
Universidade do Minho
Escola de Engenharia

Roberto Carlos Sá Ribeiro

outubro de 2018

Numerical Simulations on Heterogeneous
Systems: dynamic workload and power
management

R
ob

er
to

 C
ar

lo
s

Sá
 R

ib
ei

ro
N

u
m

e
ri

ca
l S

im
u

la
ti

o
n

s
o

n
 H

e
te

ro
g

e
n

e
o

u
s

S
ys

te
m

s:

d
yn

a
m

ic
 w

o
rk

lo
a

d
 a

n
d

 p
o

w
e

r
m

a
n

a
g

e
m

e
n

t
U

M
in

ho
|2

01
8

Roberto Carlos Sá Ribeiro

outubro de 2018

Numerical Simulations on Heterogeneous
Systems: dynamic workload and power
management

Trabalho efetuado sob a orientação do
Professor Doutor Luís Paulo Santos
do
Professor Doutor Miguel Nóbrega
e do
Professor Doutor Hrvoje Jasak

Tese de Doutoramento em Informática

Universidade do Minho
Escola de Engenharia

iii

iv

Acknowledgements
This thesis was not made in one day, and across the challenging days of its development, several were the

people that moধvated and supported me. I would like to thank my supervising team, Luís Paulo Santos

(University of Minho), Miguel Nóbrega (University of Minho) and Hrvoje Jasak (University of Zagreb), for

their support and knowledgeful guidance. Among these, I would like to exalt my graধtude to Luís Paulo

Santos. By helping me overcoming technical issues, funding issues, moধvaধonal issues, among others,

I can honestly state that the successful achievement of this work would not be possible without his

support.

I also want to thank Professor Alberto Proença (University of Minho), for all the support and especially,

for providing the means to pursue and achieve this thesis. I am also truly grateful to João Barbosa (TACC

- University of Texas) as he was, not only a friend but also a co-worker, research partner, co-author and

brainstorming partner. He was also largely responsible for my ধme in TACC (Texas, USA), to which I greet

and extend my graধtude. Thank you to current and former members of my research group (LabCG, UM),

in parধcular, to Waldir — a brainstorming partner and a friend.

And last but not least, I want to thank my family and friends — as an American writer once said:

You can kiss your family and friends good-bye and put miles between you, but at the same

meࣅ you carry them with you in your heart, your mind, your stomach, because you do not just

live in a world but a world lives in you.

Funding

The work that composes this thesis was funded by Naধonal Funds through the FCT - Fundação para

a Ciência e a Tecnologia (Portuguese Foundaধon for Science and Technology) and by ERDF - European

Regional Development Fund through the COMPETE Programme (operaধonal programme for compeধ-

ধveness) within projects PTDC/EIA-EIA/ǘǗǗǗǚǜ/ǙǗǗǟ, PEst-OE/EEI/UIǗǞǜǙ/ǙǗǘǛ, FCOMP-Ǘǘ-ǗǘǙǛ-

FEDER-ǗǘǗǗǝǞ and UID/CTM/ǜǗǗǙǜ/ǙǗǘǚ. Also by the School of Engineering, University of Minho,

within project PǙSHOCS - Performance Portability on Scalable Heterogeneous Compuধng Systems and

by the PT-FLAD Chair on Smart Ciধes & Smart Governance. To these enধধes, I would like to express

my sincerest graধtude.

Resources

I would like to thank Kyle Mooney and other authors for providing the code supporধng migraধon of

dynamically refined meshes in OpenFOAM (Chapter Ǜ). I would also like to acknowledge the Texas

Advanced Compuধng Center (TACC) at The University of Texas at Ausধn, and the SeARCH compuধng

project at the University of Minho, for providing the HPC resources.

v

vi

Numerical Simulations on
Heterogeneous Systems:
dynamic workload and power
management
Abstract. Numerical simulaধons are among the most relevant and computaধonally demanding applica-

ধons used by scienধsts and engineers. As accuracy requirements keep increasing so does the correspond-

ing workload and, consequently, the demand for addiধonal compuধng power. HPC systems are thus a

fundamental tool to allow for a ধme effecধve execuধon of such simulaধons; performance maximizaধon

is therefore a perধnent and crucial subject of research. Over the last decade HPC has undergone a ma-

jor shiđ, resulধng on heterogeneous parallel compuধng systems, which integrate devices with different

architectures, exposing different instrucধon sets, programming and execuধon models, and ulধmately,

delivering significantly different performances. This heterogeneity raises a variety of challenges to appli-

caধon developers, such as performance and code non-portability, performance imbalances and disjoint

memory address spaces. These challenges not only widen the gap between peak and sustained perfor-

mance, but also significantly reduce development producধvity. Addiধonally, numerical applicaধons ođen

exhibit dynamic workloads, with unpredictable computaধonal requirements, which, together with asso-

ciated code divergence and branching workflow, further aggravates the heterogeneity challenge — this

is defined as the Two-fold Challenge. The increasing scale in HPC systems also leads to a fast growing

power consumpধon, with power management soluধons being of crucial importance. The design of such

soluধons becomes harder within the two-fold challenge context.

This thesis addresses the Two-fold Challenge in the context of numerical simulaধons and HPC systems,

focusing on opধmising sustained performance and power consumpধon. A variety of mechanisms is

proposed and validated across different parallel compuধng paradigms. These mechanisms include a uni-

fied execuধon and programming model, a transparent data management component and heterogeneity-

aware dynamic load balancing and power management systems. The contribuধons of this thesis are di-

vided into three areas: efficient and effecধve applicaধon development and execuধon on heterogeneous

single-nodes with mulধple compuধng devices, load and performance imbalances in heterogeneous dis-

tributed systems and power-performance trade-offs in heterogeneous distributed systems. In order to

foster the adopধon of proposed mechanisms, some were designed and integrated into a widely used nu-

merical simulaধon library — OpenFOAM. Experimental results assert the effecধveness of the proposed

approaches, resulধng on significant gains in performance and reduced power consumpধon in mulধple

scenarios.

vii

viii

Simulações Numéricas em
Sistemas Heterogéneos: carga
dinâmica e gestão de potência
Resumo. Simulações numéricas são uma das mais importantes e computacionalmente exigentes apli-

cações usadas por cienধstas e engenheiros. A carga computacional destas aplicações é proporcional aos

requisitos de precisão da simulação, que por sua vez, têm aumentado significaধvamente, resultando numa

maior exigência a nível de poder computacional. Os sistemas de computação de alto desempenho (High

Performance Compuࣅng (HPC)) são uma ferramenta fundamental, que permitem executar estas aplicações

em tempo úধl. Obter o desempenho máximo destes sistemas é portanto uma área de invesধgação de

elevada importância e perধnência. Na ulধma década, a computação de alto desempenho tem sido alvo

de consideráveis mudanças, resultando em sistemas computacionais paralelos e heterogéneos. Estes

sistemas são compostos por disposiধvos com diferentes arquiteturas, instrucࣅon sets e modelos de pro-

gramação e execução, resultando em desempenhos significaধvamente diferentes. Esta heterogeneidade

levanta vários desafios, nomeadamente, código da aplicação e desempenho não portáveis entre dispos-

iধvos, diferenças de desempenho e espaços de endereçamento de memória disjuntos. Estes desafios,

não só aumentam a diferença entre o pico de desempenho e o desempenho obধdo, mas também re-

duzem significaধvamente a produধvidade. Mais ainda, as aplicações numéricas exibem, frequentemente,

cargas dinâmicas, cujos requisitos computacionais são imprevisíveis. Este dinamismo, combinado com

a divergência do código e com o controlo de fluxo condicional, agrava as complexidades associadas à

heterogeneidade do sistema, sendo referido como Two-fold Challenge. O progressivo aumento da dimen-

são dos sistemas HPC tem também, como consequência, um rápido aumento do consumo de potência.

Sistemas de gestão de potência são portanto de extrema importância, no entanto, o desenvolvimento

destes sistemas torna-se complexo perante o Two-fold Challenge

Esta tese aborda o Two-fold Challenge no contexto de simulações numéricas e sistemas HPC, focando-se

na oধmização do desempenho e potência consumida. Vários mecanismos são propostos e validados em

diferentes paradigmas de computação paralela. Nomeadamente, modelos unificados de execução e pro-

gramação, sistemas transparentes de gestão de dados e sistemas de balanceamento de carga e gestão

de energia baseados na heterogeneidade do sistema. As contribuições desta tese são divididas em três

áreas: desenvolvimento e execução eficiente de aplicações em sistemas heterogéneos com um único nó e

múlধplos disposiধvos, desbalanceamento de carga computacional e desempenho em sistemas heterogé-

neos distribuídos e compromissos entre desempenho e potência consumida em sistemas heterogéneos

distribuídos. De forma a promover o uso dos mecanismos propostos, parte destes foram desenvolvidos e

integrados numa conceituada biblioteca de simulações numéricas — OpenFOAM. Resultados experimen-

tais validam a eficácia dos mecanismos propostos, resultando em ganhos significaধvos de desempenho

e redução de potência consumida em múlধplos cenários.

ix

x

Contents
1 Chapter ǘ

Introducধon
Context and Moধvaধon, Ǚ
Facing the Challenges, ǟ
Goals and Contribuধons, Ǡ
Thesis Structure, ǘǙ

13 Chapter Ǚ
Background
Modern HPC Architectures, ǘǛ
Parallel Programming Models, ǘǝ
Power Management, ǘǠ
Addressing the Challenges, ǙǗ

25 Chapter ǚ
Heterogeneous Single-node Systems
Introducধon, Ǚǝ
Related Work, Ǚǟ
Proposed Approach, ǙǠ
Workload Scheduling, ǚǝ
Evaluaধon Approach, ǚǠ
Results, Ǜǚ
Conclusions and Future Work, ǜǙ

55 Chapter Ǜ
Heterogeneous Distributed Systems
Introducধon, ǜǝ
Related Work, ǜǠ
nSharma’s Architecture, ǝǗ
Results, ǝǜ
Conclusions and Future Work, Ǟǘ

73 Chapter ǜ
Power Scheduling in Heterogeneous Distributed Systems
Introducধon, ǞǛ
Related Work, Ǟǝ
RHeAPAS, ǞǞ
Results, ǟǘ
Conclusions and Future Work, ǟǞ

89 Chapter ǝ
Conclusions and Future work
Conclusions, ǠǗ
Future Work, ǠǙ

xi

xii

Acronyms
ACPI Advanced Configuraধon and Power Interface

AMR Adapধve Mesh Refinement

AS Applied Scienধst

BWU Basic Work Unit
CFD Computaধonal Fluid Dynamics

CommGraph Communicaধon Graph

CU Compuধng Unit

DAG Direct-acyclic Graph

DD Domain Decomposiধon

DM Decision Model
DMS Data Management System

DLB Dynamic Load Balancing

DVFS Dynamic Voltage and Frequency Scaling

FE Finite Element
FLOPS Floaধng-point Operaধons Per Second

FV Finite Volume
FPGA Field-programmable gate array

GFLOPS Giga Floaধng-point Operaধons Per Second

GPGPU General Purpose GPU

HEFT Heterogeneous Earliest Finish Time

HPC High Performance Compuধng

HDS Heterogeneous Distributed Systems

HSNS Heterogeneous Single-Node Systems

HS Heterogeneous Systems

DW Dynamic Workload

DSP Digital Signal Processor

ILP Instrucধon Level Paralellism
KNL Knights Landing

MPI Message Passaging Interface

OPM Online Profiling Module

OpenFOAM Open Source Field Operaধon and Manipulaধon

PAS Power-Adapধve Scheduler

xiii

PM Performance Model
RHeAPAS Runধme Heterogeneity-Aware Power-Adapধve Scheduler

RM Reparধধoning Module

RSD Relaধve Standard Deviaধon
SIMD Single Instrucধon Mulধple Data

SIMT Single Instrucধon Mulধple Threads

TDP Thermal Design Power

TPL Task Parallel Library

UDP Uniform Distribuধon of Power

xiv

List of Figures
ǘ.ǘ Processor and co-processor family system share from June

ǙǗǘǟ TopǜǗǗ supercomputer list ǚ
ǘ.Ǚ Some examples of heterogeneous supercomputers in the top

ǝǗ places of the June ǙǗǘǟ TopǜǗǗ Supercompuধng list. Ǜ
ǚ.ǘ Applicaধon specificaধon and HCP components. Applicaধon

jobs and dependency constraints are submiħed to the system
by implemenধng the HCP using the API ǚǗ

ǚ.Ǚ Runধme architecture and workflow. ǚǜ
ǚ.ǚ Persistent kernel architecture and workflow. ǚǠ
ǚ.Ǜ Performance comparison between C-Kernel and CP-Kernel on

a single GPU. Note the leđ-handed y-axis and x-axis in log scale
and right-handed y-axis in linear scale. ǛǛ

ǚ.ǜ Load impact in performance, expressed in terms of speedup of
the consumer-producer kernel over the consumer one. Num-
ber of shadow rays per shading point in PT (upper horizontal
axes) and syntheধc load for BH (lower horizontal axes). Note
that both horizontal axes are in log scale. ǛǛ

ǚ.ǝ Performance comparison between consumer kernel and
consumer-producer kernel with mulধple-device configuraধons
when scheduling PT and FL irregular workloads. C stands for
CPU and G for GPU. Note that horizontal axis is in log scale. . Ǜǜ

ǚ.Ǟ Performance with mulধple-device configuraধons. A consumer
kernel type is used for the MM and BH applicaধons and a
consumer-producer kernel in PT and FL. C stands for CPU and
G for GPU. Note the verধcal axis in log scale. ǛǞ

ǚ.ǟ Strong scalability: heterogeneous efficiency for the four case
studies. Ǟk x Ǟk matrix for MM, ǘǗǙǛk parধcles in BH, ǛǗǗ SPP
for PT and ǚǙM photons in FL. ǛǠ

ǚ.Ǡ Heterogeneous efficiency with mulধple workloads and
mulধple-device configuraধons. Consumer kernel for MM and
BH, consumer-producer kernel for PT and FL. C stands for
CPU and G for GPU. ǜǗ

ǚ.ǘǗ Path tracing – Speedup of the proposed approach over StarPU
with mulধple device configuraধons when scheduling irregular
workloads. C stands for CPU and G for GPU. Note that hori-
zontal axis is in log scale . ǜǙ

xv

Ǜ.ǘ damBreak geometry and a subset of the simulaধon result with
Ǜ ranks (each color represents the cells assigned to a different
rank) and AMR. Cell distribuধon devised using ParMETIS and
default parametrisaধon. ǝǜ

Ǜ.Ǚ windAroundBuildings simulaধon illustraধon. First plot shows
cells distribuধon over Ǜ ranks (each color represents the cells
assigned to a different rank), second plot illustrates the pres-
sure at ধme-step ǙǗǗ and the two last plots show examples of
velocity stream lines. Cell distribuধon devised using ParMETIS
and default parametrisaধon. ǝǜ

Ǜ.ǚ nSharma gain with SeARCH Homogeneous and Heteroge-
neous I . ǝǞ

Ǜ.Ǜ Busy RSD with and without nSharma for Ǜ nodes and ǚǙ ranks. ǝǟ
Ǜ.ǜ Execuধon ধme percentage breakdown for Ǜ nodes ǝǟ
Ǜ.ǝ First three plots show an increasing problem size for four ǝǛǘ

SeARCH nodes, ǝǝǙӫKNL and four StampedeǙ nodes and dy-
namic workload. Last plot shows an increasing number of ǝǛǘ
nodes using the maximum number of ranks, dynamic workload
and about Ǚ million cells . ǝǠ

Ǜ.Ǟ windAroundBuildings simulaধon with Ǜ Heterogeneous I config-
uraধon nodes and staধc workload. ǞǗ

Ǜ.ǟ Efficiency (w/ and wo/ nSharma) with dynamic loads for Stam-
pedeǙ nodes . ǞǗ

Ǜ.Ǡ Speedup in combining a ǝǝǙ node and a KNL by using nSharma Ǟǘ
ǜ.ǘ Power used and performance gain for (Ǚ and Ǜ nodes) Hetero-

geneous I and II with staধc and dynamic workload in SeARCH.
ǜǘǙK cells for staধc ǙǜǝK cells for dynamic. ǟǚ

ǜ.Ǚ Power assignment and iteraধon execuধon ধme along simula-
ধon. Ni

p, in the first four rows y-axis, is according to Equaধon
ǜ.ǟ. ǘǗǗǗ ধmesteps with Ǜ homogeneous (ǝǛǘ) nodes, dynamic
workload and a ǟǜ% power budget. ǟǛ

ǜ.ǚ Increasing number of cells in the x-axis. ǟǜ% power budget, Ǜ
nodes, Heterogeneous I with staধc load, and Homogeneous I
and Heterogeneous I with dynamic workload ǟǜ

ǜ.Ǜ Weak scaling based analysis, homogeneous nodes increasing in
the x-axis. ǜǘǙK, ǘǗǙǛK, ǙǗǛǟK and ǛǗǠǝK as number of cells
respecধvely, and dynamic workload. ǟǝ

ǜ.ǜ Energy consumpধon reduced for the same configuraধons of
the previous plots. In the first two rows, ǜǘǙK cells for staধc
ǙǜǝK cells for dynamic. ǟǜ% limit of power for the third row
and the last row is a weak scaling with homogeneous ǝǛǘ nodes
with increasing cells (ǙǜǝK, ǜǘǙK, ǘǗǙǛK and ǙǗǛǟK) and dy-
namic workload. ǟǞ

xvi

List of Tables
ǚ.ǘ Speedup of the consumer-producer kernel over the consumer

kernel with load impact in performance asworkload is increased

per BWU in BH and PT. Ǜǜ

ǚ.Ǚ Performance values with mulধ-device configuraধons. C stands

for CPU and G for GPU. Ǜǝ

ǚ.ǚ Performance values withmulধ-device configuraধons compared

to a reference version running on a single GPU. PT values dif-

fer from Table ǚ.Ǚ because a single shadow ray was used per

shading point. C stands for CPU and G for GPU. ǛǞ

ǚ.Ǜ Strong scalability: heterogeneous efficiency for the four case

studies. Ǟk x Ǟk matrix for MM, ǘǗǙǛk parধcles in BH, ǛǗǗ SPP

for PT and ǚǙM photons in FL. C stands for CPU and G for GPU. ǛǠ

Ǜ.ǘ Compuধng systems and system configuraধons used in evaluaধon ǝǝ

ǜ.ǘ SeARCH Compuধng nodes and system configuraধons used in

evaluaধon . ǟǙ

List of Infos
ǘ.ǘ Numerical Simulaধon by nature.com Ǚ

ǘ.Ǚ Clusters, Supercomputers and HPC Systems ǚ

ǘ.ǚ Applicaধon workload types: staধc, regular, dynamic and irregular ǝ

ǘ.Ǜ Compuধng Unit (CU) . ǟ

ǘ.ǜ Contribuধon I . ǘǗ

ǘ.ǝ Contribuধon II . ǘǗ

ǘ.Ǟ Contribuধon III . ǘǘ

Ǚ.ǘ Applicaধons and Data dependencies Ǚǘ

Ǚ.Ǚ Data-parallel task-scheduling vs Funcধonal task-scheduling . . Ǚǘ

Ǜ.ǘ The OpenFOAM Challenge . ǜǟ

xvii

xviii

Chapter

1 Introduction

Contents
1.1 Context and Moধvaধon, Ǚ

1.1.1 Ǜ-Tier Parallelism, Ǜ
1.1.2 Heterogeneous Systems and Dynamic workloads, ǜ
1.1.3 Power Consumpধon Challenge, Ǟ
1.2 Facing the Challenges, ǟ
1.3 Goals and Contribuধons, Ǡ

1.3.1 Main Contribuধons, ǘǗ
1.3.2 Experimental Context, ǘǘ
1.4 Thesis Structure, ǘǙ

Civilizaࣅon is a progress from an indefinite, incoherent homogeneity toward a

definite, coherent heterogeneity.

Herbert Spencer

ǘ

In this iniࣅal chapter, a detailed discussion on the context and moࣅvaࣅon of this thesis is provided. An

overview of the state of today’s compuࣅng systems is presented, together with the idenࣅficaࣅon of a set

of challenges that emerged from the way compuࣅng technologies evolved. It also introduces a hierarchical

taxonomy that categorizes the paradigms of parallel compuࣅng. In the final secࣅons, a brief overview of

how this thesis will approach the idenࣅfied challenges is provided, defining the research hypothesis, goals

and contribuࣅons of this thesis.

1.1 Context and Moধvaধon
Numerical computer simulaধons extend the human capability to acquire knowledge on fundamental as-

pects of physics. They allow studying the behaviour of complex physical systems that are impracধcal

to assess either by analyধcal or experimental methods. Weather forecasধng, financial market forecast-

ing, medical and health-care development, image synthesis and rendering, aircrađ aerodynamics are just

some of the examples of a vast set of applicaধons that make use of numerical simulaধons. The value

and accuracy of these simulaধons are correlated with their workload which has a direct impact on the

computaধonal effort. For instance, larger refined models of a city in weather forecasধng yield a more

accurate and wider weather predicধon, a larger pixel sampling and resoluধon in a physically based ren-

dering algorithm results in higher-quality photo-realisধc images. This results in a generalized demand for

compuধng power in order to enable higher quality and complex simulaধons [ǘ].

Numerical Simulaধon by nature.com

A numerical simulaࣅon is a calculaࣅon that is run on a computer following a program that implements a mathe-
maࣅcal model for a physical system. Numerical simulaࣅons are required to study the behaviour of systems whose
mathemaࣅcal models are too complex to provide analyࣅcal soluࣅons, as in most non-linear systems.

Given the compuধng complexity and volume of the data associated with these applicaধons, their exe-

cuধon ধmes easily achieve the order of days or weeks, largely depending on the compuধng resources

available. High Performance Compuধng (HPC) systems are a fundamental tool used by scienধsts and

engineers to implement and run numerical simulaধons as they offer higher levels of compuধng capabil-

iধes. HPC systems performance delivery is fundamentally based on parallel compuধng and scalability

provided by stand-alone sophisধcated servers and by large-scale clusters with thousands of compute

nodes. Maximizing the extracted performance from these systems is, therefore, a perধnent and crucial

subject of research and development.

In the last decades, driven by the surge in computaধonal requirements, HPC systems have been subject

to significant change in architectural design and development. Manufacturers consistently increased the

CPU transistor count and devised sophisধcated approaches to organize chip space in order to further

increase performance (e.g. vectorizaধon, superscalar, etc). However, limited by the power wall, chip

Ǚ

Clusters, Supercomputers and HPC Systems

Cluster is a core architectural concept based on a set of computers connected by a local network providing
extended parallel compuধng capabiliধes. Supercomputer is a large-scale compuধng infrastructure based on
the cluster concept and used in the solving of complex and large scienধfic problems. HPC systems are comput-
ing plaĤorms targeted to deliver higher levels of computaধonal power aimed to solve complex computaধonal
problems. HPC systems range from standalone compute servers to large-scale supercomputers.

manufacturers adopted new architectures and embraced parallelism within the chip as the mainstream

approach to overcome the physical limitaধons [Ǚ], [ǚ]. Mulধ-core CPUs quickly became ubiquitous as

well as sophisধcated compuধng paradigms such as mulধ-threading.

With the introducধon and development of programmable shaders, along with advancements in floaধng-

point support, GPUs became able to compute highly-parallel scienধfic tasks with substanধally higher

performance than common CPUs due to its many-core architecture. With the introducধon of highly pro-

ducধve programming models, such as CUDA and OpenCL, these co-processing devices became general

purpose scienধfic compuধng devices and ubiquitous across HPC systems. Intel also pursued the many-

core co-processing approach with the first Intel Xeon PHI device that consisted in a Ǜǟ-core chip with

wide-SIMD capabiliধes and xǟǝ compaধble. Intel conধnued to develop these micro-architectures and

recently released a new many-core self-hosted ǘ device with codename Knights Landing (KNL) with ǝǛ

cores.

Figure ǘ.ǘ: Processor and co-processor family system share from June ǙǗǘǟ TopǜǗǗ supercomputer list

Sophisধcated mulধ-core CPUs, many-core GPUs and Xeon PHI’s are common devices equipped in stan-

dalone HPC compute servers and supercomputer nodes. This mulধtude of devices fundamentally revolu-

ধonized the plurality in terms of HPC technology, outseষng theHeterogeneous Compuࣅng Era [Ǜ]. This is

clearly observed in Figure ǘ.ǘ that illustrates the processor and co-processor family systems share in the

TopǜǗǗ supercomputer list. Compute nodes are heterogeneous as they are composed of devices that are

designed with different architectures, using different instrucধon sets, programming and execuধon mod-

els, and ulধmately deliver significantly different performances. Clusters are rendered heterogeneous as

ǘthe many-core is the main CPU

ǚ

they can be easily extended with nodes with more efficient CPU architectures and new sophisধcated co-

processing devices. Figure ǘ.Ǚ briefly illustrates some examples of heterogeneous supercomputers and

their architectures present in the top ǝǗ places of the TopǜǗǗ supercomputers listǘ. For instance, the

Pleiades from NASA, is composed by four different Intel architectures and a NVIDIA GPU architecture.

Supercomputer Architectures

Stampede2

Marconi

Pleiades

Jureca

Electra

Thunder

Mistral

Skylake KNL

Skylake

Broadwell

Broadwell KNL

Haswell Ivy Bridge Sandy Bridge Tesla K40

Haswell KNL Tesla K40

Broadwell

HaswellBroadwell

Haswell
E5-2699v3

KNC Tesla K40

Tesla K80 Quadro M6000

Haswell
E5-2697v3

Figure ǘ.Ǚ: Some examples of heterogeneous supercomputers in the top ǝǗ places of the June ǙǗǘǟ
TopǜǗǗ Supercompuধng list.

1.1.1 4-Tier Parallelism
With the adopধon of parallelism as the mainstream paradigm to increase performance and considering

the current structure of HPC systems, a hierarchical parallel compuধng structure can be defined using a

Ǜ-Tier hierarchical taxonomy:

• Tier-Ǜ Inter-node parallelism in a distributed memory system where nodes compute concurrently.

Each node has its own memory addressing space.

• Tier-ǚ Intra-node parallelism within a single compute node with mulধple compute devices, also

known as inter-device parallelism or in some cases hybrid execuধon where devices (e.g CPU and

GPU) compute concurrently. Typically each device has its own memory space.

• Tier-Ǚ Intra-device parallelism, parallelism within device where cores compute concurrently. Mem-

ory space is typically shared across cores.

• Tier-ǘ Intra-core parallelism, a typical example is Single Instrucধon Mulধple Data (SIMD) execuধon

also known as vectorizaধon. In some devices, dedicated registers are used. GPUs also promote

SIMD execuধon using a massive mulধ-threading approach.

A Tier-Ǘ could be defined as the Instrucধon Level Paralellism (ILP) within core considering superscalar

execuধon and instrucধon pipelining.

ǘNote that some heterogeneous supercomputers may have some restricধon policies that limit the use of different architectures
simultaneously.

Ǜ

1.1.2 Heterogeneous Systems and Dynamic workloads
With the embracing of parallelism and with the advent of the heterogeneous era, several challenges

emerge that not only affect the applicaধon development producধvity but also severely impact the ex-

tracted performance of today’s compuধng systems. These challenges are further aggravated in the pres-

ence of dynamic workload applicaধons such as numerical simulaধons. This secধon briefly describes the

challenges posed by parallel heterogeneous systems and in parধcular the impact of combining them with

dynamic workloads.

The Heterogeneity Challenge

A cluster can be fairly easily extended by adding more compute nodes with similar architectures, but ođen

from newer and more sophisধcated generaধons offering more compuধng capabiliধes. This same exten-

sibility, however, renders the system heterogeneous in the sense that different generaধons of hardware

with different levels of performance coexist across nodes leading to performance imbalances. These per-

formance imbalances are also originated from the diversity of devices that consধtute a node. Resource

idling and underuধlizaধon along with poor scalability are the major consequences of an imbalanced sys-

tem [ǜ], [ǝ].

In the presence of mulধple devices with different architectures, one of the major challenges is the perfor-

mance non-portability across devices. For instance, an applicaধon opধmized for the CPU may deliver far

less performance in a GPU and vice-versa [Ǟ]. This is due to the different execuধon models and associ-

ated device architecture details that are designed to address different types of workloads. Programmers

need to re-design their applicaধons in order fully benefit from each device compuধng capabiliধes.

In devices with disjoint memory address spaces – such as GPUs and other co-processors – applicaধon

data must travel through a limited bandwidth bus (PCI-Express), which results in a potenধal performance

boħleneck. Data transfers must be explicitly managed and minimized for consistency and efficiency pur-

poses[ǟ]. This not only affects performance, but significantly reduces producধvity. Moreover, these de-

vices are typically used with libraries and programming tools (CUDA, OpenMP, Intel TBB, etc) developed

by each of the different manufacturers that reflect the differences in execuধon models and architectures

of their devices. Programmers need to comply with these divergent programming models resulধng in

non-portable code.

Dynamic Workload Challenge

Most numerical computer simulaধons are data-parallel. Data-parallel applicaধons distribute data to com-

pute units that apply some computaধonal operaধon (or kernel) on the assigned data in parallel. Data

is typically defined by a set of work units that represent some enধty, object or modelling element, for

ǜ

instance, a cell of a discreধzed domain in Finite Volume (FV) Computaধonal Fluid Dynamics (CFD) simu-

laধons [Ǡ].

Data-parallel applicaধons can be classified in two types — staধc or dynamic. In staধc (also known as

regular) applicaধons, the workload is the same for the enধre execuধon. The number of work units is

known a priori, typically defined in the start of the applicaধon and divided across compuধng resources or

submiħed to a queue for processing. These applicaধons exhibit a constant and predictable computaধonal

effort requiring simpler scheduling and parধধoning heurisধcs in order to be efficiently distributed across

computaধonal resources.

With dynamic applicaধons, each of the data elements can be subdivided, merged or generate more

work units, rendering the computaধonal effort unpredictable and irregular [ǘǗ], [ǘǘ]. The distribuধon of

dynamic workloads across parallel compuধng resources becomes a far more complex challenge due to

an unpredictable number of work units and/or an unknown number of operaধons per work unit. If an

uniform distribuধon of workload is applied, each compute unit will receive the same amount of work units.

However, since each work unit may require an arbitrary amount of computaধonal effort, the system will

be imbalanced and resource idling occurs.

A sub-type of dynamic applicaধons can be defined as irregular applicaধonswhen the generaধon of work

results in code divergence and branching workflow. These applicaধons will significantly hinder the per-

formance in many-core devices, such as the GPU [ǘǙ]. The massively threaded execuধon model favours

well defined and regular code, but with irregular workloads, arbitrary (uncoalesced) memory accesses and

unpredictable complex execuধon paħerns will potenধally result in significant performance losses.

Applicaধon workload types: staধc, regular, dynamic and irregular

Data-parallel applicaধons can be classified in two main types — staধc or dynamic. Staধc applicaধons, also
known as regular applicaধons, exhibit a constant and predictable computaধonal workload across the whole
compute ধme. The number of work units is known a priori, typically defined in the start of the applicaধon and
divided across compuধng resources or submiħed to a queue for processing. Examples of staধc data-parallel
applicaধons are matrix mulধplicaধons and decomposiধons, where the number of elements is known and the
operaধons per element can be determined and thus so the global number of operaধons. CFD simulaধons
with staধc meshes can also be considered staধc applicaধons as they require a uniform computaধonal effort
along the runধme.

With dynamic applicaধons the workload is generally unpredictable and irregular across the runধme. Each of
the data elements can be subdivided, merged or generate more work units resulধng in an unpredictable amount
of computaধonal effort associated with each of the work units. For instance, a CFD simulaধon with Adapধve
Mesh Refinement is considered a dynamic applicaধon since each cell can be recursively subdivided or merged
along the simulaধon depending on fluid flow or other properধes. A sub-type of dynamic applicaধons can be
defined as irregular applicaধons when the generaধon of work results in code divergence and branching work-
flow. These applicaধons are typically characterized by irregular data structures, irregular control flow and/or
irregular communicaধon paħerns with uncoalesced memory accesses. An example of an irregular applicaধon
is the Monte-Carlo physically based rendering engine. The workload associated with processing a pixel is un-
predictable since both direcধon and length of the path of the pixel ray are stochasধcally generated and scene
dependent.

ǝ

Yet, dynamic data-parallel applicaধons consধtute the largest percentage of numerical computer simula-

ধons, not only because they are typically associated with complex real-world data and models but also

because they are expressed using irregular algorithms such as random walks [ǘǚ], [ǘǛ], graph and sparse

matrix algorithms [ǘǜ], [ǘǝ], parধcle simulaধons [ǘǞ]–[ǘǠ], meshing techniques [Ǡ], [ǙǗ], among others.

The perধnence of these applicaধons renders the study and development of workload scheduling algo-

rithms crucial.

The Two-fold Challenge

As discussed in the two previous secধons, Applied Scienধsts (ASs) rely on HPC systems to perform

numerical simulaধons. These systems, however, are heterogeneous and pose a number of challenges

that need to be addressed in order to be efficiently used. Furthermore, numerical simulaধons are prone

to exhibit a dynamic and unpredictable workload behaviour that is hard to be efficiently distributed and

executed. The combinaধon of these two compuধng features results in a further enlargement of the

complexity of the individual challenges idenধfied — this is defined as the Two-fold Challenge.

The workload that needs to be scheduled is now dynamic and unpredictable, which aggravates the per-

formance imbalance issue among the heterogeneous compuধng units. Compuধng units with less perfor-

mance and already causing imbalance may sustain a workload increase which will substanধally increase

the idling of faster units. Dynamic generaধon of work will also promote code divergence and branch-

ing which aggravates the performance portability issue. In the presence of mulধple devices, accounধng

for different execuধon models becomes a more complex task when compuধng divergent and branched

workflow. Data management becomes also non-trivial since the data required by devices is potenধally

arbitrary.

Indeed, these two compuধng features – resource heterogeneity and dynamic workload – are relevant

topics but boost each other and correlate in hindering producধvity and performance extracধon. Noধce

that all these challenges are addressed either by a computer scienধst or an AS. The laħer is a non-

expert programmer that usually has basic programming skills and computer science knowledge. Design

and development of mechanisms to counter the challenges posed by the combinaধon of these features,

specifically, in relevant applicaধons like numerical simulaধons, is, therefore, a perধnent research area.

1.1.3 Power Consumpধon Challenge
The increasing scale of HPC systems leads to a fast-growing power consumpধon that is becoming one

of the major concerns in developing and maintaining these systems [Ǚǘ]. The cost of energy required

to power a supercomputer tends to surpass the cost of the system itself, resulধng in a huge economic

impact but also the inherent consequences in terms of environment. Power management becomes of

crucial importance where HPC soluধons – either hardware and sođware – need to be re-evaluated in

Ǟ

terms of power-efficiency [ǙǙ]. Since compuধng devices are based on electrical integrated circuits, power

consumpধon has a close correlaধon to performance. A power management system must seek to reduce

power consumpধon but also maintain acceptable levels of performance.

