

A QUERY BY EXAMPLE APPROACH FOR XML QUERYING

Flávio Xavier Ferreira, Daniela da Cruz, Pedro Rangel Henriques

Department of Informatics, University of Minho
Campus de Gualtar, 4710-057 Braga, Portugal

flavioxavier@di.uminho.pt, prh@di.uminho.pt, danieladacruz@di.uminho.pt

Alda Lopes Gançarski, Bruno Defude
Institut Telecom, Telecom & Management SudParis, CNRS Samovar

9 rue Charles Fourier, 91011 Évry, France
Alda.Gancarski@it-sudparis.eu, Bruno.Defude@it-sudparis.eu

ABSTRACT: XML, as a general-purpose annotation system for creating custom markup languages, is
becoming more and more important. XML annotations give structure to plain documents and help to
interpret their content, making them human or machine readable. However, mechanisms to pretty-print
those annotated documents or process them in order to extract information are crucial to make them
useful. In a similar way, a collection of XML documents, without any tools capable of retrieving information
from it, is useless. To search for specific elements in a marked up document we have, at least, two
options: XPath and XQuery. However, the learning curve of these two dialects is high, requiring a
considerable level of knowledge. In this context, the idea of Query-by-example can be an important
contribution to make easier this learning process, freeing the user from knowing the specific query
language details or even the document structure. In this paper, we describe our approach to QBE based
on an sample document from the collection where the user specifies his needs. First, we focus on the
choice of the adequate document to serve as a sample of the collection, based on different metrics
computed over the document. Then, we discuss the query generation from the user needs’ specifications,
namely components (elements or attributes) selection and filtering.

Keywords: XML, XQuery, Query-by-example

INTRODUCTION

This paper presents an ongoing work addressing
the problem of XML information access. The
bigger the world wide collection of XML
documents gets, the more relevant is the
existence of an efficient search engine. These
engines should be aware of the explicit structure
of the documents. This has raised a research area
called Structural Document Retrieval [6].

However, the creation of a query that yields valid
results strongly depends on the user-friendliness
of the search engine interface. As structured
queries are powerful but complex to write (the user
must have a deep knowledge of the query
language as well as the document schema), some
specialised editors have been developed to ease
this task (XMLSpy[5], EditiX[1], oXygen[2]).

“Example is always more efficacious than
precept”. This statement, by Samuel Johnson, led
Human Computer Interaction (HCI) researchers to
suggest a new interaction paradigm called Query-

by-example (QBE). Born in the context of
database querying [7], typical QBE systems are
based on the “fill in the blanks” approach. Zloof
defined in [10] QBE as “a query language for use
by non-programmers querying a relational
database”. QBE is based on the concept that the
user formulates his query by filling in the
appropriate skeleton tables the fields and/or
restrictions on fields (the relational selection
concept) he intends to search for.

We developed a QBE approach to XML using
XQuery, which allows for the selection and
restriction of entire paths (XML elements) directly
on a sample document. We focus on two main
aspects: the choice of the adequate document to
serve as a sample of the collection; query
generation from the user needs’ specifications,
namely component (elements or attributes)
selection and filtering.

To present our approach, the remainder of this
paper is organised as follows. We first present the
languages usually used to query structured
documents and we introduce the idea behind the

QBE approach for XML documents. We discuss
then the choice of the sample document and how
the query is generated by the user specifications.
To conclude, we make some remarks and discuss
the contribution of our approach, giving directions
for future work.

QUERYING STRUCTURED DOCUMENTS

Queries for XML retrieval allow the access to
certain parts of documents based on content and
structural restrictions. Examples of such queries
are those defined by XPath language [3] and
XQuery [8], the standard proposed by the W3C.
These languages are very expressive, allowing the
specification of sophisticated structural and textual
restrictions.

XQuery is formed by several kinds of expressions,
including XPath location paths and “for.. let..
where.. order by.. return” (FLWOR) expressions
based on typical database query languages, such
as Structured Query Language (SQL). To pass
information from one operator to another,
variables are used. As an example, assume a
document that stores information about articles,
including title, author and publisher. The following
query returns articles of author Kevin ordered by
the respective title.

for $a in doc(‘articles.xml’)/article
where $a/ author = `Kevin '
order by $a/title
return $a

XQuery operates in the abstract, logical structure
of an XML document, rather than its surface
syntax. The corresponding data model represents
documents as trees where nodes may correspond
to a document, an element, an attribute, a textual
block, a namespace, a processing instruction or a
comment. Each node has a unique identity.

