
Journal of Non-Newtonian Fluid Mechanics 266 (2019) 80–94 

Contents lists available at ScienceDirect 

Journal of Non-Newtonian Fluid Mechanics 

journal homepage: www.elsevier.com/locate/jnnfm 

Fully-resolved simulations of particle-laden viscoelastic fluids using an 

immersed boundary method 

C. Fernandes a , ∗ , S.A. Faroughi b , O.S. Carneiro 

a , J. Miguel Nóbrega 

a , G.H. McKinley 

b 

a Institute for Polymers and Composites/i3N, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal 
b Hatsopoulos Microfluids Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, US 

a r t i c l e i n f o 

Keywords: 

Particle-laden flow 

Viscoelastic fluid 

Finite volume method 

Immersed boundary method 

Fully resolved simulations 

a b s t r a c t 

This study reports the development of a direct simulation code for solid spheres moving through viscoelastic 

fluids with a range of different rheological behaviors. The numerical algorithm was implemented on an open- 

source finite-volume solver coupled with an immersed boundary method, and is able to perform fully-resolved 

simulations, wherein all flow scales associated with the particle motion are resolved. The formulation employed 

exploits the log-conformation tensor to avoid high Weissenberg number issues when calculating the polymeric 

extra stress. A number of benchmark flows were simulated using this method, to assess the accuracy of the newly- 

developed solver. First, the sedimentation of a sphere in a bounded domain surrounded by either Newtonian or 

viscoelastic fluid was computed, and the numerical results were verified by comparison with experimental and 

computational data from the literature. Additionally, the spatial and temporal accuracies of the algorithm were 

evaluated, and different transient and advection discretization schemes were investigated. Second, the rotation 

of a sphere in a homogeneous shear flow was studied, and again the numerical results obtained were compared to 

those from the literature. Good agreement is obtained for the variation in the particle rotation rate as a function 

of Weissenberg number, using both the newly implemented algorithm and an alternative fixed-mesh approach. 

Finally, the cross-stream migration of a neutrally buoyant sphere in a steady Poiseuille flow, consisting of either 

a Newtonian or viscoelastic suspending fluid was investigated. For the Newtonian fluid good agreement was 

obtained for the particle equilibrium position when compared to the well known Segré–Silberberg effect, and 

for the viscoelastic fluid the effect of the retardation ratio on the final particle equilibrium position was studied. 

Additionally, the newly-developed solver capabilities were tested to study the shear-induced particle alignment 

in wall-bounded Newtonian and viscoelastic fluids. The role of the fluid rheology and finite gap size on both the 

rate and approach pathways of the solid particles is illustrated. 
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. Introduction 

Fluid-particle transport problems occur in many different forms, and

ith significant practical relevance, in several engineering applications,

uch as oil sands mining, fluidized beds, coal-based combustion cham-

ers and biomass gasifiers [1–4] . In many applications it is essential to

onsider that the fluid, in which the particles are dispersed, has under-

ying viscoelastic characteristics. 

The use of numerical simulations to understand the behavior of

ultiphase flows, including those with viscoelastic matrix fluids, pro-

ides a very important source of insight into the physical transport pro-

esses that occur between freely-moving particles and nonlinear flu-

ds. Amongst others, one commonly method employed to solve such

imulations is the Computational Fluid Dynamics - Discrete Element

ethod (CFD-DEM) [5] , which in turn can be categorized as following a
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esolved or unresolved approach, depending on the size of the particles

elative to the smallest computational mesh cell size. In resolved CFD-

EM [6,7] the particles are substantially larger than the individual com-

utational cells, i.e., when represented within the mesh a particle cov-

rs multiple cells. Due to limitations on computational capabilities this

ethod can only be used for cases where relatively small number of par-

icles, say a few hundreds or O(1000) particles, need to be considered.

he fluid field around each particle is resolved with a detailed mesh,

nd the force balance on each particle is calculated individually, which

rovides a comprehensive understanding of the underlying physics [8–

2] . This approach belongs to the class of Direct Numerical Simulations

DNS) [13,14] . In contrast, unresolved CFD-DEM [15] is designed for

andling very large numbers of particles, which should be significantly

maller than the computational mesh cells. Consequently, each cell can

ontain several particles. For such simulations it is essential to know
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i  
ow the stress in a single cell depends on both the volume fraction of

articles and the type of suspending fluid. 

With increasing computational power the DNS (resolved CFD-DEM)

f fluid-particle problems has steadily gained importance. The first per-

on to use such a method was Peskin [13,14] , who studied the flow

atterns around heart valves by using the so-called Immersed Boundary

IB) method. The generic term IB or Fictitious Domain Method (FDM),

ummarizes all kinds of methods that are suitable for describing complex

tructures within the flow domain of interest, and the no-slip boundary

ondition at the solid-particle surface appears as a source-term in the

omentum equations. The key idea behind these methods is to use a

xed Eulerian mesh for the computation and to represent the immersed

bject using a Lagrangian mesh, which is free to move inside the Eu-

erian mesh. This fixed-grid approach makes it possible to efficiently

imulate many-particle systems, from the computational point of view.

lowinski et al. [16–18] were the first to introduce a FDM that made

se of Distributed Lagrange Multipliers (DLM). In their concept, they

ncorporated Lagrangian multipliers as a constraint to the weak form of

he Navier–Stokes equations, enforcing the boundary conditions of the

igid body in the system. In their original work, the Lagrangian mul-

iplier was calculated explicitly, which made the method rather ineffi-

ient [19] . Patankar et al. [6] , Diaz-Goano et al. [20] and Yu and Shao

21] improved the method by using body forces, which enforced the

igidity constraint, and therefore avoided the necessity of explicitly cal-

ulating the Lagrangian multiplier. These methods have been tested in

imulations with Newtonian fluids (with volume fractions in the range

.36 ≤ 𝜙≤ 0.61) and good agreement with experimental data was found

22,23] . 

The literature regarding IB studies with viscoelastic fluids is limited

nd began with the work of Bodart and Crochet [24] , who used the

inite Element Method (FEM) to simulate the motion of a rigid spheri-

al particle sedimenting in a circular cylinder filled with an Oldroyd-B

uid. Later, Binous and Phillips [25] performed simulations of a single

phere, a single non-spherical particle, and two spheres sedimenting in

iscoelastic suspensions of FENE dumbbells, using a modified version of

he Stokesian dynamics method. Singh et al. [26] used a DLM method

or simulating the motion of rigid cylindrical particles suspended in an

ldroyd-B fluid in a channel geometry, to study the alignment of the

articles close to the walls. Ardekani et al. [27] presented experimen-

al results on particle-wall collisions in viscoelastic fluids, and later, Li

t al. [28] studied numerically the migration of a sphere in the pressure-

riven channel flow of viscoelastic fluids modeled by the Oldroyd-B

nd Giesekus equations of state. The effects of inertia, elasticity, shear-

hinning viscosity, secondary flows and the blockage ratio were consid-

red. Additionally, Li et al. [29] and Li and Ardekani [30] studied nu-

erically the effects of non-Newtonian fluid properties and solid bound-

ries on the swimming dynamics of microorganisms. Recently, Villone

t al. [31] studied the cross-streamline migration of a spherical particle

owing in a wide micro-slit device containing a viscoelastic fluid, which

as modeled by either the Giesekus or the Phan Thien–Tanner constitu-

ive equations, through three-dimensional FEM simulations. Goyal and

erksen [32] described coupled lattice-Boltzmann and IB methods for

tudying particles sedimenting in a FENE-CR fluid. Finally, Krishnan

t al. [12] used an unstructured mesh code with an IB based viscoelastic

olver for moving bodies in a FVM numerical algorithm. Common to all

he methods presented above is the fact that they are all developed as

n-house codes, which limits their easy applicability to other scientific

reas, and are typically limited to low Weissenberg number problems

 Wi ≤ 5). 

To the best of the authors’ knowledge, the combined use of a three-

imensional unstructured mesh code, with a log-conformation approach

o enable access to high Weissenberg number flows, and an IB method

or rigid bodies moving in viscoelastic fluids has not been presented to

ate. The present work aims to develop and validate a numerical code

hat is able to simulate the flow behavior of particle-laden viscoelas-

ic fluids, by extending the open-source computational fluid dynamics
81 
ibrary CFDEMcoupling [33] to include calculations with viscoelastic flu-

ds and with the log-conformation approach. The use of a common open-

ource computational library to perform these new developments is ex-

ected to increase the accessibility and utility of the contribution. The

umerical method implemented is based on the approaches described in

hirgaonkar et al. [7] , Hager et al. [34] and Aycock et al. [35] , where

he latter study presents an improved IB method to describe the flow

f Newtonian fluids around spherical particles. To verify the robust-

ess of the implemented numerical approach, a number of benchmark

roblems with known published results were simulated. Additionally,

he accuracy of the algorithm was evaluated, both in terms of spatial

nd temporal resolutions, by performing extrapolation of the results to

he limit of an infinitely refined mesh. The fluids used in the present

ork are modeled by different constitutive rheological models, namely

hilcott and Rallison’s Finitely Extensible Non-linearly Elastic dumb-

ell (FENE-CR) model [36] , the quasi-linear elastic dumbbell model

Oldroyd-B) [37] and the configuration-dependent molecular mobility

odel (Giesekus) [38] . A wide range of fluid elasticities, including high

eissenberg number flows, can be attained due to incorporation of the

og-conformation approach [39,40] for calculating the polymeric extra-

tress tensor. 

This paper describes the numerical implementation of fully-resolved

imulations, i.e. a DNS based approach. To accomplish the required de-

elopments an open-source library, CFDEMcoupling [33] , was modified

o be able to calculate flow of viscoelastic fluids and the resulting hydro-

ynamic loads on the particles, that, in turn, determine their linear and

otational motions. The latter information is fed back to the fluid flow

s moving no-slip boundary conditions that are imposed on the particles

urface. 