However, powermanagement becomes a far more difficult challenge in systems exposed to the two-fold

challenge. Each of the mulধple devices that co-exist in a system may exhibit different power consump-

ধons and different performances. Any strategy to reduce power consumpধon becomes non-trivial where

the power manager needs to account for the impact of power changes and the subsequent impact on

performance that is parধcular to each device. In the presence of dynamic workloads, designing of such

strategy becomes even more complex given the unpredictability of the workload generated by the appli-

caধon.

1.2 Facing the Challenges
Performance imbalances are caused by a plurality of devices and architectures and by the dynamic na-

ture of the workload associated with many applicaধons, such as the numerical simulaধons addressed

throughout this thesis. These issues can be addressed by rising awareness on each Compuধng Unit (CU)

performance using performance models and combine that informaধon with runধme Dynamic Load Bal-

ancing (DLB). These features will provide heterogeneity-aware workload parধধoning and redistribuধon

that will assign and migrate work according to performances and current system load. This will minimize

resource idling thus increasing uধlizaধon and scalability.

Compuধng Unit (CU)

A Compuধng Unit is an abstracধon used in this document that represents a device or a set of devices that
perform computaধon. For instance, a single CPU core, a CPU, a GPU, a cluster compute node, etc.

The diversity of devices’ compuধng models also causes the applicaধon implementaধon and opধmizaধon

to be non-portable. Both performance opধmizaধons and code implementaধon can not be efficiently and

transparently applied to mulধple different devices. In order to address this issue, an unified execuধon

and programming model can be proposed. The unified execuধon model will account for the different

parধculariধes of each device and provide an execuধon workflow that is both transparent to the user

and accounts for the code divergence and irregular workflow of dynamic applicaধons. This will increase

producধvity and will try to improve the performance of devices that do not favour dynamic and irregular

applicaধons. The unified programming model should be device agnosধc and hide code primiধve details

from the programmer, fundamentally increasing producধvity.

The disjoint memory address spaces of co-processors results in explicit data management for consis-

tency and efficiency purposes. By designing and integraধng a data management system, transparent

data transfers can be performed and opধmizaধon mechanisms such as locality-aware scheduling can be

ǟ

applied. Data management is accessed by an API that is part of the unified programming model, therefore

providing device agnosধc data management and further increasing producধvity.

Power consumpধon is one of the most concerning aspects in today’s compuধng systems. Heterogeneous

systems and dynamic workloads further hamper the power management challenge. A dynamic and

adapধve heterogeneity-aware power assignment is thus required that will account for dynamic changes

of the workload and perform power assignment decisions while weighing performance impact. The

power decisions can be supported by a performance model combined with a power model resulধng in

a unified power-performance efficiency mechanism.

1.3 Goals and Contribuধons
The research hypothesis put forward by this thesis is that the challenges raised across the Ǜ-Tiers of

parallelism by the heterogeneity of resources, the dynamic nature of the computaধonal workload and

the huge power consumpধon of current HPC systems can be effecধvely addressed by a thoughĤul

combinaধon of the above described mechanisms. In parধcular:

• a unified execuধon and programming model for heterogeneous systems, fully integrated with a

transparent data management system, will effecধvely address the performance portability chal-

lenge, while simultaneously increasing programming producধvity and promoধng uধlizaধon of HS

among AS;

• dynamic load balancing and heterogeneity aware scheduling, properly grounded on robust and

light weight performance models, will address the above idenধfied two-fold challenge, opধmizing

resource uধlizaধon and orchestraধon towards minimizaধon of applicaধon execuধon ধme;

• appropriate heterogeneity aware power management mechanisms can effecধvely limit power con-

sumpধon while increasing performance when compared with an uniform distribuধon of the avail-

able power budget.

The major goal of this thesis is thus to design, integrate and assess these techniques and provide tools

to efficiently and producধvely develop numerical computer simulaধons in state of the art HPC systems.

The contribuধons of this thesis cover different systems combined with different applicaধons and address

their issues in a scienধfic and engineering perspecধve by improving and integraধng exisধng techniques.

The following secধon briefly introduces the main contribuধons and a detailed discussion is provided in

the following chapters.

Ǡ

1.3.1 Main Contribuধons
The contribuধons of this thesis are divided in three main areas, each targeধng a different ধer or set of

ধers. Each area tries to address a set of challenges that are common to a parধcular goal and system

resource configuraধon. The main contribuধons of this thesis are as follows:

Handling Heterogeneous Single-Node Systems (HSNS) The challenges in single node mulধ-device sys-

tems (Tier-ǚ, Ǚ and ǘ) are addressed by proposing a unified task-based programming and execuধon

model tailored to efficiently execute data-parallel regular and irregular applicaধons. The integraধon

of persistent kernels is proposed as an intra-device scheduling mechanism along with transparent

data parধধoning and a device agnosধc programming model. The proposed mechanisms are imple-

mented and evaluated with mulধple applicaধons and various configuraধons of CPUs and GPUs. A

direct comparison to a state-of-the-art framework is also performed.

Contribuধon I

This contribuধon that is supported by a scienধfic paper published in the Parallel Processing Leħers journal pub-
lished byWorld Scienࣅfic.
R. Ribeiro, J. Barbosa, and L. P. Santos, ”A Framework for Efficient Execuধon of Data Parallel Irregular Ap-
plicaধons on Heterogeneous Systems”, Parallel Processing Leħers, vol. Ǚǜ, no. Ǚ, p. ǘǜǜǗǗǗǛ, Jun. ǙǗǘǜ.
DOI:ǘǗ.ǘǘǛǙ/SǗǘǙǠǝǙǝǛǘǜǜǗǗǗǛǟ

Runধme heterogeneous-aware load manager for Heterogeneous Distributed Systems (HDS) This con-

tribuধon evaluates the combinaধon of a DLB system with an applicaধon-oriented performance

model as a mean to increase resource uধlizaধon in performance and workload imbalanced systems.

The contribuধon targets distributed-memory systems (Tier-Ǜ) and the designed approach is directly

integrated and evaluated in a widely used CFD library (OpenFOAM). It is based on a definiধon of

a Performance Model combined with a decision model that performs educated decisions on how

to assign data parallel workload, converging to a balanced computaধonal effort and thus increasing

resource uধlizaধon. Evaluaধon is performed across mulধple combinaধons of staধc and dynamic

workload with homogeneous and heterogeneous resource configuraধons.

Contribuধon II

This contribuধon is supported by a scienধfic paper published in the proceedings of the conference Internaࣅonal
Conference on Computaࣅonal Science - ICCS ǙǗǘǟ, part of the Lecture Notes in Computer Science book series by
Springer.
R. Ribeiro, L. P. Santos, and J. M. Nóbrega, ”nSharma: Numerical Simulaধon Heterogeneity Aware Runধme
Manager for OpenFOAM”, in Lecture Notes in Computer Science, Springer Internaধonal Publishing, ǙǗǘǟ, pp.
ǛǙǠ–ǛǛǚ, volume ǘǗǟǝǗ. DOI:ǘǗ.ǘǗǗǞ/ǠǞǟ-ǚ-ǚǘǠ-ǠǚǝǠǟ-Ǟ_ǚǚ

Runধme heterogeneous-aware power-adapধve scheduler for HDS Power management is expressed as

an opধmizaধon problem in order to improve power efficiency and performance in power-limited

ǘǗ

scenarios. The proposed model is formulated based on two merged objecধves: power consump-

ধon minimizaধon and performance maximizaধon. Heterogeneity awareness is provided by a perfor-

mance model and power assignment decisions are adapধvely performed at runধme. The approach

is evaluated with CFD simulaধons with dynamic workload running on HDS (Tier-Ǜ parallelism, e.g.

mulধple CPU generaধons and KNL nodes). Power consumpধon reducধon and performance be-

haviour are discussed as well as assessments on energy consumpধon.

Contribuধon III

This contribuধon that is supported by a scienধfic paper published in the proceedings of the conference Inter-
naࣅonal Conference on High Performance Compuࣅng & Simulaࣅon - HPCS ǙǗǘǟ.
R. Ribeiro, L. P. Santos, and J. M. Nóbrega, ”Runধme heterogeneous-aware power-adapধve scheduling in
OpenFOAM”, in ǙǗǘǟ Internaধonal Conference on High Performance Compuধng & Simulaধon (HPCS), ǙǗǘǟ.

1.3.2 Experimental Context
This work’s hypothesis, goal and contribuধons are clearly presented throughout Secধon ǘ.ǚ. The focus

is on heterogeneous parallel compuধng systems and on the efficient and producধve development and

execuধon of numerical computer simulaধons. There is, however, a major technological shiđ on the ex-

perimental contexts used to validate the proposed hypothesis between the first and the remaining two

contribuধons as idenধfied in Secধon ǘ.ǚ.ǘ. The former proposes a specific framework for the develop-

ment and execuধon of irregular applicaধons on heterogeneous systems. This framework was conceived

and developed within the context of this thesis and requires applicaধons to be developed in compliance

with the proposed programming and execuধon model. The laħer contribuধons propose two plugins

wriħen in Cӫӫ that integrate onto OpenFOAM in a transparent manner for the OpenFOAM applica-

ধon developer. The reason for this shiđ in the experimental approach is very pragmaধc. As the work

progressed from its very early iniধal stages the team engaged on a collaboraধon with the University’s In-

sধtute of Polymers, whose researchers ođen use OpenFOAM over parallel systems to solve CFD-related

problems. It was felt by all that this thesis’ results could be useful for this community, in parধcular if the

proposed techniques could be applied in a straighĤorward (eventually transparent) manner. A decision

was therefore made to adopt OpenFOAM as the experimental use case.

OpenFOAM is a large and complex CFD simulaধon framework, with extensions and plugins developed

on an open source approach by many pracধধoners, widely distributed both geographically and insধtu-

ধonally. Adapধng OpenFOAM (or a subset) to the iniধally proposed heterogeneous framework would be

an unfeasible task. The reason for this is essenধally based on some of the principles that defined the ini-

ধal framework. These principles resulted in specific applicaধon requirements that OpenFOAM does not

meet out-of-the-box (such as loosely-coupled data-parallel execuধon). On the other hand, developing

ǘǘ

OpenFOAM specific plugins (as is the case of nSharma and RHeAPAS, see Chapters Ǜ and ǜ) was deemed

feasible, although complex, and their seamless integraধon with OpenFOAM promotes their adopধon by

OpenFOAM applicaধon developers. This was therefore the path followed throughout this thesis second

and third contribuধons. The author believes that this technological choice has no impact on the scienধfic

validity of the presented findings, with the added benefit of facilitaধng knowledge transfer from computer

science researchers to parallel CFD simulaধons users.

1.4 Thesis Structure
This thesis document is organized in six chapters, two for introductory content and background, three

for main contribuধons and a final concluding chapter.

Chapter ǘ — Introducধon This chapter provides the context and moধvaধon of this thesis and idenধfies

some of the challenges posed by heterogeneous systems. It also defines the thesis hypothesis and

outlines its contribuধons.

Chapter Ǚ—BackgroundAn overview of hardware and sođware standard soluধons is discussed, including

a straighĤorward categorizaধon of modern HPC architectures, followed by the most commonly

used APIs and developing tools to work with them. The final secধon discusses the main issues

with these technologies in the context of heterogeneous parallel systems and how they can be

addressed.

Chapter ǚ — Heterogeneous Single-node Systems This chapter describes the first contribuধon of this

thesis where an approach to address the challenges emerged from single-node heterogeneous

parallel systems are addressed.

Chapter Ǜ — Heterogeneous Distributed Systems An approach to tackle the challenges posed by mulধ-

node heterogeneous systems is proposed. The proposed mechanisms are essenধally based on a

dynamic load balancing technique, designed to handle dynamic workloads in systems with perfor-

mance imbalances across compuধng nodes.

Chapter ǜ — Power Scheduling in Heterogeneous Distributed Systems This presents the third and last

contribuধon, focusing on the power management challenges of heterogeneous distributed systems.

It proposed a heterogeneity-aware power-adapধve scheduler based on the solving of an opধmiza-

ধon problem. It is recommended to read the Chapter Ǜ before this chapter.

Chapter ǝ — Conclusions and Future workGeneral conclusions are provided asserধng the successful val-

idaধon of the thesis hypothesis. The future work is also discussed, where a new model is proposed

for development and assessment.

ǘǙ

Chapter

2 Background

Contents
2.1 Modern HPC Architectures, ǘǛ

2.1.1 Mulধ-core CPUs, ǘǛ
2.1.2 Many-core CPUs and Co-processors, ǘǜ
2.1.3 GPUs, ǘǝ
2.2 Parallel Programming Models, ǘǝ
2.3 Power Management, ǘǠ
2.4 Addressing the Challenges, ǙǗ

ǘǚ

This chapter provides a brief overview of hardware and sođware architectures, including standards and

manufacturer tools. It provides a straighĤorward categorizaࣅon of modern HPC architectures, followed

by the most commonly used APIs and developing tools to work with them. The focus this chapter is on

technology that is actually used in today’s systems. The final secࣅon discusses the main issues with these

technologies in the context of heterogeneous parallel systems and how they can be addressed. Detailed

related work will be discussed in each of the contribuࣅon chapters.

2.1 Modern HPC Architectures
Modern HPC systems are composed by a plurality of devices that can be categorized in three main

architectures: mulধ-core CPUs, many-core CPUs and many-core co-processors (which include GPUs).

These devices are used both by single node HPC systems or across nodes of a cluster. Single node

systems are typically composed by one or more mulধ-core CPUs and in mulধple cases, a high number

of co-processors (e.g. NVIDIA DGX-ǘ with ǟ GPUs). The nodes that compose any of the systems in the

TopǜǗǗ [Ǚǚ] list are composed of one or more devices from one or more of these categories.

2.1.1 Mulধ-core CPUs
Mulধ-core CPUs are designed to be as general purpose as possible. Manufacturers try to develop and

enhance CPUs based on complex trade-offs in order to efficiently compute the widest possible range of

applicaধons. This results on a chip endowed with extremely complex features but, as a consequence,

limited parallelism. Looking at the list of supercomputers, Intel has the larger processor share followed

by IBM (PowerPC) and Fujitsu (SPARC). The most recent Intel micro-architecture already used in some

systems is codenamed Skylake.

Skylake chips were introduced in mid-ǙǗǘǞ, built with ǘǛnm with a core count from Ǜ to Ǚǟ ǘ with Intel’s

Hyper-threading technology resulধng on ǟ to ǜǝ virtual processors. With base operaধng frequencies

ranging from ǘ.ǝ GHz to ǚ.Ǟ GHz and a Thermal Design Power (TDP) between ǝǗW and ǙǛǗWǙ, these

devices perform out-of-order execuধon with ǘǛ to ǘǠ pipelining stages, branch-predicধon, speculaধve

and superscalar execuধon. The chip also includes three levels of associaধve cache with more than ǘMB

per core for the second and third level. Each core is equipped with mulধple scalar and vector arithmeধc

units that provide SIMD operaধons, which in this latest architecture version has been extended to ǜǘǙ-bit

registers (AVX-ǜǘǙ). In terms of theoreধcal performance, the Skylake based Intel Xeon Plaধnum ǟǘǝǗ, for

instance, has peak double precision of about ǘǝǘǙ Giga Floaধng-point Operaধons Per Second (GFLOPS)

ǘtypically in high-end servers such as supercomputer nodes, chip versions with ǙǛ to Ǚǟ cores are used
Ǚhigh-end versions have an average of ǘǝǗW

ǘǛ

ǘ.

To get an insight on the performance differences across older mulধ-core CPUs that sধll coexist in the same

system, the NASA Electra supercomputer, for instance, is composed of mulধple Skylake nodes together

with Broadwell nodes. The Broadwell nodes are composed of Intel Xeon Broadwell Eǜ-ǙǝǟǗ vǛ CPUs

(launched in Qǘ ǙǗǘǝ) with ǘǛ cores, Ǚ.Ǜ GHz of base frequency and two Ǚǜǝ bit arithmeধc vector units,

resulধng in ǜǚǞ,ǝ GFLOPSǙ.

2.1.2 Many-core CPUs and Co-processors
Intel Xeon Phi, formerly known as Intel Many Integrated Core, is a family of xǟǝ-compaধble many-core

devices targeধng high-performance massively parallel compuধng by devoধng more transistors to a higher

number of simpler cores.

The first producধon model, sধll present in mulধple HPC systems, is an external device connected to the

main system by a PCI-Express bus. Its micro-architecture is codenamed Knights Corner and provides a

core count ranging from ǜǞ to ǝǘ cores with an hyper-threading of Ǜ and from ǝ to ǘǝGB of dedicated

memory. They operate between ǘ.Ǘ to ǘ.ǙGHz of base clock frequency with most versions exhibiধng a

TDP of ǚǗǗW. Cores are connected using a ring topology and each core is based on a modified version

of an Intel Penধum Core with two levels of cache and ǜǘǙ-bit vector operaধons. The theoreধcal peak

performance of a Intel Xeon Phi SEǘǗP is ǘǗǞǚ GFLOPSǚ.

The second generaধon of the Xeon Phi architecture is codenamed Knights Landing and was deployed as

an external board but also as a standalone self-hosted CPU. They are sধll targeted for massively parallel

compuধng however they can be configured without any other main device. These devices pack a slight

increase in core count from ǝǛ to ǞǙ cores and also an increase in base frequency delivering ǘ.ǚ to ǘ.ǜGHz

of clock speed. The core arrangement is slightly more sophisধcated where the modified Intel Atom based

cores are organized in ধles interconnected by a ǙD mesh. The chip also contains ǟ new banks of high

bandwidth memory – known as Mulধ-Channel DRAM (MCDRAM) – of ǘǝGB each. Communicaধon

approach between ধles and the use of the MCDRAM can be configured at boot ধme with different

modes that introduce some flexibility in exploiধng chip performance. The theoreধcal peak performance

of a Intel Xeon Phi ǞǙǜǗ is ǚǗǛǝ GFLOPSǛ.

ǘ Ǚ.ǘ (GHz) x ǙǛ (cores) x ǜǘǙ/ǝǛ (DP AVX) x Ǚ (FMA units) x Ǚ (FMA); frequency of AVX units is variable, so actual theoreধcal
performance may be slightly different

Ǚ Ǚ.Ǜ (GHz) x ǘǛ (cores) x Ǚǜǝ/ǝǛ (DP AVX) x Ǚ (FMA units) x Ǚ (FMA))
ǚǘ.ǘ (GHz) x ǝǘ (cores) x ǜǘǙ/ǝǛ (DP AVX) x ǘ (FMA unit) x Ǚ (FMA)
Ǜǘ.Ǜ (GHz) x ǝǟ (cores) x ǜǘǙ/ǝǛ (DP AVX) x Ǚ (FMA units) x Ǚ (FMA)

ǘǜ

2.1.3 GPUs
GPUs dominate the share in TopǜǗǗ co-processors with NVIDIA as the main manufacturer. NVIDIA

GPUs are mostly external devices connected through PCI-Express bus and dedicated memory. Most

of the transistors are devoted to data-parallelism providing a Single Instrucধon Mulধple Threads (SIMT)

execuধon and programming model.

The chip is composed of a set of mulধprocessors that create, schedule and execute groups of threads

called warps. Each mulধprocessor contains mulধple execuধon cores and special funcধon units that will

concurrently execute the instrucধons of the warp. The programming model defines a grid of threads

which is divided into blocks which in turn are internally organized into warps ǘ. In a typical implementaধon

of a GPU applicaধon, each thread is associated with a data-parallel work unit and is then executed in an

instrucধon lock-step with the other threads in the warpǙ in a SIMD way. This architecture differs from

vector processing in the sense that each thread execute its own instrucধon allowing programmers to

write thread-level parallel code for independent threadsǚ [ǙǛ].

Contrary to mulধ-core CPUs, there is no branch-predicধon nor speculaধve execuধon, these devices are

designed for maximum throughput by efficiently managing thousands of threads and resorধng to memory

latency hiding mechanisms (e.g. fast context switching). The latest most commonly available versions of

NVIDIA chips are based on the Pascal micro-architecture. For instance, the Tesla PǘǗǗ has a total of ǚǜǟǛ

(simple) cores, ǘǝGB of dedicatedmemory and operaধng at a base frequency of ǘ.ǙGHz resulধng in a TDP

of ǙǜǗW. According to the manufacturer, it has ǜǚǗǗ GFLOPS of peak double precision performance.

These are the most commonly used devices in HPC but several others architectures coexist contribut-

ing to the heterogeneous ubiquity, such as AMD mulধ-core CPUs, AMD GPUs, Xilinx and Altera Field-

programmable gate arrays (FPGAs), Texas Instruments Digital Signal Processors (DSPs), among others.

2.2 Parallel Programming Models
Sharedmemory and distributedmemory are two basemodel abstracধons commonly referred to in parallel

programming [Ǚǜ]. Shared memory allows mulধple compuধng units to access the same memory space,

using it for communicaধon purposes and data sharing. This model is typically used with mulধ-core and

many-core CPUs along with mulধ-threaded programming where each thread has access to node system

memory. Since data is shared across threads, data consistency is maintained by the programmer using

ǘwarps are a hardware scheduling unit, not part of the programming model
Ǚin recent architecture, like NVIDIA Volta, independent thread scheduling is allowed where a program counter and call stack

are maintained per thread.
ǚa thread within warp with a different instrucধon from the other threads will diverge and execute its instrucধons while the

others wait

ǘǝ

data concurrency primiধves provided by the programming tools.

Distributed memory is typically associated with clusters where each of the nodes has its own physically

separated memory space. Communicaধons are performed explicitly using programming primiধves that

transfer data between nodes using a communicaধon protocol. Since nodes are connected by a network,

all data transfers and synchronizaধon signals travel through the network. The distributed memory con-

cept may also be applied to mulধple GPUs and other co-processors on the same node, each having

its own memory space. Communicaধons are typically performed over a PCI-Express bus and it is the

programmer responsibility to ensure data consistency and synchronizaধon orchestraধon. However, for

simplificaধon purposes, in the scope of this document distributed memory systems will always refer to

clusters with network node inter-connecধons.

The following secধons provide a brief overview of the APIs that are considered of standard and wide

use when developing parallel numerical simulaধons in HPC systems. These development tools originate

either from standards defined by commiħees of major hardware and sođware vendors or proposed by

individual ones in order to use their devices.

Parallel APIs
In distributed memory systems, the MPI [Ǚǝ] standard is the main-stream tool to develop parallel appli-

caধons. MPI defines an API that allows for orchestraধon and communicaধon between processes that

are hosted in different nodes and/or in the same node. The API provides point-to-point and collecধve

communicaধon primiধves that essenধally include data transfers and synchronizaধon mechanisms. It is

designed basically for the distributed memory paradigm where eachMPI process (also known as rank) has

its own memory space and it is responsible to handle its own data and execuধon flow. In a pure-MPI ap-

plicaধon, each MPI rank will be bond to a core resulধng in mulধple ranks per node. This mapping can be

performed automaধcally or explicitly controlled by the programmer using process affiniধes. MPI can also

be used in order to perform concurrent execuধon among mulধ-core CPUs and many-core co-processors.

The Xeon Phi Knights Corner runধme ধme system allows the MPI library to launch processes allocated

within the device and run applicaধons concurrently in a distributed memory approach.

Withmulধ-core andmany-core devices, the sharedmemory approach is typically used and combinedwith

mulধ-threaded processing. High-level APIs such asOpenMP [ǙǞ] are widely used where the programmer

by the means of compiler direcধves can specify porধons of code that are due to run in parallel. OpenMP

is then responsible to transparently create and manage threads using a master-slave threading approach.

The API will create a specified or automaধcally detected number of threads and assign each one to a

coreǘ. Intel TBB [Ǚǟ] is a more recent shared-memory library with an increasing adopধon that provides

ǘthread-core affinity can also be specified

ǘǞ

a more robust and feature-rich parallel library. It provides concurrent data structures, synchronizaধon

features, task scheduling, among others. Cilk Plus [ǙǠ] andMicrosođ Task Parallel Library (TPL) [ǚǗ] are

similar libraries, however, Cilk Plus support has been recently deprecated by Intel and TPL is specific to

Microsođ .NET technologies. Lower level APIs can also be used to perform thread level parallelism such

as PThreads [ǚǘ], Boost Cӫӫ [ǚǙ] and Cӫӫǘǘ Standard Librariesǘ [ǚǚ].

NVIDIA GPU applicaধons are typically developed using the compuধng plaĤorm CUDA [ǙǛ] which pro-

vides a compiler, runধme API and other developments tools. The applicaধon is developed using exten-

sions to C/Cӫӫ where the programmer defines data transfer policies and funcধonal rouধnes – known as

kernels – to be executed by the device and a compuধng resource requirement specificaধon – all using

explicit code tags. A kernel call will create a grid that is subdivided into blocks of threads, both grid and

a block can be organized in ǘ,Ǚ and ǚD abstracধons. Each thread has a local memory and each thread

block has an on-chip shared memory space accessible to all threads in the scope of the block. All threads

have access to the device global memory.

GPUs as co-processors have their ownmemory, whichmeans data to be computedmust bemigrated from

host to device memory through PCI-Express channels. Up unধl the latest Pascal micro-architecture, data

consistency andmemory fault between host and device was explicitly managed by the programmer. With

the advent of the Pascal architecture in ǙǗǘǝ, a transparent memory page-fault system was introduced

providing automaধc data consistency and migraধon between host and devices.

These programming models can be combined together providing full hybrid compuধng across mulধple

ধers. Each MPI process can perform mulধ-threaded parallel execuধon by using any available threading

API. It can also be responsible to host a CUDA applicaধon and offload data and computaধon to the

device. For instance, in a cluster composed of N nodes and each node composed by a mulধ-core CPU

and a GPU. The programmer can instruct the MPI library to create N ranks, one per each node, where

each rank will use OpenMP to perform mulধ-threaded processing within the corresponding node and

use CUDA to offload computaধon to the corresponding GPU. Each rank will create a thread per core

for the mulধ-core CPU and issue kernel execuধons and data transfers to the GPU [ǚǛ]. In this scenario,

the programmer is responsible to write the structure and coordinaধon of all the execuধon flow and data

management.

Programming Models for Heterogeneous Systems
In a combined effort between mulধple hardware and sođware vendors, OpenCL standard [ǚǜ] was pro-

posed in an aħempt to develop a unified API able to support mulধple parallel compuধng devices. OpenCL

is based on C and its execuধon and programming model is similar to CUDA’s. Using a host-device plat-

ǘCӫӫǘǘ and above

ǘǟ

form approach, the API resorts to command-queues that issue data transfers and kernel execuধons to

available devices as well as synchronizaধon primiধves. Work assignment granulariধes and device orches-

traধon are explicitly defined by the programmer. Data management depends on device type, with most

GPUs requiring programmer explicit management. It supports NVIDIA GPUs, AMD GPUs, mulধ-core

CPU and co-processors, among other devices. However, OpenCL is just a standard and manufactur-

ers provide their own implementaধon based on the corresponding deviceǘ and not always provide full

compliance.

Other programming standards have been proposed with the same goal, such as the OpenACCǙ[ǚǝ] that

has a similar programming model to OpenMP also supporধng computaধon offload to devices. Both

OpenCL and OpenACC are restricted to single node systems.

2.3 Power Management
The power consumpধon of a processor, W, can be modelled by two components: staধc and dynamic

power dissipaধon. Staধc power dissipaধon depends on voltage and leakage current and it occurs re-

gardless of system acধvity — for this reason, dynamic power will be considered in this work as the main

source of power dissipaধon and consumpধon. The dynamic power dissipated can be modelled as:

W ∝ C× v2 × f (Ǚ.ǘ)

where C is the capacitance being switched per cycle, v is the supplied voltage and f is the operaধng fre-

quency [ǚǞ]. C is constant, so both frequency and voltage affect the power consumed. Frequency and

voltage are strictly correlated. The frequency will define the maximum voltage required to operate (lower

frequencies require lower voltages), on the other hand, reducing the voltage will reduce the maximum

frequency allowed. Power consumpধon is also related with mulধple architectural details and configu-

raধons such as the number acধve cores, thread placement, reduced switch acধvity, etc [ǚǞ]. It can be

controlled using mulধple techniques such as Dynamic Voltage and Frequency Scaling (DVFS), thread

packing, dynamic concurrency throħling, among others that can be used together in a synergisধc way to

reduce consumpধon[ǚǟ].

Since frequency and voltage are two of the most influencing factors in power consumpধon, DVFS mecha-

nisms have been widely used to tackle power consumpধon. In a mulধ-core CPU, operaধng frequency and

voltage are changed and accessed using a kernel driver (e.g. acpi-cpufreq, intel_pstate, pcc-cpufreq, etc)

that implements the Advanced Configuraধon and Power Interface (ACPI) specificaধon[ǚǠ]. According

to this specificaধon, different pairs of frequency-voltage are defined and applied to the chip processing

ǘand device driver
ǙOpenACC is available in commercial compilers with incipient support is other commonly used compilers.

ǘǠ

units. These pairs are known as Processor Performance States (P-states) and range from P0 to Pn, with the

higher index corresponding to a lower power consumpধon.

DVFS can be automaধcally applied by the operaধng system using power governing policies or explic-

itly defined using command-line tools. Power governing policies (governors) are generic to most of the

drivers except for the intel_pstate that provides its own governors. In general, governors are based on

simple models that perform frequency change decisions based on CPU load, CPU uধlizaধon and generic

parametrizaধonsǘ. For instance, the ondemand governor performs periodic checks on CPU-usage staধs-

ধcs and calculates a new frequency with a linear funcধon based on the usage of the last period. Auto-

maধc power management is also applied in GPUs by adjusধng clock frequencies depending on device

load. DVFS can also be explicitly performed using manufacturers tools.

Some of these drivers and tools provide interfaces to specify frequency per core in mulধ-core systems.

However, specifying voltage and frequency per core arises severe hardware architectural complexiধes,

resulধng in the unclear behaviour of the chip. The support and informaধon provided by the manufactures

to this feature are also unclear. The discussion of these architectural complexiধes is out the scope of

this work, therefore, for simplicity, the discussion in terms of power consumpধon in this work is always

in regard to the full processing chip. All the potenধal changes in frequency are applied equally to all

processing components of the chip.

2.4 Addressing the Challenges
The available programming models provide the basic required tools to develop applicaধons for current

market devices. Most of them are tailored to a single associated device architecture and designed to

be as flexible and as general purpose as possible. However, when combining mulধple available devices

together, mulধple challenges emerge that raw standard programming models do not address.

Most common scienধfic applicaধons are data-parallel where the workload is essenধally proporধonal to

the input data. They also generally resort to some type of iteraধve methods where the applicaধon

is defined in mulধple iteraধons over data and/or computed data with data dependencies within and

between iteraধons (see Infobox Applicaࣅons and Data-dependencies). Typically, these applicaধons are

developed following staধc and uniform distribuধons of workload, where the input data is equally divided

across CUs for parallel processing. In distributed memory systems (Tier-Ǜ), nodes equipped with more

recent and sophisধcated CPUs and/or a GPU will potenধally deliver far more performance, finishing the

assigned work much faster than a neighbour node with older processors and no co-processors. In the

presence of data dependencies, faster nodes will thus have to wait on slower nodes in order the get newly

ǘhħps://www.kernel.org/doc/Documentaধon/cpu-freq/governors.txt

ǙǗ

computed data and conধnue with the computaধon. This will result in node idle ধmes and subsequently

resource underuধlizaধon and poor scalability.

Applicaধons and Data dependencies

Data dependencies are arguably the most challenging aspect of parallel compuধng. With impact in every
ধer of parallelism, from ILP to supercomputers scalability, they not only dictate applicaধon performance but
work scheduling strategies as well. The level of data dependencies of an applicaধon ranges from embarrass-
ingly parallel work, where there are basically no dependencies between data items, to ধghtly-coupled parallel
work, where all the work units may require informaধon from any other work units at any ধme. An applicaধon
with data dependency characterisধcs in between these two, can be classified as loosely-coupled applicaধon.
In a data-parallel task-scheduling strategy, embarrassingly parallel work units can be easily submiħed to a
queue and dequeued for processing in any arbitrary out-of-order fashion (e.g. image pixels in a pathtracer
engine). However, in a ধghtly-coupled applicaধon, a queueing approach may be unfeasible or inefficient and
the scheduling strategy must account for applicaধon data dependencies resulধng in completely different ap-
proaches (e.g. some parallel CFD simulaধons are ধghtly-coupled and typically resort to shadow or halo layers
between processor boundaries to elide dependencies, impacধng parধধoning decisions and scheduling design).

The performance imbalance issue may also arise among devices (Tier-ǚ). Different devices exhibit dif-

ferent performances depending on hardware architecture combined with applicaধon characterisধcs and

implementaধon. Code divergence, memory access paħerns, communicaধon-computaধon raধo, are some

of the features that define the workflow of an applicaধon which will impact device performance depend-

ing on the number of cores, cache models, execuধon model, etc. For instance, in a data-parallel task-

scheduling approach, the task granularity becomes of crucial importance leading to tricky trade-offs that

will define overall performance. Tiny tasks will increase parallelism and device throughput but dealing

with a large number of tasks will incur in overheads from task creaধon and scheduling, increased com-

municaধon and synchronizaধon costs. Large tasks will counter these overheads, but will significantly

reduce the degrees of freedom of a scheduling algorithm resulধng in devices waiধng for each other due

to performances differences.

Data-parallel task-scheduling vs Funcধonal task-scheduling

A data-parallel task-scheduling approach divides the computaধon into mulধple tasks that perform the same
computaধon to different data. Each task corresponds to a set of data elements e.g. a block of a block matrix
mulধplicaধon, that is concurrently assigned to compute resources. In a Funcধonal task-scheduling approach,
tasks correspond to computaধonal funcধons or kernels applied to the same or different data e.g. a pipelined
execuধon – reading a matrix can be executed in parallel with the processing of a previous matrix.

Moreover, the performance imbalance issue is further aggravated in the presence of dynamic workloads

typically present in numerical computer simulaধons. Having different performances across CUs becomes

harder to address since the workload that needs to be properly scheduled is now dynamic and unpre-

dictable. A staধc strategy that distributes the work across resources quickly becomes obsolete ađer a

few iteraধons due to new work generated at runধme leading to huge performance losses.

Tackling the performance imbalance issue requires informed workload decomposiধon and re-distribuধon

Ǚǘ

mechanisms that exisধng APIs and runধme systems do not provide. The decomposiধon process is es-

senধal in a parallel compuধng system but finding the ideal sub-problem size is a challenging task. This

requires a mechanism able to accurately model CU performances and provide that informaধon to the par-

ধধoning system in order to devise a balanced workload parধধon. Esধmaধng and measuring is influenced

by several details that are parধcular to each CU but also related to applicaধon operaধons and behaviour.

