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Abstract
This paper explores the use of a multi-objective approach through the implementation of a numerical direct
multiple shooting (MS) method to solve optimal control problems (OCP). When a direct MS method is
used to solve the OCP, a set of ‘continuity constraints’ emerges and should be satisfied together with the
other algebraic mixed states and control constraints. To minimize the objective function and satisfy all
the constraint conditions, the finite-dimensional optimization problem is reformulated as a multi-objective
problem with three objectives to be optimized. An illustrative example is included to show that the present
methodology is worth pursuing.
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1 Introduction

In this paper, we consider solving an optimal control problem (OCP) by a direct multiple shooting (MS)
method. An OCP is a constrained optimization problem that has a set of dynamic equations as constraints.
There are three types of OCP that differ in the formulation of the functional to be optimized. They are
equivalent and it is possible to convert a problem in one of the forms into another one. Here, we consider
the OCP in the Mayer form:

min
u(t)∈U

J(y(t),u(t)) ≡ M(T,y(T ))

s.t. y′(t) = f(t,y(t),u(t)) , t ∈ [0,T ],
y(0) = y0, y(T ) = yT ,

0 = he(t,y(t),u(t)),e ∈ E , t ∈ [0,T ],
0 ≥ g j(t,y(t),u(t)), j ∈ F , t ∈ [0,T ],

(1)
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where y ∈ Rs is the vector of state variables, u ∈ U ⊂ Rc is the vector of control, U represents a class of
functions (in particular functions of class C1 and piecewise constant), E = {1,2, . . . ,m} and F = {1,2, . . . , l}
[5]. In the problem of Mayer, the functional is not an integral but a function M that depends in general on
the dependent variables y and the final point of the t-domain T . For simplicity, we assume that the initial
point of the t-domain is 0.

In the OCP we want to find u that minimizes the objective functional J subject to the dynamic system of
ordinary differential equations (ODE) and the mixed states and control (equality and inequality) constraints.

Methods for solving OCP like (1) can be classified into indirect and direct methods. Indirect methods
use the first-order necessary conditions from Pontryagin’s maximum principle to reformulate the original
problem into a boundary value problem [1]. On the other hand, direct methods solve the OCP directly.
Direct methods transform infinite-dimensional OCP into a finite-dimensional optimization problem that can
be solved by effective and well-established nonlinear programming (NLP) algorithms. All direct methods
discretize the control variables but differ in the way they treat the state variables.

In a direct multiple shooting (MS) method the t-domain is partitioned into smaller subintervals and the
system of ODE is integrated in each subinterval independently. Besides the control variables, the new state
start values for each subinterval are the decision variables of the finite NLP problem [1, 3].

This paper explores the use of a multi-objective optimization (MOO) approach to solve the NLP
problem, within a direct MS method for solving an OCP in the Mayer form. When a direct MS method is
used to solve the OCP, a set of ‘continuity constraints’ emerges and should be satisfied together with the
other algebraic mixed states and control constraints. To minimize the objective function and satisfy all the
constraint conditions, the NLP problem is reformulated as a multi-objective problem with three objectives
to be optimized. A set of near-optimal solutions is found by using a variant of the NSGA-II [4] to solve the
resulting finite-dimensional MOO problem.

The paper is organized as follows. Section 2 introduces the direct MS method for solving the OCP in
the Mayer form and Section 3 presents the proposed multi-objective formulation. An illustrative example is
shown in Section 4.

2 Direct MS method

In a direct MS method, the controls are discretized in the NLP. On a specific grid defined by 0 = t1 < t2 <
· · ·< tN−1 < tN = T , where N−1 is the total number of subintervals, the control u(t) is discretized, namely
using a piecewise constant: u(t) = qi, for t ∈ [ti, ti+1] and i = 1, . . . ,N − 1, so that u(t) only depends
on the control parameters q = (q1,q2, . . . ,qN−1). The dynamic system is solved by an ODE solver and the
state variables y(t) are considered as dependent variables y(t,q).

In a MS method, the discretized controls and state start values at the nodes of the grid, xi ∈ Rs,
i = 1,2, . . . ,N − 1, are the decision variables for the NLP solver [1]. After the discretization of the
controls, the ODE system is solved on each shooting subinterval [ti, ti+1] independently. The variables
xi, i = 1,2, . . . ,N − 1 are the initial values for the state variables for the N − 1 independent initial value
problems on the subintervals [ti, ti+1]:

y′(t) = f(t,y(t),qi), for t ∈ [ti, ti+1] and y(ti) = xi.