The paper is organized in the following manner: in Section 2 we

resent the mathematical formulation of the viscoelastic IB code that is

eveloped in this work, including the governing equations and coupling

f both continuum and discrete phases. Section 3 provides the details

f the numerical discretization and solution procedure for the overall

lgorithm that is described by the mathematical formulation presented

n Section 2 . In Section 4 we present a number of case studies involv-

ng Newtonian and viscoelastic flows around spherical particles, namely

he sedimentation of a sphere in a bounded domain [41,42] , the ro-

ation of a sphere suspended in a homogeneous steady shear flow of

n Oldroyd-B fluid [43] , and the cross-stream migration of a neutrally-

uoyant sphere in Poiseuille flow [35,44] . In each case, a comparison of

he results obtained with the newly-developed code is performed with

ata reported in the literature, in order to assess both accuracy and

obustness. Section 5 is dedicated to illustrating the capability of the

ode to solve a physical challenging problem, the shear-induced particle

lignment in wall-bounded Newtonian and viscoelastic fluids. Finally,

n Section 6 , we summarize the main conclusions of this work. 

. Mathematical formulation 

In this section we present the mathematical formulation for an algo-

ithm that is able to efficiently handle the rigid body motion of partic-

late spherical bodies surrounded by a viscoelastic fluid. The algorithm

onsiders a constraint-based formulation, which provides a rigorous ba-

is for the IB implementation performed in the open-source framework

ode CFDEMcoupling [34,35] . 

The open-source IB solver originally developed by Hager et al. [34] ,

nd later modified by Aycock et al. [35] to incorporate two-way rotation

oupling (here denoted CFD/6-DOF), was modified and improved for the

resent study to incorporate suspending fluids governed by viscoelastic

onstitutive equations. 

.1. Governing equations 

Consider the total computational domain Ω (= Ω𝑠 ∪ Ω𝑓 ) , includ-

ng the solid ( “body ”) domain Ωs and the fluid domain Ωf , whose
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oundaries are represented by 𝜕 Ω, 𝜕 Ωs and 𝜕 Ωf , respectively. The equa-

ions of motion for the fluid domain are governed by the conservation

f mass, 

 ⋅ u = 0 in Ω𝑓 (1)

onservation of momentum, 

𝑓 

(
𝜕 u 

𝜕𝑡 
+ u ⋅ ∇ u 

)
− 

(
𝜂𝑆 + 𝜂⋆ 

)
∇ 

2 u = −∇ 𝑝 − 𝜂⋆ ∇ ⋅ ∇ u + ∇ ⋅ τ𝑃 in Ω𝑓 
(2)

lus an appropriate constitutive equation for the polymeric extra-stress

ensor τ𝑃 . Here 𝜌f and u are the fluid density and velocity vector, respec-

ively, t is the time, p is the pressure, 𝜂S is the viscosity of the Newtonian

uspending solvent and 𝜂⋆ is an artificial viscosity proportional to the

olymeric viscosity, 𝜂P , coming from the employment of a stabilizing

pproach, known as improved both-sides diffusion method (iBSD) [45] .

n the present work three different constitutive models were considered,

amely, the Oldroyd-B model [37] , 

▿
τ𝑃 + τ𝑃 = 𝜂𝑃 

(
∇ u + ∇ u 

𝑇 
)

(3)

he FENE-CR model [36] , 

𝜆

𝐿 2 + ( 𝜆∕ 𝜂𝑃 ) tr ( τ𝑃 ) 
𝐿 2 − 3 

▿
τ𝑃 + τ𝑃 = 𝜂𝑃 

(
∇ u + ∇ u 

𝑇 
)

(4)

nd the Giesekus model [38] , 

▿
τ𝑃 + τ𝑃 + 

𝛼𝜆

𝜂𝑃 
τ𝑃 ⋅ τ𝑃 = 𝜂𝑃 

(
∇ u + ∇ u 

𝑇 
)

(5)

n the constitutive model equations, 𝜆 is the fluid relaxation time, L 2 

s the extensibility parameter ( L →∞ reduces Eq. (4) to the Oldroyd-B

odel Eq. (3) ), 𝛼 is the mobility parameter, tr(·) is the trace operator

nd 
▿
τ𝑃 indicates the upper-convected time derivative of the polymeric

xtra-stress tensor defined as 

▿
𝑃 ≡ 𝜕 τ𝑃 𝜕𝑡 + u ⋅ ∇ τ𝑃 − τ𝑃 ⋅ ∇ u − ∇ u 

𝑇 ⋅ τ𝑃 (6)

or closure purposes, the system of governing equations requires appro-

riate boundary conditions: 

 = u 𝜕Ω on 𝜕Ω (7)

he interface conditions on the fluid-solid boundary, 

 = u 𝑖 and 
(
− 𝑝 I + 𝜂𝑆 

(
∇ u + ∇ u 

𝑇 
)
+ τ𝑃 

)
⋅ n̂ = t 𝜕Ω𝑠 on 𝜕Ω𝑠 (8)

nd the initial condition, 

 ( 𝐱, 𝑡 = 0) = u 0 ( 𝐱) in Ω𝑓 (9)

n the above equations n̂ is the outward normal unit vector to 𝜕Ωs , t 𝜕Ω𝑠 
s the traction vector acting from the fluid on the solid body surface

nd u 𝑖 is the (unknown) velocity of the solid-fluid interface. The initial

elocity u 0 is required to satisfy Eq. (1) and the boundary velocity in

q. (7) should satisfy the compatibility condition due to Eq. (1) at all

imes. 

When written in the continuum formulation, viscoelastic fluids in

igh Weissenberg number flows are well known to introduce numerical

onvergence difficulties in computational codes, which are mainly re-

ated to the lack of sufficient resolution of discretization methods to

esolve the exponential growth of stresses near critical points as the

eissenberg number is incremented [39] . In the present work, for the

alculation of the polymeric extra-stress tensor components, we follow

he implementation of the log-conformation approach in the OpenFOAM

46] computational library, presented in Habla et al. [47] and Pimenta

nd Alves [48,49] . Details on the mathematical formulation behind the

og-conformation approach can be found in the original works of Fattal

nd Kupferman [39,40] . 

For the dispersed solid phase, the DEM, firstly presented by Cundall

nd Strack [50] , is used to solve the equations for conservation of linear
82 
nd angular momenta, governing the motion of a particle i of mass m i :

𝑚 𝑖 
𝑑 U 

𝑝 
𝑖 

𝑑𝑡 
= 

𝑛 𝑐 
𝑖 ∑
𝑗=1 

F 𝑐 𝑖𝑗 + F 
𝑓 
𝑖 
+ F 

𝑔 
𝑖 

(10) 

𝐼 𝑖 
𝑑 𝝎 𝑖 

𝑑𝑡 
= 

𝑛 𝑐 
𝑖 ∑
𝑗=1 

M 

𝑐 
𝑖𝑗 + M 

𝑓 
𝑖 

(11) 

here U 

𝑝 
𝑖 

and 𝝎 i denote the translational and angular velocities of par-

icle i , respectively, F 𝑐 𝑖𝑗 and M 

𝑐 
𝑖𝑗 are, respectively, the contact force and

ontact torque that result from particle interaction or from the contact

ith walls, with 𝑛 𝑐 
𝑖 

the number of total contacts for particle i , F 
𝑓 
𝑖 

and M 

𝑓 
𝑖 

re the particle-fluid interaction force and the torque acting on particle

 , respectively, F 
𝑔 
𝑖 

is the buoyancy force, and I i is the moment of inertia

f particle i . 

.2. CFD and DEM coupling 

The fluid governing equations, Eqs. (1) –(9) , are coupled and must

e solved in conjunction with the equations for the motion of the solid

article(s), Eqs. (10) and (11) . The equations of motion for the fluid

nd the particles are coupled through the interface conditions given by

q. (8) . The first equality in Eq. (8) is used to transfer the particle veloc-

ty to the fluid velocity field. The second describes the stress or traction

t the interface between the fluid and the solid and can be transformed

o a drag force term as follows. First, we integrate the stress interface

ondition over the particle boundary, 

∫𝜕Ω𝑠 
(
− 𝑝 I + 𝜂𝑆 

(
∇ u + ∇ u 

𝑇 
)
+ τ𝑃 

)
⋅ n̂ 𝑑 𝜕Ω𝑠 = ∫𝜕Ω𝑠 t 𝜕Ω𝑠 𝑑 𝜕Ω𝑠 (12) 

y applying the Gauss divergence theorem we obtain, 

∫Ω𝑠 ∇ ⋅
(
− 𝑝 I + 𝜂𝑆 

(
∇ u + ∇ u 

𝑇 
)
+ τ𝑃 

)
𝑑 Ω𝑠 = ∫𝜕Ω𝑠 t 𝜕Ω𝑠 𝑑 𝜕Ω𝑠 (13) 

hich can be rewritten as, 

∫Ω𝑠 
[
− ∇ 𝑝 + ∇ ⋅ ( 𝜂𝑆 (∇ u + ∇ u 

𝑇 )) + ∇ ⋅ τ𝑃 
]
𝑑 Ω𝑠 = ∫𝜕Ω𝑠 t 𝜕Ω𝑠 𝑑 𝜕Ω𝑠 (14) 

aking use of the identity ∇ ⋅ (∇ u + (∇ u ) 𝑇 ) = ∇ 

2 u + ∇(∇ ⋅ u ) and know-

ng that, due to mass conservation, ∇ ⋅ u = 0 , we can rewrite Eq. (14) as,

∫𝜕Ω𝑠 t 𝜕Ω𝑠 𝑑𝜕Ω𝑠 = ∫Ω𝑠 
[
− ∇ 𝑝 + 𝜂𝑆 ∇ 

2 u + ∇ ⋅ τ𝑃 
]
𝑑Ω𝑠 (15) 

q. (15) shows that the fluid forces acting on the particles consist of

ontributions from the pressure, from viscous stress as well as from the

olymeric contribution to the stress field. 