Such performance modelling mechanism must also be as less intrusive as possible in order to minimize

measurement overhead and cluħering. In addiধon to the performance model, DLB mechanisms are re-

quired in order to redistribute the workload at runধme. Thesemust perform adapধveworkloadmigraধon

decisions considering system load imbalances and devise a new balanced computaধonal effort. Redis-

tribuধon of work units potenধally requires migraধng complex data-structures across distributed and/or

disjoint memory, requiring new data-migraধon rouধnes and subsequent communicaধon overhead mini-

mizaধon.

The parallelizaধon and opধmizaধon approach of an applicaধon is typically associated with a specific

architecture. However, given the plurality in terms of execuধon models in modern compuধng devices,

programmers need to re-think their approaches when using different devices. For instance, an applicaধon

that was designed and opধmized for the CPU, will potenধally deliver far less performance when executed

in the GPU and vice-versa. With dynamic workload applicaধons, performance non-portability also be-

comes a more compromising factor in maximizing efficiency. Massively parallel devices, designed for

well structured and homogeneous work, will be severely affected by divergent code paths and scaħered

memory accesses generated by dynamic workload. This performance portability issue is not accounted

for in standard programming models that are designed to express the execuধon model associated with

a parধcular device or compuধng infrastructure. Furthermore, maintaining mulধple implementaধons and

developing new ones based on either architectural development and/or applicaধon requirements is highly

counter-producধve.

Unified execuধonmodels can be proposed that comprise the details of mulধple architectures. Combined

with an expressive and suitable API, this approach can provide a unified view of all the compuধng units

and be complemented with dynamic workload scheduling while hiding the complex and diverse nuances

of each device. It can be seen as a generic and automaধc opধmizaধon tool that will increase producধvity

and potenধally increase the performance extracted.

Communicaধons between CUs play a crucial role in performance due to their disjoint memory address

spaces. Transferring data between nodes in a network is one of the major boħlenecks in scalability. Simi-

larly, co-processors are typically designed with their own memory, physically separated frommain system

memory. Applicaধon data must travel through a limited bandwidth bus (PCI-Express), which results in a

potenধal performance boħleneck. In several devices, the available developing tools shiđ most of the data

handling to the programmers. Data transfers must be explicitly managed and minimized for consistency

and efficiency purposes. Commonly, the parallel approach and/or the algorithm must be reconsidered in

ǙǙ

order to minimize data transfers, avoiding synchronizaধon points or to miধgate these boħlenecks with

other operaধons. These tasks can be delegated to a data management system that will perform auto-

maধc data transfers while minimizing communicaধons by exploring data locality. The system can also try

to overlap communicaধon and computaধon that will miধgate communicaধon overhead. Using an API,

the programmer can register the data and the system will be responsible for all the management which

will significantly increase developing producধvity. In the case of devices where data transfers are auto-

maধc (e.g. GPUs with Pascal architecture and above) these challenges are parধally addressed, however,

delegaধng memory transfers to the driver results in loosing control of which and when data transfers

occur. This inhibits opধmizaধons such as data pre-fetching and computaধon overlap.

GPUs and other co-processing devices are deployed as co-processing boards and are typically used with

libraries and programming tools developed by each of the different manufacturers. Despite the efforts

of these manufacturers to use common languages such as C or Cӫӫ and standard specificaধons such as

OpenCL, an applicaধon implementaধon code is not portable. This is due to several reasons, the most

obvious one is the differences between execuধon models and architectures of each of the devices that

are reflected in the programming models. To best express the features of their devices, manufacturers

added specific primiধves in the programming models and development tools, resulধng in non-portable

code.To address this issue, a device-agnosধc programming model can be proposed that will hide specific

primiধves inherent to each device. It may work as wrapper offering a unified API to the programmer.

This API may also provide access to all the features discussed above. The goal is to increase producধvity

allowing the programmer to focus on developing the problem.

Finally, the power consumpধon of large scale systems is converging to criধcal levels of impact and sus-

tainability. In fact, reducing power requirements has been marked as one of the major goals for the

forthcoming exascale era, with power efficiency having more focus when designing and opধmizing HPC

soluধons. Addressing this challenge is not exclusively related to power itself, it also requires consider-

ing the performance impact since both are correlated. This challenge, however, is also aggravated by

the heterogeneous nature of HPC systems and dynamic workload applicaধons. Devising a strategy to

reduce power consumpধon becomes non-trivial when facing a plurality of devices each with different

power requirements, power usages, performances, tools, etc. It becomes even harder if the workload,

which requires power for processing, is unpredictable. Different power consumpধon per CU, different

performances per CU and an arbitrary workload results in an extremely complex decision process with

mulধple trade-offs that current out of the box power management systems do not address.

Power management in these condiধons can be achieve by proposing a power model that will esধmate

the power consumpধon of each CU. This will raise awareness for the different devices in the system

but will also enable runধme predicধons of power consumpধon with dynamic workloads. This informaধon

can then be combined with a performance model in order to esধmate performance impact. The resulধng

model can be used in a decision or opধmizaধon process that will devise runধme power assignment

Ǚǚ

decisions towards minimizaধon of power consumpধon and maximum performance.

Summarizing, performance and power modelling, DLB, data management systems, unified programming

and execuধon models, among others, are some of the techniques that are required for programmers to

face the challenges posed by Heterogeneous Systems (HS) and dynamic workload applicaধons. These

techniques are not provided by the set of standard tools used by the developers and this thesis hy-

pothesizes their use in order to increase producধvity, performance, scalability and, ulধmately, cost-

effecধveness. Some approaches to these techniques have been proposed and evaluated in literature

and will be individually discussed in detail in the following chapters along with the proposed approaches

by this thesis.

ǙǛ

Chapter

3 Heterogeneous
Single-node
Systems

Contents
3.1 Introducধon, Ǚǝ
3.2 Related Work, Ǚǟ
3.3 Proposed Approach, ǙǠ

3.3.1 Programming and Execuধon Model, ǚǗ
3.3.2 Consumer vs Consumer-producer Kernels, ǚǘ
3.3.3 Programming Interface, ǚǙ
3.3.4 System Architecture, ǚǜ
3.4 Workload Scheduling, ǚǝ

3.4.1 Tier-ǚ Scheduling, ǚǝ
3.4.2 Tier-Ǚ and Tier-ǘ Scheduling, ǚǟ
3.5 Evaluaধon Approach, ǚǠ

3.5.1 Applicaধons, ǚǠ
3.5.2 Heterogeneous Systems Metrics, ǛǙ
3.5.3 Compuধng System, Ǜǚ
3.6 Results, Ǜǚ

3.6.1 Scheduling Irregular Workloads, Ǜǚ
3.6.2 Performance Scalability, Ǜǝ
3.6.3 Comparison with StarPU, ǜǘ
3.7 Conclusions and Future Work, ǜǙ

Ǚǜ

This chapter discusses an approach to address the challenges emerged from single-node heterogeneous

parallel systems. It proposes a runࣅme system composed of a programming and execuࣅonmodel, together

with workload scheduling mechanisms and data management tailored for irregular applicaࣅons. The run-

meࣅ system is evaluated with mulࣅple compute resource configuraࣅons as well as different regular and

irregular workloads.

3.1 Introducধon
In this chapter the parধcular challenges exhibited within single node mulধ-device systems (Tier-ǚ and

below) are addressed. These systems are composed by mulধple devices, including mulধ-core CPUs —

that also act as the host device for the node – along Intel Xeon PHI’s, GPUs, DSPs, FPGAs, that are

usually packaged as co-processing boards. Although heterogeneity is now ubiquitous, some challenges

emerge from this plurality of devices and, in parধcular to HSNS, from the architectural differences and

execuধon models. In order to fully leverage the whole system, addressing these challenges is of crucial

importance.

As discussed in Secধon Ǚ.Ǜ, co-processors have disjoint address spaces between themselves and the

host CPU, usually interconnected by PCI-Express bus which is a potenধal performance boħleneck. In

some devices, data transfers must be explicitly coded, while in others (e.g. Pascal GPUs and above) data

is automaধcally transferred. In both scenarios, data transfers must be managed and minimized for op-

ধmizaধon and efficiency purposes. The different architectures typically exhibit different execuধon and

programming models and are made available with different development tools, severely impacধng on

both code and performance portability. Applicaধons are also designed and opধmized to fully uধlize each

device compuধng capability according to the device specific architecture and execuধon model, reduc-

ing development producধvity. Moreover, the applicaধon’s workload has to be distributed and balanced

among the mulধple devices (Tier-ǚ), and, within each device, among its mulধple processing units (Tier-Ǚ).

Addressing these issues requires the development and adopধon of Tier-ǚ and Tier-Ǚ scheduling mecha-

nisms towards maximum performance extracধon.

These challenges are aggravated if the target applicaধons exhibit a dynamic behaviour. In this contri-

buধon a parধcular set of dynamic applicaধons are targeted which exhibit certain characterisধcs that

parধcularly hinder the performance of HSNS. These applicaধons are defined as irregular applicaধons

and are characterized by irregular data structures, irregular control flow and/or irregular communicaধon

paħerns [ǛǗ]. These parধcular workflows cause load imbalance, code divergence and uncoalesced mem-

ory accesses, all potenধally resulধng on significant performance losses in HSNS. They parধcularly hamper

the performance in wide SIMT devices, such as GPUs. The hardware work dispatch units within these

devices are opধmized for homogeneous regular workloads, maintaining high uধlizaধon of SIMT lanes

Ǚǝ

and thus exhibiধng remarkable performance improvements over CPUs for regular applicaধons. Irregular

applicaধons, however, have the potenধal to follow different code paths and perform scaħered memory

accesses within the same lane (See Secধon Ǚ.ǘ.ǚ), resulধng on code divergence, increased memory ac-

cess latencies and resource underuধlizaধon. In order to fully exploit these devices, maximum levels of

occupancy should be guaranteed.

Irregular applicaধons consধtute an important class of algorithms that are present in well-known scienধfic

applicaধons, such as n-body simulaধons, data mining, decisions problems, opধmizaধon theory, paħern

recogniধon and meshing among others [ǘǗ], [ǛǗ]. A parধcularly relevant subset of irregular applicaধons

are Monte Carlo simulaধons [ǘǛ], widely used in many knowledge areas, such as financial engineering

and valuaধon [Ǜǘ], [ǛǙ] or physically based simulaধon of light transport within complex media [Ǜǚ], [ǛǛ],

among many others. Monte Carlo simulaধons perform mulধple Markov random walks within the domain

and then average the results of such random walks in order to obtain an esধmate of the metric of interest.

Since both the direcধon and the length of the randomwalk are stochasধcally generated, this results on an

irregular workload, exhibiধng load imbalances, control flow divergence and irregular memory accesses.

A framework is proposed that specifically addresses development and execuধon of data parallel irreg-

ular applicaধons in heterogeneous single node systems towards increasing its efficient uধlizaধon while

maintaining high programming producধvity. The framework is essenধally composed by a unified task-

based programming and execuধon model for data parallel irregular applicaধons, together with high-level

programming abstracধons and scheduling mechanisms that transparently parধধons the data domain into

tasks and deals with all Tier-ǚ and Tier-Ǚ workload distribuধon and balancing. The Tier-Ǚ scheduling

resorts to persistent kernels and a queuing system that will also orchestrate the work leveraging Tier-ǘ

parallelism (SIMD). A data management strategy is also proposed that transparently guarantees that re-

quired data is readily available on each task’s addressable memory space. These components and their

integraধon in a framework consধtute part of the hypothesis of this thesis towards the efficient harnessing

of the combined challenges posed by Tier-ǚ, Tier-Ǚ and Tier-ǘ systems and dynamic irregular workloads.

The main contribuধons are thus the unified execuধon and programming model and the integraধon

of persistent kernels on the proposed framework as the soluধon to handle irregular workloads. An

implementaধon of the framework is presented, together with an experimental assessment of its ability to

efficiently handle regular and irregular workloads and a comparison with a state-of-the-art compeধধve

framework. Validaধon of the above hypothesis is performed in CPUӫGPU heterogeneous plaĤorms

and with emphasis on scheduling irregular workloads within the GPUs. Four case studies are used: a

regular matrix mulধplicaধon, an irregular n-body problem using the Barnes-Hut algorithm, an irregular

path tracing based renderer and an irregular simulaধon of light transport with fluorescence within mulধ-

layered ধssues.

ǙǞ

3.2 Related Work
Several programming models and frameworks have been proposed that aim at hiding some of the chal-

lenges posed by HS in order to increase development producধvity. HMPP [Ǜǜ] is one of the first

CPUӫGPU programming models aiming at handling devices and use them without the need to re-write

the applicaধons. The model introduces per-device Codelets as a means to express the applicaধon func-

ধonality, along with primiধves for execuধon and data transfers. However, it lacks a runধme system and

scheduling policies that hide some of the remaining challenges such as load balancing.

Harmony [Ǜǝ] proposes several techniques to address HS challenges and approach the associated com-

plexity. The work assesses and validates some soluধons presenধng results of a unified execuধon model,

control decisions and a shared address space. Merge [ǛǞ], is focused on portability issues providing a

compiler and runধme system and following a map-reduce approach for scheduling. The authors claim

that Merge is applicable to different HS and applicaধons are easily extensible and can easily target new

architectures. These approaches are focused on the challenges that the plurality of architectures pose,

such as code portability and producধvity. However, they do not properly address data management,

scheduling and load balancing.

XKappi [Ǜǟ], Legion [ǛǠ],Qilin [ǜǗ],MDR [ǜǘ] and StarPU [ǜǙ] are frameworks that provide high-level pro-

gramming abstracধons for mulধ-device systems, integrated data management and enhanced scheduling

mechanisms. Both XKappi and Legion target mulধ-device execuধons with focus on data parallel schedul-

ing. Techniques such as locality aware work stealing and task-dependency Direct-acyclic Graph (DAG)

scheduling are explored coupled with a suitable programming model. In addiধon, Legion provides a more

sophisধcated support for irregular data structures accounধng for applicaধons such as graphs process-

ing. Qilin provides enhanced compiling features and a performance modelling mechanism while MDR

focuses on scheduling, proposing a scheduling approach enধrely based on online history-based perfor-

mance modelling together with an analyধcal model for communicaধons.

StarPU has more advanced data-management and sophisধcated scheduling techniques. It provides a

unified execuধon model combined with a virtual shared memory and a performance model working to-

gether with dynamic scheduling policies. The runধme also provides several data-management features:

automaধc work decomposiধon and data transfers, communicaধon and computaধon overlapping, data

pre-fetching and data locality aware scheduling, among others. The scheduling resorts to an hetero-

geneous tailored algorithm known as the Heterogeneous Earliest Finish Time (HEFT) [ǜǚ]. The data

management system used in this contribuধon is strongly inspired on that of StarPU; it uses the same

cache protocol with lazy consistency and keeps the programmer agnosধc to data movements.

Some of the challenges of HS have been preliminary addressed in [ǜǛ], where a framework is proposed

that provides an unified programming and execuধon model combined with a data management system.

Ǚǟ

The contribuধons proposed in this chapter use some of the developments described in this work, com-

bined with mechanisms to efficiently execute irregular applicaধons.

These frameworks address some of the challenges associated with HS, however, they do not tackle

the specific issues associated with irregular applicaধons. Tier-ǚ scheduling and work decomposiধon are

based on previously sampled informaধon where the performance of a small subset of work is generalized

for the whole domain – irregular applicaধons are parধcularly sensiধve to these generalizaধons, since the

workload varies among data elements in an unpredictable manner. Tier-Ǚ scheduling is also not properly

considered. Irregular data parallel workloads require performing some fundamental operaধon to each

data element an unknown number of ধmes; e.g., on a pathtracer the length of the path per pixel, i.e.,

the number of rays, is unknown and varies unpredictably across screen space – path tracing can thus be

seen as tracing a previously unknown number of rays. In the GPUs for instance, this irregularity would

lead to code divergence and huge resource underuধlizaধon.

Some approaches have been proposed in literature that transparently map irregular applicaধons to wide

SIMT devices, balancing the workload across the device CU and alleviaধng the programmer from the

need to explicitly deal with this issue. Cederman et al. [ǜǜ] evaluates the use of dynamic load balancing

methods based on queues with lock-free and work-stealing mechanisms within the GPU. Tzeng et al. [ǜǝ],

inspired by the proposals of Aila and Laine [ǜǞ], introduced a taskmanagement system based on persistent

kernels and queues, which maximizes CUs uধlizaধon and load balance. Persistent kernels produce and

consume work using a queuing system, avoiding the mulধ-pass approach and allowing load redistribuধon

through a task donaধon/stealing mechanism. Sođshell [ǜǟ] also proposes a three-ধer scheduling model

for the GPU that aims to replace the current built-in scheduling systems. It also works on top of a

persistent kernel approach similar to Tzeng’s, proposing an aggregaধon scheme of threads and work

items, sorধng work items by priority and using queues to manage work items.

The Tier-Ǚ scheduling approach in this contribuধon is inspired by Tzeng’s task management system, in-

tegrated in the proposed framework that provides transparent access to the task system through the

proposed programming model and API.

3.3 Proposed Approach
In order to address the discussed challenges posed by the HS, a framework is proposed that encom-

passes mulধple features that work together at runধme. The aim of the framework is to increase produc-

ধvity whilst transparently improve performance by increasing resource uধlisaধon. This secধon provides

a detailed descripধon of the proposed programming and execuধons models, programming interface and

system architecture that compose the framework, in parধcular how they tackle the challenges posed

when efficiently exploiধng heterogeneous systems with irregular applicaধons.

ǙǠ

3.3.1 Programming and Execuধon Model
The proposed framework uses a host-device system model, with applicaধons being composed by a host

control program (HCP) plus one or more computaধon kernels and respecধve data sets (Figure ǚ.ǘ). The

HCP runs on the CPU and is responsible for data registraধon and parধধoning, synchronisaধon and en-

forcement of dependency constraints among compuধng kernels. Kernels express the applicaধon func-

ধonality and are executed on the system devices (including the mulধ-core CPU). They apply some compu-

taধon to all elements of a data set; in this sense, kernels express data parallel problems and the applicaধon

of a kernel to one data element is referred to as a basic work unit. Basic Work Units (BWUs) within the

same job are assumed to exhibit no data dependencies among them. It is the programmer’s responsibility

to provide implementaধons of the kernels for each device architecture.

Application

Dependency
constraints

Job

Kernel

Job

Kernel

...

 Data item

APIHCP

Runtime

Job

Kernel

Figure ǚ.ǘ: Applicaধon specificaধon and HCP components. Applicaধon jobs and dependency constraints
are submiħed to the system by implemenধng the HCP using the API

An applicaধon consists on one or more jobs, each consisধng on applying a computaধon kernel to a data

set. The runধme system parধধons the job data set into blocks of BWUs, referred to as tasks, whose

execuধon is dispatched onto available devices. The data set parধধoning and dispatching is transparent

to the applicaধon programmer. Dependency constraints among jobs must be explicitly specified by

the HCP using system primiধves, otherwise they may execute concurrently. Tasks are executed out-of-

order and completely transparent to the applicaধon programmer. Parধধoning is, however, dependent

on applicaধon specific data representaধon; the programmer is thus required to implement a provided

interface for a callback method that will of create arbitrarily sized data parধধons upon system demand;

this method, renders the runধme system independent on data representaধon.

Data domains are used as a mechanism to transparently manage data. These, inspired by Parধধoned

Global Address Space based languages such as Chapel [ǜǠ], encapsulate all the informaধon required for

the system to manage user data, including data locaধon and transfers. Hierarchic data parধধoning is

internally supported by a hierarchy of sub-domains, which represent smaller regions of the data set. The

runধme system converts domain global indexes to task local sub-domain indexes, thus transparently

supporধng arbitrarily sized tasks; only the noধon of domain is exposed to the programmer. The data

ǚǗ

management system uses aMSIǘ cache coherence protocol, similar to StarPU [ǜǙ], to enable data repli-

caধon and ensure consistency among replicas, which combined with lazy data transfers reduces data

movement overheads. Data pre-fetching and overlapping of asynchronous data transfers with compu-

taধon are also supported to further reduce communicaধon overheadsǙ. The runধme system does not

ensure data consistency among concurrent jobs, i.e., if different jobs update the same data, they must

be explicitly serialized by the HCP using system primiধves.

In order to effecধvely handle both regular and irregular workloads the runধme system supports two types

of kernels: consumer and consumer-producer kernels. The choice of the type of the kernel depends

on the applicaধon and will define the internal execuধon model of the runধme. Consumer kernels are

associated with regular applicaধons and imply the complete processing of a data element. In regular

workloads the imbalances among BWUs within the same task are unlikely and thus there is no need for

further complexity. Consumer-producer kernels are used within a persistent kernel and are targeted for

irregular workloads by addressing the highly unbalanced computaধonal andmemory demands across data

elements. On wide SIMD/SIMT architectures this would result on increased uধlizaধon of the devices’

CUs.

3.3.2 Consumer vs Consumer-producer Kernels
Irregular data parallel workloads require performing some fundamental operaধon to each data element

an unknown number of ধmes; e.g., on a pathtracer the length of the path per pixel, i.e., the number

of rays, is unknown and varies unpredictably across screen space – path tracing can thus be seen as

tracing a previously unknown number of rays. The consumer-producer kernel will basically define the

BWU using this sub-operaধon rather than the complete processing of a data element. This is basically

the main difference between the two types of kernels: the consumer kernel processes the whole data

element while the consumer-producer kernel fragments this operaধon into mulধple idenধcal ones. A

consumer-producer kernel applies this BWU to a data element and, if required by the algorithm, dynam-

ically generates a number of new BWUs, which are then rescheduled within the device by resorধng to a

queuing system. This approach is used to address the Tier-Ǚ scheduling challenge and allows balancing

the irregular workload and increasing resource uধlizaধon within each device.

In the pathtracer example, a consumer kernel would follow the enধre path, eventually leading to imbal-

ances when paths have different lengths; a consumer-producer kernel would follow a single segment of

the path, i.e., a ray (and, eventually, associated shadow rays), generaধng a new BWU (a new path seg-

ment) at each intersecধon point unধl the path finishes. By rescheduling the newer generaধons of BWUs

ǘModified-Shared-Invalid
ǙNote that, even though some devices support transparent data transfers, only by having control of what and when is trans-

ferred allows for these opধmizaধons

ǚǘ

within the device, imbalances at Tier-Ǚ level due to the irregularity of the workload can be minimized. It is

the responsibility of the applicaধon programmer to decide whether a consumer or a consumer-producer

kernel is to be used for each job.

Note that consumer kernels are launched by the runধme system which transfers all the required data

automaধcally to the device. This means that the consumer kernel allows the applicaধon programmer to

freely map the task workload onto the device resources. This also grants him complete control over the

device and enables the use of lower level programming tools, such as CUDA [ǙǛ], or highly opধmized

libraries, such as CuBLAS [ǝǗ] or the Intel Math Kernel Library [ǝǘ]. Consumer-producer kernels, on the

other hand, are under control of a running a persistent kernel [ǜǝ], which calls the consumer-producer

kernel, provided by the applicaধon programmer, in order to process BWUs – thus precluding the uধliza-

ধon of such third party libraries.

A final crucial feature in consumer-producer kernels is the scheduling of work in batches of SIMD width

length. Since consumer-producer kernels are target for wide SIMD/SIMT architectures, BWUs are auto-

maধcally grouped in sets of simd-width length. The benefit of this grouping is, on one hand, to match

the execuধon model of the GPU, for instance, where simd-width instances of threads are simultaneously

scheduled and executed in lock-step (warp), and, on the other hand, to promote coherent execuধon from

which SIMT devices will leverage. For instance, in the path tracing example and in a NVIDIA GPU, the

consumer producer kernel groups ǚǙ path segments that have been extracted from a task and simulta-

neously executes them. Since neighbour primary rays of a pathtracer will hit neighbour geometry, the

GPU is able to benefit from data coherence and increased performance is achieved.

3.3.3 Programming Interface
The HCP is the entry point to the framework and it is where the programmers specify all the data

and funcধonal requirements of the applicaধon. The API definiধon leverages the object oriented in-

heritance paradigm providing higher flexibility to the programmer when expressing their applicaধons.

Code ǚ.ǘ illustrates a simplified example of a HCP for the pathtracer applicaধon. Domains for the

resulধng pixels radiance and for the geometry are created and linked to the corresponding user data

structures (Lines ǝ and Ǟ). A job is then created, domains are associated and device kernels are speci-

fied (Lines Ǡ to ǘǜ). The job is then added for execuধon and the HCP is instructed to wait for the job

to finish (Lines ǘǞ to ǘǟ). Finally, the computaধon results, stored onto a domain, are gathered to host

memory (Lines ǘǠ). Note that, apart from associaধng the kernels to devices, the HCP is agnosধc to any

computaধonal resource details as well as any work parধধoning and scheduling policies.

ǚǙ

Pathtracer host control program

ǘ HCP_PATHTRACER() {

Ǚ RGB* pixelsRadiance = new RGB[PIXEL_COUNT];

ǚ Geometry *geometry = new Geometry();

Ǜ (...)

ǜ

ǝ Domain<RGB>* d_pixelsRadiance = new Domain<RGB> (”RAD”, pixelsRadiance,

dim_space(0, PIXEL_COUNT));

Ǟ Domain<char>* d_geometry = new Domain<byte> (”GEO”, geometry, dim_space(0,

GEOMETRY_SIZE));

ǟ

Ǡ Job_PATHTRACER* t = new Job_PATHTRACER();

ǘǗ t->associate_domain(d_pixelsRadiance,d_geometry,...);

ǘǘ t->camera = CAMERA;

ǘǙ t->SPP = SPP;

ǘǚ (...)

ǘǛ t->associate_kernel(CPU, &CPU_pathtracer_kernel);

ǘǜ t->associate_kernel(GPU, &GPU_pathtracer_cpkernel);

ǘǝ

ǘǞ AddJob(t);

ǘǟ WaitForAllTasks();

ǘǠ GetDomain(d_pixelsRadiance);

ǙǗ }

Code ǚ.ǘ

Code ǚ.Ǚ presents a high level excerpt of a consumer kernel for pathtracer on the GPU. Within the kernel,

the appropriate domain is gathered from the runধme system, followed by gathering the appropriate BWU

– on this example this is represented by the first ray the kernel will have to trace and shade (Lines ǚ and Ǟ).

Then the iteraধve intersect and shade of the sample path is performed, using Russian rouleħe to stochas-

ধcally decide whether the path should conধnue or not. The result of this BWU is then wriħen onto the

domain. Code ǚ.ǚ illustrates a consumer-producer kernel for the same applicaধon and device. The main

difference is the loop removal since the processing of a sample is now transformed into a sequence of

an unknown number of basic units. Ađer intersecধon and shading, and depending on the result of the

Russian rouleħe (Line ǘǘ), a new BWU is created and submiħed to the runধme system for scheduling

within the device (Line ǘǙ). This new BWUwill be computed by the same consumer-producer kernel and

the required data (e.g. pixel id) is inherited from the current task. Finally, the result is accumulated onto

the domain.

ǚǚ

Pathtracer GPU consumer kernel

ǘ GPU_pathtracer_ckernel(TASK* task) {

Ǚ Domain<RGB> pixelsRadiance;

ǚ task->GetDomain(”RAD”, pixelsRadiance);

Ǜ

ǜ RayHit hit;

ǝ RGB result_rad;

Ǟ Ray ray = getRay(task);

ǟ

Ǡ do {

ǘǗ Intersect(ray, hit, ...);

ǘǘ } while (ShadeAndRussianRoullete(result_rad,...));

ǘǙ

ǘǚ int pixel_id = getPixelID(task);

ǘǛ pixelsRadiance->at(pixel_id) = result_rad;

ǘǜ }

Code ǚ.Ǚ

Pathtracer GPU consumer-producer kernel

ǘ GPU_pathtracer_cpkernel(TASK* task) {

Ǚ Domain<RGB> pixelsRadiance;

ǚ task->GetDomain(”RAD”, pixelsRadiance);

Ǜ

ǜ RayHit hit;

ǝ RGB result_rad;

Ǟ Ray ray = getRay(task);

ǟ

Ǡ Intersect(ray, hit, ...);

ǘǗ

ǘǘ if (ShadeAndRussianRoullete(result_rad,...))

ǘǙ newBWU();

ǘǚ

ǘǛ int pixel_id = getPixelID(task);

ǘǜ pixelsRadiance->at(pixel_id) += result_rad;

ǘǝ }

Code ǚ.ǚ

ǚǛ

Together with the data parধধoning method and addiধonal kernels for each supported device architecture,

these code blocks illustrate all the funcধonality the applicaধon programmer has to provide in order to

benefit frommulধ-device data management and dynamic workload distribuধon and balancing. To further

increase transparency, a generic specificaধon of kernels can be provided that would support different

architectures therefore further reducing the user provided code and programming effort.

3.3.4 System Architecture
Figure ǚ.Ǚ illustrates the runধme system architecture and how the different modules cooperate with each

other. All the communicaধon between the applicaধon and the framework is done through the API, which

is one of the main enধধes along with the Scheduler, Performance Model (discussed in Secধon ǚ.Ǜ.ǘ) and

Data Management System. The system has a central job queue from where the Scheduler dequeues

jobs upon device request and, using the data parধধoning methods and the informaধon provided by the

Performancemodel, produces the proper sized task and assigns it to the device. Each device in the system

has its own queue and associated control thread running on the host, enabling asynchronous data and

control flow using system messages. This distributed-like system increases scalability since the devices

will request work asynchronously and process tasks’ data concurrently. The devices’ queues support an

execuধon window of tasks enabling computaধon overlapping with data transfers and data pre-fetching.

The kernel that runs on the device can be of two types depending on the type of the applicaধon as

discussed in Secধon ǚ.Ǜ

Scheduler

Performance
Model

Data
Management

System

Job Queue

...

D
_A

PI

JobJobJob

Runtime

T

...

A
PI1 Data partitioning

2

3

4 3

5 6

7

8

9

10

Job

M
EM DEV

D
riv

er
 A

PI

Kernel

M
EM DEV

D
ri

ve
r A

P
I

Q
D

_A
PI

T
Q

Device ControllerQueue

HCP

Kernel

Figure ǚ.Ǚ: Runধme architecture and workflow.

ǚǜ

The detailed descripধon of the workflow in Figure ǚ.Ǚ is as follows: (ǘ) The HPC provided by the program-

mer uses the runধme API to define and submit applicaধon jobs and dependency constraints; (Ǚ) using

the API, the user will register and gather data to the Data Management System (DMS); (ǚ) the number

of data elements to process is provided as well as user-provided informaধon to the performance model

if applicable; task execuধon informaধon is also provided from the devices to the Performance Model;

(Ǜ) applicaধon-specific data parধধon methods defined; (ǜ) jobs are enqueued in the main queue; (ǝ) the

scheduler dequeues and enqueues jobs or tasks from the main queue; (Ǟ) the scheduler assigns a job

to a device, reasoning about job workload and device compute capabiliধes which will potenধally trigger

data parধধoning methods to create a properly sized task; (ǟ) task is enqueued in device queue; (Ǡ) the

device controller signals data movements required for the task; (ǘǗ) the device controller signals for task

execuধon using the user-provided kernel.

Each device architecture supported by the framework requires the development of a Device API (D_API)

implementaধon, allowing the framework to perform low level operaধons such as iniধaধng computaধons

or copying data to/from the device. The Device API is transparent to applicaধon programmers, but

explicitly managed by the framework developers. For instance, a system with three NVIDIA GPUs and

two CPUs requires two Device API implementaধons, one for the GPUs and another for the CPUs. For

each of these implementaধons, alternaধve programming and execuধon environments might be selected;

for example, either CUDA or OpenCL might be used to control the GPUs.

3.4 Workload Scheduling
One of the major goals of this contribuধon is to devise and evaluate scheduling mechanisms that allow

for increased performance in Tier-ǚ and Tier-Ǚ parallel systems. In other words, the goal is to minimize

execuধon ধme and, in this chapter, the proposed approach to achieve this is to increase resource uধliza-

ধon by keeping the workload distribuধon well balanced among available computaধonal resources. Tier-ǚ

scheduling consists in parধধoning the job’s workload into tasks and assigns them to individual devices,

whereas Tier-Ǚ scheduling distributes a given task BWUs among the device internal computaধonal units.

In the proposed framework, each of the two parallel ধers is addressed with different mechanisms. Even

though scheduling is a major component of the proposed framework it is transparent to the applicaধon

programmer.

3.4.1 Tier-3 Scheduling
Tier-ǚ scheduling is performed by resorধng to a demand driven strategy, where tasks are assigned upon

device request. When a device finishes a task it signals the scheduler, indicaধng that it is available

for further processing. The scheduler then fetches a job, decides the new task size by applying the

ǚǝ

parধধoning strategy described below, applies the data parধধoning method to get the proper sized task

and submits the task for execuধon to the requesধng device.

Demand driven has been preferred over the HEFT scheduling algorithm [ǜǚ], which is used by StarPU,

since the laħer makes its decisions based on an iniধal sampling of the workload behaviour. However, the

behaviour of irregular workloads is mostly unpredictable by definiধon and thus the authors of this work

conjecture that HEFT is not appropriate for this kind of workloads. The demand driven behaviour is more

suitable approach to copewith a wide range of workload profiles and with devices with diverse compuধng

power. By parধধoning a job’s workload into a number of tasks larger than the number of devices and

then assigning tasks on demand it adapts to both the workload requirements and the devices’ capabiliধes.

However, scheduling overheads are also dependent on the number of tasks. A heterogeneous system is

expected to have devices with very different compuধng powers, which would require a large number of

tasks in order to maintain load balance, severely impacধng on scheduling overheads. The total number

of tasks can be reduced by tailoring the task size to the relaধve compuধng power of the device where it

is being scheduled; this is the responsibility of the work parধধoning strategy.

Let Cd represent the compuধng capability of device d, defined according to some performance model. Re-

sults presented on Secধon ǚ.ǝ are based on the devices’ theoreধcal peak performances, as announced

by the respecধve manufacturers. This might not be the metric that guarantees the best results, parধc-

ularly for irregular workloads. However, it is beyond the scope of this work to select and evaluate the

most appropriate performance modelling technique. In fact, the proposed framework takes a modular

approach towards the performance model, allowing it to be replaced without impacধng on the remaining

runধme system architecture. This modularity assures that more efficient performance models and appro-

priate metrics, eventually resorধng to dynamic approaches, can be used in the future. Cd is normalized

according to Equaধon ǚ.ǘ to represent relaধve compuধng capability with respect to the other devices

present on the heterogeneous system. Tdevices is the total number of compuধng devices.

