CUs and the ones that consume the least power. This significantly increases the depth of the

decisions made and poten ally resul ng in substan al gains in energy consump on compared to the

ones achieved in Chapter .

Note that this approach was not implemented in any way, the op miza on model was formulated and

presented here, but no valida on or assessment was performed. To implement this new approach, most

of the mechanisms in Chapter are required. In fact, solving this problem can replace the nSharma

linear system of equa ons described in Sec on . . , Equa on . . This will produce the Ni+1
p values

that can then be used in the following pipelined components and finalize with the assignment of the

frequencies. Note that, by adding N as a new set of variables to search, the complexity of solving the

model is poten ally higher as there are significantly more possible combina ons. The overhead and cost

of solving such system at run me must be re-assessed.

A par cular advantage of this model is that it provides the ability to, according to the system circum-

stances, dynamically configure the applica on to leverage either less power consump on or greater

performance. For instance, an administra on en ty (either an automa c system or human system ad-

ministrator) can parametrize the execu on of the applica on to leverage power consump on reduc on

if the system is under high load. The model can thus migrate the work to the most suitable CUs that

would minimize performance degrada on and define the most suitable frequencies to achieve such goal.

On the other hand, if the system has all the available power to compute the applica on, the model may

find the best cell distribu on to achieve the best performance, disregarding any concerns with power

consump on.

implicitly, by devising the number of cells assigned
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