.3. Force and torque calculation 

This section describes the procedure used to compute both the forces

nd torques, which are present on the right hand side of Eqs. (10) and

11) . For that, Eq. (15) needs to be discretized in order to enable com-

utation of the drag force F 
𝑓 
𝑖 
. Let x be an arbitrary region from Ω. Then,

∫Ω𝑠 −∇ 𝑝 + 𝜂𝑆 ∇ 

2 u + ∇ ⋅ τ𝑃 𝑑Ω𝑠 = ∫Ω(−∇ 𝑝 + 𝜂𝑆 ∇ 

2 u + ∇ ⋅ τ𝑃 ) 𝛿Ω 𝑑Ω (16) 

here 𝛿Ω = 1 if x ∈ Ω𝑠 , and 𝛿Ω = 0 otherwise. Assuming that T h is a

ecomposition of Ω consisting of computational cells c , we can write 

∫Ω(−∇ 𝑝 + 𝜂𝑆 ∇ 

2 u + ∇ ⋅ τ𝑃 ) 𝛿Ω 𝑑Ω

= 

∑
𝑐∈𝑇 ℎ 

∫𝑉 ( 𝑐) (−∇ 𝑝 + 𝜂𝑆 ∇ 

2 u + ∇ ⋅ τ𝑃 ) 𝛿Ω 𝑑𝑉 ( 𝑐) (17) 

here V ( c ) is the volume of cell c . Notice that for notation purposes

e use the parentheses ( c ) to evaluate a function on cell c . Numerical
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ntegration of Eq. (17) leads to the final form of the fluid force acting

n the particle, 

F 
𝑓 
𝑖 
= 

∑
𝑐∈𝑇 ℎ 

(−∇ 𝑝 + 𝜂𝑆 ∇ 

2 u + ∇ ⋅ τ𝑃 )( 𝑐) ⋅ 𝑉 ( 𝑐) (18) 

here 𝑇 ℎ is the set of all cells covered, in full or in part, by a particle. 

Following a similar procedure, the fluid torques ( M 

𝑓 
𝑖 
) can be calcu-

ated by taking the cross product between the position vector r (pointing

rom the fluid cell centroid to the particle centroid) and the total stress

rom Eq. (18) . This leads to 

M 

𝑓 
𝑖 
= 

∑
𝑐∈𝑇 ℎ 

[
r ( 𝑐) × (−∇ 𝑝 + 𝜂𝑆 ∇ 

2 u + ∇ ⋅ τ𝑃 )( 𝑐) 
]
⋅ 𝑉 ( 𝑐) 

(19) 

otice that the load contribution arising from pressure does not give

ise to any torque contribution, because we are dealing here exclusively

ith spheres. Thus, normal loads acting perpendicular to the particle

urface, such as pressure, do not induce any torque. 

The buoyancy force ( F 𝑔 
𝑖 
) is given by the weight of the displaced fluid

nd can be calculated by numerically integrating the fluid density ( 𝜌f )

ver the volume of the solid region in the mesh ( V ( c ) with 𝑐 ∈ 𝑇 ℎ ), to
btain the total displaced fluid mass ( 𝜌f V ( c ) with 𝑐 ∈ 𝑇 ℎ ). Next, mul-

iplying the fluid mass by the gravitational acceleration vector ( g ) , we

btain the buoyancy force 

F 
𝑔 
𝑖 
= 

∑
𝑐∈𝑇 ℎ 

( 𝜌𝑓 g )( 𝑐) ⋅ 𝑉 ( 𝑐) (20) 

The contact force ( F 𝑐 𝑖𝑗 ) and torque ( M 

𝑐 
𝑖𝑗 ) are calculated using the non-

inear elastic Hertz-Mindlin contact model [5,51] . Details about this

odel and its implementation within the DEM numerical algorithm can

e found elsewhere [5,52] . 

. Calculation procedure 

Numerical solution of the equations presented in Section 2 relies on

 collocated FVM approach, which uses the conservative integral forms

f the governing equations for the fluid phase [53] . In this method, the

patial derivatives over the volume are converted into integrals over sur-

aces in terms of the flux, the time derivative is semi-discretized (also

alled the method of lines [54] ), the grid points define the faces, the

ata is stored at the center of the computational cells’ control volume,

he fluxes are obtained by velocities interpolated to the faces at each

ime step, and the integrals are evaluated by the use of the mean value

heorem. The implementation of the different conservation equations in-

olved (continuity, momentum and constitutive equations) is done using

he CFDEMcoupling framework [33] , based on the OpenFOAM computa-

ional library [46,55] . The solution procedure adopted to compute the

iscoelastic IB equations presented in Section 2 is described next. 

The algorithm (see Fig. 1 ) is implemented assuming a body-fitted

esh, for which the OpenFOAM [46] dynamic mesh capabilities ( dy-

amicRefineFvMesh ) [56] are used to refine the mesh near the solid-fluid

nterface. In this work we studied the influence of the dynamic mesh

axRefinement parameter (here denoted dyM_max), which defines the

aximum number of layers of refinement that a cell can experience,

n the accuracy of the results obtained. Moreover, the algorithm uses

 mixed Eulerian–Lagrangian formulation in which the solid object is

racked by a collection of Lagrangian particles and the fluid is discretized

n a Eulerian grid. The algorithm follows three main steps: a) the fluid

quations are solved on the whole computational domain, b) the rigid

otion of the solid bodies is computed with LIGGGHTS [57] and in-

orporated in the form of a body force and, finally, c) we apply the

ivergence-free condition on the velocity field obtained on the last step,

nd correct the pressure and velocity fields. The presented algorithm

ollows the ideas of Patankar et al. [6] and Shirgaonkar et al. [7] , with

xtension to viscoelastic fluid flows where the polymeric extra-stress

ensor components are calculated based on the log-conformation ap-

roach [39,40] . 
83 
The numerical calculation procedures are carried out as follows: 

1. At 𝑡 = 0 the fluid and particle initial and boundary conditions are

read from the case study input files. Additionally, the DEM solver

sends the particle initial position and velocities to the CFD solver. 

2. The time iteration starts, 0 < t < endTime . 

3. The particles are located within the Eulerian mesh. The cell ID of the

centre position of each particle is saved. Additionally, the particle

volume fraction in each cell is computed. 

4. If chosen, the dynamic mesh capabilities ( dynamicRefineFvMesh ) are

used to refine the Eulerian mesh at the particle-fluid interface region.

5. Using the fluid solution from the last time-step in the regions marked

by the particle volume fraction, the fluid loads, which act on each

particle, are computed ( F 𝑓 
𝑖 
, F 
𝑔 
𝑖 
, M 

𝑓 
𝑖 
) . The resulting loads for each par-

ticle are returned to the DEM solver. 

6. A data exchange model is used to run a DEM script, which will com-

pute the particles positions and velocities ( Eqs. (10) and (11) ), using

Velocity-Verlet integration [58] . Additionally, if collisions between

particles or particle-wall are detected, the collision loads are com-

puted ( F 𝑐 𝑖𝑗 , M 

𝑐 
𝑖𝑗 ) . Notice that the code accounts for an independent

choice of the time-step size in CFD and DEM, and the only thing

which needs to be guaranteed is that the time steps and coupling

steps match. For all the simulations presented hereafter the DEM

time-step size is 1/10th of the CFD time-step size. 

7. The new particle position and the translational and angular veloci-

ties are transferred to the CFD solver. 

8. The CFD solver proceeds with the PISO (Pressure-Implicit with Split-

ting of Operators) algorithm [59] , which solves the fluid constitu-

tive equations ( Eqs. (1) –(6) ) by using the log-conformation approach

[39,40] . An intermediate velocity field ̂u is obtained by solving the

momentum balance equations ( Eq. (2) ) and an intermediate pressure

𝑝 is obtained from the continuity equation ( Eq. (1) ), which gives a

Poisson equation for pressure correction. 

9. The next step is to correct the intermediate velocity field û in the

region marked by the particle volume fraction, imposing the rigid

component of the body velocity provided by the DEM calculation.

This correction is equivalent to adding a body force per unit volume

term f in the semi-discrete Cauchy momentum equations, to obtain

a corrected velocity field ̃u : 

f = 𝜌
𝜕 

𝜕𝑡 
( ̃u − ̂u ) (21) 

with ̃u = U 

𝑝 
𝑖 
+ 𝝎 𝑖 × r defined only for the cells within the solid body.

The translational and angular velocities, U 

𝑝 
𝑖 

and 𝝎 i , respectively,

were previously computed in step 6. 

0. The previous step introduces a discontinuity in velocity at the inter-

face, giving rise to a non-zero divergence at the fluid-solid interface.

Thus ̃u is projected onto a divergence-free velocity space u , by using

a scalar field 𝜙, as: 

u = ̃u − ∇ 𝜙 (22) 

where 𝜙 is obtained by solving the Poisson equation, 

∇ 

2 𝜙 = ∇ ⋅ ũ 

(23) 

1. Then u is calculated by Eq. (22) . 

2. The last step is equivalent to adding a pressure force − 𝜌
∇ 𝜙
Δ𝑡 in the mo-

mentum conservation equations, which requires the pressure field to

be corrected by, 

𝑝 = ̃𝑝 + 

𝜙

Δ𝑡 
(24) 

3. Finally, the solution procedure ends by checking if the end time is

reached. If not, the procedure returns to step 3. 

