
Fundamenta Informaticae XX (2019) 1–27 1

IOS Press

Decidability of several concepts of finiteness for simple types

José Espírito Santo
Centro de Matemática
Universidade do Minho, Portugal
jes@math.uminho.pt

Ralph Matthes
Institut de Recherche en Informatique de Toulouse
(IRIT), CNRS and University of Toulouse, France
matthes@irit.fr

Luís Pinto
Centro de Matemática
Universidade do Minho, Portugal
luis@math.uminho.pt

Abstract. If we consider as “member” of a simple type the outcome of any successful (possibly
infinite) run of bottom-up proof search that starts from the type, then several concepts of “finiteness”
for simple types are possible: the finiteness of the search space, the finiteness of any member, or
the finiteness of the number of finite members (in other words, the inhabitants). In this paper we
show that these three concepts are instances of the same parameterized notion of finiteness, and that
a single, parameterized proof shows the decidability of all of them. One instance of this result means
that termination of proof search is decidable. A separate result is that emptiness is also decidable
(where emptiness is absence of “members” as above, not just absence of inhabitants). This fact is an
ingredient of the main decidability result, but it also has a different application, the definition of the
pruned search space - the one where branches leading to failure are chopped off. We conclude with
our version of König’s lemma for simple types: a simple type has an infinite member exactly when
the pruned search space is infinite.

Keywords: lambda-calculus, proof search, coinduction, decision procedure

2 J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types

Contents

1 Introduction 2

2 Background 3
2.1 Simply-typed λ-calculus, reduced to normal forms . 3
2.2 Search for inhabitants, coinductively . 4
2.3 Predicates on forests and extensionality . 8

3 Concepts of finiteness for simple types 9
3.1 An auxiliary concept: absence of solutions . 10
3.2 A parameterized concept of finiteness . 11
3.3 Exploring the parameterized concept of finiteness . 13

4 Decidability of finiteness 14
4.1 Background: search for inhabitants, inductively . 14
4.2 Auxiliary result: decidability of absence of solutions 17
4.3 Decidability of parameterized finiteness . 19
4.4 Applications of decidability results . 22

5 Final remarks 25

1. Introduction

Like sets, simple types have an “extension”, the collection of its inhabitants. But, more generally, a
simple type determines a search space, a tree amalgamating all possible runs of bottom-up proof search.
The collection of its inhabitants just corresponds to the successful traversals of this space which stop after
finite time. A sensible proof search procedure will detect failure caused by a branch leading to a situation
where no rule applies. But the procedure may fail to terminate because it may extend forever a branch
where a further application of rule is always possible. The outcome of such a run is an infinite object
which we tend to see positively, and call a “solution” of the search problem (after all, the procedure never
faces the impossibility of applying a rule, which is the sign of failure). Thus, the inhabitants are just the
finite solutions, and the collection of all solutions is another, more general, concept of extension of the
simple type.

Given this richness, several concepts of finiteness for a simple type are possible: either the finiteness
of the collection of inhabitants; or the property of all solutions being finite; or the finiteness of the
search space tout court. In this paper we investigate these possible concepts of finiteness and show:
they are all instances of a same, parameterized concept of finiteness; and they are all decidable. The
parametrization allows to put the just mentioned concepts in decreasing order of generality; it permits as
well a single proof of decidability, under mild conditions imposed on the parameter. The parameter is
another, auxiliary predicate. It follows, as an instance, the decidability of the property of having a finite
set of inhabitants, which is known [2, 9]; but the other instances are new decidability results.

One example of the parameter, determining an instance of finiteness capturing the property of all
solutions being finite, is the predicate stating the existence of a solution. We have to study separately this

J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types 3

property and establish that “solvability” of simple types (like inhabitation) is decidable. The property
of all solutions being finite corresponds to termination of proof search, which is thus decidable. Addi-
tionally, the property of all solutions being finite is strictly stronger than the property of having a finite
number of inhabitants. It is a kind of finiteness with an “operational” flavor: the members of the type
can be found by a naive, depth-first proof search procedure; it is also a kind of finiteness we describe as
“weakly extensional”: the property cannot distinguish two types with the same set of solutions (and thus
is “extensional”), but it can tell apart types with the same sets of inhabitants, like p and (p ⊃ p) ⊃ p
(which both have none).

On the other hand, the finiteness of the search space is strictly stronger than the property of all
solutions being finite. However, this observation can be refined. We can redefine the search space as
being the amalgamation of all the runs of a refined proof search procedure, one that applies a rule only
if such a step does not create a branch where finite failure can be observed. The redefined search space
is one where useless, finite branches have been pruned, i. e., where useless, finite runs are avoided.
The procedure underlying this space is effective only because the extra test for applicability of a rule
is decidable—and this is another application of “solvability” of simple types. Then, we show that the
finiteness of the pruned search space is equivalent to all solutions being finite. In other words, the
existence of an infinite run is equivalent to the infiniteness of this space—a result having the flavor of
König’s lemma.

The decidability results in this paper are established by means of a methodology previously de-
veloped by the authors [5, 6, 7]. All concepts pertaining to proof search are first given a coinductive
definition, integrated with the Curry-Howard style of representation of proofs. This means the search
space is represented by a single λ-term in a suitable coinductive λ-calculus. In parallel, an alternative,
finitary (inductive) syntax is developed in the form of a λ-calculus enriched with formal fixed points,
where the search space has an equivalent representation, again as a single λ-term. Both calculi employ
formal sums to represent choice points. Predicates of interest, say the (in)existence of inhabitants, are
first given (co)inductive characterizations in the coinductive syntax, and later inductive, syntax directed
characterizations in the finitary syntax. Decidability follows from syntax-directedness and the effective-
ness of the functions that calculates the finitary representation of the search space of a given sequent.

This methodology is recalled in Section 2 (dedicated to background material), and in the beginning
of Section 4, which is dedicated to decidability. There one finds a further application of decidability,
leading to a refinement in the so-called coherence theorem. The parameterized concept of finiteness is
developed in Section 3. Section 5 ends the paper.

2. Background

In this section we recall the presentation of the simply-typed λ-calculus we will be working with, and
our coinductive representation of proof search [5, 6, 7]. Additionally, in the third subsection, we in-
troduce new predicates to reason about our coinductive representation of proof search, and notions of
extensionality over predicates.

2.1. Simply-typed λ-calculus, reduced to normal forms

It is well-known that η-long β-normal terms are complete for simply-typed λ-calculus in the sense that
any typable term normalises to a β-normal form, which in turn can be expanded to an η-long β-normal

4 J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types

Figure 1. Typing rules of λ

Γ, x : A ` t : B

Γ ` λxA.t : A ⊃ B
RIntro

(x : ~B ⊃ p) ∈ Γ ∀i, Γ ` ti : Bi

Γ ` x〈ti〉i : p
LVecIntro

form (see, e. g., 2D5 and 8A8 of the book [8]). We lay out a presentation of the η-long β-normal fragment
of simply-typed λ-calculus, a system we often refer to by λ.

Simple types (or simply, types) are given by the grammar:

(types) A,B,C := p | A ⊃ B

where p, q, r range over atoms. We thus do not distinguish types from propositional implicational formu-
las. We will write A1 ⊃ A2 ⊃ · · · ⊃ Ak ⊃ p, with k ≥ 0, in vectorial notation as ~A ⊃ p. For example,
if the vector ~A is empty the notation means simply p.

Normal (i.e., β-normal) λ-terms are given by:

(terms) t, u ::= λxA.t | x 〈t1, . . . , tk〉

where a countably infinite set of variables, ranged over by letters x, y, w, z, is assumed. As is common-
place with lambda-calculi, we will throughout identify terms up to α-equivalence. The term construc-
tor x 〈t1, . . . , tk〉 is called application (traditionally, this would be expressed as a multiple application
xt1 . . . tk of λ-calculus). Often, we simply write the variable x when k = 0, and we will use the notation
〈ti〉i for finite tuples.

We view contexts Γ as finite sets of declarations x : A, where no variable x occurs twice. The
letters Γ, ∆, Θ are used to range over contexts, and the notation dom(Γ) stands for the set of variables
declared in Γ. The context Γ, x : A is obtained from Γ by adding the declaration x : A, and is only
written if x is not declared in Γ. Context union is written as concatenation Γ,∆ for contexts Γ and ∆ if
dom(Γ) ∩ dom(∆) = ∅. We will write Γ(x) for the type associated with x for x ∈ dom(Γ). Context
inclusion Γ ⊆ ∆ is just set inclusion.

The typing rules are in Fig. 1 and derive sequents Γ ` t : A. Note that, in the particular case of
LVecIntro where ~B is empty, (x : p) ∈ Γ is the only hypothesis, and we type variables with atoms.

2.2. Search for inhabitants, coinductively

We are concerned with a specific kind of search problems: given Γ and A, to find a λ-term t such that
Γ ` t : A, that is, to find an inhabitant of type A in context Γ. Under the Curry-Howard correspondence,
a pair (Γ, A) may be seen as a logical sequent Γ⇒ A, and searching for an inhabitant of A in context Γ
is the same as searching for a proof of that sequent. Our search process will receive a formal description
in Definition 2.1.

Following [5, 6, 7], we model this search process through the coinductive λ-calculus, denoted λco.
The terms of λco, also called coterms, are given by

M,N ::=co λx
A.N |x〈N1, . . . , Nk〉 .