C̄d =
Cd

max (C1, ..., CTdevices)
(ǚ.ǘ)

The size of the task to assign to the requesধng device, expressed in terms of the number of data elements

to process (or BWUs), is then given by Equaধon ǚ.Ǚ

N

dd
× C̄d (ǚ.Ǚ)

where N is the job’s total number of BWUs and dd is a system constant that allows control over the tasks’

granularity, assuring that the total number of tasks is significantly larger than the number of devices, as

required for a demand driven strategy to be able to properly balance the workload.

For instance, consider a system composed by a GPU and a CPU where the performance model dictates

ǚǞ

that the normalized relaধve compute capabiliধes are ǘ.Ǘ and Ǘ.ǚ to the GPU and CPU, respecধvely, and

let dd be equal to ǘǗ. Upon receiving a work request, the scheduler will fetch a job, say with ǘǗǗǗ BWUs,

and assign a task with ǘǗǗ BWUs if the requesধng device is a GPU or with ǚǗ BWUs if it is a CPU.

3.4.2 Tier-2 and Tier-1 Scheduling
Tier-Ǚ and Tier-ǘ scheduling are targeted to make use of the consumer-producer kernels and applies only

to irregular workloads; for regular workloads, the programmer can use consumer kernels having complete

control over the device as described on Secধon ǚ.ǚ.Ǚ. Tier-Ǚ scheduling exploits the fact that irregular

workloads can be seen as applying some fundamental operaধon to each data element an unknown and

unpredictable number of ধmes; the BWU is thus redefined as this fundamental operaধon, rather than the

complete processing of a data element. This view enables a work-spawn strategy where the execuধon

of a BWU leads to the potenধal spawning of one or more dynamically generated new BWUs. In order

to efficiently handle this mechanism within a SIMD/SIMT device, a generic pipeline is implemented that

features most of the techniques proposed by Tzeng et. al [ǜǝ].

A GPU is a SIMT device that schedules bundles of threads with the same cardinality as a SIMD lane

– on most NVIDIA GPUs these bundles contain ǚǙ threads and are referred to as warps. Since warps

are executed in lockstep, code divergence and uncoalesced memory accesses should be minimized for

performance maximizaধon. However, irregular applicaধons tend to exhibit divergence and unpredictable

memory accesses. In order to address these issues, the consumer kernel is replaced with built-in persis-

tent kernel implementaধon. Note that this means that the runধme system manages the kernel execuধon

within the device, whereas with consumer kernels the applicaধon code has complete control of kernel

execuধon within the device.

The execuধonmodel of the persistent kernel follows a SIMD lane programming approach that cooperates

with the hardware scheduler to manage these lanes. As illustrated in Figure ǚ.ǚ, each lane is endued with

two local queues for geষng work to consume and to store locally generated new BWUs, respecধvely

Local Inbox Queue (LIQ) and Local Outbox Queue (LOQ). Work is shared among different SIMD lanes

by using a device Global Inbox Queue (GIQ) with a try-lock mechanism to avoid contenধon. This fetch

of work from a shared queue enables Tier-Ǚ scheduling since each lane will be computed by a different

stream mulধprocessor. Each lane will fetch a bundle of ǚǙ BWUs (on NVIDIA GPUs) and call the user-

provided consumer-producer kernel, using a callback mechanism, in order to process all fetched BWUs .

Dynamically generated BWUs are stored on the LOQ and eventually moved to the GIQ in order to allow

execuধon on other SIMD lanes. This enables transparent access to SIMD lane programming and Tier-ǘ

scheduling by the applicaধon programmer, which is now able to maximize applicaধon code convergence

and coalesced memory accesses assuming that all ǚǙ BWUs will be executed within a single lane.

The details of the workflow as illustrated in Figure ǚ.ǚ as follows: (A) if space available in local inbox

ǚǟ

Runtime

T

...
M

EM DEV

D
riv

er
 A

PI

C Kernel

M
EM DEV

D
ri

ve
r A

P
I

C Kernel

Q
D

_A
PI

T
Q

Device

Global Inbox Queue

Stream
 Multiprocessor 1

Device global memory

Local inbox queue

Local outbox queue

Stream
 Multiprocessor N

Local inbox queue

Local outbox queue

...

B

A

E

C - P Kernel

C - P Kernel

CD

D
_A

P
I

Figure ǚ.ǚ: Persistent kernel architecture and workflow.

queue (LIQ) try-lock global inbox queue (GIQ) and dequeue tasks; (B) Retrieve tasks and execute them

using the user-provided consumer-producer kernel; (C) If there is not enough room in local outbox queue

(LOQ) and in LIQ to store all secondary tasks, force GIQ lock and enqueue all the elements from the LOQ;

(D) Store generated tasks in LOQ; (E) Enqueue in LIQ elements from LOQ. If LIQ is full try-lock GIQ

3.5 Evaluaধon Approach
This secধon presents the evaluaধon approach and methodology of the proposed model and associated

framework. It describes the applicaধons used, namely a regular applicaধon – matrix mulধplicaধon (MM)

– and three irregular applicaধons – a Barnes-Hut n-body simulaধon (BH), a pathtracer (PT) and a Fluo-

rescence simulaধon (FL). It also describes some of the metrics used and the compuধng system.

3.5.1 Applicaধons
As a regular applicaধon, only the consumer kernel is provided for the matrix mulধplicaধon. In order to

compute an element Cij of the result matrix, the kernel performs a dot product between the row Ai and

column Bj of the factor matrices. The kernel uses the CuBLAS [ǝǗ] and the Intel Math Kernel Library

[ǝǘ] opধmized libraries for the GPUs and CPUs kernels, respecধvely. A reference version execuধng on a

single GPU was developed with CuBLAS for performance comparison purposes.

As an irregular applicaধon, the Barnes-Hut (BH) algorithm [ǘǞ] casts an n-body simulaধon as an hierar-

chical problem, reducing its complexity to O(N log(N)). The goal is to compute the force exerted on each

parধcle of the data set by all other parধcles of the same set. The BH algorithm orders the parধcles by

resorধng to an octree (in ǚ dimensions). When compuধng the resulধng force, if a voxel is farther away

ǚǠ

from the parধcle being processed than a given threshold, then all the parধcles contained in that voxel

are approximated by their center of mass and the sub-tree associated with the voxel can be pruned.

The unpredictability of which nodes of the octree will be visited for each parধcle renders the workload

irregular.

A consumer kernel will, for each parধcle in the data set, traverse the octree, deciding which nodes to

visit and which to prune and finally compuধng the resulধng force – the basic work unit is thus compuধng

the force for one parধcle of the data set. A consumer-producer kernel entails visiধng one node of the

octree and deciding which of its children to visit and which to approximate. All those children nodes that

have to be visited result on the generaধon of new basic work units, which will be rescheduled within the

device by the runধme system. On wide SIMD/SIMT devices, such as the GPUs, basic work units will be

executed in groups with the same cardinality as the SIMD lane width (ǚǙ for current NVIDIA GPUs). In

order to increase coherence within each SIMD lane, parধcles are iniধally sorted such that neighboring

parধcles have high probability of being scheduled onto the same SIMD lane [ǘǙ]; neighboring parধcles

have high probability of visiধng the same regions of the octree.

Monte Carlo Path Tracing (PT) is a well known ray tracing based rendering algorithm. It entails following

light paths from the eye into the scene; at each intersecধon point radiant flux is gathered from the light

sources using a given number of shadow rays and the conধnuaধon of the path is stochasধcally decided

using Russian Roulleħe; if conধnued, a new ray is spawn, its direcধon being stochasধcally determined.

The Russian Roulleħe path terminaধon approach and the stochasধc direcধon of each new ray render

the workload irregular. On wide SIMD/SIMT architectures, coherent path tracing [ǘǚ] is used, where

the random numbers used to decide about path terminaধon and new ray direcধon are the same for all

threads within a SIMD lane. This will make paths within the same SIMD lane coherent (same length, same

overall direcধons), which results on perceivable image arধfacts; these arধfacts are eliminated by shuffling

the paths on the image plane before tracing them, thus avoiding spaধal neighborhood among coherent

paths [ǘǚ].

A consumer kernel entails processing the whole path, whereas a consumer-producer kernel processes a

segment of the path, i.e., one ray plus associated shadow rays and, if the path is conধnued, generates

a new basic work unit with the new ray. The image plane is divided into mulধple pixels and in order

to increase image convergence mulধple samples (i.e. light paths) are taken per pixel (SPP). Each sample

is processed independently and the more samples, the beħer the image convergence, but the workload

increases andmore irregular paths are processed. The SPP parameter will be used to express theworkload

size as it is one of the parameters with major impact in image rendering and also impacts algorithm

irregularity, which is addressed in this work. The basis pathtracing code was extended from the SmallLux

renderer (recently re-branded as LuxCoreRender)[ǝǙ]; a reference version of SmallLux running on a single

GPU is used for performance comparison purposes.

The Monte Carlo simulaধon of light transport with fluorescence in mulধ-layered ধssues (FL) is frequently

ǛǗ

viewed as a reference method, whose results can be used to validate other less demanding methods [ǛǛ].

It is based on following a packet of photons along random walk steps within a mulধ-layered media with

complex structure, the size of each step being stochasধcally generated according to the media opধcal

properধes. Ađer each step a fracধon of the photon packet’s energy is absorbed and a new step and

scaħering direcধon are stochasধcally chosen according to the current ধssue layer properধes. When a

boundary between different layers, or between a ধssue layer and the exterior, is crossed by the packet it

might be either enধrely transmiħed into the new layer or reflected back into the same layer; this decision

is once again made by resorধng to a stochasধc process and the opধcal properধes of both layers. The

random walk is conধnued unধl the photon packet exits the ধssue or its terminaধon is decided by Russian

Roulleħe.

Fluorescence emission is simulated by deciding, ađer each step, whether a fracধon of the absorbed

energy, as given by the quantum yield opধcal property of the ধssue layer, is re-emiħed as a new fluores-

cent photon packet with a different wavelength; this decision is made by resorধng to Russian Roulleħe.

Fluorescent photon packets are propagated through the media using Monte Carlo simulaধon, with the

same algorithm as the original excitaধon packets, except that they will not generate further fluorescent

packets since their wavelength will not trigger this phenomenon. The basic work unit for a consumer

kernel entails simulaধng all steps of a photon packet and respecধve fluorescent packets unধl they exit

the media or are terminated by the Russian Roulleħe process. The consumer-producer kernel processes

a single step of a photon packet random walk; a new basic work unit is created if the random walk is

conধnued and an addiধonal one is created for each emiħed fluorescent packet.

Even though PT and FL resort to Monte Carlo simulaধons, the associated workloads exhibit some fun-

damental differences. The former entails tracing rays through the scene ǚD volume, which is a compu-

taধonal expensive procedure, whereas the laħer does not involve any tracing. In fact, FL just requires

advancing the photon packet posiধon along the random walk step direcধon; boundary crossing among

layers is verified by checking the Z coordinate, since the modelled layers are aligned with the XY plane

and thus all boundaries are perpendicular to the Z axis. Consequently, the basic work unit for the con-

sumer producer kernel involves much less computaধon for FL than for PT. Addiধonally, for FL all photon

packets are shot into the media through the same infinitesimal point, i.e., all random walks have the same

origin. This is in contrast with the PT applicaধon where all paths iniধate at different points of the image

plane. This parধcularity hinders the applicaধon of coherence increasing techniques, such as the coher-

ent path tracing technique used for PT. On wide SIMD/SIMT architectures, and for the consumer kernel,

threads within a SIMD lane are thus expected to be more incoherent for FL than for PT, exhibiধng larger

code divergence, load imbalance and irregularity of memory accesses; the consumer producer kernel has

the opportunity to minimize load imbalances within a device since new basic work units are rescheduled

ađer each random walk step.

Furthermore, in FL a photon packet can contribute to any voxel within the grid embedded in the ধssue,

Ǜǘ

whereas in PT a path only contributes to the pixel where it is originated: contenধon in memory writes,

which are solved by resorধng to atomic operaধons, is thus much more frequent in FL than in PT. Also,

each task in PT requires a number of memory management operaধons, such as dynamic allocaধon and

data copying, which is not required in FL. This is due to the fact that each task entails generaধng a ধle

of the image plane which is dynamically allocated by each device; such requirements do not exist in FL,

where the above referred grid of voxels is only allocated once on each device, given that any thread

can write to any voxel and the grid is much smaller than the finely sampled image plane. Such memory

management operaধons represent an implementaধon penalty that might harm PT’s efficiency. Finally,

PT basic work units with the consumer-producer kernel have a branching factor of ǘ, i.e., ađer tracing a

ray in the path if the random walk conধnues a single new task is generated with the new secondary ray.

FL can have a branching factor of Ǚ, since a new fluorescent photon packet can be created; the higher

branching factor will impact on the results.

3.5.2 Heterogeneous Systems Metrics
Speedup, S(p), and efficiency, E(p), are two metrics ođen used to report and analyse the performance

of homogeneous parallel systems with p processors. If Tp and T1 are the execuধon ধmes of the parallel

and uniprocessor systems, respecধvely, then these are given by Equaধons ǚ.ǚ and ǚ.Ǜ. S(p) is a measure

of how faster the parallel system is than a sequenধal one and E(p) consধtutes a measure of resource

uধlizaধon.

S(p) =
T1
Tp

(ǚ.ǚ)

E(p) =
S(p)

p
(ǚ.Ǜ)

The problem with the above metrics is that they are defined for the homogeneous case, where all p

processors are idenধcal. Similar metrics have been defined for the heterogeneous case [ǜǙ], [ǝǚ] and are

used on this work to analyse the experimental results.

Let W define the workload associated with solving a given problem and Tdev be the execuধon ধme of

that workload on a given device. Then the device’s observed compuধng capacity, Cdev for that problem is

given by Cdev =
W
Tdev
. Idenধcally, if the execuধon ধme of that workload on a given heterogeneous set D of

devices is TD, then CD = W
TD
. The heterogeneous speedup, Sh(D), relaধvely to the execuধon ধme on some

given single reference device ref (e.g. the slowest) is then given by Equaধon ǚ.ǜ:

Sh(D) =
Tref
TD

=
CD

Cref
(ǚ.ǜ)

Intuiধvely, the compuধng capacity available on the set D of devices is given by the sum of the individual

ǛǙ

capaciধes of all devices in D, i.e., C∗D =
∑

i∈D Cdevi = W
∑

i∈D
1

Tdevi
. Heterogeneous efficiency can now be

defined as the raধo of used compuধng capacity over the available capacity:

Eh(D) =
CD

C∗D
=

1
TD∑

i∈D
1

Tdevi

(ǚ.ǝ)

In Secধon ǚ.ǝ.Ǚ a strong scalability analysis is performed (constant problem size, i.e., constantW) by using

Eh(D) for different heterogeneous sets of devices D. Equaধon ǚ.ǝ shows that if, due to algorithmic and

implementaধon penalধes, the used compuধng capacity, CD, grows at a lower rate than C∗D , then Eh(D) will

become smaller as the number of devices in D increases.

3.5.3 Compuধng System
The compuধng system used to assess the proposed framework is equipped with two Intel Xeon CPU

EǜǝǛǠ, each running at Ǚ.ǜǚGHz with six cores and ǘǙGB of memory RAM. The plaĤorm is also equipped

with a NVIDIA Fermi GTX ǛǟǗ with ǛǟǗ CUDA cores and ǘ.ǜ GB of memory, plus two NVIDIA Tesla

CǙǗǞǗ, with ǛǛǟ CUDA cores with ǝGB of memory. The code was compiled with the GNU C compiler

Ǜ.ǝ and NVCC compiler, provided by CUDA toolkit ǜ.ǜ, in a LINUX operaধng system.

3.6 Results
This secধon presents and discusses experimental results with respect to scheduling of irregular workloads,

performance scalability and a comparison with a state of the art framework – StarPU.

3.6.1 Scheduling Irregular Workloads
Irregular applicaধons imply unbalanced computaধonal demands across data elements, which, on wide

SIMD architectures, would result on severe resource under-uধlizaধon. Consumer-producer kernels are

thus proposed as the means to avoid this potenধal performance penalty at the Tier-Ǚ parallelism level.

Figure ǚ.Ǜ presents performance comparisons for the consumer and consumer producer-kernels, labelled

as C_kernel and CP_kernel, respecধvely, for the BH, PT and FL applicaধons with different problem sizes

and using a single GPU. Speedup of the consumer-producer kernel over the consumer kernel is also

presented in the rightmost axis. Note that PT plot in the middle depicts PT throughput, expressed in

MRays/s, instead of execuধon ধme. Throughput will be used throughout this work for PT because it

provides an abstracধon to the light transport model details and algorithms’ implementaধon. A further

reason to use throughput is that the performance of PT will be compared to a reference path tracing

version using SmallLux (Table ǚ.ǚ). SmallLux uses a slightly different light transport model that results

on tracing different numbers of rays; by reporধng rays per second, for the same scene and rendering

Ǜǚ

32 64 128 256 512 1024
Particles x1024

0

0.5

1

1.5

2

Sp
ee

du
p

BH

0.1

1

10

100

1000
Se

co
nd

s

25 36 64 100 144 225 400
SPP

0

0.5

1

1.5

2

Sp
ee

du
p

PT

2

4

8

16

32

M
Ra

ys
/S

1 2 4 8 16 32
Million photons

0

0.5

1

1.5

2

Sp
ee

du
p

FL

Speedup
C_Kernel
CP_Kernel

0.1

1

10

100

1000

Se
co

nd
s

Figure ǚ.Ǜ: Performance comparison between C-Kernel and CP-Kernel on a single GPU. Note the leđ-
handed y-axis and x-axis in log scale and right-handed y-axis in linear scale.

parameters, performance comparisons can be made.

The consumer-producer approach provides a significant speedup for both the pathtracer (ǛǗ% beħer)

and fluorescence (ǟǛ% beħer), while performing about ǙǗ% worse in the BH applicaধons. While the

basic work unit for the BH consumer-producer kernel consists on a very light task (deciding, for one

node of the octree, whether its children have to be visited and compuধng the resulধng force for those

that are not), for PT this is a demanding task, requiring tracing a ray and associated shadow rays as well

as shading computaধons. An hypothesis is that the workload associated with each BH basic work unit

is not enough to compensate the overheads associated with queuing and scheduling the dynamically

generated basic work units. In order to verify this hypothesis a parameterizable syntheধc workload is

added (SW – compuধng the Fibonacci sequence up to a given index, whenever an octree node is visited)

to the Barnes-Hut consumer and consumer-producer basic work units.

10 20 40 80 160
Synthetic load - BH

0

0.5

1

1.5

2

Sp
ee

du
p

BH
PT

2 4 8 16 32
Shadow rays - PT

Figure ǚ.ǜ: Load impact in performance, expressed in terms of speedup of the consumer-producer kernel
over the consumer one. Number of shadow rays per shading point in PT (upper horizontal axes) and
syntheধc load for BH (lower horizontal axes). Note that both horizontal axes are in log scale.

Figure ǚ.ǜ depicts the observed speedups for both BH and PT applicaধons – actual values in Table ǚ.ǘ.

Note that in BH, as the SW increases the consumer-producer kernel becomes more effecধve (maximum

of ǜǚ% faster) than the consumer kernel, which corroborates the above cited hypothesis. The PT result

also corroborates the above conclusions. As the load per basic work unit increases (expressed as the

number of shadow rays cast per shading point to assess the visibility of the light sources), speedup

increases although at a marginal rate compared to BH (Table ǚ.ǘ); this is due to the fact that, even with

only one shadow ray per point, the load associated with each basic work unit is enough to overcome the

ǛǛ

Table ǚ.ǘ: Speedup of the consumer-producer kernel over the consumer kernel with load impact in per-
formance as workload is increased per BWU in BH and PT.

BH PT

syntheধc load speedup shadow rays speedup

Ǘ Ǘ.Ǟǜ Ǚ ǘ.Ǚǜ

ǙǗ Ǘ.Ǟǟ Ǜ ǘ.Ǚǜ

ǛǗ Ǘ.ǠǙ ǟ ǘ.Ǚǜ

ǟǗ ǘ.ǙǙ ǘǝ ǘ.Ǚǝ

ǘǝǗ ǘ.ǜǚ ǚǙ ǘ.ǙǞ

overheads associated with the queuing system. Given that without syntheধc workload the consumer-

producer kernel is not effecধve for BH, results obtained with this applicaধon will not be further reported

on this Subsecধon. BH results with the consumer kernel without syntheধc workload will be presented

in Secধon ǚ.ǝ.Ǚ to demonstrate that the proposed framework can sধll effecধvely handle this kind of

workloads.

25 36 64 100 144 225 400
SPP

0.8

1.1

1.4

1.7

2

Sp
ee

du
p

PT
C
G
C+G
2xG

C+2xG
3xG
C+3xG

1 2 4 8 16 32 64 128
Million photons

0.8

1.1

1.4

1.7

2

Sp
ee

du
p

FL

Figure ǚ.ǝ: Performance comparison between consumer kernel and consumer-producer kernel with
mulধple-device configuraধons when scheduling PT and FL irregular workloads. C stands for CPU and G
for GPU. Note that horizontal axis is in log scale.

Figure ǚ.ǝ shows the speedup obtained with the consumer-producer kernel over the consumer kernel

for the PT and FL applicaধons with different configuraধons of mulধple heterogeneous devices and for

different problem sizes. For a single GPU the lines are the same as in Figure ǚ.Ǜ. Note that Figure ǚ.ǝ tries

to illustrate the speedup of using consumer-producer kernel with mulধ-devices – mulধ-device (Tier-ǚ)

scheduling is assessed in detail in the Secধon ǚ.ǝ.Ǚ. In PT for mulধple-device configuraধons the achieved

speedup increases monotonically with the problem size to a maximum of ǘ.ǛǙx with three GPUs and ǛǗǗ

SPPs. As for the FL case, the speedup increases unধl a certain workload and then stabilizes with a

maximum of ǘ.Ǡǝx with three GPUs – see Secধon ǚ.ǝ.Ǚ for a discussion on why is the speedup obtained

Ǜǜ

Table ǚ.Ǚ: Performance values with mulধ-device configuraধons. C stands for CPU and G for GPU.

App Workload C G C+G 2xG C+2xG 3xG C+3xG

MM (sec) Ǟk x Ǟk DP ǘǙ.ǘǛ Ǜ.ǘǝ ǚ.ǝǘ Ǚ.ǚǘ Ǚ.ǘǝ ǘ.ǝǛ ǘ.ǝǗ

BH (sec) ǘǗǙǛk parধcles ǙǠǘ.ǠǠ ǘǗǘ.ǝǗ ǟǗ.Ǚǝ ǜǟ.ǘǘ ǜǜ.ǗǠ ǛǙ.Ǘǟ ǚǞ.ǝǛ

PT (MRays/sec) ǛǗǗ SPP ǜ.ǚǠ ǘǗ.ǟǝ ǘǚ.Ǜǚ ǘǠ.ǘǝ Ǚǚ.ǟǙ ǙǞ.Ǘǚ ǚǗ.ǝǚ

FL (sec) ǚǙM Photons ǜǛǙ.ǚǙ ǘǙǗ.Ǚǝ ǘǗǗ.ǛǞ ǝǝ.ǝǝ ǝǗ.ǟǙ Ǜǝ.ǗǠ ǛǛ.Ǚǚ

with FL significantly larger than that of PT. These results clearly show that the consumer producer kernel

provides a clear gain over the consumer approach, and that this gain is sustainable in the presence of

mulধple heterogeneous devices. Also note that using this mulধplicity of heterogeneous devices requires

no addiধonal programming effort from the applicaধon developer, which is this work main goal.

Consumer vs Consumer-Producer

The applicaধon programmer is responsible for selecধng whether a consumer or a consumer-producer

kernel is used to implement a given job. A consumer kernel has the advantages of allowing the uধlizaধon

of opধmized third party libraries and having an associated execuধon and programming model familiar

to most programmers. A consumer-producer kernel explicitly handles load imbalances within a device,

but exhibits overheads associated with queue management. The laħer should be preferred over the

former whenever the applicaধon workload is expected to be irregular, in the sense that it exhibits unpre-

dictable workload and memory access paħerns, which vary across elements of the data domain, and the

workload per basic work unit miধgates the queue management overhead. In situaধons where irregular

applicaধons do not fulfil this last condiধon, the consumer kernel can be effecধvely used instead, which

will be demonstrated in the next secধon.

3.6.2 Performance Scalability
The goal of the proposed framework is to allow efficient execuধon of irregular data parallel applicaধons

while maintaining high programming producধvity by hiding from the programmer many of the details as-

sociated with such systems; this is achieved by complying with the proposed programming and execuধon

model.

Figure ǚ.Ǟ presents the performance gain for the selected applicaধons execuধng on increasing numbers

of computaধonal devices – actual values shown in Table ǚ.Ǚ. Since it is a regular applicaধon, the consumer

Ǜǝ

C G C+G 2xG C+2xG 3xG C+3xG
1

2

4

8

16

Se
co

nd
s

12.1

4.2
3.6

2.3 2.2

1.6 1.6

MM - 7K x 7K
CUBLAS

C G C+G 2xG C+2xG 3xG C+3xG
30

60

120

240

480

Se
co

nd
s

292.0

101.6
80.3

58.1 55.1
42.1

37.6

BH - 1024K

C G C+G 2xG C+2xG 3xG C+3xG
4

8

16

32

64

M
Ra

ys
/S

5.4

10.9
13.4

19.2
23.8

27.0
30.6

PT - 400SPP

C G C+G 2xG C+2xG 3xG C+3xG
27

81

243

729

2187

Se
co

nd
s

542.3

120.3
100.5

66.7 60.8
46.1 44.2

FL - 32M

Figure ǚ.Ǟ: Performance with mulধple-device configuraধons. A consumer kernel type is used for the MM
and BH applicaধons and a consumer-producer kernel in PT and FL. C stands for CPU and G for GPU.
Note the verধcal axis in log scale.

Table ǚ.ǚ: Performance values with mulধ-device configuraধons compared to a reference version running
on a single GPU. PT values differ from Table ǚ.Ǚ because a single shadow ray was used per shading point.
C stands for CPU and G for GPU.

App Workload C G Ref (G) C+G 2xG C+2xG 3xG C+3xG

MM (sec) Ǟk x Ǟk DP ǘǙ.ǘǛ Ǜ.ǘǝ Ǜ.ǘǝ ǚ.ǝǘ Ǚ.ǚǘ Ǚ.ǘǝ ǘ.ǝǛ ǘ.ǝǗ

PT (MRays/sec) ǛǗǗ SPP ǜ.Ǘǚ ǘǙ.Ǡǘ ǘǙ.ǘǜ ǘǛ.ǛǙ ǙǙ.Ǚǜ Ǚǜ.Ǡǝ ǚǙ.Ǚǚ ǚǛ.ǙǞ

kernel is used for the matrix mulধplicaধon. Also, since the consumer-producer kernel is not able to

provide performance gains with respect to the consumer kernel for BH, due to the very light workload

associated with each BWU, results are reported using the consumer kernel; the goal is to verify whether

performance gains are sধll obtained as the number of heterogeneous devices increases. The consumer-

producer kernel is used for the irregular PT and FL applicaধons.

The MM plot clearly shows that the regular matrix mulধplicaধon has increased performance as more

devices are added. The horizontal dashed line depicts the execuধon ধme of the same problem on a single

GPU using a reference version developed using CUBLAS (the same library used within the framework

provided kernel); there is no performance penalty associated with using this framework for a single GPU

and there is a clear gain as more devices are added to the system, since performance scales without any

programmer effort (see Tables ǚ.Ǚ and ǚ.ǚ). With the four devices working together, the runধme system

is able to extract about ǟx speedup compared to the single (mulধcore) CPU configuraধon.

The BH applicaধon plot clearly shows that the execuধon ধme decreases as more devices are added,

ǛǞ

achieving a maximum Ǟ.ǝx speedup compared with the CPU configuraধon (see also Table ǚ.Ǚ). Consid-

ering that the consumer kernel is being used for this highly irregular applicaধon, this result shows that

consumer kernels can sধll be used effecধvely to handle irregular workloads. This is parধcularly useful

when an applicaধon would exhibit a very light workload per BWU under a consumer-producer model,

insufficient to compensate the associated overheads. In such cases, the consumer kernel can sধll be

used and performance will sধll increase with the number of devices.

The PT plot depicts the PT throughput, expressed in MRays/s, and clearly shows that performance in-

creases significantly as devices are added to the system (the verধcal axis is in log scale). Table ǚ.ǚ com-

pares the achieved performance with that obtained with a reference single GPU pathtracer based on

SmallLux. Note that the values reported for PT are slightly different from those reported on Table ǚ.Ǚ

because now a single shadow ray is being shot per shading point, whereas previously several shadow

rays were used. It is clear that the proposed approach suffers no performance penalizaধon compared to

the reference SmallLux and that ray throughput increases with the number of devices.

Finally, for the FL applicaধon a similar result is achieved, with performance increasing with the number

of devices and achieving a remarkable speedup of ǘǙ.Ǚǝx to the single CPU. These larger performance

gains obtained with FL when compared to PT result from the minimal memory management overheads

associated with the former (as explained in Secধon ǚ.ǜ.ǘ) and a large gain when using GPUs compared

to the CPU (according to Table ǚ.Ǚ the GPU is Ǜ.ǜx faster than the CPU for FL and only Ǚx faster for PT).

A ǘ.ǟx speedup can also be observed when adding a Tesla CǙǗǞǗ to a GTXǛǟǗ (the Tesla has one less

SM) and ǘ.Ǜǜx speedup when adding another Tesla to the GTXǛǟǗӫTesla configuraধon (addiধonal tests

were performed that reveled a ǘ.ǠǠx speedup from one Tesla to ǙxTesla) – overheads associated with

increasing the number of devices are thus minimal for the FL case.

Performance scalability is achieved with minimum programmer effort: adding devices with the same

architectures only requires registering them through the HCP, while adding devices with different archi-

tectures (supported by the framework through the device API) requires providing the respecধve kernels.

Programming producধvity is thus preserved, while enabling efficient execuধon of regular and irregular

applicaধons on heterogeneous systems.

In order to measure how effecধvely the proposed framework uses the resources available on the parallel

heterogeneous system a strong scalability analysis is performed using the heterogeneous efficiencymetric

introduced in Secধon ǚ.ǜ.Ǚ. Strong scalability analysis entails studying how the system efficiency varies

with the number of devices for a fixedworkload (i.e., problem size). Efficiency is expected to decreasewith

the number of devices, since overheads (such as devices’ idleness due to load imbalances, communicaধon

and runধme system management costs) increase. However, if efficiency decreases in a very sublinear

manner, the system is deemed scalable for fixed problem size. Ideally, the above menধoned overheads

would be measured directly; this is however not possible, since mulধple management operaধons occur

concurrently and asynchronously. Efficiency analysis provides thus a robust tool to assess the impact of

Ǜǟ

Table ǚ.Ǜ: Strong scalability: heterogeneous efficiency for the four case studies. Ǟk x Ǟk matrix for MM,
ǘǗǙǛk parধcles in BH, ǛǗǗ SPP for PT and ǚǙM photons in FL. C stands for CPU and G for GPU.

Applicaধon C+G 2xG C+2xG 3xG C+3xG

MM ǠǛ% ǠǙ% ǟǚ% ǟǜ% ǞǛ%

BH ǠǛ% ǠǞ% ǟǜ% ǠǙ% Ǡǘ%

PT ǟǚ% ǠǠ% ǠǞ% Ǡǟ% Ǡǚ%

FL Ǡǟ% ǠǠ% ǠǞ% ǠǠ% Ǡǜ%

such overheads.

C+G 2xG C+2xG 3xG C+3xG
0

20

40

60

80

100

Ef
fic

ie
nc

y
%

Strong scalability

MM
BH
PT
FL

Figure ǚ.ǟ: Strong scalability: heterogeneous efficiency for the four case studies. Ǟk x Ǟk matrix for MM,
ǘǗǙǛk parধcles in BH, ǛǗǗ SPP for PT and ǚǙM photons in FL.

Figure ǚ.ǟ illustrates the variaধon of heterogeneous efficiency for the four applicaধons with different de-

vices’ configuraধons – Table ǚ.Ǜ shows the corresponding values. These results show that high efficiency

values (above ǟǗ%) are maintained for all applicaধons. MM exhibits slightly lower efficiency values than

the others because it has a very low computaধon–communicaধon raধo, i.e., the number of arithmeধc

operaধons performed per byte read from memory is very low. There is also a drop in efficiency every

ধme a CPU is added to a mulধple GPU configuraধon. This happens because the CPU exhibits a much

lower compuধng capacity (in the terms defined in Secধon ǚ.ǜ.Ǚ) than the GPUs for these applicaধons,

as can be clearly seen in Figure ǚ.Ǟ by comparing the C and G bars. It becomes thus extremely difficult

for the runধme system to maintain the same efficiency level when a relaধvely less powerful device is

added – remember however that this does not represent a loss in performance for the general case, just

a loss in efficiency. Note that the efficiency reported for BH is lower than for PT and FL; however, the

consumer kernel is being used for this irregular applicaধon. These results confirm that the conclusions

drawn above with respect to irregular applicaধons with light workloads per BWU: the consumer kernel

can sধll be used, even though efficiency values will be lower than for more adequate irregular workloads.

Heterogeneous efficiency for all four case studies across different workloads and number of devices is

ǛǠ

2048 3072 4096 5120 6144 7168 8192
Matrix size x size

0

20

40

60

80

100

Ef
fic

ie
nc

y
%

MM

32 64 128 256 512 1024
Particles x1024

0

20

40

60

80

100

Ef
fic

ie
nc

y
%

BH

25 36 64 100 144 225 400
SPP

0

20

40

60

80

100

Ef
fic

ie
nc

y
%

PT

1 2 4 8 16 32 64
Million photons

0

20

40

60

80

100

Ef
fic

ie
nc

y
%

FL

C+G
2xG
C+2xG
3xG
C+3xG

Figure ǚ.Ǡ: Heterogeneous efficiency with mulধple workloads and mulধple-device configuraধons. Con-
sumer kernel for MM and BH, consumer-producer kernel for PT and FL. C stands for CPU and G for
GPU.

depicted in Figure ǚ.Ǡ. In the general case efficiency increases with the workload and values within the

range of ǟǗ% to ǘǗǗ% are achieved for the maximum tested workloads. It can thus be concluded that the

proposed approach scales well with problem size within the range of devices and workloads evaluated.

In the general case efficiency decreases as the number of devices increases, parধcularly when the CPU

is added to a configuraধon based only on GPUs. This is strong scalability and has been discussed before;

overheads are expected to increase with the number of devices and the CPU contributes with a reduced

compuধng capability compared to the GPUs, making it harder to maintain very high efficiency levels.

Efficiency, nevertheless, drops sublinearly with the number of devices.