This new viscoelastic IB solver was implemented in the CFDEMcou-

ling framework, and its validation is performed with four benchmark

ase studies, which are presented in the next section. 
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Fig. 1. Algorithm for the coupled CFD-DEM viscoelastic IB solver, where t is time, dt is the time-step size for the CFD solver and dt / n is the equivalent time-step for 

the DEM solver. 
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Fig. 2. Transient motion of a single-sphere falling through an initially quiescent 

viscous fluid confined in a square box of width W and height H . The schematic 

diagram illustrates the computational domain including the coordinate system: 

U s is the downward velocity of the falling sphere of diameter 2 a and g is the 

gravitational acceleration. 
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. Validation case studies 

This section presents the validation of the newly-developed vis-

oelastic IB solver, by using it on several benchmark case studies that

ave already been presented in the scientific literature. The first case

tudy is devoted to the sedimentation of a sphere in a rectangular duct

ontaining a Newtonian fluid, which will verify the solver’s capabilities

o predict the steady-state sphere velocity accurately. Subsequently, the

econd case study describes the transient sedimentation dynamics of a

phere in several different viscoelastic fluids. This case study will allow

s to test the implementation of the constitutive equations on the Eu-

erian fluid phase, and characterize the spatial and temporal orders of

onvergence of the solver. Additionally, high Weissenberg number sim-

lations will be performed to verify the ability of the log-conformation

pproach to stabilize the numerical code. The third case study will verify

he correctness of the 6-DOF code, on the Lagrangian loop, to compute

he angular velocity of a sphere immersed in a steady shear flow of an

ldroyd-B fluid. Finally, the fourth integrated case study describes the

ross-stream migration of a neutrally buoyant sphere in Poiseuille flow

or both Newtonian and viscoelastic liquids. Here, the Segré–Silberberg

ffect [60] is reproduced for the Newtonian fluid and the influence of

he retardation ratio on the particle equilibrium position is studied for

he case of a Giesekus fluid. 

.1. Case study 1: Sedimentation of a sphere in a Newtonian fluid 

Consider the settling motion of a sphere with velocity U s and radius

 as it falls along the centerline of a closed square box of width W and

eight H containing a Newtonian fluid (see Fig. 2 ). The box aspect ratio

s fixed at 𝐻∕ 𝑊 = 4 . No-slip conditions apply at all six bounding walls.

his benchmark is designed to test the effect of changing the blockage

atio (2 a / W ) on the sphere settling velocity, when using different levels

f maximum dynamic mesh refinement. 

The dimensionless Reynolds number is set to 𝑅𝑒 ≡ 2 𝜌𝑓 𝑈 0 𝑎 ∕ 𝜇 = 0 . 36 ,
here U 0 is the unbounded terminal velocity, the so-called Stokes set-

ling velocity [1] , and 𝜇 is the dynamic viscosity of the fluid. The rel-

tive density of the sphere, given by a dimensionless weight or more

imply by a density contrast, equals to 𝜌𝑠 ∕ 𝜌𝑓 = 2 . 5 , where 𝜌f and 𝜌s are

he fluid and sphere densities, respectively. The Newtonian calculations
84 
ollow the same procedure illustrated in Fig. 1 with minor modifications

n Eqs. (2) , (15), (18) and (19) where the polymeric stress tensor τ𝑃 is

eglected. The Stokes settling velocity, U 0 , expected for a sphere with

adius a in an unbounded domain ( a / W →0) containing a viscous New-

onian fluid, is calculated by equating the gravitational body force on

he sphere with the viscous drag exerted on the sphere, which results in

he following expression [1] 

 0 = 

( 4∕3 ) 𝜋𝑎 3 
(
𝜌𝑠 − 𝜌𝑓 

)
𝑔 

6 𝜋𝜇𝑎 
= 

2 𝑎 2 
(
𝜌𝑠 − 𝜌𝑓 

)
𝑔 

9 𝜇
(25)

ecause of the additional shear stresses introduced by the bounding

alls of the box, the actual settling velocity U s in a box with finite block-

ge ratio (2 a / W ≠0) is expected to be much lower than U 0 . 

Fig. 3 shows the steady velocity of the sphere U s (monitored on the

le with the particle velocity, which is written by the LIGGGHTS code

ith the print command) normalized by the Stokes velocity U 0 for dif-

erent blockage ratios 2 a / W . The best curve fit to the experimental data

f Miyamura et al. [41] (solid line) is also shown for comparison pur-

oses. The numerical results are computed using a uniform mesh with

0 ×20 ×80 cells and with dynamic mesh refinement at the fluid-sphere

nterface. Two different maximum refinement levels are used, denoted
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Fig. 3. Comparison between the steady-state velocity of a sphere falling in a 

closed container with blockage ratio 2 a / W , filled with a Newtonian fluid, and 

the best curve fit to the experimental data of Miyamura et al. [41] , the lattice- 

Boltzmann simulation results of Aidun et al. [61] (with lattice L = 64 and L = 
32), and the dissipative particle dynamic (DPD) simulation results of Chen et al. 

[9] . 

Fig. 4. Normalized velocity (top) and pressure difference ( Δ𝑝 = 𝑝 − 𝑝 ( 𝑥 ∕ 𝑊 = 
0 . 5 , 𝑧 ∕ 𝑊 = 𝑧 𝑠𝑝ℎ𝑒𝑟𝑒 𝑐𝑒𝑛𝑡𝑒𝑟 ) ) (bottom) contours for the sedimentation of a sphere in 

a Newtonian fluid settling along the centerline of a square duct with blockage 

ratio (a) 2 𝑎 ∕ 𝑊 = 0 . 1 and (b) 2 𝑎 ∕ 𝑊 = 0 . 7 . 
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Fig. 5. Geometry and cylindrical coordinate system for the transient motion 

of a single sphere of radius a falling through an initially quiescent viscoelastic 

fluid confined in a tube of radius R and height H . Here U s ( t ) is the time- varying 

downward velocity of the falling sphere after it is released from rest at 𝑡 = 0 and 

g is the gravitational acceleration. 
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y dyM_max, for each blockage ratio tested, with typical values equal to

wo or three. Additionally, the lattice-Boltzmann simulation results of

idun et al. [61] , which include a fine lattice (L = 64) and a coarser

attice (L = 32), and the dissipative particle dynamic (DPD) simula-

ion results of Chen et al. [9] are included for comparison purposes.

s shown in Fig. 3 the numerical results obtained with both of the max-

mum mesh refinement levels, are in good agreement with previous ex-

eriment [41] , lattice-Boltzmann [61] and DPD [9] simulation results,

or all the blockage ratios considered. Additionally, in Fig. 4 we show

he normalized velocity (top) and pressure (bottom) contours for block-

ge ratios 2 𝑎 ∕ 𝑊 = 0 . 1 and 2 𝑎 ∕ 𝑊 = 0 . 7 . As can be seen by the velocity

ontours, when increasing the blockage ratio the restrictive effect of the

alls on the steady settling velocity of the particle increases markedly.

he no-slip boundary condition at the outer wall decreases the parti-

le settling velocity and increases the local fluid velocity in the ‘nip’
85 
egion near the equator of the sphere. This also means that as the fluid

s squeezed between the particle and the walls, there is an increase in the

otal pressure difference between the front and rear stagnation points,

s shown by the corresponding pressure contours. 

.2. Case study 2: Sedimentation of a sphere in viscoelastic fluids 

The first case study employed to validate the newly implemented vis-

oelastic IB algorithm was the transient settling motion of a sphere with

elocity U s ( t ) and radius a, as it falls along the centerline of a cylindrical

ube of radius R containing a viscoelastic fluid (see Fig. 5 ). No-slip con-

itions were considered at all bounding walls. If the sphere is released

rom rest, then the viscoelastic nature of the fluid results in a tempo-

al retardation of the viscous drag force counteracting the gravitational

cceleration of the solid body, and theoretical analyses with linear vis-

oelastic models predict an initial velocity overshoot in the motion of

he sphere [62] . As the motion of the sphere approaches steady state,

iscoelasticity and the presence of the bounding walls lead to modifica-

ions in the velocity field in the surrounding fluid, and the steady-state

elocity of the sphere may be substantially different from that observed

n a Newtonian fluid. 

The geometry for this case study follows the one used by Rajagopalan

t al. [42] . In this experiment, a long plexiglass cylinder of height

 = 90 cm and internal radius 𝑅 = 5 . 23 cm is filled with a Boger fluid,

nd its axis is carefully aligned to be parallel with the gravity axis. The

pheres used in the experiments were commercially available ball bear-

ngs of diameter 2 𝑎 = 2 . 54 cm . This way, the radius ratio is fixed at

 = 𝑎 ∕ 𝑅 ≈ 0 . 243 . The ceramic sphere has a density of 𝜌𝑠 = 3 . 84 g/cm 

3 

nd the fluid density is 𝜌𝑓 = 0 . 895 g/cm 

3 , which gives the relative den-

ity of the sphere equal to 𝜌s / 𝜌f ≈4.29. 

With respect to the fluid rheology, the same parameters as in Ra-

agopalan et al. [42] were used, where first the zero-shear-rate prop-

rties of the viscoelastic test fluid, determined using a cone-and-plate

heometer at a reference temperature 𝑇 0 = 25 ◦C , are fixed as 𝜂𝑆 =
 . 12 Pa.s , 𝜂0 = 𝜂𝑆 + 𝜂𝑃 = 13 . 76 Pa.s and Ψ10 = 8 . 96 Pa.s 2 . The mean re-

axation time is then given by 𝜆 = Ψ10 ∕[2( 𝜂0 − 𝜂𝑆 )] ≈ 0 . 794 s and the re-

ardation ratio by 𝛽 = 𝜂𝑆 ∕ 𝜂0 ≈ 0 . 59 . 
The steady Newtonian settling velocity U N , expected for a sphere

ith radius a settling along the centerline of a tube of radius R filled

ith a viscous Newtonian solvent of equivalent viscosity 𝜂0 , is given by

 modification to Eq. (25) incorporating the Faxen wall correction factor

 𝑁 (  ) [63] : 

𝑈 𝑁 = 

(4∕3) 𝜋𝑎 3 ( 𝜌𝑠 − 𝜌𝑓 ) 𝑔 
6 𝜋𝜂 𝑎𝐾 (  ) 

= 

2 𝑎 2 ( 𝜌𝑠 − 𝜌𝑓 ) 𝑔 
9 𝜂 𝐾 (  ) 

(26) 
0 𝑁 0 𝑁 
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Fig. 6. Numerical error as a function of the computational time-step at 𝑡 ∕ 𝜆 = 0 . 2 
for case study 2. The solid lines represent linear fits to the numerical points on 

a log-log scale and the slope gives the apparent order of convergence for each 

scheme. 
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Table 1 

Total number of mesh cells and degrees of freedom (DOF) for the meshes 

employed in the spatial order of convergence study. 