J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types 5

This is exactly the previous grammar for λ-terms, but read coinductively, as indicated by the index
co (still with finite tuples 〈Ni〉i). Of course, since coterms are not built in finitary ways from finitary
syntax, the notion of equality is not just syntactic equality, but rather bisimilarity modulo α-equivalence,
a coinductive binary relation which considers as equal coterms that finitely decompose in the same way,
which is to say that their successive deconstruction according to the grammar must proceed the same
way (up to α-equivalence), and this to arbitrary depth. Following mathematical practice, bisimilarity is
still written as plain equality.

In λco, also the typing rules of Fig. 1 have to be interpreted coinductively—but the types stay induc-
tive and the contexts finite. Following common practice in the presentation of coinductive syntax, we
will symbolize the coinductive reading of an inference (rule) by the double horizontal line, but we refrain
from displaying Fig. 1 again with double lines—a figure where the two inference rules would be called
RIntroco and LVecIntroco. Such a system defines when Γ ` N : A holds for a finite context Γ, a coterm
N and a type A.

Suppose Γ ` N : A holds. Then this sequent has a derivation which is a (possibly infinite) tree of
sequents, generated by applying the inference rules bottom-up; and N is a (possibly infinite) coterm,
which we call a solution of σ, with σ = (Γ ⇒ A). Therefore, such derivations are the structures
generated by the search process which does not fail, even if it runs forever, and so they subsume proofs;
likewise solutions subsume typable terms, so we may refer to the latter as finite solutions. The next step
is to extend even further the paradigm, representing also the choice points of the search process. To this
end, we extend λco to λco

Σ , whose syntax is this:

(terms) M,N ::=co λxA.N |E1 + · · ·+ En

(elimination alternatives) E ::=co x〈N1, . . . , Nk〉

where both n, k ≥ 0 are arbitrary (thus including the empty sum of elimination alternatives). T ranges
over both terms and elimination alternatives. We will often use

∑
iEi instead of E1 + · · · + En and O

instead the empty sum.
The notion of equality of terms in λco

Σ is again bisimilarity modulo α-equivalence, but we further
assume that + is associative, commutative and idempotent. So the sums of elimination alternatives can
plainly be treated as if they were finite sets of elimination alternatives.

We call forests the expressions of λco
Σ —and a coterm M is a member of a forest N when the relation

mem(M,N), defined coinductively in Fig. 2, holds. Then, we define the extension of a forest to be the
collection of its members, in symbols,

E(T) := {M ∈ λco | mem(M,T)} .

As in [7], we define the finite extension of a forest to be the collection of its finite members, in symbols,

Efin(T) := {t ∈ λ | mem(t, T)} .

Simple types can be assigned to forests [5, 6]. In the typing system for λco
Σ , one derives sequents

Γ ` N : A and Γ ` E : p. The coinductive typing rules are the ones of λco, together with the rule given
in Fig. 3 (the empty sum of elimination alternatives receives any atom as type).

A typing derivation of λco
Σ is a possibly infinite tree of sequents, generated by the bottom-up appli-

cation of the inference rules, with “multiplicative” branching (logically: “and” branching) caused by the

6 J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types

Figure 2. Membership relations

mem(M,N)

mem(λxA.M, λxA.N)

mem(M,Ej)

mem(M,
∑

iEi)

∀i, mem(Mi, Ni)

mem(x〈Mi〉i, x〈Ni〉i)

Figure 3. Extra typing rule of λco
Σ w. r. t. λco

∀i, Γ ` Ei : p

Γ `
∑

iEi : p
Alts

list of arguments in elimination alternatives, and “additive” branching (logically: “or” branching) caused
by sums—the latter being able to express the alternatives found in the search process when an atom p can
be proved by picking different head variables with their appropriate arguments. So, it is no surprise that,
with this infrastructure, we can express, as a (single) forest, the entire solution space generated by the
search process when applied to given Γ and A. That forest can be corecursively defined as the function
S of Γ⇒ A:

Definition 2.1. (Solution spaces)

S(Γ⇒ ~A ⊃ p) := λ~x : ~A.
∑

(y: ~B⊃p)∈∆

y〈S(∆⇒ Bj)〉j with ∆ := Γ, ~x : ~A

Example 2.1. We introduce now the sequents that will play some role in the paper, and calculate their
solution spaces. (More standard examples, but also complicated examples that illustrate the dynamic
nature of the contexts of the sequents—when implications are nested in the hypotheses—can be found in
[5, 6, 7].)

• Let σa := (⇒ p). Then, S(σa) = O. Obviously, this sequent has no solution.

• Let σb := (x : p ⊃ p ⇒ p). Then, S(σb) = x〈S(σb)〉, i. e., S(σb) is the forest x〈x〈. . .〉〉 with
an infinitely repeated application of x. The only solution for this sequent is again x〈x〈. . .〉〉 (now
seen as a coterm).

• Let σc := (x : p ⊃ q ⊃ p⇒ p). Then, S(σc) = x〈S(σc),O〉. This sequent has no solution (since
we cannot find a coterm from the empty sum in the second component of the tuple).

• Let σd := (x : p ⊃ q ⊃ p, y : p, z : q ⇒ p). Then, S(σd) = x〈S(σd), z〉 + y. Infinitely many
inhabitants can be obtained for this sequent, starting with the inhabitant t1 := x〈y, z〉 and building
new inhabitants via tn+1 := x〈tn, z〉 (for each n ∈ N). This sequent has one infinite solution given
by the coterm x〈x〈x〈...〉, z〉, z〉.

• Let σe := (x : p ⊃ p, y : p ⇒ p), corresponding to a simplification of type CHURCH of the
Church numerals, analysed in [7, 5, 6]. Then, S(σe) = x〈S(σe)〉 + y. Again, this is an example
of a sequent with infinitely many inhabitants and one infinite solution.

J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types 7

The following properties witnessing the robustness of the definition of S are shown in [5, 6] (and
reproduced as [7, Proposition 1]).

Fact 2.1. (Properties of solution spaces)
1. Given Γ and A, the typing Γ ` S(Γ⇒ A) : A holds in λco

Σ .

2. For N ∈ λco, mem(N,S(Γ⇒ A)) iff Γ ` N : A in λco.

3. For t ∈ λ, mem(t,S(Γ⇒ A)) iff Γ ` t : A in λ.

The second property says the members of S(σ) are exactly the solutions of σ, and this justifies calling
S(σ) the solution space of σ. The last two properties together say that solutions subsume finite solutions
conservatively, i. e., given a λ-term t, Γ ` t : A in λ iff Γ ` t : A in λco. The first property says
S(Γ⇒ A) is a λ-term representing, in the Curry-Howard style, a type derivation in λco

Σ that amounts to
the entire search space for Γ⇒ A.

From this, and the coinductive definition of membership, it follows that the solutions are the out-
comes of the successful runs of an idealized proof search procedure that non-deterministically applies
bottom-up an inference rule, and proceeds by searching in parallel proofs for the premisses. This pro-
cedure will find a finite failure, caused by the impossibility of applying an inference rule, whenever it
exists; but it may run forever while building an infinite solution. Termination of the search procedure
amounts to the inexistence of an infinite solution. One of the concepts of finiteness for simple types
developed in Section 3 (namely allfin) corresponds exactly to this notion of termination of proof search.

Finally, we recall from [5, 6, 7] the important phenomenon of decontraction (going by the name of
cocontraction in the earlier papers). Intuitively, this is just the observation that, when searching for solu-
tions in a given context with two variables x and y that are declared with the same typeA, then, whenever
a coterm of a given type B can be constructed using assumption x, another coterm of that type B can be
constructed with y in place of x, and this choice between x and y can be operated for each occurrence of
x independently. (This same phenomenon already occurs in the search for inhabitants.) The operation
of decontraction on forests, for contexts and for sequents, denoted by [Γ′/Γ]T and [σ′/σ]T , respectively,
describes this phenomenon in terms of λco

Σ : the outcome of applying the operation is the forest where
all the extra choices available in Γ′ w. r. t. Γ (or in the contexts of the respective sequents σ′ and σ) are
included. Therefore the decontraction operation (henceforth called just decontraction) is only defined
when Γ′ (resp. σ′) is an inessential extension of Γ (resp. σ), that is when the context of Γ′ (resp. σ′) has
more declarations than that of Γ (resp. σ), but not with new types. Formally:

Definition 2.2. (Inessential extension of contexts and sequents)
1. Γ ≤ Γ′ iff Γ ⊆ Γ′ and |Γ| = |Γ′|, with the set |∆| := {A | ∃x, (x : A) ∈ ∆} of assumed types of

∆ for an arbitrary context ∆.

2. σ ≤ σ′ iff for some Γ ≤ Γ′ and for some atom p, σ = (Γ⇒ p) and σ′ = (Γ′ ⇒ p).

Decontraction precisely captures the extension of the solution space when going from σ to some σ′

with σ ≤ σ′, as will be expressed in Fact 2.2 below.

8 J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types

Definition 2.3. (Decontraction of contexts and sequents)
1. Let Γ ≤ Γ′. For T an expression of λco

Σ , we define the expression [Γ′/Γ]T of λco
Σ by corecursion

as follows:
[Γ′/Γ](λxA.N) = λxA.[Γ′/Γ]N

[Γ′/Γ]
∑
i
Ei =

∑
i

[Γ′/Γ]Ei

[Γ′/Γ]
(
z〈Ni〉i

)
= z〈[Γ′/Γ]Ni〉i if z /∈ dom(Γ)

[Γ′/Γ]
(
z〈Ni〉i

)
=

∑
(w:A)∈∆z

w〈[Γ′/Γ]Ni〉i if z ∈ dom(Γ)

where, in the last clause, A := Γ(z) and ∆z := {(z : A)} ∪ (Γ′ \ Γ).

2. Let σ ≤ σ′, and σ = (Γ⇒ p) and σ′ = (Γ′ ⇒ p). For T an expression of λco
Σ , [σ′/σ]T is defined

to be [Γ′/Γ]T .