However, structured queries construction is not
always an easy process because, among other
reasons, the user may not have a deep knowledge
of the query language or of the documents
collection structure. Moreover, after specifying a
query, the user may get a final result that it is not
what he expected. To solve these problems, many
works are devoted to graphical user-friendly
interfaces for query specification based on the
Query-by-example paradigm, as explained in the
next section.

QUERY-BY-EXAMPLE FOR XML

Through the years, the use of structured
documents, like XML documents, in databases or
as databases, led to an evolution of the QBE
concept associated to XML retrieval. Often we are

interested in searching for particular information in
a document, but the learning of a new language
(the query language) can be a challenge. So, the
idea of generating queries through an example
seems the perfect solution for this problem.

Most of the works [4, 9] adapt the relational QBE
model by showing the XML Schema Definition
(XSD) tree instead of the table skeleton. Our
system also displays the XML Schema tree
representation to the user. However, elements
selection and restriction is done directly in an
sample document, giving the user a complete
indication of the information he is searching
for. Moreover, differently from existing works, the
user can, by using an sample document, query the
entire collection.

Suppose the user is interested to search in a set
of documents that represents a library. This library
is composed by a set of books, where each book
is defined by a title, an author, a publisher and a
set of pages (illustrated in Figure 1).

Fig. 1. A library collection

Now, suppose the user is interested to search, on
this library, all books of the famous J.R.R. Tolkien
author. If the user knows the XQuery language, he
is able to write a query like this one:

for $x in doc(book_i)
where $x/book/@author=`J .R.R. Tolkie'
return $x/book

To get the desired results, the query is executed
over each file corresponding to a book in the
collection, replacing book_i by the corresponding
file name (i=1 to D, being D the number of
documents).

Using the QBE principle, instead of specifying the
query in textual form, the user selects, in the
interface showing an sample document, a book
element. Then, he specifies the restriction by
indicating an author element and associating to it
the J.R.R. Tolkien value. The desirable resulting
query should be exactly the same one returned by
the previous query, i.e. books with titles “The
Fellowship of the Ring” and “The Hobbit”.

CRITERIA FOR DOCUMENT SELECTION

The selection of the sample document is a focal
point in our approach to QBE since the needs of
the user are specified done over the sample
document. This means that there must be a well
founded logic behind the selection of the sample
document from the documents conforming to the
selected schema. We identified four metrics which
should be combined to choose the sample
document, as stated in what follows.

Document size: Big file sizes can slow down the
system; also, smaller size files can contain too
little information or elements to aid the user
selection. This metric can be used as a delimiter to
complement the others by not allowing a file
bigger than a predefined size.

Number of elements/attributes: Taking into
account the number of elements and attributes in
the sample document is important. In one hand, if
the file has too many components (elements or
attributes), it can be too cluttered for the user to
select his desired example. On the other hand, if
the document has few components, it may not
contain all those ones the user needs.

Number of different elements/attributes: To
counteract some of the shortcoming of the
previous metric, it may be interesting to look at the
number of different elements and attributes in a
file. This way, if a file contains almost all the
elements and attributes present in the schema, the
user gets a more complete variety of elements to
specify his needs.

Diversity of Values: As stated before, the
capacity of the user to see example data and not
just the structure (schema) of the queried
documents is the main innovation of our QBE
approach. Therefore, a metric guaranteeing the
diversity of data in the sample document is
important. Having different values for the same
element (or attribute) allows the user to better
understand the fields in the document he is
querying. However, similar to the other metrics, if
there is too much diversity, the sample document
may become too big.

As seen, each metric has its own merits and
shortcomings, so they must be used together in a

meaningfully way. The sample document should
be diverse, which means that it must have a rich
subset of the elements, attributes and possible
values from the schema. However, it also must be
a file contained in a predefined size. Therefore, we
propose to use a combination of the 2nd, 3rd and
4th metrics restricted by a file size limitation (1st
metric). We also intend to make a ranked list of
possible sample documents, thus making easy for
the user to retrieve the “second best choice” when
the previous document suggested by the QBE
system is not suitable.

COMPONENTS SELECTION AND

FILTERING

Our approach to QBE has a selection part and a
filtering part. The selection part corresponds to the
return clause in XQuery, where the components to
be retrieved are specified. The filtering part
corresponds to the where clause and allows to
filter out components from the result. In the user
interface, the user may apply a filter to each
component selection, thus generating a set of
pairs <selection, filtering>. A full example is
explained in the next section.