Mesh Δr / a Total number Estimated number of cells DOF 

of mesh cells covered by solid fraction 

M1 1/2 32 850 33 328 698 

M2 1/3 105 135 113 1 052 028 

M3 2/9 347 200 380 3 474 280 

M4 4/27 1 196 338 1285 11 971 090 

(a)

(b)

Fig. 7. Error as a function of the mesh resolution, for (a) maximum and (b) 

steady-state sphere velocities for case study 2. The solid lines represent linear fits 

to the numerical values (M2-M3-M4) on a log-log scale and the corresponding 

slope gives the convergence order for each scheme. The dashed lines are an 

extrapolation of the linear fit to M1. 
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here g is the gravitational acceleration,  = 𝑎 ∕ 𝑅 and 𝐾 𝑁 (  ) describes

he reduction in the velocity resulting from the presence of walls. For

 = 0 . 243 , the correction factor is 𝐾 𝑁 = 1 . 93 [63] , which results in a

ettling velocity of 𝑈 𝑁 ≈ 3 . 91 cm/s . 

The relevant dimensionless quantities measuring the importance of

iscous, inertial, and elastic effects are defined using nominal Reynolds

nd Weissenberg numbers in terms of the settling velocity U N expected

or such a sphere as 

𝑅𝑒 = 

2 𝑎𝜌𝑓 𝑈 𝑁 
𝜂0 

(27)

nd 

𝑊 𝑖 = 

𝜆𝑈 𝑁 
𝑎 

(28)

espectively. This way, the nominal values of the Re and Wi numbers

stimated a priori using the settling velocity U N , are Re ≈0.064 and

i ≈2.45. To establish the temporal and spatial accuracy of the vis-

oelastic IB code, the viscoelastic fluid is described with a single-mode

ENE-CR model, using a finite extensibility of the polymer molecules

qual to 𝐿 2 = 10 . The reason to choose this model and the value of L 2 

or these studies is because the steady-state particle velocity is reached

aster than in other viscoelastic models (see Fig. 4 in [42] ). Additionally,

he meshes employed on the temporal and spatial sensitivity studies in

his section do not include any dynamic mesh refinement level on the

phere-fluid interface. 

Firstly, the order of convergence for the discretization of the rate

f change term was evaluated for two different discretization schemes,

uler and Crank–Nicolson, with three different time-step sizes, Δ𝑡 ∕ 𝜆 =
2 . 5 , 1 . 25 , 0 . 625} × 10 −5 . The numerical error, given by the absolute dif-

erence between the sphere velocity ( U s ) and the extrapolated sphere

elocity ( 𝑈 𝑒𝑥𝑡 𝑠 , obtained from the Richardson extrapolation technique

64] using the three time-step refinement levels stated above), as a func-

ion of the time-step at a fixed time of 𝑡 ∕ 𝜆 = 0 . 2 is shown in Fig. 6 . The

esh used for the time-step refinement study has 9 cells per particle

iameter ( Δ𝑟 ∕ 𝑎 = 2∕9 ), with a total of 347 200 mesh cells. The results

llustrated in Fig. 6 confirm that the numerical method retains, approx-

mately, the theoretical order of accuracy of the time schemes used:

he Crank–Nicolson scheme is second-order accurate, while the Euler

cheme is only first-order accurate. 

Additionally, the spatial order of convergence of the numeri-

al method was assessed using two different advection discretization

chemes, Upwind (UDS) and CUBISTA [65] , and four different mesh

efinement levels, Δ𝑟 ∕ 𝑎 = {1∕2 , 1∕3 , 2∕9 , 4∕27} , labeled M1 to M4, re-

pectively. Table 1 gives the total number of cells and degrees of free-

om (DOF) corresponding to each one of the mesh refinement levels

mployed. Notice that, for the DOF calculation, there exist 10 depen-

ent fluid variables (3 velocity components, pressure and 6 extra-stress
86 
omponents) in all domain cells, plus 6 dependent particle variables (3

ranslational velocity components and 3 angular velocity components)

n the cells covered by the solid fraction (which were estimated by

he ratio of the particle and a cubic cell volume, using the respective

alue of Δr / a ). The time-step level used to compute the spatial order

f convergence of the algorithm was Δ𝑡 ∕ 𝜆 = 1 . 25 × 10 −5 . The order of

onvergence is computed for both the maximum, U s,max , and steady-

tate, U s , ∞, sphere velocities. The results are plotted in Fig. 7 , where

he upwind scheme is found to converge approximately with order of

.29 and 1.33, and the CUBISTA scheme converges with order of 2.21

nd 2.35, using the maximum and steady-state velocities, respectively.

he results obtained show that the theoretical order of accuracy of the

dvective discretization schemes used (UDS order 1 and CUBISTA order

) are approximately retained by the new viscoelastic IB algorithm. 

The dimensionless velocity of the sphere U s ( t )/ U N , computed numer-

cally for the viscoelastic fluids described by the single-mode Oldroyd-

 ( L 2 →∞) and FENE-CR constitutive models, is compared with the

esults obtained by Rajagopalan et al. [42] with a FEM simulation,

s shown in Fig. 8 (see also the movies in the supplementary mate-

ial). The numerical results are computed using a mesh similar to M3

 Δ𝑟 ∕ 𝑎 = 2∕9 ) and a time-step level of Δ𝑡 ∕ 𝜆 = 1 . 25 × 10 −5 . Additionally,

 dynamic mesh refinement level equal to two is used in order to im-

rove the accuracy of the numerical results obtained. It can be seen that
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Fig. 8. Predicted initial transient motion of a sphere through a (a) FENE-CR and 

(b) Oldroyd-B fluid, for case study 2 (see also the movies in the supplementary 

material). Solid black lines represent the results of Rajagopalan et al. [42] and 

red lines represent numerical results obtained with maximum dynamic mesh 

refinement level of two. The dashed black line represents the Newtonian steady- 

state velocity. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

v  

i  

c

g  

t  

d  

m  

p  

m  

t  

o

 

t  

t  

t  

t  

(  

a  

n  

r  

m  

s  

s  

t  

p  

t  

t  

n  

b

 

l  

a  

b  

Fig. 9. Predicted initial transient motion of a sphere through a Giesekus fluid 

( 𝛼 = 0 . 2 ) for case study 2 (see also the movies in the supplementary material). 

Effect of the Weissenberg number, (a) Wi = 2 . 45 and (b) Wi = 10 , and retardation 

ratio ( 𝛽 = 0 . 1 and 𝛽 = 0 . 59 ) on the sphere settling velocity at 𝑅𝑒 = 0 . 064 . 

Fig. 10. Streamlines for the case study 2 with Giesekus fluid model with Wi = 
2 . 45 , 𝑅𝑒 = 0 . 064 and 𝛽 = 0 . 1 at different moments in the time series: (a) 𝑡 ∕ 𝜆 = 
0 . 06 , (b) 𝑡 ∕ 𝜆 = 0 . 14 , (c) 𝑡 ∕ 𝜆 = 0 . 5 and (d) 𝑡 ∕ 𝜆 = 2 . 5 . 
iscoelasticity affects both the transient and steady state settling veloc-

ties of the sphere. At steady state the finite extensibility of the fluid

ontrols whether the sphere falls faster than the Newtonian value U N 

iven by Eq. (26) (e.g. for 𝐿 2 = 10 ) or more slowly (e.g. for L 2 →∞, i.e.,

he Oldroyd-B model). The most interesting behavior occurs at interme-

iate times ( t / 𝜆≈0.1), where the quasi-linear Oldroyd-B and FENE-CR

odels predict a velocity overshoot and the maximum velocity is ap-

roximately 𝑈 max ∕ 𝑈 𝑁 ≈ 𝜂0 ∕ 𝜂𝑆 = 1 . 69 . As can be seen in Fig. 8 the nu-

erical results obtained by the newly-developed solver are very close

o the ones presented by Rajagopalan et al. [42] , which is an evidence

f the correct implementation of the new viscoelastic IB algorithm. 

For this second case study, we also tested the Giesekus viscoelas-

ic model, with mobility parameter 𝛼 = 0 . 2 (representative of shear-

hinning viscoelastic behavior), to describe the fluid rheology. The par-

icle settling trajectory was computed for Wi = 2 . 45 and Wi = 10 , and for

wo different values of the retardation ratio 𝛽 = 𝜂𝑆 ∕ 𝜂0 = 0 . 1 and 𝛽 = 0 . 59
see Fig. 9 ). For the high Wi number case ( Wi = 10 ) the log-conformation

pproach is used to compute the polymeric extra-stress tensor compo-

ents, which improves the numerical stability of the developed algo-

ithm [48] . As shown in Fig. 9 (see also the movies in the supplementary

aterial), for the same retardation ratio values, increasing the Weis-

enberg number increases the steady-state particle settling velocity sub-

tantially above U N , due to the onset of shear thinning. Additionally,

he decrease of the retardation ratio from 𝛽 = 0 . 59 to 𝛽 = 0 . 1 induces a

ronounced secondary undershoot in the particle settling velocity due

o the reduction in the level of damping provided by the viscous New-

onian solvent. This effect is present at both values of the Weissenberg

umber but enhanced at Wi = 2 . 45 , before the effects of shear thinning

ecome totally dominant, at Wi ≫1. 

To understand the above behavior, we present the fluid stream-

ines in Fig. 10 for 𝑊 𝑖 = 2 . 45 , 𝑅𝑒 = 0 . 064 and 𝛽 = 0 . 1 , at four char-

cteristic moments in the time series, 𝑡 ∕ 𝜆 = {0 . 06 , 0 . 14 , 0 . 5 , 2 . 5} . At the

eginning, 𝑡 ∕ 𝜆 = 0 . 06 , the flow around the sphere is fore/aft symmetric
87 
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Fig. 11. Geometry used for the rotation of a sphere of diameter 2a in a vis- 

coelastic liquid subjected to shear flow. 
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Fig. 12. Mesh generated by the snappyHexMesh utility on the center plane of 

the shear flow geometry. 