As announced above, (the) decontraction (operation) properly captures the decontraction phenomenon:

Fact 2.2. (Solution spaces and decontraction [6, Lemma 33] (reproduced as [7, Lemma 7]))
Let σ ≤ σ′. Then S(σ′) = [σ′/σ]S(σ).

2.3. Predicates on forests and extensionality

We call strongly extensional a predicate on forests that only depends on the finite extension of the forest,
in other words, if Π is a predicate on forests, then Π is strongly extensional iff Efin(T) = Efin(T ′)
and Π(T) imply Π(T ′). Put differently, a strongly extensional predicate on forests cannot distinguish
between forests that have the same finite extension. This is in particular the case when Π = R ◦ Efin for
any predicate R on sets of λ-terms. But the existence of such a predicate R is also a necessary condition
for Π being strongly extensional (take R(X) :⇔ ∃T (Efin(T) = X ∧Π(T))).

A predicate P on sequents is called strongly extensional if there is a strongly extensional predicate
Π on forests such that P = Π ◦ S. A fortiori, this is in particular the case when there is a predicate R
on sets of λ-terms such that P = R ◦ Efin ◦ S. By [7, Proposition 1.3], this is equivalent to P = R ◦ I,
where I(Γ ⇒ A) := {t ∈ λ | Γ ` t : A in λ} is the set of inhabitants of a sequent. The existence of
such a predicate R is again also a necessary condition for P being strongly extensional. In other words,
a strongly extensional predicate on sequents is characterized by not being able to distinguish between
sequents that have the same set of inhabitants.

Previously [7, Section 3], we analyzed the following strongly extensional predicates on forests:

• exfinext(T) :⇔ Efin(T) is nonempty.
nofinext(T) :⇔ Efin(T) is empty.

• finfinext(T) :⇔ Efin(T) is finite.
inffinext(T) :⇔ Efin(T) is infinite.

They are strongly extensional since their definition is expressed in terms of the finite extension, i. e., their
definition is of the form R ◦ Efin with suitable predicates R.

Extensional predicates concern no longer only the finite extension Efin(T) of a forest but the whole
extension. Extensionality of a predicate on forests is defined like strong extensionality, but with reference

J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types 9

to E in place of Efin. Of course, strongly extensional predicates are extensional (since having the same
extension implies having the same finite extension).

Weakly extensional predicates are then defined as extensional predicates that are not strongly exten-
sional. In particular, Π is extensional if there is a predicate R on sets of coterms such that Π = R ◦ E .
The definitions of extensional and weakly extensional predicates on sequents are obtained analogously.
Again, in particular, a predicate P on sequents is extensional if there is a predicate R on sets of coterms
such that P = R ◦ E ◦ S .

We will be mainly interested in the following predicates on forests concerning their extension:

• nosolext(T) :⇔ E(T) is empty.
exsolext(T) :⇔ E(T) is nonempty.

• allfinext(T) :⇔ E(T) consists only of finite terms, i. e., E(T) ⊆ Efin(T).
exinfext(T) :⇔ E(T) contains an infinite term, i. e., there is M ∈ λco \ λ with mem(M,T).

These predicates factor through the extension E , hence are extensional. They are not strongly extensional,
as can be exemplified by forests that arise as solution spaces of sequents:

Example 2.2. (nosolext and allfinext are only weakly extensional)
In Example 2.1, we already observed E(S(σa)) = ∅ and E(S(σb)) consists only of the coterm x〈x〈. . .〉〉.
Hence, nosolext(S(σa)), allfinext(S(σa)) and neither nosolext(S(σb)) nor allfinext(S(σb)).

We are also interested in the property of forests of being “finite by definition”, i. e., to be in the set
λΣ of expressions that is inductively generated by the grammar for λco

Σ .

• fin(T) :⇔ T ∈ λΣ.
inf(T) :⇔ T ∈ λco

Σ \ λΣ.

The elements of λΣ will also be called finite forests. Obviously, fin ⊆ allfinext∩ finfinext. The predicate
fin on forests is not even weakly extensional, as can again be exemplified by forests that arise as solution
spaces of sequents:

Example 2.3. (fin is not even weakly extensional)
In Example 2.1, we observed S(σa) = O, S(σc) = x〈S(σc),O〉, and E(S(σa)) = E(S(σc)) = ∅. But,
clearly, fin(S(σa)) and inf(S(σc)).

We remark that all properties P of sequents of interest to us in this work (with the sole exception
being the condition on positivity in Theorem 4.3 in Section 4) factor through the function S that desig-
nates their solution space, thus they are always expressed as a property of the associated forests, which
therefore gives a good sense to the question if P is strongly extensional, weakly extensional or not
extensional.

3. Concepts of finiteness for simple types

In this section we develop the three decidable concepts of finiteness for a simple type A, referred to in
Section 1: finiteness of the collection of inhabitants ofA; all solutions ofA are finite; the search space of
A is itself finite. The first concept is given through the strongly extensional predicate finfinext(S(⇒ A)),

10 J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types

Figure 4. nosol and exsol predicates

nosol(N)

nosol(λxA.N)

∀i, nosol(Ei)

nosol(
∑

iEi)

nosol(Nj)

nosol(x〈Ni〉i)

exsol(N)

exsol(λxA.N)

exsol(Ej)

exsol(
∑

iEi)

∀i, exsol(Ni)

exsol(x〈Ni〉i)

already studied in [7]. The second and third concepts are given, respectively, through the weakly exten-
sional predicate allfinext(S(⇒ A)) and the non-extensional predicate fin(S(⇒ A)), both introduced in
this paper. We will see in the second subsection that the three mentioned predicates can be obtained
through instances of a parameterized predicate on forests that is inductively defined and has a comple-
ment enjoying a coinductive characterization. The third subsection will further explore this parameter-
ized description of finiteness. But, for all this, we will need to study first the complementary weakly
extensional predicates nosolext and exsolext, defined in Section 2.

3.1. An auxiliary concept: absence of solutions

We introduce predicate nosol(T), for T an expression of λco
Σ (a forest), which holds iff nosolext(T), i. e.,

if the extension of T is empty, but it is defined inductively in Fig. 4, together (but independently) with
the coinductive definition of the predicate exsol(T) that is supposed to mean the negation of nosol(T),
but which is expressed positively as existence of a member (i. e., that the extension is non-empty—that
exsolext(T) holds).

Lemma 3.1. Given a forest T , nosol(T) iff exsol(T) does not hold.

Proof This is an instance of the dualization principle recalled in our previous paper [7, proof of Lemma
20]. �

Lemma 3.2. (Coinductive characterization of existence of solutions)
Given a forest T . Then, exsol(T) iff exsolext(T), i. e., exsol = exsolext as sets of forests.

Proof We have to show exsol(N) ⇐⇒ (∃M.mem(M,N)). The “if” direction is proved coinductively,
by showing that R := {T : ∃M.mem(M,T)} is backwards closed for the defining rules of exsol. The
“only if” direction is proved with the help of a corecursive procedure extracting an M s. t. mem(M,T)
from a proof of exsol(T). �

In particular, we also get that nosol = nosolext. Notice that, although nosol is defined inductively, this
does not mean that this predicate is decidable—the question does not even make sense in view of the
semantic nature of the forests it receives as argument.

Definition 3.1. Let Π be a predicate on forests. Π is said to be closed under decontraction both ways if
for all forests T and all sequents σ, σ′ such that σ ≤ σ′, we have Π(T) iff Π([σ′/σ]T).

J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types 11

Figure 5. finΠ predicate and infΠ predicate

¬Π(N)

finΠ(λxA.N)

finΠ(N)

finΠ(λxA.N)

∀i, finΠ(Ei)

finΠ(
∑

iEi)

¬Π(Nj)

finΠ(x〈Ni〉i)
∀i, finΠ(Ni)

finΠ(x〈Ni〉i)

Π(N) infΠ(N)

infΠ(λxA.N)

infΠ(Ej)

infΠ(
∑

iEi)

∀i, Π(Ni) infΠ(Nj)

infΠ(x〈Ni〉i)

It is obvious that Π is closed under decontraction both ways iff Π is closed under decontraction (i. e.,
for all forests T and all sequents σ, σ′ such that σ ≤ σ′, Π(T) implies Π([σ′/σ]T)) and also the
complement of Π is closed under decontraction. Therefore, Π is closed under decontraction both ways
iff its complement is closed under decontraction both ways.

Lemma 3.3. The predicates nosol and exsol are closed under decontraction both ways.

Proof This is already obvious in the semantics, i. e., for the extensional version nosolext, but also
provable by induction on the inductive definition of nosol, and the same property for the complement
follows, as mentioned above. �

3.2. A parameterized concept of finiteness

Throughout this section, Π will stand for a predicate on forests (in λco
Σ). The parameterized predicates

over forests finΠ and infΠ are defined inductively and coinductively, respectively, in Fig. 5.

Lemma 3.4. Given a forest T , finΠ(T) iff infΠ(T) does not hold.

Proof This is another instance of the dualization principle recalled in our previous paper [7, proof of
Lemma 20]. �

By inspecting the defining rules, it is immediate to see that infΠ is monotone on Π and finΠ is antitone
on Π, i. e.:

Lemma 3.5. (Monotonicity properties of the parameterized predicates on forests)
For any predicates Π,Π′, if Π ⊆ Π′, then infΠ ⊆ infΠ′

and finΠ′ ⊆ finΠ.

We will consider three specific instantiations for predicate Π:

• Π1 := exfin, where exfin is the predicate defined in [7, Fig. 5] that inductively characterizes
exfinext;

• Π2 := exsol (defined in Fig. 4);

• Π3 := λco
Σ (the always true predicate).