PT and FL achieve higher efficiency than MM and BH across a wide range of problem sizes, with FL

sধll struggling for smaller workloads. MM presents the worst efficiency values and its scalability is the

poorest across both dimensions: workload and number of devices. This is due to the low computaধon-

communicaধon raধo. However, it sধll exhibits an average ǟǗ% efficiency and for the highest workload

efficiency ranges from ǞǛ% to ǠǛ%, which are reasonable values considering the memory access over-

heads. BH’s efficiency ranges between ǟǗ and Ǡǟ% for all problem sizes, except for very small workloads,

with maximum values being achieved with two and three GPUs. This is a very posiধve result since a

consumer kernel is being used for an irregular applicaধon, given that BH exhibits very low workload per

BWU. PT consistently achieves efficiency values above ǟǗ% for all workloads and system configuraধons.

Even at low workloads PT performs well given the workload associated with each BWU and in spite of

the memory management costs associated with tasks assignment as described in Secধon ǚ.ǜ.ǘ. Finally,

FL has very low memory management overheads which enables the system to achieve an average of

Ǡǟ% efficiency above ǟ million photons. This is very close to the ideal case, demonstraধng that with the

ǜǗ

proper amount of work to suit available computer power and in the absence of implementaধon penalধes

(such as dynamic memory allocaধon per task), the overhead of the framework is properly compensated

by the gains obtained with an effecধve intra-device scheduling.

3.6.3 Comparison with StarPU
In order to further validate the approach, a comparison of the proposed runধme systemwith a state of the

art heterogeneous system scheduling framework – StarPU [ǜǙ] – is provided. Both runধme systems have

similar data-management mechanisms, but StarPU does not explicitly target irregular workloads, uses a

different inter-device scheduling strategy and ignores intra-device scheduling. StarPU scheduling is based

on the Heterogeneous Earliest Finish Time (HEFT) algorithm [ǜǚ] and in a history-based performance

modelling. TheHEFT has demonstrated to achieve good results with regular workloads on heterogeneous

systems, but it does not address irregular workloads. We implemented the PT applicaধon in StarPU

using the typical algorithm equivalent to C_kernel and compare with the proposed runধme system using

the consumer-producer execuধon model. In StarPU, it is the user’s responsibility to specify the task

granularity, therefore mulধple grain sizes were tested and selected the one achieving the best results

(ǙǛǗ tasks for most of the device configuraধons).

Figure ǚ.ǘǗ illustrates the speedup of the proposed approach over StarPU with mulধple device configu-

raধons and different workloads. With a single mulধ-core CPU the framework achieves a fairly constant

speedup of ǘ.ǚǗx. The different tasks’ sizes in both frameworks results on different behaviours that jus-

ধfy this speedup. The remaining configuraধons clearly show the benefit of using intra-device scheduling

mechanisms. With a single GPU a consistent increase in speedup is observed up to ǘ.ǜǚx. Adding a

CPU reduces the speedup because the gain with the CPU is lower and constant, but for the remaining

configuraধons the speedup increases consistently achieving a maximum of about ǘ.ǜǗx with ǜǞǝ SPP.

The persistent kernel approach is able to balance the load within the GPU, which increases resource uধ-

lizaধon and also leverages the coherence exhibited by the algorithm. These results clearly show that the

proposed approach consistently achieves larger performance than StarPU for irregular workloads and

that this performance gain increases with the workload size, thus favoring larger problem sizes. Also,

even though speedups are reported only for up to Ǜ devices (one mulধ-core CPU and three GPUs), the

data suggests, specially for larger workloads, that no inflecধon point is about to be reached and that ad-

diধonal devices would sধll exhibit significant speedups over StarPU. This conclusion has to be validated

once access to a system endowed with more compuধng devices is available. Combined with a suitable

and unpredictability tailored inter-device scheduling the proposed approach is thus able to deliver more

performance and to efficiently exploit the available compuধng resources when compared with a state of

the art system designed for regular workloads such as StarPU.

ǜǘ

25 36 64 100 144 225 400 576
SPP

0.8

1

1.2

1.4

1.6

1.8

Sp
ee

du
p

vs StarPU - PT
C
G
C+G
2xG

C+2xG
3xG
C+3xG

Figure ǚ.ǘǗ: Path tracing – Speedup of the proposed approach over StarPU with mulধple device configu-
raধons when scheduling irregular workloads. C stands for CPU and G for GPU. Note that horizontal axis
is in log scale

3.7 Conclusions and Future Work
This contribuধon presents a framework for efficient execuধon of data parallel irregular applicaধons on

heterogeneous systems while maintaining high programming producধvity. The Tier-ǚ, Tier-Ǚ and Tier-ǘ

parallelism levels are addressed. The framework integrates a unified programming and execuধon model

with data-management and scheduling services, that keep the programmers agnosধc to HS parধculariধes,

allowing them to concentrate on the applicaধon funcধonality.

Part of the results concentrate on the programming model and on Tier-ǚ scheduling showing that both

regular and irregular applicaধons scale well as more devices are added to the compuধng system. They

also show that Tier-Ǚ and Tier-ǘ scheduling, based on consumer-producer kernels, is able to sustain

significant performance gains over consumer kernels for irregular applicaধons, as long as the workload

per basic work unit is enough to compensate the overheads associated with queuing and scheduling the

large number of dynamically generated tasks. If the applicaধon exhibits a very low workload per basic

work unit, then consumer kernels can sধll be used.

The proposed framework has proven to enable efficient exploitaধon of HS for irregular applicaধons, while

requiring minimal programming effort: using addiধonal devices with architectures already exploited by

the applicaধon only requires registering them through the HCP, while adding devices with different archi-

tectures (supported by the framework through the device API) requires providing the respecধve kernels.

Expanding the framework support to new device architectures requires developing API implementaধons

for those architectures, a task to be entailed by the framework developers, not applicaধon programmers.

The runধme systemwas further validated and compared with a heterogeneous system (Tier-ǚ) scheduling

framework – StarPU. Results reveal that our approach is able to outperform a state of the art runধme sys-

tem designed for regular workloads. This is, to the best of our knowledge, the first published integrated

approach that successfully handles irregular workloads over heterogeneous systems.

The future work in this contribuধon includes extending the proposed framework to support other archi-

ǜǙ

tectures such as DSPs and Intel PHI’s, and to further assess the scalability of the proposed mechanisms

with systems with a larger number of devices.

ǜǚ

ǜǛ

Chapter

4 Heterogeneous
Distributed
Systems

Contents
4.1 Introducধon, ǜǝ
4.2 Related Work, ǜǠ
4.3 nSharma’s Architecture, ǝǗ

4.3.1 Online Profiling Module, ǝǘ
4.3.2 Performance Model , ǝǙ
4.3.3 Decision Module, ǝǙ
4.3.4 Reparধধoning Module, ǝǛ
4.4 Results, ǝǜ

4.4.1 Performance Gain, ǝǞ
4.4.2 Efficiency Gain, ǝǠ
4.4.3 Heterogeneity and Dynamic Load Balancing, Ǟǘ
4.5 Conclusions and Future Work, Ǟǘ

ǜǜ

This chapter describes an approach to tackle the challenges posed by mulࣅ-node heterogeneous systems.

The approach is essenࣅally based on a dynamic load balancing approach, designed to handle dynamic

workloads in systems with performance imbalances across compuࣅng nodes. The approach is integrated

into a widely used numerical simulaࣅon library and evaluated in mulࣅple systems with different imbalance

levels.

4.1 Introducধon
The contribuধon discussed in this chapter will address Tier-Ǜ parallel compuধng systems. These systems,

typically known as clusters or supercomputers, are composed by mulধple nodes connected by a network

interface in a distributed memory layout. Clusters are one of the most widely available parallel systems

and provide a cost-effecধve, extensible and powerful compuধng resource. One of the most important

branch of applicaধons executed in these systems are CFD simulaধons which will be the main target of

this contribuধon.

CFD simulaধons have become a fundamental engineering tool, witnessing an increasing demand for

added accuracy and larger problem sizes, being one of themost compute intensive engineering workloads.

The most common approaches to CFD, such as Finite Elements (FEs) and FVs, entail discreধzing the

problem domain into cells (or elements) and then solving relevant governing equaধons for the quanধধes

of interest for each cell. Since each cell’s state depends on its neighbours, solvers employ some form

of nearest neighbour communicaধon among cells and iterate unধl some convergence criteria are met.

Typically, CFD problems are unsteady, requiring an outer loop which progresses through simulaধon ধme

in discrete steps. Domain decomposiধon is used to make available a suitable degree of parallelism, i.e., the

set of discrete cells is parধধoned into subsets which can then be distributed among the computaধonal

resources. Such very compute intensive type of workloads are obvious candidates to exploit the inherent

parallel compuধng capabiliধes of Tier-Ǜ systems.

These systems can be fairly easily extended by adding more nodes with idenধcal architectures, but of-

ten from newer generaধons offering more compuধng capabiliধes. This extensibility renders the system

heterogeneous in the sense that different generaধons of hardware, with diverse configuraধons, coexist

in the same system. An addiধonal source of heterogeneity is the integraধon on current supercompuধng

clusters [Ǚǚ] of devices with alternaধve architectures, programming and execuধon models, such as the

new highly parallel Intel KNLs and the massively parallel GPUs [ǝǛ].

However, this heterogeneity results in different performances across nodes, potenধally leading to severe

load imbalances. Staধc and uniform workload distribuধon strategies, as typically used by CFD sođware,

will result on the computaধonal units waiধng on each other and resources underuধlizaধon. Properly

distribuধng the workload and leveraging all the available compuধng power is thus a crucial feature, which

ǜǝ

has been revisited in the latest years due to increasing systems’ heterogeneity [ǝǜ].

The load distribuধon problem is further aggravated in the presence of dynamic workloads. CFD solvers

ođen refine the problem domain discreধsaধon as the simulaধon progresses through ধme, allowing for

higher accuracy in regions where the quanধধes of interest exhibit higher gradients. In the scope of

this work, these applicaধons will be referred to as adapࣅve applicaࣅons. This refinement entails spliষng

and merging cells, resulধng on a new domain discreধsaধon. Given that the computaধonal effort is in

general proporধonal to the number of cells, its distribuধon across the problem domain also changes.

Not accounধng for this refinement and maintaining the iniধal mapping throughout the whole simulaধon

would lead to load imbalances and huge performance losses.

The combinaধon of the differences in compuধng power provided by the heterogeneous CUs with the

differences in compuধng requirements from dynamic workloads, defines one of the main challenges

idenধfied in this thesis — the two-fold challenge (Secধon ǘ.ǘ.Ǚ). The adopধon of DLB is proposed as a

means to address this compuধng imbalance as a whole and allows for fully leveraging all the available

compuধng power and improve execuধon ধme. The proposed mechanisms in this chapter will address

the parধculariধes of Tier-Ǜ parallelism and target the most impacধng challenge on these systems — the

load and performance imbalances.

This contribuধon will thus focus in combining DLBwith HS in the context of CFD simulaধons by integrat-

ing DLB mechanisms in a widely used applicaধon: OpenFOAM. OpenFOAM is a free and publicly avail-

able open-source sođware package, specifically targeধng CFD applicaধons [ǝǝ]. It is an highly extensible

package, allowing applied science experts to develop scienধfic and engineering numerical simulaধons in

an expedite manner. OpenFOAM includes a wide range of funcধonaliধes such as simulaধon refinement,

dynamic meshes, parধcle simulaধons, among others. OpenFOAM large set of features and extensibility

has made it one of the most used and leading open-source sođware packages across the CFD community.

It has also been made available in mulধple supercomputers and compuধng centres, along with technical

support. OpenFOAM parallel distributed memory model is based on a domain decomposiধon approach,

however, there is liħle to no support for either HS or DLB, which is addressed by this work by integraধng

and evaluaধng all proposed mechanisms into this package. More details on OpenFOAM are presented

below.

Providing such support is of crucial importance, however, this task is too complex to be handled by the

CFD applicaধon developer. This complexity has two different causes: i) efficient mapping of the dynamic

workload onto a vast set of heterogeneous resources is a research level issue, far from the typical concerns

of a CFD expert, and ii) execuধon ধme migraধon of cells (parধcularly dynamically refined meshes of

cells) across memory spaces requires a deep understanding of OpenFOAM’s internal data structures

and control flow among lower level code funcধons and methods. Integraধon of these faciliধes with

OpenFOAM by computer science experts is proposed as the best soluধon to provide efficiency and

robustness, while simultaneously promoধng reuse by the CFD community.

ǜǞ

The OpenFOAM Challenge

Open Source Field Operaধon and Manipulaধon (OpenFOAM) is a powerful Cӫӫ sođware package developed
for CFD and other mulধ-physics engineering problems. The library addresses the three main stages of
a numerical simulaধon (pre-processing, solving and post-processing) and it is centred on the concept of
applicaধons that are subdivided in solvers and uধliধes. Specific solvers are developed to solve a parধcular
conধnuum mechanics problem, while uধliধes are mainly related to data manipulaধon and analysis.

OpenFOAM, originally known as FOAM, was created in the Imperial College London, however, its devel-
opment path suffered from severe fragmentaধon resulধng in mulধple development parধes and forks. Its
development started in the later ǘǠǟǗs and in ǙǗǗǗ, Henry Weller together Hrvoje Jasak, founded Nabla Ltd as
the main development party. In ǙǗǗǛ, the team diverged, and Weller founded OpenCFD Ltd. Simultaneously,
Jasak founded Wikki Ltd and developed a fork — foam-extend. In ǙǗǘǘ, OpenCFD was acquired by SGI and
then by the ESI Group in ǙǗǘǙ. Two years later, Weller leđ the ESI Group and conধnued the development
at CFD Direct Ltd on behalf of the OpenFOAM Foundaধon Ltd, to which the copyright of OpenFOAM was
transferred at some point. The maintained and distributed forks are thus the CFD Direct, ESI Group and the
foam-extend forks.

OpenFOAM is considered the most used free CFD library and it is in the top ǜ of the most used CFD libraries.
It has an acধve development and support with several reported issues being submiħed and resolved per
week. OpenFOAM is a complex sođware package with over ǘ.ǜ million lines of code scaħered over about
half a million files. It makes full use of Cӫӫ object inheritance and polymorphism features, together with
Cӫӫ templates. The parallel execuধon approach is based on the distributed memory model using MPI and
domain decomposiধon. Two levels of the development can be idenধfied: (i) Solver development, where new
solvers are developed or adapted and (ii) core development, related to the development of the OpenFOAM
core funcধonality. Given the complexity of the package, the laħer is far more challenging, requiring a
deeper understanding of the whole architecture of the library. Its open-source development approach
also contributes to its complexity as a large percentage of the components were developed by a variety of
programmers and applied experts.

Another challenging aspect of the development, not only of OpenFOAM but any CFD sođware package, is
the inherent behaviour of fluid mechanics and their simulaধon. For instance, convergence is a major issue
in CFD simulaধons that requires knowledge and insight on the specific physical phenomena being simulated.
Any change applied to a simulaধon code, parধcularly parallel code, may promptly result in a non-convergent
simulaধon. A non-convergent simulaধon will not only provide incorrect physical results, but it may also result
in residual overflow and/or unstable code execuধon.

To approach the above hypothesis, this work proposes nSharma — Numerical Simulaধon Heterogene-

ity Aware Runধme Manager — a runধme manager that provides OpenFOAM with heterogeneity aware

DLB features. nSharma monitors the heterogeneous resources performance under the current load, com-

bines this data and past history using a performance model to predict the resources behaviour under new

workload resulধng from the refinement process and makes informed decisions on how to re-distribute

the workload. The aim is to minimize performance losses due to workload imbalances over HS, there-

fore contribuধng to minimize the simulaধon’s execuধon ধme. DLB minimizes idle ধmes across nodes by

progressively and in an educated way assigning workload, which can be itself dynamic, to the available

resources. nSharma package integrates in a straighĤorward manner with current OpenFOAM distribu-

ধons, enabling the adopধon of heterogeneity aware DLB. To best of author’s knowledge, this is the first

implementaধon and integraধon of heterogeneous-aware DLB mechanism in OpenFOAM.

ǜǟ

4.2 Related Work
Libraries supporধng the development of CFD simulaধons, include OpenFOAM[ǝǝ], ANSYS Fluent[ǝǞ],

ANSYS CFX[ǝǟ], STAR-CCMӫ[ǝǠ], among others. OpenFOAM is distributed under the General Public

Licence (GPL), allowing modificaধon and redistribuধon while guaranteeing conধnued free use. This mo-

ধvated the selecধon of OpenFOAM for the developments envisaged in this work. The authors see no

reason why this document’s higher level assessments and results can not be applied to other similar CFD

libraries. This generalizaধon should, however, be empirically verified on a per case basis.

Domain decomposiধon requires that the mesh discreধzaধon is parধধoned into sub-domains. This is a

challenging task impacধng directly on the workload associated with each sub-domain and on the volume

of data that has to be exchanged among sub-domains in order to achieve global convergence. Frame-

works that support mesh-based simulaধons most ođen delegate mesh parধধoning to a third-party sođ-

ware. ParMETIS [ǞǗ] and PTSCOTCH [Ǟǘ] are two widely used mesh parধধoners, which interoperate

with OpenFOAM. ParMETIS has been used within this work’s context because it provides a more straight-

forward support for Adapধve Mesh Refinement (AMR).

ParMETIS includes methods to both parধধon an iniধal mesh and re-parধধon a mesh that is scaħered

across CUs disjoint memory address spaces, avoiding a potenধal full re-locaধon of the mesh in runধme.

The (re)parধধoning algorithms opধmize for two criteria: minimizing edge-cut and element migraধon.

These criteria are merged into a single user-supplied parameter (ITR), describing the intended raধo of

inter-process communicaধon cost over the data-redistribuধon cost. ParMETIS also provides an interface

to describe the relaধve processing capabiliধes of the CUs, allowing more work units to be assigned to

faster processors .nSharma calculates these parameters in order to control ParMETIS’ reparধধoning and

thus achieve efficient DLB.

Some frameworks providing DLB to iteraধve applicaধons have been proposed. DRAMA [ǞǙ] provides a

collecধon of balancing algorithms that are guided by a cost model which aims to reduce the imbalance

costs. It is strictly targeted for finite element applicaধons. PREMA [Ǟǚ] is designed to explore an over-

decomposiধon approach to minimize the overhead of stop-and-reparধধon approaches. This approach

is not feasible in some mesh-based numerical simulaধons (due to, for instance, data dependencies) and

no menধon to HS support could be found. Zoltan [ǞǛ] uses callbacks to interface with the applicaধon

and integrates with DRUM [Ǟǜ], a resource monitoring system based on staধc benchmark measured

in MFLOPS and averaged per node. The resource monitoring capabiliধes of nSharma are much more

suitable to account for heterogeneous compuধng devices – see next secধon. Zoltan is not ধed to any

parধcular CFD framework. It does not enforce any parধcular cost funcধons and uses abstracধons to

maintain data structure neutrality. This however comes at the cost of requiring the CFD applicaধon

developer to provide all data definiধons and pack/unpack rouধnes, which in a complex applicaধon like

ǜǠ

OpenFOAM is an programming intensive and error prone task.

nSharma integrates with OpenFOAM, accessing its data structures and migraধon rouধnes. Although

this opধon implies some code portability loss (across alternaধve libraries), it avoids the mulধple costs of

data (and even conceptual) transformaধons together with overheads of code binding between different

sođware packages. This allows direct exploitaধon, assessment and validaধon of DLB techniques for

OpenFOAM applicaধons on HS. The results on conceptually more abstract design opধons, such as the

performance model and the decision making mechanism, should sধll generalise to alternaধve sođware

implementaধons, although empirical verificaধon is required.

Some of the above cited works can handle HS. They do so by using high-level generic metrics, such as

vendor announced theoreধcal peak performances or raw counters associated to generic events such as

CPU and memory usage [Ǟǜ], [Ǟǝ]. The associated performance models are however generic, ignoring

both the characterisধcs of CFD workloads and emerging devices parধcular execuধon models and com-

puধng paradigms, and thus tend to be inaccurate [ǞǞ]. This work proposes a performance model which

explicitly combines the workload parধculariধes with the heterogeneous devices capabiliধes. The design

of this performance model is strictly coupled with the requirements of the proposed DLB mechanisms.

FuPerMod [Ǟǟ] explores Funcধonal Performance Models, extending tradiধonal performance models to

consider performance differences between devices and between problem sizes. It is based on speed

funcধons built based on observed performances withmulধple sizes, allowing the evaluaধon of a workload

distribuধon [ǞǞ]. Zhong applied these concepts to OpenFOAM [ǞǠ] and validated it in mulধ-core and

mulধ-GPU systems. This contribuধon introduces a similar performance model ধghtly integrated with the

remaining DLB mechanisms.

Mooney et al. [ǟǗ] addressed AMR in OpenFOAM and proposed a simple approach to perform automaধc

load balancing on homogeneous systems and directly integrated in OpenFOAM. The work focused on

moving boundaries and re-meshing and presented some iniধal results. Because OpenFOAM does not

support migraধon of refined meshes, Mooney et al. also proposed and implemented a mechanism to

enable such migraধon. This mechanism is used in this contribuধon as discussed in the following secধons.

4.3 nSharma’s Architecture
OpenFOAM simulaধons are organized as solvers, which are iteraধve processes evaluaধng, at each itera-

ধon, the quanধধes of interest across the problem domain. Each iteraধon includes mulধple inner loops,

solving a number of systems of equaধons by using iteraধve linear solvers. Within this work, solver refers

to OpenFOAM general solvers, rather than the linear solvers. Since OpenFOAM parallel implementaধon

is based on a zero layer domain decomposiধon over a distributed memory model, the solver’s mulধple

processes synchronize ođen during each iteraধon, using both nearest neighbour and global communica-

ǝǗ

ধons.

nSharma is fully integrated into OpenFOAM and organized as a set of components, referred to as mod-

ules or models. The Online Profiling Module (OPM) acquires informaধon w.r.t. raw system behaviour.

The Performance Model (PM) uses this data to build an approximaধon of each CU performance and

to generate esধmates of near future behaviour, in parধcular for different workload distribuধons. The

Decision Model (DM) decides whether workload redistribuধon shall happen, based on this higher level

informaধon and esধmates. The Reparধধoning Module (RM) handles the details of (re)parধধoning sub-

domains for (re)distribuধon across mulধple processors, while finally load redistribuধon mechanisms carry

on the cells migraধon among compuধng resources, therefore enforcing the decisions made by nSharma.

The whole DLB mechanism is ধghtly coupled with OpenFOAM iteraধve execuধon model. This allows

nSharma to learn about system behaviour and also allows for progressive convergence towards a globally

balanced state - rather than trying to jump to such a state at each balancing episode. Dynamic workloads

are also handled by OpenFOAM and nSharma iteraধve model, with impact on the whole system balanced

state and simulaধon execuধon ধme being handled progressively.

Note that the runধme is fully integrated in the OpenFOAM sođware package and distributed as a plug-in.

The mechanisms introduced operate transparently, meaning that no acধon is required to the OpenFOAM

end-user apart from some parametrizaধon. This way, nSharma enables the use of DLB in HS with no

effort, substanধally increasing producধvity which is one of the main challenges idenধfied in this thesis.

4.3.1 Online Profiling Module
The OPM instruments OpenFOAM rouধnes to measure execuধon ধmes, crucial to esধmate the CUs

relaধve performance differences. This has been achieved by thoroughly analysing OpenFOAM workflow

and operaধons, and idenধfying a set of low-level rouধnes that fundamentally contribute to the applicaধon

execuধon ধme. It has been empirically verified that these ধmes correlate well with the computaধonal

effort, enabling nSharma to monitor only the parts of the simulaধon that are relevant to the associated

performance modelling. The selecধve profiling nature also allows for a low instrumentaধon overhead

without any addiধonal analyধcal models or benchmarking.

The procedures are registered and measured using a simple API that defines two types of procedures:

a Secধon and an Operaধon. Secধons represent a block procedure, e.g. solve pressure equaধon, and

they may contain mulধple other Secধons, Operaধons, synchronizaধons, etc. Operaধons exist within

Secধons and represent the lowest level procedure. There are two types of Operaধons: an IDLE type

Operaধon which is a synchronizaধon or a memory transfer, and a BUSY type Operaধon that represents

a computaধonal task without any synchronizaধons or network communicaধons. Each CU will measure

its own rouধnes and upon central request, will only send perধnent informaধon to a master enধty. Each

CU will also compute the accumulated ধme for each BUSY operaধon, required for the model. This

ǝǘ

categorizaধon of execuধon ধme allows to measure performance individually, otherwise execuধon ধme

would be cluħered by dependencies and communicaধons.

4.3.2 Performance Model
The PM characterizes the system’s – and its individual components, such as each CU – performance

and provides esধmates of future performances under different workload distribuধons. Workload and

performance characterizaধon requires the definiধon of a work unit, upon which problem size can be

quanধfied. OpenFOAM uses Finite Volumes, with the problem domain discreধsaধon being based on

cells that are combined to define the computaধonal domain. With this approach problem size is ođen

characterized by the number of cells, which is, therefore, the work unit used by nSharma.

Each CU performance is characterized by the average ধme required to process one work unit, denoted

by rp (where p indexes the CUs). For each iteraধon i and CU p, the respecধve performance index (rip) is

given by the raধo of the iteraধon’s total busy ধme over the number of cells assigned to p, Ni
p:

rip =

∑B
j β

j,i
p

Ni
p

(Ǜ.ǘ)

where Ni
p is the number of cells assigned to CU p and βj,ip is the busy ধme for each operaধon j from

the set of operaধons B captured by the OPM. The actual metric used for balancing decisions, r̃ ip, is a

weighted average over a window of previous iteraধons, which smooths out outliers and, for dynamic

workloads, takes into account different problem sizes (different numbers of cells assigned to each CU at

each iteraধon).

To esধmate the execuধon ধme of the next iteraধon, Ti+1
p , with an arbitrary number of cells, Ni+1

p , the PM

uses the the above described metric mulধplied by Ni+1
p :

Ti+1
p = r̃ ip × Ni+1

p (Ǜ.Ǚ)

4.3.3 Decision Module
It is theDM role to assess the system balancing state and decide whether a load redistribuধon step should

take place. It is also the DM who decides what load to redistribute. Assessing and making such decision

is referred to as a balancing episode. Since these episodes represent an overhead, it is crucial to decide

when should they occur. nSharma allows them only at the beginning of a solver iteraধon, and defines a

period, expressed in number of iteraধons, for their frequency. The unpredictability of dynamic workloads

makes it unpracধcal to define an opধmal balancing period, therefore it is auto-tuned in execuধon ধme,

as described below.

ǝǙ

At the beginning of a new solver’s iteraধon i, the Relaধve Standard Deviaধon (RSD), among the CUs

busy ধmes for the previous iteraধon i− 1 is calculated:

RSDi−1 =
σ i−1∑B
j β

j,i−1
p

∗ 100 (Ǜ.ǚ)

standard deviaধon, σ, is well known as a good, light-weight, indicator of a system’s balancing state. A

linear regression is then computed over the last few iteraধons RSD in order to esধmate its rate of change,

which is used to update the period. Also, a normalizaধon of the magnitude of the RSD is added to the

contribuধon to update the period. Therefore, the load balancing period is adjusted based on how fast

the system’s balancing state changes and how much it changes.

When a load balancing episode is triggered the DM will compute, for each CU p, how many cells, Ni+1
p , to

assign to it in the next iteraধon. It will devise a new load distribuধon, where all CUs will take, the same

amount of ধme to process the assigned work units, according to each CU execuধon rate, r̃ ip. Since the

total number of cells N is known, a well-determined system of P linear equaধons can be formulated (see

Equaধon Ǜ.Ǜ) and solved to find Ni+1
0 , . . . ,Ni+1

P−1 – the number of cells to assign to each CU.

r̃ i0 × Ni+1
0 = r̃ i1 × Ni+1

1

r̃ i1 × Ni+1
1 = r̃ i2 × Ni+1

2

...

r̃ iP−2 × Ni+1
P−2 = r̃ iP−1 × Ni+1

P−1

Ni+1
0 + Ni+1

1 + ...+ Ni+1
P−1 = N

(Ǜ.Ǜ)

Ađer compuধng this new distribuধon, a decision has to be made as to whether it will be applied or not,

by taking into account the cells migraধon cost, m. The goal is that the remaining simulaধon execuধon

ধme ađer the load redistribuধon must be smaller than not migraধng. The next iteraধon i + 1 expected

execuধon ধme without load redistribuধon is given by (note that Ni
p and Ni+1

p are the same):

Ti+1 = max
p∈{0,...,P−1}

(̃r ip × Ni
p) (Ǜ.ǜ)

whereas with the new load distribuধon it is:

Tdist
i+1 = r̃ ip × Ni+1

p (Ǜ.ǝ)

(no need for max because Tdist i+1 is approximately the same for all p, according to Equaধon Ǜ.Ǜ). Let n be

the number of remaining iteraধons and δ represent some addiধonal execuধon overheads independent

on workload redistribuধon. Then the condiধon:

(
n× Ti+1 + δ

)
>

(
m+ n× Tdist

i+1 + δ
)

(Ǜ.Ǟ)

ǝǚ

expresses that migraধon will only take place if it is expected to reduce the total remaining execuধon ধme,

while taking into account the cost of actually enforcing the migraধon m. This cost is esধmated by keeping

track of the costs of previous migraধons and using a linear regression to esধmate the cost of any arbitrary

decomposiধon.

Ti+1 >
m

n
+ Tdist

i+1 (Ǜ.ǟ)

Equaধon Ǜ.ǟ (a simplificaধon of the condiধon equaধon above) makes it clear that a load redistribuধon

should only be enforced if the cost of migraধng cells can be properly amorধzed across the remaining n

iteraধons. Consequently, towards the end of the simulaধon, as n gets smaller, the cells migraধon impact

on execuধon ধmes is progressively higher and load redistribuধon will become proporধonally less likely.

4.3.4 Reparধধoning Module
nSharma reparধধoning module interfaces with ParMETIS (see Secধon Ǜ.Ǚ), by carefully parametrising the

relevant methods and by extending some funcধonality. ParMETIS’ reparধধoning method is used, which

takes into account the current mesh distribuধon among CUs and balances cells’ redistribuধon cost with

the new cells’ parধধon communicaধon costs during the parallel execuধon of the next iteraধons. The

relaধonship between these two costs is captured by the ITR parameter. nSharma learns this parameter

by requesধng mulধple decomposiধons with different ITR values in iniধal iteraধons, assessing the most

effecধve ones and converging to a single one. Besides ITR, this method also receives a list of each CU

relaধve compuধng power, given by ωp = Ni−1
p /N, as evaluated by the Decision Module (Secধon Ǜ.ǚ.ǚ).

OpenFOAM does not naধvely support migraধon of refinedmeshes, which required integraধng such sup-

port (based on Kyle Mooney’s approach [ǟǗ]). Since each refined cell is always a child of a single original

(non-refined) cell and since the refined hierarchy is explicitly maintained, parধধoning is applied to the orig-

inal (non-refined) coarse mesh; ađer parধধoning, the refined mesh is considered to performmigraধon. To

ensure that the original non-refined coarse mesh reflects the correct workload, weights for each coarse

cell are provided to ParMETIS based on the number of child cells, which will be used by ParMETIS in

devising new parধধons. The RM also performs communicaধon topology-aware reparধধoning in order

to tackle heterogeneous communicaধons. nSharma maintains a Communicaধon Graph (CommGraph),

with nodes represenধng sets of CUs that share with each others the same communicaধon medium. The

RM requests to ParMETIS a higher level parধধoning based on the CommGraph nodes, and then further

requests a new parধধoning for each such node whenever it includes more than one CU. This hierarchical

reparধধoning leverages ParMETIS boundary minimizaধon mechanisms, potenধally reducing slower links

communicaধons.

ǝǛ

Figure Ǜ.ǘ: damBreak geometry and a subset of the simulaধon result with Ǜ ranks (each color represents
the cells assigned to a different rank) and AMR. Cell distribuধon devised using ParMETIS and default
parametrisaধon.

Figure Ǜ.Ǚ: windAroundBuildings simulaধon illustraধon. First plot shows cells distribuধon over Ǜ ranks
(each color represents the cells assigned to a different rank), second plot illustrates the pressure at ধme-
step ǙǗǗ and the two last plots show examples of velocity stream lines. Cell distribuধon devised using
ParMETIS and default parametrisaধon.

4.4 Results
For experimental validaধon, the damBreak simulaধon was selected as the base case study among those

distributed with OpenFOAM tutorials. It uses the interDyMFoam solver to simulate the mulধphase flow

of two incompressible fluids – air and water – ađer the break of a column of water driven by gravity.

Adjustable ধme-step was disabled and all other parameters are the same as distributed in the package.

For dynamic workloads, AMR subdivides a cell into ǟ new cells according to the interface between the

water and air; cells will thus be refined (and unrefined) following the evoluধon of the two phases’ interface.

Figure Ǜ.ǘ shows the geometry and a subset of the simulaধon result with Ǜ MPI processes (ranks) and

AMR. Each colour represents the cells assigned to a different rank and the illustrated cell distribuধon

was devised using ParMETIS and default parametrisaধon.

Addiধonally, a fairly different case study was used in order to further validate nSharma capabiliধes. The

windAroundBuildings simulaধon, illustrated in Figure Ǜ.Ǚ, uses the simpleFoam solver to simulate the wind

ǝǜ

Table Ǜ.ǘ: Compuধng systems and system configuraধons used in evaluaধon

System SeARCH Stampede2

Tag ǝǛǘ - Ivy Bridge Eǜ-ǙǝǜǗvǙ @ Ǚ.ǝǗGHz, ǘǝ cores p/node

Tag ǝǝǙ - Ivy Bridge Eǜ-ǙǝǠǜvǙ@ Ǚ.ǛǗGHz, ǙǛ cores p/node

Tag ǛǙǘ - Nehalem EǜǜǙǗ @ Ǚ.ǙǞGHz, ǟ cores p/node
Nodes

Tag KNLǞǙǘǗ - Intel Xeon Phi ǞǙǘǗ @ ǘ.ǚGHz, ǝǛ cores p/ node

Tag KNLǞǙǜǗ - Intel

Xeon Phi ǞǙǜǗ @

ǘ.ǛGHz (”Knights

Landing”), ǝǟ cores

p/ node

Homogeneous I Heterogeneous I Heterogeneous II Homogeneous II
Mulধ-node

configuraধons
Mulধple ǝǛǘ’s Pair(s) of ǝǛǘӫǛǙǘ Pair ǝǝǙӫKNLǞǙǘǗ Mulধple KNLǞǙǜǗ’s

Network Myrinet (myri) Myrinet (myri) Ethernet (eth) Intel Omni-Path (OPA)

behaviour across a small city composed by mulধple different buildings. Pressure and velocity and the

main properধes assessed by this simulaধon. Figure Ǜ.Ǚ first plot shows cells distribuধon over Ǜ ranks

(each color represents the cells assigned to a different rank) — the number of cells is staধc throughout

the simulaধon, no AMR was applied. The second plot illustrates the pressure at ধme-step ǙǗǗ and the

two last plots show examples of velocity stream lines. Cell distribuধon devised using ParMETIS and

default parametrisaধon along with the required changes to compute in parallel.