Each pair <selection, filtering> specified in the
sample document yields a “for.. where.. return”
query. For a pair, the query is inferred accordingly
to the following pattern:

for $x in doc(doc_d)/nearest_path
where AND i=0 to N $x/xpath_filteri
return $x/xpath_selection

This pattern is applied to all D documents in the
collection (d = 1 to D). Filters are specified as a
sequence of logical AND operations connecting
the N specified restrictions. The return expression
takes the path which indicates the selected
component. Selection and filter are unified by the
nearest element common to both (nearest_path) in
the for clause.

USER INTERFACE

Figure 2 shows the user interface of the QBE
system we are developing. In this interface, the
sample document is shown for user’s selection
and filtering specifications. Each pair <selection,
filtering> is identified by the same colour with two
different dark levels. The user starts by the
selection phase, choosing the resulting
component. He can, then, add restrictions to it by
specifying components or values of components
(to restrict their content to certain value).

Suppose the sample document of the collection in
Figure 1 is “The Hobbit”. This sample document is
shown in Figure 2. If the user specifies the

selection of the title element (shown in dark red
colour), the corresponding query is, then:

for $x in doc(doc_i)/book
return $x/title

This query retrieves the authors from all the books
in the collection (i=1 to D).

Now suppose the user restricts the value of the
publisher element to “Unwin paperbacks” and the
value of the year element to values greater or
equal to 1937 (“≥1937”). These restrictions can be
seen in Figure 2 in clear red colour. The generated
query should be:

for $x in doc(doc_i)/book
where $x/publisher=` Unwin paperbacks’

and $x/year >= 1937
return $x/title

This query returns the titles from all the books
published by Unwin paperbacks since 1937.

Fig. 2. Selecting and filtering in the QBE interface

CONCLUSION

The QBE approach we present helps the user in
XQL query specification. By now, we concentrate
our work in two main aspects: (1) how to choose
the sample document; (2) what queries are
generated depending on the user specifications.
For the first aspect, we propose different metrics
that express the adequacy of the document for the
user to express his needs. As future work, we
intend to formalize the combination of those
metrics in a way to optimize the efficacy when the
user expresses his queries.

Concerning the second aspect, we analyze the
two main functionalities of XQuery: selection and
filtering. This was done for one component
selection. Next step is to extend the generated

query pattern with the selection of several
components. Moreover, the remaining XQuery
functionalities will be studied, such as the creation
of new elements in the result.

When completed, our query specification and
processing system will be validated. We think
about the Portuguese Emigration Museum
information system [11] as a real application for
testing with real users.

References

[1] EditiX XML Editor, last update 2008.
http//www.editix.com.

[2] Oxygen XML Editor, last update 2008.
http//www.oxygenxml.com.

[3] B. A., B. S., C. D., F. M., K. M., R. J., and S. J. Xml
path language (xpath) 2.0 w3c working draft.
http//www.w3c.org/xpath20/, 2005.

[4] D. Braga and A. Campi. Xqbe: A graphical
environment to query xml data. World Wide Web,
8(3):287{316, 2005.

[5] L. Kim. The XMLSPY Handbook. John Wiley & Sons,
Inc., New York, NY, USA, 2002.

[6] X. Lu. Document retrieval: A structural approach. Inf.
Process. Manage., 26(2):209-218, 1990.

[7] R. Ramakrishnan and J. Gehrke. Database
Management Systems, chapter 6. 2007.

[8] B. S., C. D., F. M., F. D., R. J., and S. J. XQuery 1.0:
An xml query language. W3C working draft.
http//www.w3c.org/TR/xquery/, 2005.

[9] J. H. G. Xiang Li1 and J. F. Brinkley1. XGI: A
Graphical Interface for XQuery Creation. In
American Medical Informatics Association Anual
Symposium proceedings, volume 2007, pages
453{457. American Medical Informatics
Association, November 2007.

[10] M. M. Zloof. Query-by-example: the invocation and
definition of tables.

[11] Ferreira, F. X. and Henriques, P. R., Using OWL to
specify and build different views over the
Emigration Museum resources, National
Conference XML Aplicações e Tecnologias
Associadas 2008 (XATA08), Évora, Portugal.

View publication statsView publication stats

https://www.researchgate.net/publication/267218763