Then:

12 J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types

• finΠ1 = finfin and infΠ1 = inffin (for the predicates finfin and inffin defined in [7, Fig. 7]), with
the latter equality following by definition of inffin, and the former following with the help of [7,
Lemma 20] (that just says that Π1 is the negation of a coinductively defined predicate nofin that
is used in the definition of finfin instead of the negated Π1)—in both cases, no (co-)induction is
needed since even the defining rules are provably the same;1

• let us define allfin := finΠ2 and exinf := infΠ2 ; we show below in Lemma 3.7 that exinf =
exinfext, from which, by duality, follows allfin = allfinext;

• finΠ3 = fin; hence infΠ3 = inf; these equalities are justified next.

Lemma 3.6. (Coinductive characterization of infinity of forests)
Let T be a forest T . Then, infΠ3(T) iff inf(T).

Proof Due to Lemma 3.4, this is equivalent to: finΠ3(T) iff T ∈ λΣ. When Π = Π3 = λco
Σ , the first and

fourth rules in the definition of finΠ (Fig. 5) may be erased, the predicate Π plays no role in the remaining
rules, and what remains is the inductive definition of λΣ.2 �

Corollary 3.1. (Invariants of infΠ and of finΠ)
1. For any Π and T , if infΠ(T), then inf(T).

2. For any Π and T , if fin(T), then finΠ(T).

Proof For any Π, since Π ⊆ λco
Σ = Π3, Lemma 3.5 gives infΠ ⊆ infΠ3 . Hence, the previous lemma

gives infΠ ⊆ inf. Part 2 follows from part 1 by contraposition, the obvious fact that fin and inf are
complementary predicates and Lemma 3.4. �

So, T must be an infinite forest if infΠ(T), for some Π, and, equivalentely, for any finite forest T , finΠ(T)
holds for any Π.

Lemma 3.7. (Coinductive characterization of existence of infinite members)
Given a forest T . Then, exinf(T) iff exinfext(T).

Proof The proof is analogous to the one of Lemma 3.2. The “if” direction follows by coinduction on
exinf. It uses the fact exinfext ⊆ exsol (an immediate consequence of exinfext ⊆ exsolext and Lemma
3.2). A corecursive extraction procedure out of proofs of exinf(T) shows the “only if” direction. It
requires the subsidiary corecursive extraction procedure of “members of T ” from proofs of exsol(T)
mentioned in Lemma 3.2. �

It will be useful to know the following sufficient condition for closedness under decontraction of
infΠ:
1In hindsight, we could just as well have defined finfin as being finexfinext, and the proof that finfin(S(σ)) characterizes the
finiteness of I(σ) [7, Theorem 33.2] would still work.
2In the proof of Lemma 21 of [7], a similar characterization is found of the infinite coterms (terms in λco \ λ). There is no risk
of confusion with the symbol inf used there since, in the absence of sums in an expression, both predicates coincide.

J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types 13

Lemma 3.8. Let Π be closed under decontraction both ways. Then, finΠ and infΠ are closed under
decontraction both ways.

Proof The proof can be done for finΠ by induction on its inductive definition (for each direction sepa-
rately), its complement infΠ then has the same property. �

3.3. Exploring the parameterized concept of finiteness

Let us pause to relate the instances of the predicates finΠ and infΠ we just considered. First note the
following strictly ascending chain:

exfin ⊂ exsol ⊂ λco
Σ (1)

The first inclusion follows from the fact exfin(T) iff Efin(T) is nonempty (an easy consequence of [7,
Lemma 21]—for exfinext in place of exfin, this would just be the definition) and exsolext = exsol
(Lemma 3.2). The second inclusion is trivial.

Now, by (1) and antitonicity of finΠ (Lemma 3.5), we have fin ⊆ allfin ⊆ finfin and, equivalently,
inffin ⊆ exinf ⊆ inf.

Example 3.1. (inffin 6= exinf 6= inf)
Take the sequents σb and σc from Example 2.1. Then, S(σb) ∈ exinf \ inffin, and S(σc) ∈ inf \ exinf.

Therefore, we even get the following strictly ascending chains:

fin ⊂ allfin ⊂ finfin (2)

inffin ⊂ exinf ⊂ inf (3)

The equivalent inclusions allfin ⊆ finfin and inffin ⊆ exinf (that we have thus got in particular) are
not obvious, and neither of them looks amenable to a direct proof. We interpret the second one in terms
of inhabitants and solutions and then strenghten the observation to the case of infinitely many solutions:

Proposition 3.1. (Infinite number of solutions vs infinity of solution)
1. Any sequent having infinitely many inhabitants has an infinite solution.

2. Any sequent having infinitely many solutions has an infinite solution.

Proof To prove 1, suppose σ has infinitely many inhabitants. Hence inffin(S(σ)) holds by [7, Theo-
rem 33.2 and Lemma 29] (where the latter just identifies finfin and inffin as complements). So, because
inffin ⊆ exinf, exinf(S(σ)), which, by Lemma 3.7, yields an infinite solution. The seemingly stronger
part 2 is a direct consequence of part 1: if σ has infinitely many solutions, not all of them can be finite,
since this would give infinitely many inhabitants, which by part 1 would imply an infinite solution.3 �

3Notice that this argument is not specific to solutions of sequents but could be stated in terms of forests. However, we did not
introduce the corresponding notion of infinity on forests that would ask if E(T) is infinite, in order to avoid confusion with the
inf predicate.

14 J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types

We now turn to the equivalent inclusions fin ⊂ allfin and exinf ⊂ inf. We will show a (sufficient) con-
dition on forests relative to which these strong inclusions turn into identities (of sets of forests satisfying
this condition).

For a forest T , we say that “T has an empty sum” whenever in the generation process of T appears
E1 + · · ·+En with n = 0, in other words, the empty sum O. The negation of this property is written as
“T has no empty sum”.

Lemma 3.9. If nosol(T) then T has an empty sum.

Proof By induction on nosol(T). There are 3 cases, according to the 3 rules in the inductive definition of
nosol—recall the upper half of Fig. 4. The first and third cases follow routinely by induction hypothesis.
Let us detail the second case. Suppose nosol(

∑
iEi) with nosol(Ei) for all i. If T =

∑
iEi itself is not

an empty sum, then the empty sums that exists in Ei by induction hypothesis are also empty sums of T .
�

Lemma 3.10. If T has no empty sum, then allfin(T) iff fin(T).

Proof Given fin ⊂ allfin, it suffices to prove, for all T such that allfin(T): If T has no empty sum then
fin(T). The proof is by induction on allfin(T). Recall allfin = finΠ2 , with Π2 = exsol. There are 5 cases,
according to the 5 rules in the inductive definition of finΠ—recall the upper half of Fig. 5. The second,
third and fifth cases follow routinely by induction hypothesis. The remaining cases rely on Lemma 3.9.
We detail the fourth case (the remaining first case is similar). Suppose allfin(x〈Ni〉i) with nosol(Nj)
for some j (thanks to Lemma 3.1). Then T has an empty sum since already Nj has an empty sum, by
Lemma 3.9. �

This result will have an important application towards the end of Section 4.

4. Decidability of finiteness

In this section we establish decidability of the finiteness predicate finΠ(S(σ)) (when Π(S(σ)) itself
is decidable), and of the auxiliary predicate nosol(S(σ)). This is done following the methodology of
[7] to obtain decidability of the predicates exfin(S(σ)) and finfin(S(σ)). The methodology rests on an
equivalent, effective representation of solution spaces of sequents as expressions of the finitary extension
λgfp

Σ of λ, introduced in [5, 6]. It comprises the definition of syntax-directed predicates over the finitary
expressions of λgfp

Σ that characterize the uneffective predicates over forests to be decided. Such syntax-
directed predicates lead immediately to simple recursive decision procedures.

4.1. Background: search for inhabitants, inductively

The syntax of the finitary calculus λgfp
Σ is given by the following grammar (read inductively):

(terms) N ::= λxA.N | gfp Xσ.E1 + · · ·+ En | Xσ

(elimination alternatives) E ::= x〈N1, . . . , Nk〉

J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types 15

where X is assumed to range over a countably infinite set of fixpoint variables (also letters Y , Z will
range over them), and where, as for λco

Σ , both n, k ≥ 0 are arbitrary. (Generally, the conventions adopted
for the expressions of λco

Σ will also be adopted for the expressions of λgfp
Σ .) If n = 0, we write Oσ for

gfp Xσ.E1 + · · ·+ En.
In the term formation rules, σ in Xσ is required to be atomic, i. e., of the form Γ ⇒ p. We write

FPV (T) to denote the set of free occurrences of typed fixpoint variables in T . We say T is closed when
FPV (T) = ∅. In gfp Xσ.

∑
iEi the fixed-point construction gfp binds all free occurrences of Xσ′

in
the elimination alternativesEi, not justXσ, when σ ≤ σ′. This raises the need for a notion of well-bound
expression: T ∈ λgfp

Σ is well-bound if, for any of its subterms gfp Xσ.
∑

iEi and any (free) occurrence
of Xσ′

in the Ei’s, σ ≤ σ′.
In the sequel, when we refer to finitary forests we have in mind the expressions of λgfp

Σ . (Recall we
use forests for the expressions of λco

Σ .)
We recall now the simplified interpretation of expressions of λgfp

Σ in terms of the coinductive syntax of
λco

Σ [7, Subsec. 3.2]. This simplified interpretation turns out to coincide with the original interpretation of
expressions of λgfp

Σ introduced in [5, 6] for the λgfp
Σ -terms representing solution spaces [7, Corollary 18].