Note that these solvers require frequent local and global communicaধons. As the degree of parallelism

is increased, more sub-domains are created, increasing the number of cells in sub-domains boundaries

and, consequently, increasing communicaধons among sub-domains, with network bandwidth and latency

impacধng significantly in the simulaধon’s performance.

Four hardware configuraধons were used from two different clusters – SeARCH cluster (Universidade

do Minho, Portugal) and StampedeǙ (Texas Advanced Compuধng Center, USA). Configuraধons are de-

scribed in Table Ǜ.ǘ. OpenFOAM Ǚ.Ǜ.Ǘ was used, compiled with GNU C Compiler in SeARCH and with

Intel C Compiler in StampedeǙ. Each MPI process is associated to one CU, which in this chapter is de-

fined as a processing core: the number of used cores is equivalent to the number of processes. MPI

terminology refers to processes as ranks, and this terminology is maintained throughout this secধon. For

the Homogeneous I and Heterogeneous I, the Myrinet network interface is used, however, the Myrinet

network cards installed in SeARCH only support up to ǟ ports which means that each ǝǛǘ node is limited

to ǟ ranks (ǟ cores).

ǝǝ

4 8 16
0.5

1

1.5

2

2.5

nS
ha

rm
a

ga
in

1.22
1.37

1.94

2-nodes, static
 HeterogI, 1024K

4 8 16
Ranks

1.32

1.71 1.7

2-nodes, dyn
 Homog, 512K

4 8 16

1.13
1.29 1.24

2-nodes, dyn
 HeterogI, 512K

8 16 32
0.5

1

1.5

2

2.5

nS
ha

rm
a

ga
in

1.19

1.48
1.59

4-nodes, static
 HeterogI, 1024K

8 16 32
Ranks

1.85
1.65 1.6

4-nodes, dyn
 Homog, 512K

8 16 32

1.37 1.36
1.13

4-nodes, dyn
 HeterogI, 512K

Figure Ǜ.ǚ: nSharma gain with SeARCH Homogeneous and Heterogeneous I

4.4.1 Performance Gain
Performance gain is hereby defined as the reducধon in execuধon ধme achieved by using nSharma and

quanধfied as the raধo between the execuধon ধmes without and with nSharma, respecধvely. Figure Ǜ.ǚ

illustrates such gain for ǙǗǗ iteraধons of the damBreak simulaধon in SeARCH. The first row depicts re-

sults obtained with Ǚ nodes, the second row results obtained with Ǜ nodes. Results in the first column

were obtained with a staধc workload (no AMR) and problem size of ǘǗǙǛK cells (Heterogeneous I config-

uraধon), whereas in the second and third columns dynamic workloads (AMR) were used with ǜǘǙK cells

(Homogeneous and Heterogeneous I configuraধons, respecধvely).

nSharma achieves a significant performance gain for all experimental condiধons. For staধc workloads,

the gain increases with the number of ranks, with a maximum gain of ǘ.ǠǛ gain with Ǚ nodes and ǘǝ ranks

and ǘ.ǜǠ with Ǜ nodes and ǚǙ ranks. This gain is basically a consequence of nSharma’s heterogeneous

awareness, which allows remapping more cells to the ǝǛǘ more powerful cores, which would otherwise

be waiধng for the ǛǙǘ processing cores to finish execuধon.

For homogeneous hardware and dynamic workloads (second column), performance gain is due to moving

cells from overloaded cores to underloaded ones, with such fluctuaধons due to AMR. Significant gains

are sধll observed for all experimental condiধons, but this gain suffers a slight decreases as the number of

ranks increases for Ǜ nodes. This is due to an increase in migraধon and reparধধoning costs (see Figure

Ǜ.ǜ), proporধonal to the increased number of balance episodes required in a dynamic workload scenario

(see Figure Ǜ.Ǜ). The communicaধon overheads also increase from Ǚ to Ǜ nodes sustaining more sub-

domains and more communicaধons over a limited bandwidth network. In Figure Ǜ.ǝ, an significantly

higher number of cells is used, miধgaধng these overheads and resulধng in higher speedup.

ǝǞ

0 50 100 150 200
0.8

0.9

1

1.1

1.2

N
um

be
rt

 o
f c

el
ls

(M
)

static, heterog

0 50 100 150 200
Iteration Number

dyn, homog

Busy RSD
 w/ nSharma
Busy RSD
 wo/ nSharma
Balance
episode
Total cells

0 50 100 150 200

dyn, heterog

0

50

100

150

200

Bu
sy

 R
SD

 (%
)

Figure Ǜ.Ǜ: Busy RSD with and without nSharma for Ǜ nodes and ǚǙ ranks.

8 16 32
0

5

10

15

20

25

Ex
ec

ut
io

n
Ti

m
e

%

static, heterog, 1024K

8 16 32
Ranks

dyn, homog, 512K

Profiler
nSharma
parMetis
redistribute
Simulation
gain

8 16 32

dyn, heterog, 512K

1

1.2

1.4

1.6

1.8

2

nS
ha

rm
a

ga
in

Figure Ǜ.ǜ: Execuধon ধme percentage breakdown for Ǜ nodes

The last column illustrates the combinaধon of dynamic workload with HS. The gain is mostly constant

with the number of ranks. It is lower than with staধc workloads or homogeneous hardware, because the

decision making process is much more complex requiring a much higher level of adaptability, i.e more

frequent balancing episodes and larger volumes of data migraধon (see Figures Ǜ.ǜ and Ǜ.Ǜ).

Figure Ǜ.Ǜ illustrates the accumulated busy RSD (as described in Secধon Ǜ.ǚ.ǚ) with and without nSharma

for the same experimental condiধons, Ǜ nodes and ǚǙ ranks. The grey area represents the total number

of cells and the verধcal lines are balance episodes. Clearly nSharma results in a large RSD reducধon,

i.e. reduced busy ধmes variaধon across ranks, thus enabling significant performance gains. This can be

clearly seen around iteraধon number ǜǗ for the staধc case, where a large RSD reducধon occurs.

Figure Ǜ.ǜ illustrates, for the Ǜ nodes cases of Figure Ǜ.ǚ, the percentage of execuধon ধme spent in

different algorithmic segments: Profiler represents ধme used by the OPM, nSharma ধme for decision

making, parMeࣅs represents reparধধoning, redistribute is cells migraধon cost and simulaࣅon represents

the ধme dedicated to the actual simulaধon. The side slim bars represent the performance gain, which is

the same as in Figure Ǜ.ǚ. The verধcal axis goes up to only Ǚǜ%, the remaining Ǟǜ% are simulaধon ধme

and add-up to the illustrated.

The overheads associated with profiling and decision making are negligible in all experimental condiধons.

Reparধধoning (ParMETIS) and redistribuধon costs increase with the number of ranks. Both exhibit an

increasing overhead in all cases which is ধghtly related to the fact that the numbers of migrated cells and

balancing episodes (see Figure Ǜ.Ǜ) increase with the hardware configuraধon and the workload complex-

iধes (homogeneous versus heterogeneous and staধc versus dynamic, respecধvely). Nevertheless the

ǝǟ

overheads associated with DLB are below ǘǞ%, allowing for very significant performance gains.

The first three plots of Figure Ǜ.ǝ presents nSharma performance gain for dynamic workload, Ǜ nodes,

fixed number of ranks and increasing problem size for ǚ alternaধve hardware configuraধons: SeARCH

homogeneous, SeARCH Heterogeneous II and StampedeǙ homogeneous (see Table Ǜ.ǘ). Parধcularly, for

Heterogeneous II (ǝǝǙӫKNL) configuraধon, ǝǛ plus ǙǛ ranks are used from KNL and ǝǝǙ respecধvely),

which corresponds to the use of all available CUs. The performance gain associated with the introduc-

ধon of DLB increases consistently with the problem size. Larger problems have the potenধal to exhibit

more significant imbalance penalধes with dynamic workloads, due to larger local fluctuaধons in the num-

ber of cells. nSharma is capable to effecধvely handle this increased penalty, becoming more efficient as

the problem size increases. Based on the observed data, this trend is expected to conধnue. No inflec-

ধon point should be reached and nSharma performance gain will keep increasing with the workload, i.e.

exactly when the potenধal for load imbalances becomes higher.

64K 128K 256K 512K
0.5

1

1.5

2

2.5

nS
ha

rm
a

ga
in

1.15
1.37

1.55

1.86

4-nodes, Homog
 32 Ranks

128K 256K 512K 1024K
Size

1.03 0.9

1.52

2.02

HeterogII
88 Ranks

128K 256K 512K 1024K

0.99
1.17

1.6

1.89

4-nodes, HomogII
256 Ranks

2 4 8 16
Nodes

0.5

1

1.5

2

2.5

nS
ha

rm
a

ga
in

1.92

2.41
2.14

2.36
Homog, 2048K

Figure Ǜ.ǝ: First three plots show an increasing problem size for four ǝǛǘ SeARCH nodes, ǝǝǙӫKNL and
four StampedeǙ nodes and dynamic workload. Last plot shows an increasing number of ǝǛǘ nodes using
the maximum number of ranks, dynamic workload and about Ǚ million cells

The last plot of Figure Ǜ.ǝ shows the performance gain for an increasing number of homogeneous nodes

(from Ǚ to ǘǝ nodes and using the maximum number of ranks) with dynamic workload and about Ǚ million

cells. The gain is substanধal – ranging between ǘ.Ǡ and Ǚ.ǜx – as nodes increase which provides some

insight on the behaviour the nSharma when scaling computaধonal resources as long as the workload

is enough to compensate the communicaধon and migraধon overheads menধoned above. This is an

important results since this type of simulaধons tend to be performed in large scale compuধng systems.

Figure Ǜ.Ǟ illustrates the results with the windAroundBuildings simulaধon with Ǜ Heterogeneous I config-

uraধon nodes and staধc workload. This shorter test tries to validate the performance gain of nSharma

with a significantly different geometry and workflow, revealing a consistent gain as ranks are increased

(between ǘ.ǜǘx to ǘ.ǞǠx), corroboraধng with the results from the damBreak discussed above.

4.4.2 Efficiency Gain
Strong and weak scalability based on parallel efficiency are evaluated in this secধon. Parallel efficiency

is evaluated with respect to the ধming results achieved with only ǘ rank and without nSharma (DLB is

ǝǠ

4 8 16 32
Ranks

0.5

1

1.5

2

2.5

nS
ha

rm
a

ga
in

1.51
1.73 1.79

1.7

4-nodes, static, HeterogI

Figure Ǜ.Ǟ: windAroundBuildings simulaধon with Ǜ Heterogeneous I configuraধon nodes and staধc work-
load.

senseless for a single rank).

64 128 256 512
Ranks

2.07
1.9 1.83

1.2

8-nodes, strong, 512K

0

25

50

75

100

Ef
fic

ie
nc

y
%

(8,16K) (16,32K) (32,64K) (64,128K) (128,256K) (256,512K) (512,1024K)
Ranks

0.5

1

1.5

2

2.5

nS
ha

rm
a

ga
in

1.46
1.32

1.81 1.85
1.74 1.81

1.46

8-nodes, weak
nSharma gain
Eff w/ nSharma
Eff wo/ nSharma

Figure Ǜ.ǟ: Efficiency (w/ and wo/ nSharma) with dynamic loads for StampedeǙ nodes

Figure Ǜ.ǟ presents performance gainwith nSharma (bars) and parallel efficiencywith andwithout nSharma

(lines), using ǟ KNL nodes of StampedeǙ (up to ǜǘǙ ranks). For the strong scaling case – leđ plot –

nSharma performance gain is around Ǚ, except for ǜǘǙ ranks. In this laħer case, the workload per rank

is so low (the number of cells ranges from ǘǗǗǗ to ǙǗǗǗ per rank) that incurred overheads (parধধoning

and cells migraধon) significantly impact on the load redistribuধon benefits. For the weak scaling case –

right plot – problem size increases at the same rate as number of ranks, thus the workload per rank is

kept constant; performance gain is quite consistent, since increasing DLB costs are compensated by the

added workload.

The scalability curves in Figure Ǜ.ǟ illustrate that OpenFOAM without DLB exhibits very low efficiency

even for increasing problem size. Two major penalধes contribute to this: aforemenধoned parallel com-

municaধons costs and load imbalance due to dynamic workloads. nSharma addresses the load imbalance

penalty in a very effecধve manner, roughly doubling efficiency for most configuraধons – the (ǜǘǙ,ǘǗǙǛK)

case of strong scalability can not be taken into account due to the very scarce load per rank. This clearly

illustrates that introducing DLB mechanisms results in a very significant reducধon of execuধon ধme,

sustained by an increase in efficiency, i.e. a beħer uধlizaধon of the parallel compuধng resources.

ǞǗ

kn
l

662+kn
l

662+kn
l-n

Sh

ha
lf-k

nl

662+ha
lf-k

nl

662+ha
lf-k

nl-
nS

h
0.3

0.65

1

1.35

1.7

Sp
ee

du
p

w
.r.

t 6
62

0.7

0.94 0.99

0.7

1.07

1.22

static, 4M cells

kn
l

662+kn
l

662+kn
l-n

Sh

ha
lf-k

nl

662+ha
lf-k

nl

662+ha
lf-k

nl-
nS

h

0.49

0.67

1.28

0.46

0.7

1.38

dyn, 2M cells
662 ref

Figure Ǜ.Ǡ: Speedup in combining a ǝǝǙ node and a KNL by using nSharma

4.4.3 Heterogeneity and Dynamic Load Balancing
Effecধve exploitaধon of the raw compuধng capabiliধes available on heterogeneous systems is hard, with

load balancing being one of the main challenges, specially for dynamic workloads.

Figure Ǜ.Ǡ details the performance speedup when combining a KNL node – with two different core

configuraধons, one with the full ǝǛ cores (knl) and another with only ǚǙ cores (half-knl) – with a ǙǛ-core

ǝǝǙ node. Speedup is illustrated w.r.t to the execuধon ধme obtained with the node ǝǝǙ for staধc (leđ)

and dynamic (right) workloads. By adding a KNL node to a ǝǝǙ node (ǝǝǙӫknl and ǝǝǙӫhalf-knl) yields

no significant performance gain, with a severe deterioraধon for the dynamic workloads. This is due the

imbalance introduced by the large compuধng power differences between the nodes (as illustrated by the

white bars).

By enabling nSharma, the whole system capabiliধes will be assessed and more load is assigned to ǝǝǙ

node, reducing its idle ধme and increasing resource uধlizaধon. Performance gains between ǙǙ% to ǚǟ%

are observed (*-nSh bars). The gain is more substanধal with dynamic workloads where the potenধal for

load imbalances is larger: heterogeneous resources plus execuধon ধme locally varying number of cells.

nSharma works at its best under these more challenging condiধons, effecধvely rebalancing the workload

and efficiently exploiধng the available resourcesǘ.

4.5 Conclusions and Future Work
This contribuধon proposes and assesses the integraধon of heterogeneity aware DLB techniques on CFD

simulaধons running on distributed memory heterogeneous parallel clusters (Tier-Ǜ systems). Such sim-

ulaধons most ođen imply dynamic workloads due to execuধon ধme mesh refinement. Combined with

ǘNote that the results indicate that the performance with half-knl is higher than using knl (full chip). This is due to the lack of
opধmizaধons in OpenFOAM targeted for this device. This is thus out of the scope of this thesis and not considered perধnent for
this discussion

Ǟǘ

the hardware heterogeneity such dynamics cause a two-fold load imbalance, which impacts severely on

system uধlizaধon, and consequently on execuধon ধme, if not appropriately catered for. The proposed

approach has been implemented as a sođware package, designated nSharma, which fully integrates with

the latest version of OpenFOAM.

Substanধal performance gains are demonstrated for both staধc and dynamic workloads. These gains are

shown to be caused by reduced busy ধmes RSD among ranks, i.e. compuধng resources are kept busy

with useful work due to a more effecধve workload distribuধon. Strong and weak scalability results further

support this conclusion, with nSharma enabled execuধons exhibiধng significantly larger efficiencies for a

range of experimental condiধons. Performance gains increase with problem size, which is a very desirable

feature, since the potenধal to load imbalances under dynamic loads grows with the number of cells.

Experimental results show that performance gains associated with nSharma are affected by increasing

the number of ranks for larger node counts. This is due to inherent increase of load migraধon costs asso-

ciated with a growing number of balancing episodes. Future work will necessarily imply addressing this

issue, to allow for increased number of parallel resources by further miধgaধng load migraধon overheads.

Addiধonally, nSharma will be validated against a more extensive set of case studies and heterogeneous

devices; upon successful validaধon it will be made publicly available in order to foster its adopধon by the

large community of OpenFOAM users.

ǞǙ

Chapter

5 Power
Scheduling in
Heterogeneous
Distributed
Systems

Contents
5.1 Introducধon, ǞǛ
5.2 Related Work, Ǟǝ
5.3 RHeAPAS, ǞǞ

5.3.1 Online Profiling Module, Ǟǟ
5.3.2 Performance Model , Ǟǟ
5.3.3 Power-Adapধve Scheduler, ǞǠ
5.4 Results, ǟǘ

5.4.1 Performance and Power, ǟǙ
5.4.2 Dynamic Behaviour, ǟǛ
5.4.3 Scaling Problem Size and Resources, ǟǜ
5.4.4 Energy Saved, ǟǝ
5.5 Conclusions and Future Work, ǟǞ

Ǟǚ

This chapter focuses on the power management challenges of heterogeneous distributed systems. It

describes the formulaࣅon of an opࣅmizaࣅon problem that aims at reducing power consumpࣅon while

minimizing performance degradaࣅon, including scenarios with limited power supply. The proposed formu-

laࣅon uses some of the mechanisms described in the previous chapter resulࣅng in a heterogeneity-aware

power-adapࣅve scheduler, integrated into a widely used numerical simulaࣅon library. Results are evalu-

ated with mulࣅple configuraࣅons and different scenarios.

5.1 Introducধon
As discussed in the previous chapter, engineering and scienধfic computer simulaধons have become a

fundamental tool to analyse complex phenomena and design/verify sophisধcated engineering artefacts.

Over ধme both problem size and intended accuracy have increased steadily, resulধng in huge workloads

which require extended compuধng capabiliধes in order to produce results in an appropriate ধme-frame.

Such intensive workloads emphasize the need for larger and powerful parallel supercomputers, further

moধvaধng the forthcoming exascale compuধng era [ǙǙ], [ǟǘ]. This shiđ in compuধng capabiliধes poses

several challenges, including a fast-growing power consumpধon, with the consequent huge environmen-

tal and economic impact. The cost of energy required to power such system will quickly surpass the cost

of the physical system itself. Power management becomes of paramount importance, with hardware and,

especially, sođware soluধons requiring re-evaluaধon in terms of power-efficiency to be able to operate

under a power limited system.

A common approach to address these power limitaধons is the adopধon of hardware overprovisioning:

more parallel compuধng resources are installed than the organizaধonal power budget allows to operate

simultaneously at Thermal Design Power (TDP). TDP is the average maximum power in Waħs that the

cooling system needs to dissipate – it can also be understood as the average maximum power drawn

by a device under any workload. An overprovisioned system requires that operaধng power limits are

enforced by power management sođware mechanisms which, within a given power budget, will cap the

power available to each CU [ǟǙ], [ǟǚ]. Limiধng power consumpধon can be accomplished by reducing

the CU operaধng frequency, which obviously impacts its performance. A very simple staধc strategy is

to uniformly cap the power available to every CU, e.g. if the available power budget is s% of the total

system TDP, then each node can only use up to s% of its TDP.

However, such uniform and staধc power allocaধon strategy can only be opধmal if both the available

resources and the workload compuধng requirements are themselves also uniform and staধc, which is

seldom the case. Today’s compuধng systems are rendered heterogeneous in the sense that different

generaধons of hardware coexist in the same system along with a plurality of different devices. This

heterogeneity makes the CUs non-uniform with respect to compuধng capabiliধes, compromising the

ǞǛ

opধmality of uniform power allocaধon.

This is further aggravated by the presence of dynamic workloads. In CFD simulaধons, results’ accuracy

and relevance are influenced by the discreধsaধon’s level of detail, which also determines problem size and

thus computaধonal effort. This discreধsaধon can be locally refined as the simulaধon progresses through

ধme, allowing for higher accuracy in regions of the problem domain where the quanধধes of interest

exhibit more significant local variaধons; this progressive refinement process generates dynamic workloads

and computaধonal requirements will unpredictably vary in runধme among CUs. These imbalances are

not accounted for by a staধc power allocaধon strategy.

Dynamic workloads execuধng on heterogeneous parallel systems require dynamic power management

mechanisms. By dynamically and at runধme migraধng power among CUs according to their relaধve

performances and current workload distribuধon will allow for a more efficient distribuধon of power, while

maximizing performance within a given the power budget. This contribuধon proposes RHeAPAS, which

provides power consumpধon opধmizaধon, targeধng heterogeneous parallel systems in the context of

CFD simulaধons. This is achieved by integraধng power scheduling mechanisms in a widely used CFD

applicaধon: OpenFOAM.

The proposed runধme is achieved by leveraging the work done in the previous chapter, being deployed as

an addiধonal and innovaধve funcধonality of nSharma. It builds on top of nSharma’s resource monitoring

and performance model components, as well as on its integraধon with OpenFOAM. RHeAPAS combines

these esধmates with a power consumpধon model based on the CUs’ operaধng frequencies and current

workload. Amulধ-objecধveminimizaধon problem is then solved: find the frequencies configuraধon for all

CUs that will produce the minimum execuধon ধme (maximum performance), while simultaneously using

the least amount of total power from the allowed power budget. Integraধng RHeAPAS, through nSharma,

into current OpenFOAM distribuধons enables the adopধon of power-adapধve scheduling by the CFD

community, providing a validated implementaধon integrated into a widely used scienধfic and industrial

applicaধon. Note that this contribuধon only address and discusses power assignment and performance

trade-offs — the workload re-distribuধon and migraধon features of nSharma are not applied and are not

part of this contribuধon.

The contribuধons of this work are summarized as follows:

ǘ. proposal of a power consumpধon model integrated with a performance model targeধng heteroge-

neous distributed system with dynamic workloads in the context of CFD simulaধons;

Ǚ. proposal of the integraধon of the power consumpধonmodel with the performancemodel, targeধng

heterogeneous distributed systemwith dynamic workloads in the context of CFD simulaধons. Such

integraধon abides to power budgets while striving for performance opধmizaধon;

ǚ. experimental results analysis and validaধon in mulধple parallel heterogeneous system configura-

ধons used by the CFD community;

Ǟǜ

Ǜ. deployment of the proposed soluধons as an available and free-to-use open-source package, inte-

grated into a widely used scienধfic and industrial CFD applicaধon (OpenFOAM), therefore promot-

ing the adopধon of opধmized power consumpধon technologies in CFD simulaধons.

To the best of author’s knowledge, this is the first implementaধon and integraধon of power management

soluধons in OpenFOAM.

5.2 Related Work
Dynamic Voltage and Frequency Scaling (DVFS) mechanisms [ǚǟ] are commonly used to control CUs’

power consumpধon, such as with CPUMISER [ǟǛ] and PART [ǟǜ], which propose a performance model

based on clock cycles per instrucধon, instrucধons execuধon rate and memory accesses to decide on

frequency scaling for ধme intervals, using a user-supplied performance loss parameter to minimize energy

uধlizaধon. In this work, the user specifies the power-cap and the performance is maximized according

to power limitaধons and system resources.

Jiħer [ǟǝ] performs decisions based on MPI criধcal path analysis and scales frequency such that all CUs

meet at the same point in ধme. Adagio [ǟǞ] , Conductor [ǟǟ], GEOPM [ǟǠ] also make decisions based

on MPI criধcal paths combined with task models. However, CFD dynamic workloads resulধng from cells

refinement, render MPI criধcal path analysis impracধcable as results become potenধally obsolete across

iteraধons. Addiধonally, current OpenFOAM nearest neighbour and global communicaধons make task

model scheduling unfeasible due to data dependencies. In this work, scaling frequency decisions are

made and applied on a per iteraধon basis given the dynamic nature of the workload.

Nornir [ǠǗ] and LEO [Ǡǘ] target single compute nodes and use machine learning to predict performance

and power consumpধons for a set of possible configuraধons; the most appropriate configuraধon is se-

lected by solving a minimizaধon problem. Dynamic workloads are considered, but high overheads are

incurred if the workload varies rapidly relaধve to the ধme taken for decision making. The focus is on sup-

porধng generic applicaধons, resorধng to no specific or dynamic knowledge on the applicaধon behaviour.

In this work, similar minimizaধon techniques are used, but applied to parallel distributed systems coupled

with an applicaধon-specific performance and power model; by exploiধng previous knowledge on Open-

FOAM computaধon paħerns, esধmates of the workload near future behaviour incur reduced overhead

and aħain improved accuracy.

PaViZ [ǠǙ] proposes a power-adapধve scheduler that distributes a power budget across distributed re-

sources targeধng visualizaধon workloads. The associated performance model includes mulধple visualiza-

ধon specific details to esধmate near future performance. Esধmates are then normalized across nodes,

resulধng in a percentage of the power budget to allocate to each node. This work follows a similar ap-

proach by using a performance model targeধng CFD workloads, solving a power and execuধon ধme

Ǟǝ

minimizaধon problem constrained by a user-supplied power budget.

Soluধons targeধng heterogeneous parallel systems are scarce, with some authors addressing heteroge-

neous single nodes composed of mulধple devices (Tier-ǚ). DAG-task scheduling mechanisms [Ǡǚ], [ǠǛ]

are not suited for CFD simulaধons involving global data dependencies. Tsoi and Luk [Ǡǜ] profile and

interpolate performance and power consumpধon for mulধple core and frequency configuraধons in a

CPUӫGPUӫFPGA node and select one configuraধon based on a floaধng point operaধons per joule met-

ric. Wang and Ren [Ǡǝ] also target single node GPUӫCPU using DVFS and iteraধng through all possible

combinaধons. Liu et al. [ǠǞ] discuss power-aware analyধcal models to map mulধple applicaধons into a

CPUӫGPU node and sধll meet applicaধons’ ধming requirements, while simultaneously reducing power

and energy consumpধon by applying DVFS techniques.

None of the above approaches accounts for dynamic workloads and none assesses scalable distributed-

memory heterogeneous systems or provides validaধon with large scienধfic and industrial applicaধons.

Addiধonally, all aim at generic applicaধons resorধng to staধc performance esধmates based on generic

metrics. The current work addresses these issues and focuses on iteraধve CFD simulaধons, using applica-

ধon specific performance and power models, which allow for increased accuracy and reduced overhead

performance esধmates across different devices.

As described in Secধon Ǜ.Ǚ, there are other libraries available supporধng the development of CFD numer-

ical simulaধons, and the same reasoning is applied as why OpenFOAM was selected as the main target

applicaধons. The author sees no reason why conceptual results, such as the power consumpধon model,

and result analysis presented in this document cannot be applied within the context of other similar CFD

simulaধon libraries.

5.3 RHeAPAS
OpenFOAM simulaধons are organized as solvers, which typically iterate through ধme in discrete ধme

steps evaluaধng, at each iteraধon, the quanধধes of interest across the cells’ mesh that discreধzes the

problem domain. Each iteraধon includes mulধple inner loops and both local and global communicaধons.

With parallel domain decomposiধon, the iniধal cells’ mesh is decomposed into disjoint subdomains, which

are assigned each to a given CU. When applying dynamic mesh control, cells are subdivided and merged

according to local variaধons across iteraধons. Since the workload is ধghtly correlated to the number of

cells, mesh refinement is the main reason why the workload varies across CUs and from iteraধon to iter-

aধon. This contribuধon proposes a mechanism to devise a power schedule for the next iteraধon which

minimizes that iteraধon’s execuধon ধme and power consumpধon, thus catering for dynamic workloads.

RHeAPAS strongly builds on top of nSharma. It maintains its component-based sođware architecture in

order to seamlessly integrate with OpenFOAM and fully reuses two of its components: the OPM and

ǞǞ

the PM. The former acquires informaধon with respect to raw system behaviour, while the laħer uses this

data to quanধtaধvely characterize each CU performance. RHeAPAS introduces a new component, the

Power-Adapধve Scheduler (PAS), which uses these performance esধmates to devise a power schedule,

specifying the CUs’ frequencies to be set for the next iteraধon using each CU power API. The following

secধons summarize the details elaborated in the previous chapter.

5.3.1 Online Profiling Module
This module is responsible for measuring raw ধming data by instrumenধng OpenFOAM. As discussed

in Secধon Ǜ.ǚ.ǘ, by thoroughly analysing OpenFOAM’s code flow a set of low-level rouধnes has been

idenধfied, whose execuধon ধmes strongly correlate with the whole OpenFOAM applicaধon ধming – this

correlaধon has been empirically verified. This selecধve profiling approach allows for reduced instrumen-

taধon overhead, compared to actually measuring the whole solver code.

A short API has been developed which allows for registering the rouধnes to be measured and to inter-

nally classify them as either some form of communicaধon (synchronisaধon, memory transfer, etc.) or

computaধon. This classificaধon allows measuring and analysing performance individually for each CU,

otherwise, execuধon ধme would be cluħered by dependencies and communicaধons. These techniques

and API should be agnosধc to the parধcular sođware package being used (other than the idenধficaধon of

the set of representaধve low-level funcধons) and can be seamlessly integrated into any other simulaধon

sođware.

5.3.2 Performance Model
The PM quanধfies the performance of each CU used by the applicaধon at runধme. This quanধficaধon

takes into account the specificity of CFD workloads by using a domain-related definiধon of work unit,

upon which workload size can be measured. OpenFOAM is based on Finite Volumes and discreধzes the

problem domain using the noধon of cells. Most OpenFOAM low-level rouধnes exhibit a computaধonal

cost proporধonal to the number of such cells, which are therefore used as the work unit; workload size

is quanধfied as the number of cells.

The performance of each CU p during iteraধon i is defined as the average ধme required to process one

work unit, denoted by rip, and given by (same as Equaধon Ǜ.ǘ):

rip =

∑B
j β

j,i
p

Ni
p

(ǜ.ǘ)

where Ni
p is the number of cells assigned to CU p and βj,ip is the busy ধme for each operaধon j from the

set of operaধons B captured by the OPM. To esধmate performance in the near future (e.g. the next

iteraধon) the PM uses a weighted average over a window of previous iteraধons, denoted as r̃ ip. This

Ǟǟ

averaging smooths out outliers and, for dynamic workloads, takes into account different workload sizes

as the mesh refinement process refines and merges cells at each CU.

Given the number of work units assigned to each CU, Ni+1
p , the PM esধmates the execuধon ধme for the

next iteraধon, Ti+1
p , for all p ∈ {0, 1, ..., P − 1}, with P being the number of CUs, as given by (Same as

Equaধon Ǜ.Ǚ):

Ti+1
p = r̃ ip × Ni+1

p (ǜ.Ǚ)

Dynamic workloads, resulধng from the mesh refinement process, are accounted for by two mechanisms:

(i) compuধng r̃ ip as an average over a window of iteraধons integrates into a single metric potenধal varying

behaviours for different numbers of work units and (ii) re-esধmaধng Ti+1
p at the beginning of each iteraধon

allows for a regular accommodaধon of the new workload characterisধcs. The system’s heterogeneity, on

the other hand, is taken into account by measuring and calculaধng independent r̃ ip metrics per CU.

5.3.3 Power-Adapধve Scheduler
An overprovisioned system is characterized by an upper bound on the available power, referred to as

the power budget, which has to be distributed across CUs. This power budget is either denoted by τ if

expressed in Waħs, or denoted by s if expressed as a percentage of the maximum power, i.e., the sum of

all the CUs’ TDP. A staধc and uniform power management policy consists of assigning each CU the same

percentage s of its TDP. This can be achieved by specifying a maximum capped operaধng frequency, f capp ,

to each CU p. This power assignment approach can be defined as a power management strategy and it

will be referred to as Uniform Distribuধon of Power (UDP).

As discussed in Secধon Ǚ.ǚ, power dissipated is correlated with the operaধng frequency. This relaধon-

ship between frequency used and power consumed can thus be expressed as a funcধon, Φp(W) = f,

that translates the power assigned to a CU to the corresponding frequency f. Φp depends on each CU

hardware details and can be modelled in mulধple ways, for example, by a tabular funcধon with observed

power consumpধon for each f, or a linear regression based on some observaধons. The frequency corre-

sponding to a capped power supply, f capp , can thus be defined as f capp = Φp(s× TDPp).

Generaধng a power schedule, i.e. a specificaধon of the power to be used by each CU during the next

iteraধon i+1, is formulated as a minimizaধon problem pursuing two objecধves: minimizaধon of (i) power

usage and (ii) execuধon ধme. Let Wi+1 be the P-elements vector specifying the operaধng power for

each CU p, Wi+1
p , over iteraধon i + 1. Clearly, given the power budget τ, it is required that

∑P−1
p=0 W

i+1
p =∥∥Wi+1

∥∥
1
≤ τ. In the following a model is developed, inspired in Equaধon ǜ.Ǚ, to esধmate each CU

execuধon ধme given its allocated power, Ti+1
p (Wi+1

p). Note that due to global synchronisaধon the iteraধon

execuধon ধme is given by Equaধon ǜ.ǚ.

Ti+1(Wi+1) = max
p∈{0,...,P−1}

Ti+1
p (Wi+1

p) (ǜ.ǚ)

ǞǠ

It is well known from reference course books [ǚǞ] that the ধme required to process a single cell is given

by Equaধon ǜ.Ǜ,

rp =
#Ip

IPCp × fp
(ǜ.Ǜ)

where, for each CU p, #Ip represents the average number of instrucধons required to compute a cell and

IPCp is the number of instrucধons per clock cycleǘ.

#IP and IPCp are applicaধon and CU dependant and approximately constant across all iteraধons, therefore

their raধo can be inferred using known values for rp and fp. A set of k iniধal iteraধonsǙ is computed at

fcapp , which allows the performance model to calculate r̃ kp (see Secধon ǜ.ǚ). By using r̃ kp , #Ip/IPCp can be

approximated by:

#Ip
IPCp

= r̃ kp × fcapp (ǜ.ǜ)

The power consumed by a CU can be modelled as described in Equaধon Ǚ.ǘ (Secধon Ǚ.ǚ). Since power

dissipated is correlated with the operaধng frequency, this relaধonship between frequency used and

power consumed can thus be expressed as a funcধon, Φp(W) = f, that translates the power assigned to

a CU to the corresponding frequency. Φp depends on each CU hardware details and can be modelled

in mulধple ways, for example, by a tabular funcধon with observed power consumpধon for each f ǚ, or a

linear regression based on some observaধons.