To ensure continuity of the solution trajectories yi(t;xi,qi), the state start values xi should satisfy the
‘continuity conditions’: yi(ti+1;xi,qi) = xi+1, i = 1, . . . ,N − 1, as well as the initial value x1 = y0 and
the final state constraints xN = yT .

3 Multi-objective formulation

Our proposal for solving the finite-dimensional NLP problem relies on a MOO formulation of the resulting
NLP problem. Besides the objective function M, two other non-negative functions are to be minimized. The
function VCC (see (2) below) emerges from the ‘continuity constraints’ violation (including initial state
and final state constraints) and VAC (as shown below in (3)) comes up from the mixed state and control
constraints violation. These two violation functions are handled separately. To measure the violation of the
‘continuity constraints’, initial state and final state constraints, the following non-negative function VCC is
defined:

VCC(x,q) = ∑
l∈L

∑
i∈I

∣∣yi
l(ti+1;xi,qi)− xi+1

l

∣∣+∑
l∈L

∣∣x1
l − yl0

∣∣+ ∣∣xN
l − ylT

∣∣
(2)

2



where L = {1,2, . . . ,s}, noting that VCC is zero if the constraints are satisfied, otherwise is positive. To
evaluate the algebraic equality and inequality constraints violation, a non-negative function VAC is used

VAC(x,q) = ∑
j∈J

∑
i∈I

max
{

0,g j(yi(t;xi,qi),qi)
}
+ ∑

e∈E
∑
i∈I

∣∣he(yi(t;xi,qi),qi)
∣∣ , (3)

and similarly, VAC = 0 when the corresponding constraints are satisfied, and VAC > 0 otherwise.
The MOO problem is stated as follows:

min
(x,q)

(VCC(x,q),VAC(x,q), M(T,y(T ))) (4)

where state and control variables satisfy the ODE. The purpose of MOO is to optimize conflicting objectives
simultaneously, although no unique solution that can simultaneously optimize all the objectives does exist.
The optimal solution of a MOO problem is not a single solution but rather a set of potential solutions with
objective function values that cannot be simultaneously improved. They define the set of non-dominated
solutions, known as the set of Pareto-optimal solutions. This set is called Pareto-optimal set in the decision
space and Pareto-front (PF) in the objective space (see [6] for details concerning MOO).

4 Illustrative example

The NLP problem in the form (4) is solved by the gamultiobj function from the MATLABr (MATLAB
is a registered trademark of the MathWorks, Inc.). This function implements a variant of NSGA-II [4]. The
example to illustrate the behavior of the present MOO approach is: Find u(t) that minimizes J (with T = 3
fixed),

min
u(t)

J ≡
∫ T

0
(y2(t)+u2(t))dt

s.t. y′(t) = (1+ y(t))y(t)+u(t), t ∈ [0,T ]
y(0) = 0.05, y(T ) = 0,
|y(t)| ≤ 1, t ∈ [0,T ]
|u(t)| ≤ 1, t ∈ [0,T ].

Figures 1(a) and 1(b) depict the bi-dimensional representation of the PF projections (VCC × VAC)
produced by the solver after phase 1 and then phase 2 respectively. The population size was set to 100. In the
phase 1, the problem was solved with a maximum of 5Nvar generations and in the phase 2, 126 generations
were required to obtain the solution with the accuracy defined by default in the gamultiobj function. Nvar
denotes the number of decision variables of the problem. Based on N = 11, Nvar = 2N +(N − 1). The
NLP problem has two state variables and one control variable. State variable y1 = y and y2 was added to
transform the Lagrange form of the problem into the Mayer form. The average distance measure of the
solutions on the PF was 0.0119522 and the spread measure of the PF was 0.100187. We note that the initial
population of phase 2 is the final population of phase 1.

From the PF, we selected the point that has the smallest VCC value. The optimal objective values are
VCC = 3.14072,VAC = 0, M = 0.649469. The optimal states trajectory and control for the selected point
are shown in Figures 2(a) and 2(b) respectively.
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(a) PF from phase 1
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(b) PF after phase 2

Figure 1: PF after phase 1 and phase 2
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(a) State trajectory for N = 11
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(b) Optimal control for N = 11

Figure 2: State trajectory and optimal control
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