Definition 4.1. (Simplified interpretation of finitary forests as forests)
For an expression T of λgfp

Σ , the simplified interpretation [[T]]s is a forest given by structural recursion on
T :

[[Xσ]]s = S(σ) [[λxA.N]]s = λxA.[[N]]s

[[gfp Xσ.
∑
i
Ei]]

s =
∑
i

[[Ei]]
s [[x〈Ni〉i]]s = x〈[[Ni]]

s〉i

Note that the base case profits from the sequent annotation at fixpoint variables, and the interpretation of
the gfp -constructor has nothing to do with a greatest fixed point, contrary to what happens in the original
interpretation of expressions of λgfp

Σ given in [5, 6] (explaining the name of the fixed-point construction
gfp).

We will be specially interested in the finitary forests which guarantee that a gfpXσ construction
represents the solution space of σ:

Definition 4.2. (Proper expressions)
An expression T ∈ λgfp

Σ is proper if for any of its subterms T ′ of the form gfp Xσ.
∑
i
Ei (which could

be T itself), it holds that [[T ′]]s = S(σ).

Now we recall the alternative representation F(σ) of the search space generated by a sequent σ as a
finitary forest, introduced in [5, 6].

Definition 4.3. (Finitary solution space)
Let Ξ :=

−−−−−−−→
X : Θ⇒ q be a vector of m ≥ 0 declarations (Xi : Θi ⇒ qi) where no fixpoint variable name

and no sequent occurs twice. The specification of F(σ; Ξ) is as follows, with σ = (Γ⇒ ~A ⊃ p):
If, for some 1 ≤ i ≤ m, p = qi and Θi ⊆ Γ and |Θi| = |Γ| ∪ {A1, . . . , An}, then

F(σ; Ξ) = λzA1
1 · · · z

An
n .Xσ′

i ,

16 J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types

where i is taken to be the biggest such index. Otherwise,

F(σ; Ξ) = λzA1
1 · · · z

An
n .gfp Y σ′

.
∑

(y: ~B⊃p)∈∆

y〈F(∆⇒ Bj ; Ξ, Y : σ′)〉j

where, in both cases, ∆ := Γ, z1 : A1, . . . , zn : An and σ′ := ∆⇒ p.

Notice that, in the first case, Xi occurs with sequent σ′ in the resulting finitary forest instead of with
Θi ⇒ p in Ξ, but Θi ≤ ∆, hence (Θi ⇒ p) ≤ σ′ makes it plausible that this process generates
well-bound terms.
F(σ) denotes F(σ; Ξ) with empty Ξ.

Fact 4.1. [6, Lemma 52 and Lemma 53]

1. F(σ) is well-defined (the above recursive definition terminates).

2. F(σ) is a closed well-bound term.

This result is central to our methodology of decision algorithms that conform to a coinductive specifi-
cation. Its proof is by establishing an invariant on the recursive calls to F . It is a manifestation of the
“subformula property” of the fragment λ of lambda-calculus we are studying in this paper. The proof
we gave in op. cit. does not try to bound recursion depth polynomially in the length of σ. However, we
could profit from very recent work on the analysis of inhabitation problems through the pre-grammar of a
given type A [1]. First of all, it exploits that, in the implicational fragment we are considering, the search
for proofs of A only generates goals that are subformulas at positive positions of A, with assumptions
that are negative subpremises of A (occur at specific negative positions of A, see already [3]). Inspired
by [1, Proposition 33], we can bound the number of declarations in Ξ for any F(σ′; Ξ) appearing in the
definition of F(⇒ A) by the product of the number of atoms at positive positions in A and the number
of negative subpremises of A.4 Since this optimization of the analysis is orthogonal to the aims of the
present paper, it will be detailed elsewhere.

Example 4.1. Let us see the finitary solution space of each of the sequents in Example 2.1:

• F(σa) = Oσa .

• F(σb) = gfp Xσb .x〈Xσb〉.

• F(σc) = gfp Xσc .x〈Xσc ,Ox:p⊃q⊃p⇒q〉.

• F(σd) = gfp Xσd .(x〈Xσd , z〉+ y).

• F(σe) = gfp Xσe .(x〈Xσe〉+ y).

4This quantitative result only changes the analysis, not the definition. It needs a modification of the invariant used in the proof
of [6, Lemma 52].

J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types 17

Figure 6. NES and ES predicate

P (σ)

NESP(Xσ)

NESP(N)

NESP(λxA.N)

∀i, NESP(Ei)

NESP(gfpXσ.
∑

iEi)

NESP(Nj)

NESP(x〈Ni〉i)

¬P (σ)

ESP(Xσ)

ESP(N)

ESP(λxA.N)

ESP(Ej)

ESP(gfpXσ.
∑

iEi)

∀i, ESP(Ni)

ESP(x〈Ni〉i)

Not surprisingly, the meta-level fixed points of the coinductive representations turn into formal fixed
points of the finitary calculus. In these simple examples the occurrences of fixpoint variables always
have the sequent of the respective binder. When the decontration phenomenon shows up, we observe
occurrences of fixpoint variables with sequents which are different, but in any case inessential extensions
of the sequents in the respective binders. For a more complicated example where decontraction is seen
to play a role, we refer to [7, Example 11].

The semantics into λco
Σ of the finitary representation coincides with S(σ).

Fact 4.2. (Equivalence for simplified semantics [7, Theorem 19])
Let σ be a sequent.

1. F(σ) is proper.

2. [[F(σ)]]s = S(σ).

4.2. Auxiliary result: decidability of absence of solutions

Analogously to the inductive definition of EF and its negation for the decision of exfin ◦ S in [7, Section
3.3], we introduce a parameterized inductive predicate NES and its negation for the decision of nosol◦S .

We consider a predicate P on sequents and in general require that P is decidable and that, for all
sequents σ, P (σ) implies nosol(S(σ)), i. e., P ⊆ nosol ◦ S .

The definition of this (parameterized) predicate NESP is inductive and presented in the first line
of Fig. 6, although, as in [7] for EFP , it is clear that it could equivalently be given by a definition by
recursion over the term structure. Thus, the predicate NESP is decidable. Intuitively, NESP(T) holds
when the search for a member of T gets “stuck”. For this question, all sequents σ for which P (σ) holds,
are considered as “hopeless”, which is why those Xσ are then also considered as “stuck”. As in [7], our
first instance of P is P := ∅, hence without “hopeless” sequents, which will be used in part 2 of Theorem
4.1 below.

Formally, the definition of NESP only differs from EFP in [7, Fig. 6] in having the universal quantifier
over i in the case of fixed points over sums and the (implicit) existential quantifier over j in the case of
tuples, while this is the other way around for EFP . This is the reason why most proofs in this section are
variants of those in [7, Section 3.3].

Lemma 4.1. For all T ∈ λgfp
Σ , ESP(T) iff NESP(T) does not hold.

18 J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types

Proof As straightforward as the proof of [7, Lemma 22]. �

Proposition 4.1. (Finitary characterization)
1. If NESP(T) then nosol([[T]]s).

2. Let T ∈ λgfp
Σ be well-bound and proper. If ESP(T) and for all Xσ ∈ FPV (T), nosol(S(σ))

implies P (σ), then exsol([[T]]s).

The proof follows that of [7, Prop. 2] in lockstep (except for the fact that the clauses of NESP for
fixed points and tuples switched their logical connector in the premise, relative to EFP , as mentioned
above).

Proof 1. is proved by induction on the predicate NESP (or, equivalently, on T). The base case for
fixpoint variables needs the proviso on P , and all other cases are immediate by the induction hypothesis.

2. is proved by induction on the predicate ESP (which can also be seen as a proof by induction on
T).

Case T = Xσ. Then ¬P (σ), hence, since Xσ ∈ FPV (T), by contraposition and Lemma 3.1, we
get exsol(S(σ)).

Case T = gfpXσ.
∑

iEi. Let N := [[T]]s =
∑

i[[Ei]]
s. As T is proper, N = S(σ). We hence have

to show exsol(S(σ)), which we do by an embedded coinduction for the coinductively defined predicate
exsol. Coinduction is now used in a more sophisticated way than in the proof of Lemma 3.2 where
backwards closure of a suitable relation suffices. We have to establish evidence for exsol(S(σ)), and
we may use evidence for exsol(S(σ)) as coinductive hypothesis, provided that use is “guarded” by the
construction process: if we set out to observe the generated proof of exsol(S(σ)) up to a certain depth (in
a “thought process”), we have to make sure (in the “thought process”) that the construction only accesses
the coinductive hypothesis up to a smaller depth. The construction of evidence is as follows: We have
ESP(Ej) for some j and want to use the induction hypothesis, which would give us exsol([[Ej]]

s) and thus
exsol(

∑
i[[Ei]]

s), which was our goal. Of course, Ej is also well-bound and proper. We have to consider
all Y σ′ ∈ FPV (Ej). Either Y σ′ ∈ FPV (T), and we are fine by hypothesis, or Y = X and, since T
is well-bound, σ ≤ σ′. We just show that nosol(S(σ′)) does not hold: from our coinductive hypothesis
exsol(S(σ)), we get through Fact 2.2 and Lemma 3.3 even exsol(S(σ′)), and this is the negation of
nosol(S(σ′)). (See the corresponding case in the proof of Proposition 4.2.2 that argues in an analogous
situation that this is proper coinductive reasoning, in other words, that the proof construction is guarded.
An even closer analogy is with the proof of [7, Proposition 2].)

The other cases are simple applications of the induction hypothesis. �

Theorem 4.1. (Decidability of existence of solutions)
1. For any T ∈ λgfp

Σ well-bound, proper and closed, NESP(T) iff nosol([[T]]s).