Fig. 13. Sphere angular velocity 𝜔 ∕ ̇𝛾 as a function of Weissenberg number in 

a pure shear flow, computed by a viscoelastic fixed mesh and IB codes, and 

comparison with Snijker et al.’s [43] experimental and numerical results. 
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nd Fig 10 (a) shows that the fluid in the wake of the sphere moves with

 downward velocity (positive wake). At the time of the maximum over-

hoot in U s ( 𝑡 ∕ 𝜆 = 0 . 14 ), Fig 10 (b) shows a strongly fore-and-aft asym-

etric flow with the center of the recirculation displaced upwards sub-

tantially beyond the equator of the sphere. Next, at the end of the decel-

ration period that follows the overshoot, 𝑡 ∕ 𝜆 = 0 . 5 , Fig 10 (c) shows that

 new flow region in the wake of the sphere with upward velocity (neg-

tive wake) has developed. This negative wake is a stable structure that

emains intact after steady state has been reached, 𝑡 ∕ 𝜆 = 2 . 5 , as shown in

ig 10 (d) and is consistent with previous computations performed with

ustom-developed codes [24,32,66] . 

.3. Case study 3: Rotation of a sphere in a fluid subjected to shear flow 

The problem of the dynamics of a single sphere immersed in a linear

ow field imposed at infinity, in the absence of both fluid and particle

nertia, was first addressed by Einstein [67] for the case of a Newto-

ian suspending medium. Under steady shear flow, the sphere trans-

ates in the flow direction at steady velocity while also rotating around

he vorticity axis. Thus, in a frame translating with the sphere center,

he sphere just rotates in time with a constant angular velocity 𝜔 . Ein-

tein [67] demonstrated that, under no-slip boundary conditions at the

article surface, the rotation rate at steady state is given by 𝜔 = 𝛾̇∕2 , 𝛾̇
eing the externally imposed shear rate. This simple result stems from a

orque balance at the sphere surface, whereby the torque on the sphere

s only due to the flow field (the so called torque-free condition) [68] .

he rotation speed of the particle is independent of the particle radius

nd viscosity of the fluid. 

In this test, the 3D flow problem is solved with the new viscoelastic

B code in a rectangular box (see Fig. 11 ) with height H and length

 = 3 . 75 𝐻, containing a single sphere of diameter 2a at the center of the

ox, with 2 𝑎 ∕ 𝐻 = 0 . 25 . The boundary conditions applied are as follows:

eriodic boundary condition on 𝛿Ωin , 𝛿Ωout , 𝛿Ωback and 𝛿Ωfront for all

elds, zero gradient value on 𝛿Ωtop and 𝛿Ωbottom 

for pressure, and fixed

alue uniform profile for velocity, with velocity vectors given by ( U ,

, 0) and (− 𝑈, 0 , 0) , respectively, where U is the imposed velocity. The

mposed shear rate is then 𝛾̇ = 

2 𝑈 
𝐻 

. In this case study, the ratio of inertia

nd viscous forces, defined by the Reynolds number of the fluid in the

ox, is given by 𝑅𝑒 𝐻 ≡ 2 𝜌𝑓 𝑈𝐻 
𝜂0 

= 8 , where 𝜂0 is the total fluid viscosity. 

Following Snijkers et al. [43] , the ratio 𝜔 ∕ ̇𝛾 is plotted as a function

f the Weissenberg number for an Oldroyd-B fluid, considering the re-

ardation ratio and Weissenberg number to be 𝛽 = 0 . 5 and Wi = 𝜆𝛾̇ =
0 . 25 , 0 . 5 , 1 , 2} , respectively. Here, the numerical results are obtained

sing two different calculation procedures, one using a fixed-mesh ap-

roach with a newly developed boundary condition in our previous

tudy [69] , and the other using the viscoelastic IB code. For the fixed-

esh approach the fluid forces are integrated on the sphere surface and

sed to compute the torque and angular velocity generated, which is

hen imposed as a boundary condition on the sphere surface and mon-

tored along the simulation time until it reaches the steady-state value.

he mesh used on the fixed-mesh approach was generated by the snap-

yHexMesh utility of the OpenFOAM computational library, which is
88 
apable of creating a local surface refinement by setting a predefined

evel of refinement (5 in this study), and a smooth transition between

 predefined number of layers (6 in this study) with an expansion ra-

io between each layer (1.05 in this study). The mesh generated has a

otal of 1 251 628 cells and the time-step used in the simulations was

t = 10 −8 s . Fig. 12 shows the mesh, in the central plane, generated by

he snappyHexMesh utility and the zoom therein enhances the layers

ear the sphere surface. In the second approach, where the viscoelastic

B code is used, the mesh is generated with 16 cells per sphere diameter,

hich gives a total of 983 040 cells, and the Eulerian and Lagrangian

ime-steps used were 𝑑𝑡 𝐸𝑢𝑙 = 10 −5 s and 𝑑𝑡 𝐿𝑎𝑔 = 10 −6 s , respectively. In

ig. 13 we show the comparison between the results obtained by Sni-

kers et al. [43] (experimental and numerical) and those obtained by

he two approaches described above. As can be seen both methods are

ble to accurately reproduce the results from Snijkers et al. [43] for an

ldroyd-B liquid. 

Fig. 14 shows a single iso-contour of the extra-stress tensor trace

 tr ( τ𝑃 ) ), colored by the value of the normal extra-stress tensor compo-

ent τ𝑥𝑥 on that contour, for the different Weissenberg numbers tested.

o plot these structures we choose the isoline at which the rear and front

akes have merged with the north and south poles of the particle. The

esults obtained show that increasing the Weissenberg number induces

igger structures in the wakes, but smaller ones near the poles. These

arge extended elastic wakes or ‘wings’ act to retard the rotation of the

phere [10] . 

.4. Case study 4: Cross-stream migration of a neutrally buoyant sphere in 

oiseuille flow 

Neutrally buoyant spheres immersed in a steady Poiseuille flow in a

ube of radius R are subject to lift forces that drive the spheres either
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Fig. 14. Iso-contours of tr ( τ𝑃 )∕ 𝜂0 ̇𝛾 colored by the normal extra stress tensor component τ𝑥𝑥 ∕ 𝜂0 ̇𝛾 for (a) Wi = 0 . 25 , 𝜔 ∕ ̇𝛾 = 0 . 498 ; (b) Wi = 0 . 5 , 𝜔 ∕ ̇𝛾 = 0 . 477 ; (c) Wi = 1 , 
𝜔 ∕ ̇𝛾 = 0 . 428 ; and (d) Wi = 2 , 𝜔 ∕ ̇𝛾 = 0 . 339 . 

Fig. 15. Schematic illustrating the computational domain (in cylindrical coordi- 

nates) for case study 4: U z ( r ) is the inlet flow velocity, 𝜔 𝜃 is the angular velocity 

of the sphere (of radius a ) in the 𝜃 direction, v z is the sphere axial velocity, and 

R is the tube radius. 
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Fig. 16. Evolution of the radial position for a sphere in a Newtonian fluid un- 

dergoing steady axisymmetric Poiseuille flow released from two different start- 

ing positions in the pipe, 𝑟 𝑖 ∕ 𝑅 = 0 . 2 and 𝑟 𝑖 ∕ 𝑅 = 0 . 75 (see also the movies in 

the supplementary material). The dashed black line represents the theoretical 

Segré–Silberberg equilibrium position. 
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a) away from the wall towards steady radial positions r ss , nearer the

ube centerline, or (b) alternatively towards the wall, for initial release

adii smaller than a threshold value. For Poiseuille flow of a Newtonian

uid, the equilibrium position, at which the net lift force on a sphere is

ero, is located between the tube centerline and the wall, corresponding

o r ss / R ≈0.6. This phenomenon is known as the Segré and Silberberg

60] or “tubular pinch ” effect. 

This Segré–Silberberg effect is reproduced here for an additional val-

dation of the developed solver by simulating the transport of a single

eutrally buoyant sphere in a circular tube (see Fig. 15 ). The compu-

ational setup is the same as that used in previous numerical studies

 [35,44] ) of the Segré and Silberberg [60] effect: The tube has a radius

f 𝑅 = 2 . 5 mm and a length of 8 R , the sphere radius is 𝑎 = 0 . 15 𝑅, the

uid kinematic viscosity ( 𝜈) is 1 cSt , the density of the fluid and sphere

re both 1000 kg/m 

3 , the mean fluid velocity at the inlet is 10 mm/s (cor-

esponding to a tube Reynolds number of 𝑅𝑒 = 50 ), and the initial radial

ositions for the sphere are 𝑟 𝑖 ∕ 𝑅 = 0 . 2 and 𝑟 𝑖 ∕ 𝑅 = 0 . 75 . As in the previ-

us numerical studies [35,44] , a periodic boundary condition is applied

t the inlet and outlet for all fields, and a no-slip velocity/zero-gradient

ressure boundary condition is specified on the tube wall. 

As shown in Fig. 16 (see also the movies in the supplementary ma-

erial), the results obtained with the new IB code for the cross-stream

igration of a neutrally buoyant sphere in a Newtonian fluid undergo-

ng steady Poiseuille flow, compare well with the theoretical equilibrium

osition of r ss / R ≈0.6 for both of the particle initial release positions. 

Next, the newly-developed viscoelastic IB code is used to com-

ute the cross-stream migration of a sphere immersed in a Giesekus

uid, with mobility parameter 𝛼 = 0 . 2 . The particle equilibrium posi-

ion is obtained for Wi = 1 , 𝑅𝑒 = 50 and three different retardation ratios

= {0 . 1 , 0 . 5 , 0 . 9} . As shown in Fig. 17 , for the particle released near

he wall ( 𝑟 𝑖 ∕ 𝑅 = 0 . 75) , increasing the retardation ratio moves the par-

icle to an equilibrium position of approximately 𝑟 𝑠𝑠 ∕ 𝑅 = 0 . 65 . For the

ase where the particle is released near the tube center ( 𝑟 ∕ 𝑅 = 0 . 2) ,
𝑖 

89 
ncreasing the retardation ratio is found to have a non-monotonic effect

n the particle equilibrium position, that is, for the low and high values

f 𝛽 the particle migrates to r ss / R ≈0.6, but for the intermediate value of

, it migrates to r ss / R ≈0.65. As the retardation ratio 𝛽 is increased, the

igration velocity becomes progressively higher. These results indicate

hat incorporating the effects of the fluid viscoelasticity has a complex

ransient effect on the equilibrium position of the sphere, which requires

urther investigation that will be considered in future works. 