From Equaধons ǜ.Ǚ, ǜ.Ǜ, ǜ.ǜ, and replacing fp with Φp, execuধon ধme based on power is given by:

Ti+1
p (Wi+1

p) = r̃ kp × fcapp × 1

Φp(Wi+1
p)

× Ni+1
p (ǜ.ǝ)

Equaধon ǜ.Ǟ presents the minimizaধon problem to be solved (for simplicity index i+ 1 has been omiħed),

which searches for the scheduleW that yields the minimum execuধon ধme and the minimum total power.

A scalarizaধon technique, using the coefficients α1 and α2, has been applied to combine both objecধve

funcধons.
minimize

W∈RP
α1 × T(W) + α2 × ∥W∥1

subject to ∥W∥1 ≤ τ

T(W) ≤ T(Wcap)

f minp ≤ Φp(Wp) ≤ f maxp , ∀p ∈ {0, . . . , P− 1}

(ǜ.Ǟ)

The first constraint ensures that the given power budget limit is not exceed. The second constraint

ǘFor mulধ-cores CUs, with frequency set per-socket or per-node, rp = #Ip/(cp × IPCp × fp), where cp is the number of cores.
Ǚk is parametrized and empirical validaধon revealed a value of about ǘǜ iteraধons to be acceptable for most cases.
ǚTypically, frequency is defined in steps ranging from fminp to fmaxp .

ǟǗ

ensures that esধmated execuধon ধme is less or equal than with uniform power capping – minimizaধon

could otherwise increase execuধon ধme in favour of reduced power consumpধon. The final constraint

ensures that Wp is within the CU allowed frequency range. Note that f maxp is the upper limit instead

of f capp . This is a crucial condiধon, since it allows selecধng large frequencies for CUs with intensive

workloads, allowing for higher performance than uniform cap. Each CU power Wp is then mapped to the

corresponding operaধng frequency using Φp. In the absence of dynamic workloads, and since compute

resources are staধc along the whole simulaধon, the schedule is computed only once.

5.4 Results
Experiments use the same damBreak simulaধon distributed with OpenFOAM tutorials with the interDyM-

Foam solver simulaধng themulধphase flow of two incompressible fluids – air and water – of a falling block

of water. For dynamic workloads, adapধve mesh refinement is applied at each iteraধon (cells are subdi-

vided into ǟ new cells) according to the interface between water and air; cells will thus be refined (and

unrefined) following the evoluধon of the two phases’ interface.

The mesh is decomposed using ParMETIS, that creates as many equally sized parধধons as there are

MPI ranks — parধধoning is independent of compuধng capabiliধes. The assignment is the same as in

the previous chapter where each MPI rank is responsible for a compuধng core. A CU is defined as a

compute node composed of mulধple cores. Each CU is therefore responsible for a set of parধধons,

whose numbers of cells can evolve differently for dynamic workloads. Since iteraধon execuধon ধme is

proporধonal to the number of cells and determined by the last rank to finish the iteraধon, the cell count

of the core with the most cells is defined as the number of cells of that CU:

Ni
p = max

d∈{0,...,cp−1}
Ni
p,d (ǜ.ǟ)

This aggregaধon of cp cores into a single CU facilitates results analysis and avoids using more sophisধ-

cated mechanisms requiring per-core frequency scaling. The author sees no reason why the results and

discussion provided in this Secধon cannot be, in general, extended to alternaধve definiধons of CUs.

Experimental results were collected using three configuraধons from the SeARCH cluster (Universidade

do Minho, Portugal), as described in Table ǜ.ǘ. OpenFOAM Ǚ.Ǜ.Ǘ was used, compiled with the GNU C

Compiler. Frequency scaling is applied per node using the ACPI CPUFreq driver.

The NLopt library [Ǡǟ] is used to solve the minimizaধon problem. Since T(W) (Equaধon ǜ.Ǟ) is defined

using the max funcধon, which is not differenধable, it is replaced by a new decision variable Z and a

new constraint: Tp(Wp) ≤ Z,∀p ∈ {0, . . . , P− 1}. The objecধve is moved to the constraints, producing

mathemaধcally equivalent results at the cost of some minimizaধon overhead. The coefficients α1 and

α2 are equally defined as Ǘ.ǜ. Φp(W) (discussed in Secধon ǜ.ǚ.ǚ) is approximated using a linear funcধon

ǟǘ

Table ǜ.ǘ: SeARCH Compuধng nodes and system configuraধons used in evaluaধon

Node Tag Descripধon fmin fmax TDP

ǝǛǘ Ǚx Ivy Bridge Eǜ-ǙǝǜǗvǙ, ǘǝ cores ǘ.ǙǗGHz Ǚ.ǝǗGHz ǠǜW

ǛǙǘ Ǚx Nehalem EǜǜǙǗ, ǟ cores ǘ.ǝǗGHz Ǚ.ǙǞGHz ǟǗW

KNL Intel Xeon Phi ǞǙǘǗ, ǝǛ cores ǘ.ǗǗGHz ǘ.ǚǗGHz ǙǘǜW

Configuraধon Descripধon Network

Homogeneous Mulধple ǝǛǘ’s Myrinet

Heterogeneous I Pair(s) of ǝǛǘӫǛǙǘ Myrinet

Heterogeneous II Pair ǝǛǘӫKNL Ethernet

based on the TDP and corresponding frequency, fmaxp , as provided by the manufacturers:

Φp(W) =
f maxp ×W

TDPp
(ǜ.Ǡ)

Experimental results are collected for three different levels of power capping, associated with different

percentages of TDP: ǘǗǗ%, ǟǜ% and ǞǗ%. For each of these scenarios, results achieved with a UDP are

compared against results obtained with the proposed power-adapধve mechanisms. For the laħer, the

first ǘǜ iteraধons are executed at f capp to build the performance model.

5.4.1 Performance and Power
Performance gain is defined as the raধo between the execuধon ধme obtained with UDP over the exe-

cuধon ধme obtained with power adapধve scheduling for the enধre simulaধon ধme span, i.e. how many

ধmes the laħer is faster than the former.

Used power is always presented as a percentage of the power budget:
∑

p W
i
p/τ×100; the reported values

are averages over all the iteraধons, except in Figure ǜ.Ǚ.

Figure ǜ.ǘ illustrates the results for mulধple heterogeneous configuraধons with staধc (first row) and dy-

namic (second row) workloads. The first two columns use Ǚ (ǘǝ ranks) and Ǜ nodes (ǚǙ ranks), respecধvely,

with Heterogeneous I configuraধon; the last column uses Heterogeneous II configuraধon (ǝǛǘӫKNL, ǟǗ

ranks). The leđ y-axis shows power used (lower is beħer), the right y-axis performance gain (higher is

beħer) and the x-axis represents the different power capping levels, s.

ǟǙ

100% 85% 70%
50

65

80

95

110

Po
w

er
 u

se
d

(%
)

73.9

84.9

100.0

Heterog I, static, 2-nodes

Power used
Performance gain

100% 85% 70%
Power cap s

80.8

93.7
99.6

 Heterog I, static, 4-nodes

100% 85% 70%

85.2

98.3 100.0

Heterog II, static

0.6

1

1.4

1.8

2.2

Pe
rf

or
m

an
ce

 g
ai

n

100% 85% 70%
50

65

80

95

110

Po
w

er
 u

se
d

(%
) 87.7

100.0 100.0

Heterog I, dyn, 2-nodes

100% 85% 70%
Power cap s

81.0

94.0
99.7

Heterog I, dyn, 4-nodes

100% 85% 70%

85.2

98.3 100.0

Heterog II, dyn

0.6

1

1.4

1.8

2.2

Pe
rf

or
m

an
ce

 g
ai

n

Figure ǜ.ǘ: Power used and performance gain for (Ǚ and Ǜ nodes) Heterogeneous I and II with staধc and
dynamic workload in SeARCH. ǜǘǙK cells for staধc ǙǜǝK cells for dynamic.

For the no power limitaধon case (ǘǗǗ%), the power used ranges from Ǟǚ.Ǡ% to ǠǞ.Ǚ%. For Heteroge-

neous I with staধc workload power savings arise from reducing the power assigned to the stronger ǝǛǘ

nodes while assigning enough power to the ǛǙǘ nodes to prevent performance deterioraধon. For the

dynamic case, less power is assigned to nodes with smaller workloads, properly modulated by the relaধve

performances. For the Heterogeneous I configuraধon with Ǚ nodes and dynamic workload, the power

used was idenধcal to UDP because the cells assigned to the stronger ǝǛǘ node were refined, whereas

those assigned to the slower ǛǙǘ nodes sustained much less refinement; remember that refinement oc-

curs along the interface between air and water and the actual assignment to CUs of the cells laying on

this interface is not a parameter being controlled and depends on many factors, including the number

of nodes in the system. The same reasoning applies to the Heterogeneous II (last column) configuraধon,

where the KNL is slower than the ǝǛǘ, and the laħer power is reduced. No performance gain is expected

when there is no power cap, since UDP does not limit power usage. The challenge is to aħain significant

power savings without impacধng on performance (performance gain ≈ 1), which has been achieved.

For a cap of ǞǗ%, the power budget is significantly reduced, prevenধng addiধonal power savings. Perfor-

mance gains ranging from ǘ.ǗǞx to ǘ.Ǚǘx are sধll observed. Power is migrated from stronger (and/or with

less workload) to weaker (and/or with more workload) nodes, which run on higher frequencies compared

to the UDP, increasing performance. For instance, with two Heterogeneous I nodes and staধc workload,

the UDP limits the power of the slower ǛǙǘ node to ǜǝW, whereas the proposed model increases it to

ǞǟW. The ǙǙW extra are migrated from the faster ǝǛǘ node which does not require it. Therefore, instead

of reducing power usage, the model decides to use all the available power to reduce the unavoidable per-

formance deterioraধon arising from power capping.

The ǟǜ% case is more representaধve in terms of power budgeধng, with the power scheduler balancing

ǟǚ

0

0.2

0

0.2

0

0.2

Power UDP
Power RHeAPAS
N i

p

max N i
p

Power used
Time UDP
Time RHeAPAS

0

0.2

0 100 200 300 400 500 600 700 800 900 1000
Iteration

50

100

Ti
m

e
(s

)

44

95

44

95

44

95

44

95

0

10

Po
w

er
 u

se
d

(%
)

N
i p

 (M
)

W
at

t

Figure ǜ.Ǚ: Power assignment and iteraধon execuধon ধme along simulaধon. Ni
p, in the first four rows y-

axis, is according to Equaধon ǜ.ǟ. ǘǗǗǗ ধmesteps with Ǜ homogeneous (ǝǛǘ) nodes, dynamic workload
and a ǟǜ% power budget.

performance gain with power usage reducধon. For Ǜ nodes results show about ǠǗ% of power used along

with a performance gain of ǘ.ǘǘx (staধc) and ǘ.ǘǛx (dynamic). For Ǚ nodes, similar results are observed

for the staধc load. In the dynamic load case, the power used is ǘǗǗ% and performance gain is slightly less,

following the same reasoning as for an equal need for power for each node. In general, the model proves

to be slightly less effecধve with Heterogeneous II, due to the short range of frequencies supported by

the KNL node – between ǘ.ǚǗ GHz and ǘ.Ǘ GHz – that significantly reduces the model decision space.

Overall, performance gain increases with the power cap confirming the effecধveness of the model by

properly allocaধng power to where it is most needed under a limited power scenario. The results also

reveal that the model is able to successfully reduce power that is wasted by powerful and/or less loaded

nodes, parধcularly when the allowed power budgets are sধll large.

5.4.2 Dynamic Behaviour
The Ǜ top rows of Figure ǜ.Ǚ detail the power assignment per node (Ǜ homogeneous nodes) as ধme

progresses through the simulaধon (ǘǗǗǗ iteraধons) with dynamic workload and a ǟǜ% power budget.

The leđ axis illustrates the number of cells (dark shaded area) per node according to Equaধon ǜ.ǟ, and

the right axis presents the power assigned to each node at each iteraধon, ranging from Φ−1
p (fminp) to

Φ−1
p (fmaxp). The hatched area emphasizes the node with max

p∈{0,...,P−1}
Ni
p at iteraধon i. The Figure ǜ.Ǚ last

row shows iteraধon execuধon ধme (leđ axis) and total power used across all nodes (right axis).

ǟǛ

128K 256K 512K 1024K
50

65

80

95

110

Po
w

er
 u

se
d

(%
)

99.4

84.9
79.8 81.9

4-nodes, static, HeterogI
Power used
Performance gain

128K 256K 512K 1024K
Size

86.3

77.4 79.1
74.7

4-nodes, dyn, Homog

128K 256K 512K 1024K

99.5

89.2
92.8

77.7

4-nodes, dyn, HeterogI

0.6

1

1.4

1.8

2.2

Pe
rf

or
m

an
ce

 g
ai

n

Figure ǜ.ǚ: Increasing number of cells in the x-axis. ǟǜ% power budget, Ǜ nodes, Heterogeneous I with
staধc load, and Homogeneous I and Heterogeneous I with dynamic workload

The first few iteraধons use the maximum allowed power to learn the performance model. Significantly

more power is then assigned to the second node, which has more cells due to refinement. Between

iteraধons ǙǜǗ and ǛǗǗ, nodes ǘ and ǚ get further refined and more power is progressively assigned.

Around iteraধon ǜǗǗ, node Ǚ reduces the number of cells and power is promptly deallocated with similar

behaviour at the end of the simulaধon. Node Ǜ has the least number of cells across the whole simulaধon

so minimum power is assigned.

Roughly between iteraধon ǜǗ and ǛǜǗ, node Ǚ has the maximum number of cells which thus dictates

execuধon ধme (note that the dashed area indicates the node with maximum cells). In this segment, the

power assigned to this goes above the power assigned to UDP (ǟǘW) which results in the performance

gain illustrated in the last row. The same behaviour is observed for the rest of the simulaধonwith different

nodes. The power scheduler ability to adapt to variable and unpredictable workloads is clearly illustrated,

as well as how the model is able to extract performance gains with effecধve and educated power budget

distribuধon.

5.4.3 Scaling Problem Size and Resources
Figure ǜ.ǚ shows the results for an ǟǜ% power budget with increasing problem size (number of cells, x-axis)

for Ǜ nodes, Heterogeneous I with staধc load, and Homogeneous I and Heterogeneous I with dynamic

workload. The results are fairly consistent across configuraধons and reveal an increasing reducধon in

power used as well a minor increase in performance gain as workload increases. In-depth analysis of the

results revealed that, for the staধc load and heterogeneous case, as the problem size increases so does

the computaধon to communicaধon raধo; the performance model becomes more accurate resulধng on a

more effecধve power schedule.

For dynamic load and heterogeneous configuraধon, only two of the nodes performed refinement, with

one of them sustaining more cells than the other. This gap between these two nodes increased substan-

ধally with the number of iniধal cells – from ǘǗ% for ǘǙǟK to ǘǜǗ% for ǘǗǙǛK. This results in significantly

less power assigned to the node with fewer cells as the number of iniধal cells increases. The last plot

ǟǜ

2 4 8 16
50

65

80

95

110

Po
w

er
 u

se
d

(%
)

78.53

68.89
72.19

69.06

100%
Power used
Performance gain

2 4 8 16
Nodes

88.64

76.26 77.21 77.54

85%

2 4 8 16

99.4

88.1 88.94 89.56

70%

0.6

1

1.4

1.8

2.2

Pe
rf

or
m

an
ce

 g
ai

n

Figure ǜ.Ǜ: Weak scaling based analysis, homogeneous nodes increasing in the x-axis. ǜǘǙK, ǘǗǙǛK,
ǙǗǛǟK and ǛǗǠǝK as number of cells respecধvely, and dynamic workload.

shows the combinaধon of dynamic load with heterogeneous configuraধonwhere results vary significantly

as the number of cells increase. As the iniধal number of cells changes, the nodes responsible to perform

refinement also changed resulধng in different power scheduling decisions considering different node

performances – for ǘǙǟK and ǜǘǙK the two ǝǛǘ performed refinement whereas for ǙǜǝK and ǘǗǙǛK, a

ǝǛǘ and a ǛǙǘ performed refinement. These results demonstrate that the proposed mechanisms sustain

an increased effecধveness with large workloads, which is a fundamental result in the context of CFD

simulaধons.

Figure ǜ.Ǜ illustrates weak scalability analysis with the number of cells (ǜǘǙK, ǘǗǙǛK, ǙǗǛǟK and ǛǗǠǝK)

increasing linearly with the number of nodes (Ǚ (ǟ ranks) to ǘǝ (ǝǛ ranks)). Results show a slight reducধon

in power used as nodes are added, especially for the ǘǗǗ% case. This is because adding more nodes

will increase the number of nodes that can have their power reduced without affecধng performance

(performance is dictated by the node with more cells), therefore leading to a reducধon in required power.

Similar reasoning can be applied to the performance gain. Performance gain results from nodes with

more workload running with more power compared to UDP. Once the maximum power is assigned

to these nodes, adding more nodes will have no effect, resulধng in the same performance. In fact, a

reducধon in performance gain is observed as a consequence of the severe impact in the computaধon to

communicaধon raধo due to the increased number of ranks (added workload is not enough to compensate

the increased communicaধon overhead). Nevertheless, performance improvements range from ǘ.Ǘǝx to

ǘ.Ǜǘx.

5.4.4 Energy Saved
Power and execuধon ধme are two fundamental components that directly contribute to minimize the

energy consumpধon. By reducing the ধme required to execute the applicaধon and thus the ধme during

which energy is being consumed, and/or by reducing the power delivery rate, yields a combined reducধon

of energy consumed. Total energy consumed, E, is calculated based on the sum of the energy consumed

by each individual iteraধon: E =
∑

i

(∑
p W

i
p × Ti

)
; where Ti is iteraধon’s i execuধon ধme. E was evaluated

for UDP (EUDP) and RHeAPAS (ERHeAPAS), and their differences normalized, resulধng in the percentage of

ǟǝ

energy saved (Esaved) by using RHeAPAS: Esaved = (EUDP − ERHeAPAS) /EUDP × 100.

Figure ǜ.ǜ shows Esaved; the first two rows illustrate the heterogeneous configuraধons (same as in Figure

ǜ.ǘ). For staধc loads and no power limit, energy savings over Ǚǜ% are observed, essenধally due to the

reduced power usage. Used power increases with total available power, resulধng in less energy saved for

higher power availability. The third row illustrates increasing problem size (same as in Figure ǜ.ǚ), clearly

demonstraধng higher energy savings for larger problems. The last row illustrates the increasing number

of nodes (as in Figure ǜ.Ǜ) where consistent energy savings of around ǚǗ% are observed for the three

power limits. Overall, the proposed mechanisms prove to be substanধally more effecধve than a UDP in

mulধple scenarios and aħending to different power caps.

100% 85% 70%
0

12.5

25

37.5

50

E s
av

ed
(%

)

26.5
20.8

12.7

2-nodes, static
 HeterogI

100% 85% 70%
Power cap s

15.8 17.0 17.6

4-nodes, static
 HeterogI

100% 85% 70%

28.8

3.8 2.3

static, HeterogII

100% 85% 70%
0

12.5

25

37.5

50

E s
av

ed
(%

)

10.6 10.1

1.5

2-nodes, dyn
 HeterogI

100% 85% 70%
Power cap s

16.9 19.3

10.5

4-nodes, dyn
 HeterogI

100% 85% 70%

23.3

1.6
7.5

dyn, HeterogII

128K 256K 512K 1024K
0

12.5

25

37.5

50

E s
av

ed
(%

)

1.2
7.5

22.0 21.7

4-nodes, static
 HeterogI

128K 256K 512K 1024K
Size

27.7
34.3 34.8

40.9

4-nodes, dyn
 Homog

128K 256K 512K 1024K

13.9
20.7 23.5 26.6

4-nodes, dyn
 HeterogI

2 4 8 16
0

12.5

25

37.5

50

E s
av

ed
(%

)

23.6

32.6
25.7 29.0

100%

2 4 8 16
Nodes

32.9

41.8
35.4 33.6

85%

2 4 8 16

19.7

40.2
31.7 31.4

70%

Figure ǜ.ǜ: Energy consumpধon reduced for the same configuraধons of the previous plots. In the first
two rows, ǜǘǙK cells for staধc ǙǜǝK cells for dynamic. ǟǜ% limit of power for the third row and the last
row is a weak scaling with homogeneous ǝǛǘ nodes with increasing cells (ǙǜǝK, ǜǘǙK, ǘǗǙǛK and ǙǗǛǟK)
and dynamic workload.

5.5 Conclusions and Future Work
This contribuধon proposes and assesses a runধme power scheduler, which opধmizes power consump-

ধon for overprovisioned heterogeneous clusters, in the context of CFD simulaধons. Such simulaধons

ođen imply dynamic workloads due to execuধon ধme mesh refinement that combined with hardware

heterogeneity, result in non-opধmal power consumpধon and/or performance degradaধon when a power

supply limit is applied. The proposed approach combines power usage reducধon with execuধon ধme

minimizaধon by formulaধng an opধmizaধon problem that devises a power schedule saধsfying both ob-

jecধves while aħending to a power limit. The proposed approach has been implemented as an addiধonal

sođware component of nSharma, which fully integrates with OpenFOAM.

Results, in general, show a substanধal reducধon in power used for staধc and dynamic workloads with no

performance deterioraধon. When the power budget is significantly reduced, performance improvements

ǟǞ

are observed when compared to a uniform distribuধon of power. These gains are shown to be the result

of adapধvely assigning the power to where it is most needed. Power from faster nodes and/or nodes

with less workload is migrated to slower and busier nodes, resulধng in an overall reducধon in power used

and performance gain. Assessments with mulধple problem sizes are also included, revealing an increased

effecধveness as problem size increases. Increasing number of compute units are also evaluated, demon-

straধng a consistent reducধon in power used along with performance improvements, however, the laħer

slightly affected by the computaধon to communicaধon raধo. Since power supply and performance basi-

cally define the energy consumpধon of an applicaধon, an energy saved analysis reveals that a substanধal

reducধon in energy is observed, in many cases over ǚǗ%.

Experimental results show that the effecধveness of the proposed model is, in some cases, affected by

the range of frequencies available for each compute unit. Future work will account for available ranges,

producing beħer results when compute units with a short range of frequencies is present. Addiধonally,

the runধme will be validated against a more extensive set of case studies and heterogeneous compuধng

units; upon successful validaধon, RHeAPAS will be made publicly available to be integrated into clusters

running OpenFOAM.

ǟǟ

Chapter

6 Conclusions
and Future
work

Contents
6.1 Conclusions, ǠǗ
6.2 Future Work, ǠǙ

6.2.1 Combining Power Management with Load Balancing, Ǡǚ

The best thing about the future is that it comes one day at a .meࣅ

Abraham Lincoln

ǟǠ

In this final chapter, the general conclusions achieved in the thesis are idenࣅfied. The three contribuࣅons

are discussed altogether and related to this thesis hypothesis. The future work is also discussed, with a

new model being proposed for development and assessment.

6.1 Conclusions
This thesis addresses the heterogeneous nature of today’s parallel compuধng systems in the context of

numerical computer simulaধons with focus on dynamic workloads. It approaches the mulধple challenges

that these systems pose, parধcularly when compuধng dynamic and irregular workloads originated from

large and complex numerical simulaধons such as CFD simulaধons with adapধve mesh refinement. The

challenges include performance imbalances originated from nodes or devices with different compuধng

capabiliধes, performance non-portability, disjoint memory address spaces, non-portable code and emerg-

ing challenges related to power management. These challenges are further aggravated with the dynamic

and unpredictable nature of the workload since it produces an arbitrary amount of computaধonal ef-

fort as well as code divergence and branching workflow that current compuধng sođware soluধons and

paradigms do not address.

The heterogeneous challenges posed by current compuধng systems together with dynamic workloads

form a Two-fold Challenge that this thesis proposes to address using a combinaধon of mechanisms that

are designed, implemented and validated across a conceptual Ǜ-Tier parallel hierarchy defined in this

document. These mechanisms include a unified execuধon and programming model, transparent data

management systems, heterogeneity aware dynamic load balancing and heterogeneity aware power man-

agement. This thesis hypothesis is thus that these techniques can be used to face the mulধple challenges

raised across the Ǜ ধers of parallelism in order to increase the development producধvity, compute effi-

ciency and a proper balance between performance extracted and power used.

The contribuধons of this thesis were organized in three main parts:

Heterogeneity challenges in Tier-ǘ,Ǚ and ǚ parallel systems In this contribuধon, single node mulধ-device

(Tier-ǚ) systems were addressed and a unified task-based programming and execuধon model tai-

lored to efficiently execute data-parallel regular and irregular applicaধons was proposed. Among

other mechanisms, the execuধon model includes the integraধon of persistent kernels combined

with a tailored API allowing users to express irregular applicaধons towards increasing the perfor-

mance extracted from the Tier-Ǚ and ǘ parallel levels. Results reveal a gain of up to ǟǛ% in some

applicaধons along with consistent levels of parallel efficiency as resources are added.

Heterogeneity challenges in Tier-Ǜ parallel systems In this contribuধon the challenges with mulধ-node

distributed memory systems (Tier-Ǜ) were addressed and the proposed approach is directly inte-

grated and evaluated with a widely used CFD library (OpenFOAM). The contribuধon evaluated

ǠǗ

the combinaধon of a DLB system with an applicaধon-oriented performance model as a mean to

increase resource uধlizaধon in performance and workload imbalanced systems. Speed-ups larger

than Ǚ were achieved with some configuraধons and an increased parallel efficiency when compared

with the out-of-the-box simulaধon ধme results.

Power-management in Tier-Ǜ heterogeneous systems The fast-growing power consumpধon was ad-

dressed in this contribuধon by devising and solving an opধmizaধon problem in order to improve

power efficiency and performance in power-limited scenarios. The proposed model is formulated

based on two objecধves: power consumpধon minimizaধon and performance maximizaধon. Het-

erogeneity awareness is provided by a performance model and power assignment decisions are

adapধvely performed at runধme. Reducধons in power consumpধon over Ǚǜ% were observed in

some configuraধons with fairly acceptable adapধvity to dynamic workloads and resources variabil-

ity. Gains over ǛǗ% in energy are also observed in some configuraধons.

These contribuধons show that unified programming and execuধonmodels are an effecধve way of increas-

ing producধvity and performance by hiding the main hurdles that heterogeneous parallel systems pose

to applied science experts. They provide a mechanism for transparent handling of mulধple architectures

with different performance levels offered by different compuধng units. These unified runধme systems

must provide a data-management system in order to further enhance producধvity and also increase

scheduling opportuniধes to push forward performance boundaries. Special focus was set on scheduling

and how persistent kernels may be explored in order to increase the performance of irregular applicaধons

in highly parallel architectures. Results revealed substanধal gain when using these tools as long as the

applicaধon sustains enough computaধonal effort to miধgate the workload management overheads.

Results also show that Dynamic Load Balancing (DLB) techniques are capable of substanধally increas-

ing the performance of a complex state-of-the-art CFD sođware package in heterogeneous distributed

memory systems. By resorধng to a thorough combinaধon and design of a profiling mechanism, a tailored

performance model, a decision module and a reparধধoning module, a runধme system can be integrated

into a numerical simulaধon package allowing it to effecধvely account for the differences in performance

across nodes including parধcularly challenging scenarios like dynamic workload simulaধons.

Finally, this document describes a formulaধon of an opধmizaধon problem that distributes a power budget

and tries to minimize power consumpধon while also minimizing the performance penalty. It explores

some of the modules used in DLB techniques, such as the tailored performance model, and the results

show that power consumpধon can be effecধvely reduced without affecধng performance. The model

also considers limited power supply scenarios which allows for the model to increase the performance

when compared to simpler power limitaধon approaches. This further increases the benefits of using such

opধmizaধon formulaধons in heterogeneous systems resulধng in not only power consumpধon reducধon

but also a reducধon in energy used as a consequence of shorter execuধon ধmes.

Ǡǘ

It is thus the author belief that the results presented in this document validate the hypothesis put forward

by this research work. The mechanisms idenধfied were able to effecধvely address the mulধple challenges

that parallel heterogeneous systems pose, in parধcular, they were able to address the two-fold challenge

defined by combining these challenges with dynamic workloads. The next secধon discusses the future

work and it proposes an approach to extend the opধmizaধon problem used in RHeAPAS (Secধon ǜ.Ǟ) in

order to include dynamic load balancing.

6.2 Future Work
In general, the compuধng plaĤorms used in experimentaধon throughout the thesis may be classified

as small-medium sized systems. Although the author believes that the variety of systems used are the

minimum required to validate the proposed goals of this thesis, larger and more heterogeneous systems

should be tested. This includes validaধon with hundreds of nodes as well as systems with a larger num-

ber of different devices (higher heterogeneity levels). Larger scale systems potenধally introduce other

challenges (e.g. higher communicaধon overheads) that need to be accounted for in the proposed mech-

anisms. Analysing other different compuধng devices will also provide a beħer insight in how the models

can be further developed to increase the support for arbitrary heterogeneity. For instance, RHeAPAS

could benefit from a generic mechanism that would account for the different frequency steps that each

individual device potenধally has.

Specific to the contribuধons described in Chapter Ǜ and ǜ, the current prototype implementaধon re-

quires some changes and subsequent re-compilaধon of the OpenFOAM solvers. This can be completely

removed by integraধng the required changes in the OpenFOAM core libraries, omiষng thus any changes

to the solvers required to the OpenFOAM programmers. An extremely limiধng feature in OpenFOAM

is the requirement of having at least one cell assigned to each instanced rank (no zero-sized parধধons).

This inhibits nSharma to simply deacধvate a CU that is too slow to have any benefit in assigning any

work to it. Enabling this in OpenFOAM would significantly increase the benefit of using the proposed

mechanisms.

It is crucial that the physical simulaধon results are not affected by nSharma or RHeAPAS, therefore, the

simulaধon results achieved (e.g. velocity, pressure, etc) need to be properly validated. This requires the

implementaধon of a thorough methodology to compare the results achieved with the proposed mech-

anisms against the out-the-box simulaধon values. It is also required to further validate the proposed

mechanisms with more simulaধons cases as well as different OpenFOAM solvers. Since the mesh repar-

ধধoning and cell migraধon is related with the mesh geometry and cell distribuধon in space, it is required

to further assess the behaviour of nSharma with different meshes and simulaধon workflows.

Regarding the opধmizaধon problem used in RHeAPAS, note that the coefficients α1 and α2 are equally

defined as Ǘ.ǜ in the experimental tests. This means that the same weight is given to both objecধves: per-

ǠǙ

formance and power consumpধon. Further tests with different values for these coefficients can be made

in order to assess their impact on the results. Finally, the contribuধons in Chapter ǜ are useful essenধally

to system administrators and managers. An interface is thus required that connects the tools used by

these administrators to the mechanisms proposed in order to be transparently used and parametrized

according to system characterisধcs.

6.2.1 Combining Power Management with Load Balancing
In Chapter ǜ a formulaধon of an opধmizaধon problem is proposed in order to find the best trade-off

between power and performance that would minimize the power used. Solving the opধmizaধon problem

consists on findingW (power assigned to each CU) that minimizes two combined funcধons, the esধmated

execuধon ধme T(W) and the total power used ∥W∥1 (Equaধon ǜ.Ǟ). Since no dynamic load balancing is

used in this contribuধon, the number of cells assigned to each CU is known at the start of each iteraধon

and it is used in Equaধon ǜ.ǝ to esধmate the execuধon ধme with a provided Wp.

This approach can be extended by adding a new set of unknowns to the minimizaধon problem that

represent the number of cells Ni+1
p assigned to each CU p, i.e., allowing for cell migraধon among CUs. The

Ni+1
p in Equaধon ǜ.ǝ can parametrized resulধng in:

Ti+1
p (Wi+1

p ,Ni+1
p) = r̃ kp × fcapp × 1

Φp(Wi+1
p)

× Ni+1
p (ǝ.ǘ)

Subsequently, Equaধon ǜ.ǚ becomes:

Ti+1(Wi+1,Ni+1) = max
p∈{0,...,P−1}

Ti+1
p (Wi+1

p ,Ni+1
p) (ǝ.Ǚ)

And finally, by adding the new set of unknowns to the opধmizaধon problem the following is achieved

(for simplicity index i+ 1 has been omiħed):

minimize
W∈RP,N∈NP

α1 × T(W,N) + α2 × ∥W∥1

subject to ∥W∥1 ≤ τ

∥N∥1 = Ntotal

∥N∥0 = P

T(W,N) ≤ T(Wcap,N)

fminp ≤ Φp(Wp) ≤ fmaxp , ∀p ∈ {0, . . . , P− 1}

(ǝ.ǚ)

Note that the constraints ∥N∥1 = Ntotal and ∥N∥0 = P have been added in order to ensure that all the

cells are assigned and no zero-sized domains are created, respecধvely.

Solving this problemwill thus search for the bestW andN that combinedwill minimize execuধon ধme and

Ǡǚ

power consumpধon. Note that T(W,N) is based on the performance model, therefore the performance

of each CU will also be a defining factor on how to devise N, which is the main purpose of a dynamic

load balancing mechanism. The decisions of this model are significantly different from the previous model.

The system has now the ability to migrate cellsǘ among CUs, balancing between assigning cells to the

fastest CUs and the ones that consume the least power. This significantly increases the depth of the

decisions made and potenধally resulধng in substanধal gains in energy consumpধon compared to the

ones achieved in Chapter ǜ.

Note that this approach was not implemented in any way, the opধmizaধon model was formulated and

presented here, but no validaধon or assessment was performed. To implement this new approach, most

of the mechanisms in Chapter Ǜ are required. In fact, solving this problem can replace the nSharma

linear system of equaধons described in Secধon Ǜ.ǚ.ǚ, Equaধon Ǜ.Ǜ. This will produce the Ni+1
p values

that can then be used in the following pipelined components and finalize with the assignment of the

frequencies. Note that, by adding N as a new set of variables to search, the complexity of solving the

model is potenধally higher as there are significantly more possible combinaধons. The overhead and cost

of solving such system at runধme must be re-assessed.

A parধcular advantage of this model is that it provides the ability to, according to the system circum-

stances, dynamically configure the applicaধon to leverage either less power consumpধon or greater

performance. For instance, an administraধon enধty (either an automaধc system or human system ad-

ministrator) can parametrize the execuধon of the applicaধon to leverage power consumpধon reducধon

if the system is under high load. The model can thus migrate the work to the most suitable CUs that

would minimize performance degradaধon and define the most suitable frequencies to achieve such goal.

On the other hand, if the system has all the available power to compute the applicaধon, the model may

find the best cell distribuধon to achieve the best performance, disregarding any concerns with power

consumpধon.

ǘimplicitly, by devising the number of cells assigned

ǠǛ

Bibliography

Ǡǜ

[ǘ] J. Dongarra, “Trends in high performance compuধng: a historical overview and examinaধon of

future developments,” IEEE Circuits and Devices Magazine, Jan. ǙǗǗǝ.