2. nosol(S(σ)) is decided, by deciding NES∅(F(σ)).

Proof 1. Follows from both parts of Prop. 4.1, Lemmas 3.1 and 4.1, and the fact that, trivially, the extra
condition in Prop. 4.1.2 is satisfied for closed terms.

2. Apply 1. with both parts of Fact 4.2. �

J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types 19

Definition 4.4. Let the predicates NES? and ES? on λgfp
Σ be defined by NES? := NESP and ES? := ESP

for P (σ) :⇔ NES∅(F(σ)), which satisfies the proviso by Theorem 4.1.2. In particular, NES? and ES?
are decidable.

As for EF? in [7], we get an improvement (no conditions on T are needed) over the theorem for this
special situation.

Lemma 4.2. (Sharp finitary characterization)
For all T ∈ λgfp

Σ , NES?(T) iff nosol([[T]]s).

Proof In lockstep with the proof of [7, Lemma 27] (again modulo the interchange of quantifiers between
the rules for sums and tuples). �

In particular, nosol([[T]]s) is decidable, by deciding NES?(T).

We close this discussion by a necessary condition on finitary expressions T to satisfy NES∅(T). For
T ∈ λgfp

Σ , we say that “T has an empty sum” whenever T has a (not necessarily proper) subterm of the
form gfp Xσ.E1 + · · · + En with n = 0. The negation of this property is written as “T has no empty
sum”.

Lemma 4.3. If NES∅(T) then T has an empty sum.

Proof By induction on NES∅(T). There are 4 cases, according to the 4 rules in the inductive definition of
NES∅—recall the upper half of Fig. 6. The first rule is never applicable, while the second and fourth cases
follow routinely by induction hypothesis. Let us detail the third case. Suppose NES∅(gfp Xσ.

∑
iEi)

with NES∅(Ei) for all i. If
∑

iEi itself is not an empty sum, then the empty sums that exists in Ei by
induction hypothesis are also empty sums of the whole expression. �

4.3. Decidability of parameterized finiteness

Analogously to the previous section, we now develop the companion finitary predicates that will lead to
a decidability result on finΠ and its instances.

Given a decidable predicate P over sequents such that P ⊆ finΠ ◦S, the doubly parametric predicate
FΠ
P over λgfp

Σ is defined in the first line of Fig. 7. Again, it is clear that when Π ◦ [[·]]s is decidable so is
FΠ
P . As before, we also define inductively the negation of FΠ

P . This is through the also doubly parametric
predicate NFΠ

P in the second line of Fig. 7. Below, when FΠ
P or NFΠ

P is written, it is implicitly assumed
that P satisfies the proviso of Fig. 7.

Lemma 4.4. For all T ∈ λgfp
Σ , NFΠ

P (T) iff FΠ
P (T) does not hold.

Proof Routine induction on T . �

Before proving the main results of the section, linking the coinductive predicates and the inductive
ones, we consider the example FΠ1

P . We will argue that indeed it coincides with the predicate FFP in [7,
Fig. 8], used to capture finiteness of the finite extension of sequents. First observe that the definitions of
FΠ1
P and FFP impose the same proviso on P , since finΠ1 = finfin. It is immediate to see that the rules

20 J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types

Figure 7. FΠ
P and NFΠ

P predicates, for P satisfying the proviso: P ⊆ finΠ ◦ S and P decidable.

P (σ)

FΠ
P (Xσ)

FΠ
P (N)

FΠ
P (λxA.N)

∀i, FΠ
P (Ei)

FΠ
P (gfpXσ.

∑
iEi)

∀i, FΠ
P (Ni)

FΠ
P (x〈Ni〉i)

¬Π([[Nj]]
s)

FΠ
P (x〈Ni〉i)

¬P (σ)

NFΠ
P (Xσ)

NFΠ
P (N)

NFΠ
P (λxA.N)

NFΠ
P (Ej)

NFΠ
P (gfpXσ.

∑
iEi)

NFΠ
P (Nj) ∀i, Π([[Ni]]

s)

NFΠ
P (x〈Ni〉i)

defining the two predicates coincide except for one of the tuple rules. For this case, we need to argue:
¬exfin([[N]]s) iff NEF?(N). This is immediate from Lemmas 22 and 27 of [7]. Obviously, the negations
of FΠ1

P and FFP must also coincide, i. e., NFΠ1
P = NFFP (the latter defined in [7, Fig. 8]).

Proposition 4.2. (Finitary characterization)
1. If FΠ

P (T) then finΠ([[T]]s).

2. Let T ∈ λgfp
Σ be well-bound and proper, and assume infΠ is a subset of Π, and Π is closed under

decontraction both ways. If NFΠ
P (T) and for all Xσ ∈ FPV (T), finΠ(S(σ)) implies P (σ), then

infΠ([[T]]s).

Proof A generalization of the proof of [7, Prop. 3].
1. By induction on FΠ

P (or equivalently by structural induction on T).
Case T = Xσ. From the assumption FΠ

P (Xσ) follows P (σ). The proviso on P gives finΠ(S(σ)).
Hence finΠ([[Xσ]]s) by definition of [[·]]s.

Case T = x〈Ni〉i. From the assumption, one of two sub-cases holds.
Sub-case for some j, ¬Π([[Nj]]

s). By the first rule for tuples, finΠ(x〈[[Ni]]
s〉i), hence finΠ([[x〈Ni〉i]]s).

Sub-case for all i, FΠ
P (Ni). By induction hypothesis, finΠ([[Ni]]

s) for all i, hence finΠ([[x〈Ni〉i]]s).
The other inductive cases are equally simple.
2. By induction on NFΠ

P (or equivalently by structural induction on T).
Case T = Xσ. Then ¬P (σ). So, since Xσ ∈ FPV (T), by contraposition, ¬finΠ(S(σ)). Hence, by

Lemma 3.4, infΠ(S(σ)), which is the same as infΠ([[Xσ]]s), by definition of [[·]]s.
Case T = x〈Ni〉i. Then, for some j, NFΠ

P (Nj) and, for all i, Π([[Ni]]
s). The induction hypothesis is

applicable for Nj since FPV (Nj) ⊆ FPV (T). Therefore, we have infΠ([[Nj]]
s). So, the tuple rule can

be applied to give infΠ(x〈[[Ni]]
s〉i), hence infΠ([[x〈Ni〉i]]s).

Case T = λxA.N . Then, NFΠ
P (N). The induction hypothesis is applicable forN , since FPV (N) ⊆

FPV (T), therefore infΠ([[N]]s). Using the assumption infΠ ⊆ Π, we get infΠ(λxA.[[N]]s), hence
infΠ([[λxA.N]]s). (This is the only place in the proof where the assumption infΠ ⊆ Π is used.)

Case T = gfpXσ.
∑

iEi. Then, for some j, NFΠ
P (Ej). Let N := [[T]]s =

∑
i[[Ei]]

s. As T is proper,
N = S(σ). We have to show infΠ(S(σ)). This is done by an embedded coinduction on the coinductively
defined predicate infΠ, using the concept of guardedness as in the proof of Proposition 4.1.2, showing
infΠ(S(σ)) with limited access to the same infΠ(S(σ)) as coinductive hypothesis. We want to use the
induction hypothesis for Ej , which would give us infΠ([[Ej]]

s) and thus infΠ(
∑

i[[Ei]]
s), our goal. Since

T is well-bound and proper, so is Ej . We have to consider all Y σ′ ∈ FPV (Ej). Either Y σ′ ∈ FPV (T),

J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types 21

and we are fine by hypothesis, or Y = X and, since T is well-bound, σ ≤ σ′. We just show that
finΠ(S(σ′)) does not hold. From Fact 2.2, we know S(σ′) = [σ′/σ]S(σ). The assumption that Π is
closed under decontraction both ways gives that infΠ is also closed under decontraction (Lemma 3.8).
Hence, applying our coinductive hypothesis infΠ(S(σ)), we get infΠ(S(σ′)), which is the negation of
finΠ(S(σ′)) (Lemma 3.4). The application of the coinductive hypothesis is guarded (and hence the whole
proof construction a proper use of the coinduction principle) since it enters a lemma on infΠ that does not
change needed observation depths and then goes into an elimination alternative, where the occurrences
of free fixpoint variables are at least “guarded” by an ordinary variable of a tuple, which creates extra
depth of the outcome of the proof construction. (We invite the reader to check that the whole argument
just abstracts away from the specific situation of [7, Proposition 3] but is structurally the same, using in
particular the same coinductive reasoning.)

�

Theorem 4.2. (Deciding generalized finiteness)
Let Π be closed under decontraction both ways and such that infΠ ⊆ Π.

1. For any T ∈ λgfp
Σ well-bound, proper and closed, FΠ

P (T) iff finΠ([[T]]s).

2. If Π ◦ [[·]]s is decidable, finΠ(S(σ)) is decided by deciding FΠ
∅ (F(σ)).

Proof
1. Follows from both parts of Prop. 4.2, Lemmas 3.4 and 4.4, and the fact that, trivially, the extra

condition in Prop. 4.2.2 is satisfied for closed terms.
2. By 1 and both parts of Fact 4.2. finΠ(S(σ)) iff FΠ

∅ (F(σ)). Then use computability of F and
the equivalence of the inductively defined FΠ

∅ with a recursive procedure over the term structure of its
argument, where, corresponding to the last rule of Fig. 7, the decisions for predicate Π◦ [[·]]s are invoked.

�

Corollary 4.1. 1. finfin(S(σ)) is decided by deciding FΠ1

∅ (F(σ)).