. Particle alignment in viscoelastic fluids 

As first reported by Michele et al. [70] rigid particles suspended in

iscoelastic fluids under shear can aggregate into string-like structures

ligned in the flow direction. The driving force for this phenomenon

as attributed to the effect of the normal stress differences generated by

he viscoelastic shear flow on the rigid surfaces of the particles. Experi-

ents by Scirocco et al. [71] and Pasquino et al. [72] have shown that

he alignment effect can be substantially enhanced (resulting in more

apid shear-driven alignment) by the presence of confining rigid walls.

ecently, experimental work carried out by Loon et al. [73] showed

article alignment in a shear-thinning fluid without significant normal

tress differences. Additionally, aiming to provide further insights on

he phenomenon of particle alignment, Jaensson et al. [74] conducted,

or the first time, direct 3D numerical simulations of the alignment of

wo and three rigid, non-Brownian spherical particles in an unbounded
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Fig. 17. Evolution of the radial position for a sphere in a Giesekus fluid un- 

dergoing steady Poiseuille flow at Wi = 1 , 𝑅𝑒 = 50 released from two different 

starting positions in the pipe, 𝑟 𝑖 ∕ 𝑅 = 0 . 2 and 𝑟 𝑖 ∕ 𝑅 = 0 . 75 , for retardation ratio 

(a) 𝛽 = 0 . 1 , (b) 𝛽 = 0 . 5 and (c) 𝛽 = 0 . 9 . 
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Fig. 18. Rigid spheres suspended in viscoelastic fluids under steady planar shear 

flow. The rectangular domain is bounded in the y -direction and periodicity is 

assumed at the boundaries normal to both x and z directions. The origin is lo- 

cated at the centroid of the domain, and 𝜃 is the angle between the x -axis and 

the line connecting the centers of the spheres. 

Table 2 

Computed and extrapolated steady-state distance and angular velocity, and rel- 

ative errors obtained for each refinement level employed (dyM_max). The total 

number of mesh cells are approximations, since the mesh changes during the 

simulation (except for mesh M1 where dyM_max = 0). 

Mesh dyM_max Total number d f / a Relative ( 𝜔 𝑧 ) 𝑓 ∕ ̇𝛾 Relative 

of mesh cells error (%) error (%) 

M1 0 12800 – – 0.259 18 .8 

M2 1 ∼20 000 2.001 3.9 0.186 14 .7 

M3 2 ∼45 000 2.062 1.0 0.210 3 .7 

Extrapolated ∞ – 2.082 – 0.218 –
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iscoelastic shear flow. The effects of elasticity, shear thinning and the

atio between the solvent viscosity and zero-shear viscosity were inves-

igated. They concluded that the action of normal stress differences is

ssential for particle alignment to occur, although it is also strongly en-

anced by shear thinning. However, they did not consider the effects of

igid channel boundaries in their simulations. 

To illustrate the capabilities of our new IBM viscoelastic solver,

e have conducted a preliminary set of numerical simulations which

emonstrate the effect of the blockage ratio (2 a / H where a is the particle

adius and H is the channel height) on particle alignment in viscoelas-

ic fluids under steady planar shear flow. This study is expected to aid

n unraveling complex phenomena which are still not completely un-

erstood, such as the particle alignment and migration in highly-elastic

hear-thinning fluids in confined shear flow. However, a complete study

f the effect of the channel gap size and fluid rheology on the particle

lignment will be the subject of additional study in future works. 

We consider three non-Brownian spherical particles in a steady pla-

ar shear flow, as depicted in Fig. 18 . Regarding the size of the periodic

omain we have considered two different cases: for the first case, the

hannel length ( L ), width ( W ), and height ( H ) were set, respectively,

o 40 a , 10 a and 16 a , to ensure minimal boundary effects; and for the

econd case, L, W , and H were set, respectively, to 20 a , 10 a and 8 a , to

valuate the effects of reducing the gap size on the particle alignment

ate. 

Simulations have been performed to investigate whether a string is

ormed by three particles, where the central particle is placed at the
90 
rigin (located at the centroid of the domain), and the outer particles

re placed at an angle of 𝜃 = 𝜋∕18 rad , with an initial distance between

he center points of the central and outer particles of 3 a . 

Due to the movement of the rigid top and bottom walls, a shear flow

ith an average shear rate of 𝛾̇ = 2 𝑈 𝑤 ∕ 𝐻 is imposed, where U w denotes

he magnitude of the velocity of the walls. 

When the particles come into contact, the non-linear elastic Hertz–

indlin contact model is used [52] . This model computes the frictional

orce between two particles considering the normal and tangential com-

onents, both comprising spring and damping components. To enforce

 rigid behavior of the particles the damping terms were canceled by us-

ng a coefficient of restitution equal to one. The numerical case studies

ere performed with three constitutive models, Newtonian, Oldroyd-B

nd Giesekus, in order to consider, respectively, inelastic, viscoelastic

onstant shear viscosity and viscoelastic shear-thinning behaviors. 

The relevant dimensionless numbers for this case study are the

eynolds number, defined by 𝑅𝑒 = 2 𝜌𝑈 𝑤 𝐻∕ 𝜂0 , the Weissenberg num-

er, defined by Wi = 𝜆𝛾̇, the mobility parameter 𝛼 (which controls the

hear-thinning behavior of the Giesekus fluid), the retardation ratio, de-

oted by 𝛽 = 𝜂𝑆 ∕ 𝜂0 , and the blockage ratio 2 a / H . For the runs presented

ere, some of the above dimensionless numbers were fixed, namely:

𝑒 = 0 . 1 (representative of creeping flow conditions), Wi = 3 , 𝛼 = 0 . 1
nd 𝛽 = 0 . 1 . 

For problems like the one presented in this section, where con-

act/collision occurs, the size of the mesh cells in the gap between the

articles is very important. Thus, we start by investigating the mesh con-

ergence using the Giesekus fluid model in the smaller domain (blockage

atio 2 𝑎 ∕ 𝐻 = 1∕4 ), with three different meshes, labeled M1 to M3, which

ave maximum dynamic mesh refinement levels of dyM_max = {0 , 1 , 2} ,
espectively (see Table 2 ). The results obtained are shown in Fig. 19 ,

here, following Jaensson et al. [74] , the evolution of the distance be-

ween the outer and middle particle centers, d , and the angular velocity

f the outer particles, 𝜔 z , are plotted as a function of strain. For all three

eshes at short times (when the particle separation is large) the angu-

ar velocity is initially small and grows as the particles approach each

ther, before passing through a maximum at 𝑡 ̇𝛾 ≈ 1 . For the coarsest

esh, dyM_max = 0, 𝜔 z continues to grow after 𝑡 ̇𝛾 = 6 until 𝑡 ̇𝛾 = 13 , at
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Fig. 19. Mesh refinement convergence study for the (a) distance, d , between 

outer and middle particle centers and the (b) angular velocity, 𝜔 z , of the outer 

particles. Here 2 𝑎 ∕ 𝐻 = 1∕4 , 𝑅𝑒 = 0 . 1 , Wi = 3 , 𝛼 = 0 . 1 , 𝛽 = 0 . 1 and three parti- 

cles are simulated. 

Table 3 

Total number of mesh cells and degrees of freedom (DOF) for the meshes em- 

ployed to study particle alignment in viscoelastic fluids under steady planar 

shear flow. 

Domain Total number Estimated number of cells DOF 

L ×W ×H of mesh cells covered by the particles (solid fraction) 

40 a ×10 a ×16 a 51 200 2144 524 864 

20 a ×10 a ×8 a 12 800 2144 140 864 
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Fig. 20. Effect of the blockage ratio 2 a / H and fluid rheology on the angle 𝜃 evo- 

lution for the simulation of three particles suspended in Newtonian, Oldroyd-B 

and Giesekus fluids. The insets show the particle trajectories for each fluid model 

used. The shadowed gray and dashed drawings denote, respectively, the initial 

and final particle positions after 30 strain units of shear. (a) 2 𝑎 ∕ 𝐻 = 1∕8 (b) 

2 𝑎 ∕ 𝐻 = 1∕4 . 
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hich point the particles have minimum separation, and subsequently

ill pass each other, d ≫2 a . However, for dyM_max = {1 , 2} , the angular

elocity of the outer particles, after going through a single maximum at

he beginning of the flow, reaches a steady value, at around 𝑡 ̇𝛾 = 16 . At

his point, based on the results obtained with M2 and M3, the particles

ave formed a stable string with d ≈2 a . Consequently, since the occur-

ence of particle alignment is the main subject of this case study, mesh

1 is clearly too coarse. Additionally, in order to evaluate the accuracy

f M2 and M3, we obtained the extrapolated value of the steady-state

article distance and angular velocity, denoted by d f and ( 𝜔 z ) f , respec-

ively, to an infinitesimal grid size, using the Richardson’s extrapolation

echnique [64] . Table 2 presents the calculated and extrapolated steady-

tate values and the relative errors obtained. As shown, the values of

 f and ( 𝜔 z ) f appear to be appropriately accurate for M3 (dyM_max =
), with relative errors of 1.0 % and 3.7 %, respectively. Thus, the re-

aining simulations were performed with dyM_max = 2, which offers a

ood trade-off between accuracy and efficiency (notice that the compu-

ational time needed for dyM_max = 2 was, approximately, 6 days, and

he estimated computational time for a refinement level of dyM_max =
 is about 45 days). 