DOI: 10.1109/MCD.2006.1598076.

[Ǚ] L. Eeckhout, “Heterogeneity in response to the power wall,” IEEE Micro, ǙǗǘǜ.

DOI: 10.1109/MM.2015.86.

[ǚ] A. Ghuloum, “Face the inevitable, embrace parallelism,” Communicaࣅons of the ACM, Sep. ǙǗǗǠ.

DOI: 10.1145/1562164.1562179.

[Ǜ] M. Zahran, “Heterogeneous compuধng: here to stay,” Commun. ACM, ǙǗǘǞ.

DOI: 10.1145/3024918.

[ǜ] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai, “The impact of performance asymmetry in

emerging mulধcore architectures,” ACM SIGARCH Computer Architecture, May ǙǗǗǜ.

DOI: 10.1145/1080695.1070012.

[ǝ] J. Dongarra, P. Beckman, T. Moore, et al., “The internaধonal exascale sođware project roadmap,”

Internaࣅonal Journal of High Performance Compuࣅng Applicaࣅons, ǙǗǘǘ.

DOI: 10.1177/1094342010391989.

[Ǟ] V. W. Lee, P. Hammarlund, R. Singhal, et al., “Debunking the ǘǗǗx gpu vs. cpu myth: an evaluaধon

of throughput compuধng on cpu and gpu,” ACM SIGARCH Computer Architecture News, Jun. ǙǗǘǗ.

DOI: 10.1145/1816038.1816021.

[ǟ] C. Augonnet, J. Clet-Ortega, S. Thibault, and R. Namyst,

“Data-aware task scheduling on mulধ-accelerator based plaĤorms,”

in ǙǗǘǗ IEEE ǘǝth Internaࣅonal Conference on Parallel and Distributed Systems, IEEE, Dec. ǙǗǘǗ,

ISBN: ǠǞǟ-ǘ-ǛǙǛǛ-ǠǞǙǞ-Ǘ. DOI: 10.1109/ICPADS.2010.129.

[Ǡ] H. K. Versteeg and W. Malalasekera,

An Introducࣅon to Computaࣅonal Fluid Dynamics: The Finite Volume Method, Second.

Pearson Educaধon, ǙǗǗǞ, ISBN: ǠǞǟ-ǗǘǚǘǙǞǛǠǟǚ.

[ǘǗ] M. Burtscher, R. Nasre, and K. Pingali, “A quanধtaধve study of irregular programs on gpus,”

in Proceedings - ǙǗǘǙ IEEE Internaࣅonal Symposium on Workload Characterizaࣅon, IISWC ǙǗǘǙ,

ǙǗǘǙ, ISBN: ǠǞǟǘǛǜǞǞǙǗǝǛǙ. DOI: 10.1109/IISWC.2012.6402918.

[ǘǘ] P. Colella, J. Bell, N. Keen, T. Ligocki, M. Lijewski, and B. V. Straalen, “Performance and scaling of

locally-structured grid methods for parধal differenধal equaধons,”

Journal of Physics: Conference Series, Jul. ǙǗǗǞ. DOI: 10.1088/1742-6596/78/1/012013.

[ǘǙ] M. Burtscher and K. Pingali,

“An efficient cuda implementaধon of the tree-based barnes hut n-body algorithm,”

in GPU Compuࣅng Gems Emerald Ediࣅon, Elsevier, ǙǗǘǘ, ISBN: ǗǘǙǚǟǛǠǟǟǟ.

DOI: 10.1016/B978-0-12-384988-5.00006-1.

Ǡǝ

http://dx.doi.org/10.1109/MCD.2006.1598076
http://dx.doi.org/10.1109/MM.2015.86
http://dx.doi.org/10.1145/1562164.1562179
http://dx.doi.org/10.1145/3024918
http://dx.doi.org/10.1145/1080695.1070012
http://dx.doi.org/10.1177/1094342010391989
http://dx.doi.org/10.1145/1816038.1816021
http://dx.doi.org/10.1109/ICPADS.2010.129
http://dx.doi.org/10.1109/IISWC.2012.6402918
http://dx.doi.org/10.1088/1742-6596/78/1/012013
http://dx.doi.org/10.1016/B978-0-12-384988-5.00006-1

[ǘǚ] I. Sadeghi, B. Chen, and H. W. Jensen, “Coherent path tracing,”

Journal of Graphics GPU Game Tools, ǙǗǗǠ. DOI: 10.1080/2151237X.2009.10129279.

[ǘǛ] M. Kalos and P. Whitlock, Monte Carlo methods, Second. ǙǗǗǟ, ISBN: ǠǞǟ-ǚǜǙǞǛǗǞǝǗǝ.

[ǘǜ] J. Bolz, I. Farmer, E. Grinspun, and P. Schroder, “Sparse matrix solvers on the gpu: conjugate

gradients and mulধgrid,” ACM Transacࣅons on Graphics, ǙǗǗǚ. DOI: 10.1145/882262.882364.

[ǘǝ] L. J. Guibas, D. E. Knuth, and M. Sharir, “Randomized incremental construcধon of delaunay and

voronoi diagrams,” Algorithmica, Jun. ǘǠǠǙ. DOI: 10.1007/BF01758770.

[ǘǞ] J. Barnes and P. Hut, “A hierarchical o(n log n) force-calculaধon algorithm,” Nature, Dec. ǘǠǟǝ.

DOI: 10.1038/324446a0.

[ǘǟ] H. P. Zhu, Z. Y. Zhou, R. Y. Yang, and A. B. Yu, “Discrete parধcle simulaধon of parধculate systems:

a review of major applicaধons and findings,” Chemical Engineering Science, Dec. ǙǗǗǟ.

DOI: 10.1016/j.ces.2008.08.006.

[ǘǠ] R. Lhner, Applied Computaࣅonal Fluid Dynamics Techniques.

Chichester, UK: John Wiley and Sons, Ltd, Mar. ǙǗǗǟ, ISBN: ǠǞǟǗǛǞǗǠǟǠǞǛǝ.

[ǙǗ] R. Löhner,

Applied Computaࣅonal Fluid Dynamics Techniques: An Introducࣅon Based on Finite Element Methods.

ǙǗǗǟ, ISBN: ǠǞǟǗǛǞǗǠǟǠǞǛǝ. DOI: 10.1002/9780470989746.

[Ǚǘ] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale compuধng technology challenges,”

Springer, Berlin, Heidelberg, ǙǗǘǘ, ISBN: ǠǞǟ-ǚ-ǝǛǙ-ǘǠǚǙǞ-Ǡ, ǠǞǟ-ǚ-ǝǛǙ-ǘǠǚǙǟ-ǝ.

DOI: 10.1007/978-3-642-19328-6_1.

[ǙǙ] U. D. of Energy, “ǙǗǘǚ exascale operaধng and runধme systems,” Tech. Rep., ǙǗǘǚ.

[Online]. Available: https://science.energy.gov/%7B~%7D/media/grants/pdf/lab-

announcements/2013/LAB%7B%5C_%7D13-02.pdf.

[Ǚǚ] TopǜǗǗ, TopǜǗǗ supercomputer site, ǙǗǘǟ.

[Online]. Available: http://www.top500.org/site/48958.

[ǙǛ] Nvidia, Cuda programming guide, ǙǗǘǟ. [Online]. Available:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.

[Ǚǜ] A. Grama, V. Kumar, A. Gupta, and G. Karypis, Introducࣅon to Parallel Compuࣅng. ǙǗǗǚ,

ISBN: ǗǙǗǘǝǛǟǝǜǙ.

[Ǚǝ] MPI-Forum, Mpi: a message-passing interface standard, ǙǗǘǜ.

[Online]. Available: https://www.mpi-forum.org/.

[ǙǞ] OpenMP Architecture Review Board, Openmp api specificaࣅon, ǙǗǘǜ.

[Online]. Available: https://www.openmp.org/specifications/.

ǠǞ

http://dx.doi.org/10.1080/2151237X.2009.10129279
http://dx.doi.org/10.1145/882262.882364
http://dx.doi.org/10.1007/BF01758770
http://dx.doi.org/10.1038/324446a0
http://dx.doi.org/10.1016/j.ces.2008.08.006
http://dx.doi.org/10.1002/9780470989746
http://dx.doi.org/10.1007/978-3-642-19328-6_1
https://science.energy.gov/%7B~%7D/media/grants/pdf/lab-announcements/2013/LAB%7B%5C_%7D13-02.pdf
https://science.energy.gov/%7B~%7D/media/grants/pdf/lab-announcements/2013/LAB%7B%5C_%7D13-02.pdf
http://www.top500.org/site/48958
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.mpi-forum.org/
https://www.openmp.org/specifications/

[Ǚǟ] Intel, Intel threading building blocks developer reference, ǙǗǘǟ.

[Online]. Available: https://www.threadingbuildingblocks.org/documentation.

[ǙǠ] ——, Intel cilk plus reference manual, ǙǗǘǝ.

[Online]. Available: https://www.cilkplus.org/cilk-documentation-full.

[ǚǗ] Microsođ, .net framework api reference, ǙǗǘǞ.

[Online]. Available: https://docs.microsoft.com/en-us/dotnet/api/.

[ǚǘ] IEEE, ǘǗǗǚ.ǘ-ǙǗǘǞ - ieee standard for informaࣅon technology–portable operaࣅng system interface

(posix(r)) base specificaࣅons, ǙǗǘǞ.

[Online]. Available: https://ieeexplore.ieee.org/document/8277153/?denied.

[ǚǙ] Boost cӫӫ library documentaࣅon, ǙǗǘǟ. [Online]. Available: https://www.boost.org/doc.

[ǚǚ] Iso/iec ǘǛǟǟǙ:ǙǗǘǘ informaࣅon technology – programming languages – cӫӫ, ǙǗǘǘ.

[Online]. Available: https://www.iso.org/standard/50372.html.

[ǚǛ] J. Diaz, C. Munoz-Caro, A. Nino, C. Muñoz-Caro, and A. Niño, “A survey of parallel programming

models and tools in the mulধ and many-core era,”

IEEE Transacࣅons on Parallel and Distributed Systems, ǙǗǘǙ. DOI: 10.1109/TPDS.2011.308.

[ǚǜ] Khronos, The opencl specificaࣅon, ǙǗǘǟ.

[Online]. Available: https://www.khronos.org/opencl/.

[ǚǝ] Openacc programming and best pracࣅces guide, ǙǗǘǜ.

[Online]. Available: https://www.openacc.org/resources.

[ǚǞ] D. A. Paħerson and J. L. Hennessy,

Computer Organizaࣅon and Design, Fiđh Ediࣅon: The Hardware/Sođware Interface.

Morgan Kaufmann, ǙǗǘǛ, ISBN: ǠǞǟǗǘǙǛǗǞǞǙǝǚ.

[ǚǟ] G. Valenধni, W. Lassonde, S. Khan, et al., “An overview of energy efficiency techniques in cluster

compuধng systems,” Cluster Compuࣅng, ǙǗǘǚ. DOI: 10.1007/s10586-011-0171-x.

[ǚǠ] Advanced configuraࣅon and power interface specificaࣅon revision ǜ.Ǘa, ǙǗǘǚ.

[Online]. Available: http://www.acpi.info/spec.htm.

[ǛǗ] J. Feo, O. Villa, A. Tumeo, and S. Secchi, “Irregular applicaধons: architectures and algorithms,”

in Proceedings of the ǘst Workshop on Irregular Applicaࣅons: Architectures and Algorithms,

ser. IAAA ’ǘǘ, ǙǗǘǘ, ISBN: ǠǞǟǘǛǜǗǚǘǘǙǘǙ. DOI: 10.1145/2089142.2089144.

[Ǜǘ] P. Glasserman, Monte Carlo Methods in Financial Engineering. ǙǗǗǚ, ISBN: ǠǞǟ-Ǘ-ǚǟǞ-ǙǘǝǘǞ-ǘ.

[ǛǙ] M. Pedersen, “Monte carlo simulaধon in financial valuaধon,” Hvass Laboratories, Tech. Rep., ǙǗǘǛ.

DOI: 10.2139/ssrn.2332539.

[Ǜǚ] M. Pharr and G. Humphreys, Physically based rendering: from theory to implementaࣅon, Ǚnd.

Morgan Kaufmann, ǙǗǘǗ, ISBN: ǠǞǟ-ǗǘǙǚǞǜǗǞǠǙ.

Ǡǟ

https://www.threadingbuildingblocks.org/documentation
https://www.cilkplus.org/cilk-documentation-full
https://docs.microsoft.com/en-us/dotnet/api/
https://ieeexplore.ieee.org/document/8277153/?denied
https://www.boost.org/doc
https://www.iso.org/standard/50372.html
http://dx.doi.org/10.1109/TPDS.2011.308
https://www.khronos.org/opencl/
https://www.openacc.org/resources
http://dx.doi.org/10.1007/s10586-011-0171-x
http://www.acpi.info/spec.htm
http://dx.doi.org/10.1145/2089142.2089144
http://dx.doi.org/10.2139/ssrn.2332539

[ǛǛ] C. Zhu and Q. Liu, “Review of monte carlo modeling of light transport in ধssues,”

Journal of Biomedical Opࣅcs, ǙǗǘǚ. DOI: 10.1117/1.JBO.18.5.050902.

[Ǜǜ] R. Dolbeau, S. Bihan, and F. Bodin,

“Hmpp: a hybrid mulধ-core parallel programming environment,”

in First Workshop on General Purpose Processing on Graphics Processing Units, ǙǗǗǞ.

[Ǜǝ] G. Diamos and S. Yalamanchili,

“Harmony: an execuধon model and runধme for heterogeneous many core systems,”

in Proceedings of the ǘǞth internaࣅonal symposium on High performance distributed compuࣅng,

Jun. ǙǗǗǟ. DOI: 10.1145/1383422.1383447.

[ǛǞ] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng,

“Merge: a programming model for heterogeneous mulধ-core systems,” in Proceedings of the ǘǚth

internaࣅonal conference on Architectural support for programming languages and operaࣅng systems,

ser. ASPLOS XIII, ǙǗǗǟ. DOI: 10.1145/1346281.1346318.

[Ǜǟ] T. Gauধer, J. V. Lima, N. Maillard, and B. Raffin,

“Xkaapi: a runধme system for data-flow task programming on heterogeneous architectures,”

in Proceedings - IEEE ǙǞth Internaࣅonal Parallel and Distributed Processing Symposium, IPDPS ǙǗǘǚ,

IEEE, May ǙǗǘǚ, ISBN: ǠǞǟ-ǘ-ǛǝǞǚ-ǝǗǝǝ-ǘ. DOI: 10.1109/IPDPS.2013.66.

[ǛǠ] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken,

“Legion: expressing locality and independence with logical regions,”

in Internaࣅonal Conference for High Performance Compuࣅng, Networking, Storage and Analysis, SC,

ǙǗǘǙ, ISBN: ǠǞǟǘǛǝǞǚǗǟǗǝǠ. DOI: 10.1109/SC.2012.71.

[ǜǗ] C.-K. Luk, S. Hong, and H. Kim,

“Qilin: exploiধng parallelism on heterogeneous mulধprocessors with adapধve mapping,”

in Proceedings of the ǛǙnd Annual IEEE/ACM Internaࣅonal Symposium on Microarchitecture,

ser. MICRO ǛǙ, ǙǗǗǠ. DOI: 10.1145/1669112.1669121.

[ǜǘ] J. A. Pienaar, A. Raghunathan, and S. Chakradhar,

“Mdr: performance model driven runধme for heterogeneous parallel plaĤorms,”

in Proceedings of the internaࣅonal conference on Supercompuࣅng, May ǙǗǘǘ.

DOI: 10.1145/1995896.1995933.

[ǜǙ] C. Augonnet, S. Thibault, R. Namyst, and P.-a. Wacrenier,

“Starpu : a unified plaĤorm for task scheduling on heterogeneous mulধcore architectures,”

in Euro-Par ǙǗǗǠ Parallel Processing ǘǜth Internaࣅonal Euro-Par Conference, ǙǗǗǠ.

DOI: 10.1002/cpe.1631.

ǠǠ

http://dx.doi.org/10.1117/1.JBO.18.5.050902
http://dx.doi.org/10.1145/1383422.1383447
http://dx.doi.org/10.1145/1346281.1346318
http://dx.doi.org/10.1109/IPDPS.2013.66
http://dx.doi.org/10.1109/SC.2012.71
http://dx.doi.org/10.1145/1669112.1669121
http://dx.doi.org/10.1145/1995896.1995933
http://dx.doi.org/10.1002/cpe.1631

[ǜǚ] H. Topcuoglu and S. Hariri, “Performance-effecধve and low-complexity task scheduling for

heterogeneous compuধng,” IEEE Transacࣅons on Parallel and Distributed Systems, Mar. ǙǗǗǙ.

DOI: 10.1109/71.993206.

[ǜǛ] R. Ribeiro, “Portability and performance in heterogeneous many-core systems,”

MSc thesis, University of Minho, ǙǗǘǘ.

[Online]. Available: http://hdl.handle.net/1822/28170.

[ǜǜ] D. Cederman and P. Tsigas, “On dynamic load balancing on graphics processors,”

in Proceedings of the Ǚǚrd ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics Hardware,

ser. GH ’Ǘǟ, ǙǗǗǟ. DOI: 10.2312/EGGH/EGGH08/057-064.

[ǜǝ] S. Tzeng, A. Patney, and J. D. Owens,

“Task management for irregular-parallel workloads on the gpu,”

in Proceedings of the Conference on High Performance Graphics, ser. HPG ’ǘǗ, ǙǗǘǗ.

DOI: 10.2312/EGGH/HPG10/029-037.

[ǜǞ] T. Aila and S. Laine, “Understanding the efficiency of ray traversal on gpus,”

in Proceedings of the High-Performance Graphics ǙǗǗǠ, ǙǗǗǠ. DOI: 10.1145/1572769.1572792.

[ǜǟ] M. Steinberger, B. Kainz, B. Kerbl, et al., “Sođshell : dynamic scheduling on gpus,”

Journal ACM Transacࣅons on Graphics, ǙǗǘǙ. DOI: 10.1145/2366145.2366180.

[ǜǠ] B. L. Chamberlain, D. Callahan, and H. P. Zima, “Parallel programmability and the chapel language,”

Internaࣅonal Journal of High Performance Compuࣅng Applicaࣅons, Aug. ǙǗǗǞ.

DOI: 10.1177/1094342007078442.

[ǝǗ] NVIDIA, Nvidia cuda basic linear algebra subrouࣅnes (cublas), ǙǗǘǟ.

[Online]. Available: https://docs.nvidia.com/cuda/cublas/index.html.

[ǝǘ] Intel, Developer reference for intel math kernel library ǙǗǘǟ - c, ǙǗǘǟ. [Online]. Available:

https://software.intel.com/en-us/mkl-developer-reference-c.

[ǝǙ] Luxcorerender, ǙǗǘǟ. [Online]. Available: https://luxcorerender.org/.

[ǝǚ] R. Chamberlain, D. Chace, and A. Paধl,

“How are we doing? an efficiency measure for shared , heterogeneous systems,”

in ISCA ǘǘth, Internaࣅonal Conference on Parallel and Distributed Compuࣅng Systems, ǘǠǠǟ.

[ǝǛ] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O. Storaasli, “State-of-the-art in

heterogeneous compuধng,” Sci. Program., ǙǗǘǗ. DOI: 10.1155/2010/540159.

[ǝǜ] G. Da Costa, T. Fahringer, J.-A. Rico-Gallego, et al., “Exascale machines require new programming

paradigms and runধmes,” Supercompuࣅng Fronࣅers and Innovaࣅons, ǙǗǘǜ.

DOI: 10.14529/jsfi150201.

ǘǗǗ

http://dx.doi.org/10.1109/71.993206
http://hdl.handle.net/1822/28170
http://dx.doi.org/10.2312/EGGH/EGGH08/057-064
http://dx.doi.org/10.2312/EGGH/HPG10/029-037
http://dx.doi.org/10.1145/1572769.1572792
http://dx.doi.org/10.1145/2366145.2366180
http://dx.doi.org/10.1177/1094342007078442
https://docs.nvidia.com/cuda/cublas/index.html
https://software.intel.com/en-us/mkl-developer-reference-c
https://luxcorerender.org/
http://dx.doi.org/10.1155/2010/540159
http://dx.doi.org/10.14529/jsfi150201

[ǝǝ] OpenFOAM Foundaধon, Openfoam users’ guide, ǙǗǘǟ.

[Online]. Available: https://cfd.direct/openfoam/user-guide/.

[ǝǞ] Ansys fluent, ǙǗǘǟ.

[Online]. Available: https://www.ansys.com/products/fluids/ansys-fluent.

[ǝǟ] Ansys cfx, ǙǗǘǟ.

[Online]. Available: https://www.ansys.com/products/fluids/ansys-cfx.

[ǝǠ] Cd-adapco star-ccmӫ, ǙǗǘǞǟ.

[Online]. Available: https://mdx.plm.automation.siemens.com/star-ccm-plus.

[ǞǗ] K. Schloegel, G. Karypis, and V. Kumar, “Mulধlevel diffusion schemes for reparধধoning of

adapধve meshes,” Journal of Parallel and Distributed Compuࣅng, ǘǠǠǞ.

DOI: 10.1006/jpdc.1997.1410.

[Ǟǘ] C. Chevalier and F. Pellegrini, “Pt-scotch: a tool for efficient parallel graph ordering,”

Parallel Compuࣅng, ǙǗǗǟ. DOI: 10.1016/j.parco.2007.12.001.

[ǞǙ] A. Basermann, J. Clinckemaillie, T. Coupez, et al., “Dynamic load-balancing of finite element

applicaধons with the drama library,” Applied Mathemaࣅcal Modelling, ǙǗǗǗ.

DOI: 10.1016/S0307-904X(00)00043-3.

[Ǟǚ] K. Barker, A. Chernikov, N. Chrisochoides, and K. Pingali, “A load balancing framework for

adapধve and asynchronous applicaধons,”

IEEE Transacࣅons on Parallel and Distributed Systems, ǙǗǗǛ. DOI: 10.1109/TPDS.2004.1264800.

[ǞǛ] K. Devine, B. Hendrickson, E. Boman, M. St. John, and C. Vaughan, “Design of dynamic

load-balancing tools for parallel applicaধons,”

Proceedings of the ǘǛth internaࣅonal conference on Supercompuࣅng - ICS ’ǗǗ, ǙǗǗǗ.

DOI: 10.1145/335231.335242.

[Ǟǜ] J. Faik, J. E. Flaherty, L. G. Gervasio, J. D. Teresco, and K. D. Devine,

“A model for resource-aware load balancing on heterogeneous clusters,”

Williams College Department of Computer Science, Tech. Rep., ǙǗǗǜ. [Online]. Available:

http://j.teresco.org/research/publications/tpds05/tpds05.pdf.

[Ǟǝ] J. A. Mar঩nez, E. M. Garzón, A. Plaza, and I. García, “Automaধc tuning of iteraধve computaধon on

heterogeneous mulধprocessors with adithe,” Journal of Supercompuࣅng, ǙǗǘǘ.

DOI: 10.1007/s11227-009-0350-1.

[ǞǞ] D. Clarke, A. Lastovetsky, and V. Rychkov, “Dynamic load balancing of parallel computaধonal

iteraধve rouধnes on highly heterogeneous hpc plaĤorms,” Parallel Processing Leħers, ǙǗǘǘ.

DOI: 10.1142/S0129626411000163.

ǘǗǘ

https://cfd.direct/openfoam/user-guide/
https://www.ansys.com/products/fluids/ansys-fluent
https://www.ansys.com/products/fluids/ansys-cfx
https://mdx.plm.automation.siemens.com/star-ccm-plus
http://dx.doi.org/10.1006/jpdc.1997.1410
http://dx.doi.org/10.1016/j.parco.2007.12.001
http://dx.doi.org/10.1016/S0307-904X(00)00043-3
http://dx.doi.org/10.1109/TPDS.2004.1264800
http://dx.doi.org/10.1145/335231.335242
http://j.teresco.org/research/publications/tpds05/tpds05.pdf
http://dx.doi.org/10.1007/s11227-009-0350-1
http://dx.doi.org/10.1142/S0129626411000163

[Ǟǟ] D. Clarke, Z. Zhong, V. Rychkov, and A. Lastovetsky, “Fupermod: a sođware tool for the

opধmizaধon of data-parallel applicaধons on heterogeneous plaĤorms,”

The Journal of Supercompuࣅng, ǙǗǘǛ. DOI: 10.1007/s11227-014-1207-9.

[ǞǠ] Z. Zhong, “Opধmizaধon of data-parallel scienধfic applicaধons on highly heterogeneous modern

hpc plaĤorms,” PhD thesis, ǙǗǘǛ.

[ǟǗ] K. Mooney and J. Papper, “Implementaধon of a moving immersed boundary method on a

dynamically refining mesh with automaধc load balancing,” in ǘǗth OpenFOAM Workshop, ǙǗǘǜ.

[ǟǘ] Europe, “Cooperaধon framework on high performance compuধng,” Tech. Rep., ǙǗǘǞ.

[Online]. Available: https://ec.europa.eu/digital-single-market/en/news/eu-

ministers-commit-digitising-europe-high-performance-computing-power.

[ǟǙ] Z. Zhang, M. Lang, S. Pakin, and S. Fu,

“Trapped capacity: scheduling under a power cap to maximize machine-room throughput,”

in Proceedings of EǙSC ǙǗǘǛ: Ǚnd Internaࣅonal Workshop on Energy Efficient Supercompuࣅng - Held

in Conjuncࣅon with SC ǙǗǘǛ: The Internaࣅonal Conference for High Performance Compuࣅng,

Networking, Storage and Analysis, ǙǗǘǜ, ISBN: ǠǞǟǘǛǞǠǠǞǗǚǝǗ. DOI: 10.1109/E2SC.2014.10.

[ǟǚ] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and B. R. de Supinski,

“Exploring hardware overprovisioning in power-constrained, high performance compuধng,”

in Proceedings of the ǙǞth internaࣅonal ACM conference on Internaࣅonal conference on

supercompuࣅng - ICS ’ǘǚ, New York, New York, USA: ACM Press, ǙǗǘǚ, ISBN: ǠǞǟǘǛǜǗǚǙǘǚǗǚ.

DOI: 10.1145/2464996.2465009.

[ǟǛ] R. Ge, X. Feng, W. Feng, and K. W. Cameron,

“Cpu miser: a performance-directed, run-ধme system for power-aware clusters,”

in ICPP ’ǗǞ Proceedings of the ǙǗǗǞ Internaࣅonal Conference on Parallel Processing, ǙǗǗǞ.

DOI: 10.1109/ICPP.2007.29.

[ǟǜ] C.-H. H. Hsu and W.-C. C. Feng,

“A power-aware run-ধme system for high-performance compuধng,”

in Proceedings of the ACM/IEEE ǙǗǗǜ Supercompuࣅng Conference, SC’Ǘǜ, IEEE, ǙǗǗǜ,

ISBN: ǘǜǠǜǠǚǗǝǘǙ. DOI: 10.1109/SC.2005.3.

[ǟǝ] V. W. Freeh and D. K. Lowenthal,

“Just in ধme dynamic voltage scaling : exploiধng inter-node slack to save energy in mpi,”

in ACM/IEEE SC ǙǗǗǜ Conference (SC’Ǘǜ), ǙǗǗǜ, ISBN: ǘǜǠǜǠǚǗǝǘǙ. DOI: 10.1109/SC.2005.39.

[ǟǞ] B. Rountree, D. K. Lownenthal, B. R. de Supinski, M. Schulz, V. W. Freeh, and T. Bletsch, “Adagio:

making dvs pracধcal for complex hpc applicaধons,” Ics, ǙǗǗǠ. DOI: 10.1145/1542275.1542340.

ǘǗǙ

http://dx.doi.org/10.1007/s11227-014-1207-9
https://ec.europa.eu/digital-single-market/en/news/eu-ministers-commit-digitising-europe-high-performance-computing-power
https://ec.europa.eu/digital-single-market/en/news/eu-ministers-commit-digitising-europe-high-performance-computing-power
http://dx.doi.org/10.1109/E2SC.2014.10
http://dx.doi.org/10.1145/2464996.2465009
http://dx.doi.org/10.1109/ICPP.2007.29
http://dx.doi.org/10.1109/SC.2005.3
http://dx.doi.org/10.1109/SC.2005.39
http://dx.doi.org/10.1145/1542275.1542340

[ǟǟ] A. Marathe, P. E. Bailey, D. K. Lowenthal, B. Rountree, M. Schulz, and B. R. de Supinski,

“A run-ধme system for power-constrained hpc applicaধons,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Arࣅficial Intelligence and Lecture Notes in Bioinformaࣅcs), ǙǗǘǜ,

ISBN: ǠǞǟ-ǚ-ǚǘǠ-ǙǝǠǙǞ-ǝ. DOI: 10.1007/978-3-319-20119-1_28.

[ǟǠ] J. Eastep, S. Sylvester, C. Cantalupo, et al., “Global extensible open power manager: a vehicle for

hpc community collaboraধon on co-designed energy management soluধons,”

in Lecture Notes in Computer Science (including subseries Lecture Notes in Arࣅficial Intelligence and

Lecture Notes in Bioinformaࣅcs), ǙǗǘǞ, ISBN: ǠǞǟǚǚǘǠǜǟǝǝǝǚ.

DOI: 10.1007/978-3-319-58667-0_21.

[ǠǗ] D. De Sensi, M. Torquaধ, and M. Daneluħo, “A reconfiguraধon algorithm for power-aware parallel

applicaধons,” ACM Transacࣅons on Architecture and Code Opࣅmizaࣅon, Dec. ǙǗǘǝ.

DOI: 10.1145/3004054.

[Ǡǘ] N. Mishra, H. Zhang, J. D. Lafferty, and H. Hoffmann, “A probabilisধc graphical model-based

approach for minimizing energy under performance constraints,”

in ACM SIGARCH Computer Architecture News, ǙǗǘǜ, ISBN: ǠǞǟ-ǘ-ǛǜǗǚ-Ǚǟǚǜ-Ǟ.

DOI: 10.1145/2786763.2694373.

[ǠǙ] S. Labasan, M. Larsen, H. Childs, and B. Rountree,

“Paviz: a power-adapধve framework for opধmizing visualizaধon performance,”

in EuroGraphics Symposium on Parallel Graphics and Visualizaࣅon (EGPGV), ǙǗǘǞ,

ISBN: ǠǞǟ-ǚ-Ǘǚǟǝǟ-ǗǚǛ-ǜ. DOI: 10.2312/pgv.20171088.

[Ǡǚ] S. Baskiyar and R. Abdel-Kader, “Energy aware dag scheduling on heterogeneous systems,”

Cluster Compuࣅng, ǙǗǘǗ. DOI: 10.1007/s10586-009-0119-6.

[ǠǛ] M. Guzek, J. E. Pecero, B. Dorronsoro, and P. Bouvry, “Mulধ-objecধve evoluধonary algorithms for

energy-aware scheduling on distributed compuধng systems,” Applied Sođ Compuࣅng, ǙǗǘǛ.

DOI: 10.1016/j.asoc.2014.07.010.

[Ǡǜ] K. H. Tsoi and W. Luk, “Power profiling and opধmizaধon for heterogeneous mulধ-core systems,”

ACM SIGARCH Computer Architecture News, ǙǗǘǘ. DOI: 10.1145/2082156.2082159.

[Ǡǝ] G. Wang and X. Ren, “Power-efficient work distribuধon method for cpu-gpu heterogeneous

system,” Internaࣅonal Symposium on Parallel and Distributed Processing with Applicaࣅons, ǙǗǘǗ.

DOI: 10.1109/ISPA.2010.22.

[ǠǞ] C. Liu, J. Li, W. Huang, J. Rubio, E. Speight, and X. Lin,

“Power-efficient ধme-sensiধve mapping in heterogeneous systems,” in Proceedings of the Ǚǘst

internaࣅonal conference on Parallel architectures and compilaࣅon techniques - PACT ’ǘǙ, ǙǗǘǙ,

ISBN: ǠǞǟǘǛǜǗǚǘǘǟǙǚ. DOI: 10.1145/2370816.2370822.

ǘǗǚ

http://dx.doi.org/10.1007/978-3-319-20119-1_28
http://dx.doi.org/10.1007/978-3-319-58667-0_21
http://dx.doi.org/10.1145/3004054
http://dx.doi.org/10.1145/2786763.2694373
http://dx.doi.org/10.2312/pgv.20171088
http://dx.doi.org/10.1007/s10586-009-0119-6
http://dx.doi.org/10.1016/j.asoc.2014.07.010
http://dx.doi.org/10.1145/2082156.2082159
http://dx.doi.org/10.1109/ISPA.2010.22
http://dx.doi.org/10.1145/2370816.2370822

[Ǡǟ] S. G. Johnson, The nlopt nonlinear-opࣅmizaࣅon package.

[Online]. Available: http://ab-initio.mit.edu/nlopt.

ǘǗǛ

http://ab-initio.mit.edu/nlopt

	Página 1
	Página 2
	Página 3
	Página 4
	phd-thesis-0.40-d.pdf
	Introduction
	Context and Motivation
	4-Tier Parallelism
	Heterogeneous Systems and Dynamic workloads
	Power Consumption Challenge

	Facing the Challenges
	Goals and Contributions
	Main Contributions
	Experimental Context

	Thesis Structure

	Background
	Modern HPC Architectures
	Multi-core CPUs
	Many-core CPUs and Co-processors
	GPUs

	Parallel Programming Models
	Power Management
	Addressing the Challenges

	Heterogeneous Single-node Systems
	Introduction
	Related Work
	Proposed Approach
	Programming and Execution Model
	Consumer vs Consumer-producer Kernels
	Programming Interface
	System Architecture

	Workload Scheduling
	Tier-3 Scheduling
	Tier-2 and Tier-1 Scheduling

	Evaluation Approach
	Applications
	Heterogeneous Systems Metrics
	Computing System

	Results
	Scheduling Irregular Workloads
	Performance Scalability
	Comparison with StarPU

	Conclusions and Future Work

	Heterogeneous Distributed Systems
	Introduction
	Related Work
	nSharma's Architecture
	Online Profiling Module
	Performance Model
	Decision Module
	Repartitioning Module

	Results
	Performance Gain
	Efficiency Gain
	Heterogeneity and Dynamic Load Balancing

	Conclusions and Future Work

	Power Scheduling in Heterogeneous Distributed Systems
	Introduction
	Related Work
	RHeAPAS
	Online Profiling Module
	Performance Model
	Power-Adaptive Scheduler

	Results
	Performance and Power
	Dynamic Behaviour
	Scaling Problem Size and Resources
	Energy Saved

	Conclusions and Future Work

	Conclusions and Future work
	Conclusions
	Future Work
	Combining Power Management with Load Balancing