2. exinf(S(σ)) is decided by deciding FΠ2

∅ (F(σ)).

3. fin(S(σ)) is decided by deciding FΠ3

∅ (F(σ)).

Proof By the previous theorem, it suffices to argue (a) infΠi ⊆ Πi, (b) Πi is closed under decontraction
both ways and (c) Πi ◦ [[·]]s is decidable, for i ∈ {1, 2, 3}.

Case Π1. Regarding (a), we need inffin ⊆ exfin, which is an easy consequence of the obvious
inffinext ⊆ exfinext and [7, Lemmas 20, 21, 28, 29] (that allow to replace the extensional versions of
the predicates by their characterizations). Regarding (b), we need exfin to be closed under decontraction
both ways, which is established in [7, Lemma 23]. Regarding (c), we note that decidability of exfin ◦ [[·]]s
is a consequence of the sharp finitary characterization of exfin in [7, Lemma 27].

Case Π2. Regarding (a), we need exinf ⊆ exsol, which follows by coinduction on exsol (one can
also prove the equivalent nosol ⊆ allfin by induction on nosol). (b) follows from Lemma 3.3. (c) is a
consequence of the sharp finitary characterization of exsol in Lemma 4.2.

Case Π3. As Π3 = λco
Σ , the three conditions hold trivially. �

22 J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types

Notice that part 1 of the corollary is only another form of stating the result in [7, Theorem 33.3], while
the other parts are original contributions of the present paper. Notice also part 2 implies that allfin(σ)
is decidable, hence, termination of proof search is decidable. (Recall in Section 1 we argued that the
property of all solutions being finite corresponds to termination of proof search.)

The analysis we did with the sharp finitary characterizations NES? and ES? can be replayed.

Definition 4.5. Let Π be closed under decontraction both ways and such that infΠ ⊆ Π and Π ◦ [[·]]s
is decidable. The predicates FΠ

? and NFΠ
? on λgfp

Σ are defined by FΠ
? := FΠ

P and NFΠ
? := NFΠ

P for
P := finΠ ◦ S, which satisfies the proviso for P thanks to Theorem 4.2.2 and the assumptions on Π. In
particular, FΠ

? and NFΠ
? are decidable.

Lemma 4.5. (Sharp finitary characterization)
Let Π be closed under decontraction both ways and such that infΠ ⊆ Π and Π ◦ [[·]]s is decidable. For all
T ∈ λgfp

Σ , FΠ
? (T) iff finΠ([[T]]s).

Proof The “only if” direction follows by part 1 of Prop. 4.2. For the “if” direction, one proves the
contrapositive that NFΠ

? (T) implies infΠ([[T]]s) (thanks to Lemma 3.4 and Lemma 4.4), by an easy
induction on NFΠ

? . �

In particular, note that for the three instances of Π considered above, finΠ([[T]]s) is decidable, by deciding
FΠ
? (T). (Recall the proof of Cor. 4.1, where it is already argued why the three conditions on Π hold for

Π ∈ {λco
Σ , exfin, exsol}.)

Other instances of Π can be considered for which Theorem 4.2.2 and Lemma 4.5 produce decidability
results.

Example 4.2. Let Π4 := inffin = infexfin. We have Π4 closed under decontraction both ways (by
Lemma 3.8 and the fact that exfin also has this property, as observed in the proof of Corollary 4.1),
infΠ4 ⊆ Π4 (which follows by Π4 = infexfin, monotonicity of infΠ in Π, and inffin ⊆ exfin), and
Π4 ◦ [[·]]s is decidable (Lemma 4.5 and the remark following it). So, finΠ4([[T]]s) (and in particular
finΠ4(S(σ))) is decidable. Additionally, note that infΠ4 ⊂ inffin. The weak inclusion is the already
stated infΠ4 ⊆ Π4, and for the sequent σd of Example 2.1, we get inffin(S(σd)) and finΠ4(S(σd)) (for
the rather trivial reason that inffin(z) does not hold), hence infΠ4(S(σd)) cannot hold. We also note that
the predicate “infΠ4(S(σ))” does not trivialise to the empty set, as, for example, infΠ4(S(σe)) holds
(since infΠ4(x〈S(σe)〉) follows coinductively thanks to the fact inffin(S(σe))). So, infΠ4 gives rise to
yet a new decidable notion of (in)finiteness for simple types.

We are not yet aware of uses of these other possible notions of “finiteness” (as the example showed, this
can be a rather wide extension of usual notions of finiteness).

4.4. Applications of decidability results

We close the section with three applications of the decidability results. The first is a sharpening of a
coherence theorem, the second is the definition of the pruned solution space of a sequent, the third is a
kind of König’s lemma for simple types.

Part 3 of the corollary allows us to sharpen (see Theorem 4.3 below) a result by Broda and Damas [3]
that we reproved with our method as [7, Theorem 46.1]: If no atom occurs positively more than once in

J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types 23

A, then A has only finitely many inhabitants. (Positive and negative occurrences in a formula are defined
as usual, with change of polarity when moving to the left argument of ⊃). In [7] we proved this in two
steps. Let a finitary expression T be called strongly acyclic if T has no occurrence, free or bound, of
fixpoint variables (other than the binding occurrences after gfp) [7, Definition 43.1]. In [7, Lemma 44.1],
we showed the very simple fact that if T is strongly acyclic, then a predicate equivalent to FΠ1

∅ holds of
T . A more profound analysis [7, Lemma 45.1] showed that if no atom occurs positively more than once
in A, then F(⇒ A) is strongly acyclic. Then, a result similar to Corollary 4.1.1 was invoked. Now we
prove the sharpened theorem.

Lemma 4.6. Let T ∈ λgfp
Σ . Then T is strongly acyclic iff FΠ3

∅ (T).

Proof For the “only if” direction, we can do a straightforward induction on T (as was done for [7,
Lemma 44.1]). The parameters of the predicate play no role at all, which is why they are set here to the
values that yield the smallest possible predicate. For the “if” direction, we just reason by induction on
FΠ3

∅ and observe that the first and fifth rule in Fig. 7 cannot have been used thanks to this specific choice
of parameters. �

We now obtain that the syntactic criterion of no atom occurring positively more than once in the type
A guarantees finiteness of the solution space of A in the strongest sense of finiteness we consider in this
paper.

Theorem 4.3. (Generalizing the positive part of generalized coherence)
If no atom occurs positively more than once in A, then fin(S(⇒ A)), which in particular implies that A
has only finitely many inhabitants and only finite solutions.

Proof If no atom occurs positively more than once in A, then F(⇒ A) is strongly acyclic by [7, Lemma
45.1] (as mentioned above), hence by the previous lemma FΠ3

∅ (F(⇒ A)), but this equivalent to fin(S(σ))
by Corollary 4.1.3. �

Decidability of the predicate ES?(T) allows the definition of a refined solution space for a given
sequent.

Definition 4.6. (Pruned solution space of a sequent)

S(Γ⇒ ~A ⊃ p) := λ~x : ~A.
∑

(y: ~B⊃p)∈∆

y〈S(∆⇒ Bj)〉j with ∆ := Γ, ~x : ~A

where

• λx : A.T := λx : A.T , if T 6= O; and λx : A.T := O, otherwise.

• (y : ~B ⊃ p)∈∆ :⇔ (y : ~B ⊃ p) ∈ ∆ and, for all j, ES?(F(∆⇒ Bj)).

Comparing with Def. 2.1: if the displayed sum above is empty, it annihilates the enclosing λ’s; and when
forming the displayed sum above, we filter out those summands y〈Nj〉j with ES?(Nj) failing for some
j, because such summands contribute no solution.

24 J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types

Lemma 4.7. (Properties of the pruned solution space)
1. E(S(σ)) = E(S(σ)).

2. If σ has a solution, then S(σ) has no empty sum.

3. If σ has no solution, then S(σ) = O.

Proof We prove part 2 first. Let us write noO(T) to mean that T has no empty sum. So we want to
prove: if exsol(S(σ)) then noO(S(σ)). A coinductive characterization of noO(S(σ)) is as follows:

noO(S(Γ, x : A⇒ B))

noO(S(Γ⇒ A ⊃ B))
(a)

∃(y : ~B ⊃ p)∈Γ ∀(y : ~B ⊃ p)∈Γ ∀j, noO(S(Γ⇒ Bj))

noO(S(Γ⇒ p))
(b)

The proof is by coinduction on noO(S(σ)), i. e., we prove exsol(S(σ)) is backward closed w. r. t. (a) and
(b). Recall the lower half of Fig. 4.

(a) Suppose exsol(S(Γ ⇒ A ⊃ B)). We want exsol(S(Γ, x : A ⇒ B)). If S(Γ, x : A ⇒ B) = N ,
then S(Γ⇒ A ⊃ B) = λx : A.N . We are done by the first rule for exsol in that figure.

(b) Suppose exsol(S(Γ ⇒ p)). We need to prove: (b1) ∃(y : ~B ⊃ p)∈Γ; (b2) ∀(y : ~B ⊃
p)∈Γ ∀j, exsol(S(Γ ⇒ Bj)). From the definition of S and the second and third rules in the
mentioned figure, we see that exsol(S(Γ ⇒ p)) implies that there is (y : ~B ⊃ p) ∈ Γ such that,
for all j, exsol(S(Γ ⇒ Bj)). Having in mind the definition of (y : ~B ⊃ p)∈Γ, we obtained
precisely (b1), because exsol(S(Γ ⇒ Bj)) is equivalent to ES?(F(Γ ⇒ Bj)). (b2) also follows
by definition of (y : ~B ⊃ p)∈Γ and the equivalence just mentioned.