Subsequently, the effect of rheology and blockage ratio on particle

lignment is studied. Table 3 gives the total number of cells and de-

rees of freedom (DOF), see Section 4.2 for details on how DOF is cal-

ulated, corresponding to each of the computational domains studied.
91 
dditionally, a dynamic mesh refinement level at the particle interface is

sed to improve the accuracy of the numerical results. The Eulerian and

agrangian time-steps used were 𝑑𝑡 𝐸𝑢𝑙 = 10 −6 s and 𝑑𝑡 𝐿𝑎𝑔 = 10 −7 s , re-

pectively. All computations were performed in parallel using 16 cores

n a computer with a 2.60 GHz E5-2650v2 Dual CPU processor and

4GB of RAM. For the larger domain case study (51200 cells and 524864

OF) the computational time taken by the newly-developed algorithm

o reach 𝑡 ̇𝛾 = 30 was approximately 12 days for the shear-thinning fluid

odel. 

The results obtained in the numerical simulations are presented in

ig. 20 , where the evolution of 𝜃 is shown as a function of strain. Fol-

owing Jaensson et al. [74] if the angle 𝜃 remains constant or is still

ecreasing at 𝑡 ̇𝛾 = 30 , we will assume that the particles have aligned

n a stable string. Concerning the effect of rheology, the results ob-

ained are in accordance with the literature. There is no particle align-

ent in the absence of normal stress differences, with Newtonian flu-

ds. For this case, the angle 𝜃 keeps increasing for all the shear strains

nd the particles move apart (see the insets for Newtonian fluids in

ig. 20 ). Good agreement with the results of Jaensson et al. [74] is

lso shown in Fig. 20 . However, the presence of normal stress differ-

nces promote particle alignment [74] , both for Oldroyd-B and Giesekus

uids. Shear-thinning further enhances the phenomena [71,75] , thus,
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Fig. 21. Polymer stress contours for the alignment of three spherical particles 

suspended in a Giesekus fluid ( Wi = 3 , 𝛼 = 0 . 1 and 𝛽 = 0 . 1 ) under steady planar 

shear flow (blockage ratio 2 𝑎 ∕ 𝐻 = 1∕4 ) at steady-state. 
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nducing a faster alignment with the Giesekus fluid when compared with

he Oldroyd-B counterpart. For example, for the domain with block-

ge ratio 2 𝑎 ∕ 𝐻 = 1∕8 the final angle obtained with the Giesekus fluid is

𝑓 = 0 . 026 rad compared to 𝜃𝑓 = 0 . 074 rad obtained with the Oldroyd-B

uid. Regarding the effect of the blockage ratio we can conclude that

he rate of shear-induced particle alignment in the flow direction is en-

anced by decreasing the channel gap, as shown by the reduction of

oth the maximum and steady-state orientation angles obtained with

he viscoelastic fluids. For the Oldroyd-B and Giesekus fluids the steady-

tate angle decreases from 𝜃𝑓 = 0 . 074 rad to 𝜃𝑓 = 0 . 070 rad and from

𝑓 = 0 . 026 rad to 𝜃𝑓 = 0 . 017 rad , respectively, corresponding to 5.4 %

nd 34.6 % reduction with the increase of the blockage ratio, respec-

ively. Therefore, we can conclude that, when the gap decreases, the

ffect of shear-thinning in the particle alignment is stronger than the

ne promoted by the viscoelastic constant shear viscosity model. An-

ther interesting point for discussion is that the computational stiffness

f the calculations increases with the decrease of the gap size. In fact, the

omputational (wall-clock) times per iteration for the simulations with

he Giesekus fluid using the two blockage ratios tested were, approxi-

ately, 0.15 and 0.45 s for 2 𝑎 ∕ 𝐻 = 1∕4 and 2 𝑎 ∕ 𝐻 = 1∕8 , respectively.

herefore, considering a linear scale up of the computational time with

he number of mesh cells (given in Table 3 ), we obtained 33 % more

omputational time for 2 𝑎 ∕ 𝐻 = 1∕4 than the expected 0 . 45∕4 = 0 . 1125
econds per iteration (notice that 4 is the ratio between the number of

esh cells of the larger and smaller gap problems). 

In Fig. 21 the trace of the polymer stress tensor is shown for the

ase of three spherical particles suspended in a Giesekus fluid ( 𝑊𝑖 =
 , 𝛼 = 0 . 1 and 𝛽 = 0 . 1) under steady planar shear flow for the blockage

atio 2 𝑎 ∕ 𝐻 = 1∕4 at steady-state 𝑡 ̇𝛾 = 30 and a final orientation angle

𝑓 = 0 . 017 rad . Regions of large polymer stresses are observed in the

arrow fluid gaps (with minimum size of ℎ min ∕ 𝑎 = 0 . 0625 ) around the

enter particle, in agreement with Jaensson et al. [74] . The zoomed

rea in Fig. 21 shows the large stresses in the gap between the spherical

articles, which contribute to the stability of the shear-aligned cluster

f particles. 

. Conclusions 

A numerical formulation for fully-resolved simulation of solid par-

icles in viscoelastic fluids was presented and implemented using a

ombination of the finite-volume and the immersed boundary meth-

ds. The implementation was carried out by extending the open-source

FDEMcoupling framework, and the overall algorithm procedure solves

he flow equations, including the viscoelastic constitutive equation
92 
sing a log-conformation approach, with a PISO (Pressure-Implicit with

plitting of Operators) method, and an immersed boundary algorithm

o model the flow around discrete force-free and torque-free particles

resent in the flow domain. This approach guarantees a tight coupling

etween the dynamics of the fluid and the solid discrete phase, by im-

osing a two-way coupling between the two phases. The coupling is

rovided by the calculation of the net hydrodynamic forces and torques

xerted by the fluid on the solid particles. The algorithm subsequently

pdates the particle movement, comprising linear and rotational mo-

ions, which in turn provides new boundary conditions for the fluid do-

ain. 

The newly-developed algorithm was assessed in terms of accuracy

n four benchmark studies. First, for the sedimentation of a sphere in

 bounded rectangular box filled with a Newtonian fluid, the particle

teady velocity was compared with experimental and numerical data

vailable in the literature for different blockage ratios, and good agree-

ent was obtained. Subsequently, the viscoelastic immersed bound-

ry (IB) solver was tested on the sedimentation of a spherical particle

hrough a FENE-CR fluid. The spatial and temporal orders of conver-

ence for the algorithm were evaluated using different transient and

dvection discretization schemes, for which it was concluded that the

heoretical orders of convergence of the tested schemes are retained by

he new code. The velocity profiles of the sedimenting particle falling

hrough a FENE-CR and Oldroyd-B fluids were also compared with lit-

rature results given by Rajagopalan et al. [42] , and again an excellent

greement was obtained. Finally, the sedimentation of a spherical par-

icle through a Giesekus fluid was computed for different retardation

atios and Weissenberg ( Wi ) numbers, in order to test the robustness of

he numerical algorithm, specially for high Wi problems, which required

he use of the log-conformation approach to achieve converged results.

or single settling spheres, velocity overshoots and negative wakes were

oth observed at high Wi . 

We also demonstrated the capability of the algorithm to predict the

ynamics of a freely-suspended particle, by performing simulations of a

phere subjected to steady shear flow in a rectangular box filled with an

ldroyd-B fluid. The particle rotation rate, obtained by using two dif-

erent approaches (fixed-mesh and immersed boundary), was compared

ith the numerical and experimental results presented by Snijkers et al.

43] . The results predicted by the developed code are in agreement with

he ones available in the literature, where a steady decrease in the rota-

ion rate was observed with increasing Weissenberg number. 

The newly-developed viscoelastic immersed boundary code was also

sed to study the cross-stream migration of a neutrally buoyant sphere

mmersed in a pressure-driven Poiseuille flow, by using both Newtonian

nd viscoelastic constitutive models. The well known Segré–Silberberg

ffect [60] , in which the spheres migrate to an equilibrium position

etween the tube centerline and the wall corresponding to r ss / R ≈0.6,

as reproduced for the Newtonian fluid. For the viscoelastic fluid, the

iesekus constitutive model was used, and the effect of the retardation

atio on the particle equilibrium position was evaluated at Wi = 1 . For

articles released near the walls, increasing the retardation ratio leads

he particles to move further outwards to a new equilibrium position of

 ss / R ≈0.65, but for particles released near the tube center, increasing

he retardation ratio has a non-monotonic effect on the particle equi-

ibrium position. This non-monotonic trend of the results requires addi-

ional studies. 

Finally, the capabilities of the developed code were tested in a chal-

enging physical problem, the shear-induced particle alignment in wall-

ounded Newtonian and viscoelastic fluids. Simulations have been per-

ormed to illustrate the role of the fluid rheology (inelastic, elastic and

hear-thinning) and blockage ratio on the alignment of three suspended

articles. The results obtained show that the particle alignment occurs

nly in viscoelastic fluids, when normal stress differences are present,

nd the phenomena is enhanced by shear-thinning. Moreover, it was ob-

erved that the particle alignment rate increases as the gap is reduced

nd the blockage ratio increases. 



C. Fernandes, S.A. Faroughi and O.S. Carneiro et al. Journal of Non-Newtonian Fluid Mechanics 266 (2019) 80–94 

 

c  

f  

i  

s  

s  

c  

a  

t  

t  

b

A

 

P  

f  

a  

t  

O  

F  

P  

e  

F  

T  

A  

r  

t  

c

S

 

t

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

[  

 

 

[  

 

[  

[  

[  

 

[  

 

[  

 

 

[  

 

 

[  

 

[  

 

[  

[  

 

[  

 

[  

 

[  

 

[  

 

 

[  

 

[  

 

[  

 

[  

[  

 

 

[  

 

[

[  

 

[  

 

 

[  

 

[  

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

In summary, the results presented here show that the newly vis-

oelastic immersed boundary code, developed using an open-source

ramework, can accurately predict the flow patterns and particle motion

n complex fluids for a number of benchmark complex flow problems,

uch as sedimentation, as well as particle rotation and translation in

hear and Poiseuille flows. Furthermore, the combination of the new vis-

oelastic immersed boundary code with the log-conformation approach,

nd the use of unstructured and dynamic meshes in parallel, allows us

o tackle new challenging problems, which have not been studied in

he literature before, such as shear-induced particle alignment in wall-

ounded viscoelastic fluids. 
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