1. We want to prove: mem(N,S(σ)) iff mem(N,S(σ)). Both implications will be proved by
coinduction, so we give immediately the coinductive characterizations of the two members of the sought
equivalence:

mem(M,S(Γ, x : A⇒ B)) S(Γ, x : A⇒ B) 6= O
mem(λx.M,S(Γ⇒ A ⊃ B))

(a)

∃(y : ~B ⊃ p)∈Γ∀i, mem(Mi,S(Γ⇒ Bi))

mem(y〈Mi〉i,S(Γ⇒ p))
(b)

mem(M,S(Γ, x : A⇒ B))

mem(λx.M,S(Γ⇒ A ⊃ B))
(a)

∃(y : ~B ⊃ p) ∈ Γ∀i, mem(Mi,S(Γ⇒ Bi))

mem(y〈Mi〉i,S(Γ⇒ p))
(b)

First we prove mem(N,S(σ)) is backward closed w. r. t. (a) and (b). As expected, this is immediate,
and establishes the easy implication “only if”. Next we prove that mem(N,S(σ)) is backward closed
w. r. t. (a) and (b).

(a) Suppose mem(λx.M,S(Γ ⇒ A ⊃ B)). We have mem(M,S(Γ, x : A ⇒ B)) by inversion of
(a); additionally, this means Γ, x : A ⇒ B has a solution, so part 2 (already proved) guarantees
S(Γ, x : A⇒ B) has no empty sum, in particular S(Γ, x : A⇒ B) 6= O.

J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types 25

(b) Suppose mem(y〈Mi〉i,S(Γ⇒ p)). We want

∃(y : ~B ⊃ p)∈Γ ∀i, mem(Mi,S(Γ⇒ Bi)) (∗)

By inversion of (b) we obtain that there is (y : ~B ⊃ p) ∈ Γ such that mem(Mi,S(Γ ⇒ Bi)), for
all i. To obtain (∗), it remains to see that, for all i, ES?(F(Γ ⇒ Bi)). But this is equivalent to
exsol(S(Γ⇒ Bi)), and the latter follows from mem(Mi,S(Γ⇒ Bi)).

3. Suppose nosol(S(σ)). By part 1, nosol(S(σ)). By Lemma 3.9, S(σ) has an empty sum. Looking
at the definition of S, such empty sum could live in S(∆⇒ Bj) of some summand of the outer sum, or be
the outer sum itself. But the first option is impossible: given the criterion for a y to contribute a summand,
we have ES?(F(∆ ⇒ Bj)), which implies exsol(S(∆ ⇒ Bj)), which guarantees S(∆ ⇒ Bj) has no
empty sum, thanks to part 2. So, the outer sum is O, hence S(σ) = O. �

We close the exploration of concepts of finiteness with a discussion of König’s lemma that we recall
for the present situation.

Lemma 4.8. (König’s lemma for forests)
inf(T) iff T has an infinite branch.

Proof Our definition of forests only allows finite branching (finitely many summands and finitely many
arguments in the tuple, respectively), hence König’s lemma applies. �

The following result is in the same spirit, extracting for sequents a consequence of Lemma 3.10, with
the help of the pruned solution space and its properties.

Theorem 4.4. (König’s lemma for simple types)
For all sequents σ, the pruned solution space of σ is infinite iff σ has an infinite solution.

Proof We want to prove: inf(S(σ)) iff exinf(S(σ)). If σ has no solution (hence exinf(S(σ)) does
not hold), then, by Lemma 4.7.3, S(σ) = O, hence fin(S(σ)). If σ has a solution, then S(σ) has no
empty sum, by Lemma 4.7.2. Then, by Lemma 3.10, inf(S(σ)) iff exinf(S(σ)). But exinf(S(σ)) iff
exinf(S(σ)), thanks to Lemma 4.7.1. �

Notice that the previous theorem would not be valid when formulated with the solution space S(σ) in
place of the pruned solution space S(σ). For instance, the sequent σc = (x : p ⊃ q ⊃ p⇒ p) considered
in Example 2.1 has no solution, in particular no infinite one, but S(σc) is infinite. The pruned solution
space S(σc) is just O, confirming Lemma 4.7.3 in this specific case.

5. Final remarks

In this paper we introduced several concepts of finiteness for simple types, involving not only finite
objects (type inhabitants), but also infinite objects (type solutions and forests determined by types). One
of these concepts corresponds to the question of whether a simple type has finitely many inhabitants, and
is given through the predicate allfin already introduced in [7]. (In op. cit. we have done an extensive
literature review, and related our approach in particular to the study of this question done in [10].) The

26 J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types

other three concepts of finiteness considered in this paper (given through the predicates fin, allfin and
fininffin) are new. The following strict chain of inclusions holds, and determines weaker and weaker
conditions for a simple type to be “finite”:

fin ⊂ allfin ⊂ finfin ⊂ fininffin

The main results of this paper are the realization that all these concepts of finiteness are instances of
a single, parameterized concept of finiteness; and the proof of their decidability. Our study of finiteness
is rounded up with a result in the spirit of König’s lemma. Additionally, some other results were obtained
that can be seen as an increment on our previous work [7]: the decidability of the problem “Does simple
type A have no solution?” (i. e., not even an infinite one), and a generalization of a coherence theorem.
But, while the latter is just an immediate corollary of the results obtained here, the former is actually
instrumental for the development of the present paper.

One obvious question to ask is about possible uses of these concepts of finiteness. In this paper
we characterized fin-finiteness of the pruned solution space of a simple type by allfin-finiteness of its
solution space, identified allfin-finiteness as a weakly extensional predicate and related it to termination
of proof search and to the previously studied strongly extensional finfin-finiteness. As mentioned before,
we obtained decidability results for all these predicates, but pursued no uses of fininffin-finiteness, and it
is not even clear in which sense this is still a concept of finiteness (other than another instance of our
results). Another natural question is whether this chain of inclusions can be prolonged, even infinitely,
and originate yet new finiteness concepts for simple types.

One of the conceptual tools that emerges from this work is the notion of pruned solution space of
a sequent given by S(σ). By chopping off elimination alternatives with certain occurrences of empty
sums, S(σ) may produce much smaller forests than S(σ), while still preserving the (full) extension of
sequents. It would be natural to investigate an analogous pruning function for the finitary solution space,
call it F(σ). In particular, we would expect such a function to allow for more efficient decidability of
the extensional predicates on forests addressed in this paper and in [7], such as a decision of allfin(S(σ))
via a decision of FΠ2

∅ (F(σ)).

Another line of research could be inspired by the very recent work on the analysis of inhabitation
problems through the pre-grammar of a given type A [1]. We already mentioned after the presentation
of Fact 4.1 in Section 4.1 that their work made us find a bound on the recursion depth of the finitary
representation function. Based on this, we plan to describe variants of our decision algorithms that fall
into PSPACE, as did [1] in their framework of pre-grammars for several classical problems related to
inhabitation. However, the problem of principal inhabitation (shown to be PSPACE-complete in [4] and
also covered by the method in [1]) does not seem to fit with our approach since we rely on closure under
decontraction as justification for adequacy of our finitary representation function (which is not available
for principal inhabitation, see the discussion in [4]). The decontraction phenomenon is also the root
cause why the algorithms in their present form are not guaranteed to be in PSPACE, but this seems to
be the price worth paying for a direct finitary representation of the whole search space, as a “first-class
citizen” of a dedicated data structure.

J. Espírito Santo, R. Matthes, L. Pinto / Decidability of several concepts of finiteness for simple types 27

References
[1] Sandra Alves and Sabine Broda. A unifying framework for type inhabitation. In Hélène Kirchner, editor,

3rd International Conference on Formal Structures for Computation and Deduction, FSCD 2018, July 9-
12, 2018, Oxford, UK, volume 108 of LIPIcs, pages 5:1–5:16. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2018.

[2] Choukri-Bey Ben-Yelles. Type assignment in the lambda-calculus: syntax & semantics. PhD thesis, Univer-
sity of College of Swansea, 1979.

[3] Sabine Broda and Luís Damas. On long normal inhabitants of a type. J. Log. Comput., 15(3):353–390, 2005.

[4] Andrej Dudenhefner and Jakob Rehof. The complexity of principal inhabitation. In Dale Miller, editor,
2nd International Conference on Formal Structures for Computation and Deduction, FSCD 2017, September
3-9, 2017, Oxford, UK, volume 84 of LIPIcs, pages 15:1–15:14. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2017.

[5] José Espírito Santo, Ralph Matthes, and Luís Pinto. A coinductive approach to proof search. In David Baelde
and Arnaud Carayol, editors, Proc. of FICS 2013, volume 126 of EPTCS, pages 28–43, 2013. dx.doi.org/
10.4204/EPTCS.126.

[6] José Espírito Santo, Ralph Matthes, and Luís Pinto. A coinductive approach to proof search through typed
lambda-calculi. http://arxiv.org/abs/1602.04382v2, July 2016.

[7] José Espírito Santo, Ralph Matthes, and Luís Pinto. Inhabitation in Simply-Typed Lambda-Calculus through
a Lambda-Calculus for Proof Search. Mathematical Structures in Computer Science, pages 1–33, April 2018.
First View - volume not yet known, dx.doi.org/10.1017/S0960129518000099.

[8] J. Roger Hindley. Basic Simple Type Theory, volume 42 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1997.

[9] Sachio Hirokawa. Infiniteness of proof(alpha) is polynomial-space complete. Theor. Comput. Sci., 206(1-
2):331–339, 1998.

[10] Masako Takahashi, Yohji Akama, and Sachio Hirokawa. Normal proofs and their grammar. Inf. Comput.,
125(2):144–153, 1996.

