
Protein Sequence Pattern Mining

with Constraints

Pedro Gabriel Ferreira? Paulo J. Azevedo??

University of Minho,
Department of Informatics

Campus of Gualtar, 4710-057 Braga, Portugal
{pedrogabriel,pja}@di.uminho.pt

Abstract. Considering the characteristics of biological sequence databases,
which typically have a small alphabet, a very long length and a relative
small size (several hundreds of sequences), we propose a new sequence
mining algorithm (gIL). gIL was developed for linear sequence pattern
mining and results from the combination of some of the most efficient
techniques used in sequence and itemset mining. The algorithm exhibits
a high adaptability, yielding a smooth and direct introduction of various
types of features into the mining process, namely the extraction of rigid
and arbitrary gap patterns. Both breadth or a depth first traversal are
possible. The experimental evaluation, in synthetic and real life protein
databases, has shown that our algorithm has superior performance to
state-of-the art algorithms. The use of constraints has also proved to be
a very useful tool to specify user interesting patterns.

1 Introduction

In the development of sequence pattern mining algorithms, two communities
can be considered: the Data Mining and the Bioinformatics community. The
algorithms from the Data Mining community inherited some characteristics from
the association rule mining algorithms. They are best suited for data with many
(from hundred of thousands to millions) sequences with a relative small length
(from 10 to 20), and an alphabet of thousands of events, e.g. [9, 7, 11, 1]. In the
bioinformatics community, algorithms are developed in order to be very efficient
when mining a small number of sequences (in the order of hundreds) with large
lengths (few hundreds). The alphabet size is typically very small (ex: 4 for DNA
and 20 for protein sequences). We emphasize the algorithm Teiresias [6] as a
standard.

The major problem with Sequence pattern mining is that it usually generates
too many patterns. When databases attain considerable size or when the average

? Supported by a PhD Scholarship (SFRH/BD/13462/2003) from Fundação Ciência
e Tecnologia

?? Supported by Fundação Ciência e Tecnologia - Programa de Financiamento Pluri-
anual de Unidades de I & D, Centro de Ciências e Tecnologias da Computação -
Universidade do Minho

2 Pedro Gabriel Ferreira Paulo J. Azevedo

length of the sequences is very long, the mining process becomes computation-
ally expensive or simply infeasible. This is often the case when we are mining
biological data like proteins or DNA. Additionally, the user interpretation of
the results turns out to be a very hard task since the interesting patterns are
blurred into the huge amount of outputted patterns. The solution to this prob-
lem can be achieved through the definition of alternative interesting measures
besides support, or with user imposed restrictions to the search space. When
properly integrated in the mining process these restrictions reduce the computa-
tion demands in terms of time and memory, allowing to deal with datasets that
are otherwise potentially untractable. These restrictions are expressed through
what is typically called as Constraints. The use of Constraints enhances the
database queries. The runtime reduction grants the user with the opportunity
to interactively refine the query specification. This can be done until an expected
answer is found.

2 Preliminaries

We consider the special case of linear sequences databases. A database D is as
a collection of linear sequences. A linear sequence is a sequence composed by
successive atomic elements, generically called events. Examples of this type of
databases are protein or DNA sequences or website navigation paths. The term
linear is used to make the distinction from the transactional sequences, that
consist in sequences of EventSets(usually called as ItemSets). Given a sequence
S, S′ is subsequence of S if S′ can be obtained by deleting some of the events
in S. A sequence pattern is called a frequent sequence pattern if it is found to
be subsequence of a number of sequences in the dataset greater or equal to a
specified threshold value. This value is called minimum support, σ, and is defined
as an user parameter. The cover represents the list of sequence identifiers where
the pattern occurs. The cardinality of this list corresponds to the support of that
pattern.

Considering patterns in the form A1 − x(p1, q1) − A2 − x(p2, q2) − ... An,
a sequence pattern is an arbitrary gap sequence pattern when a variable (zero
or more) number of gaps exist between adjacent events in the pattern, i.e. pi ≤
qi,∀i. Typically a variable gap with n minimum and m maximum number of gaps
is described as −x(n,m)−. In the sequences < 1 5 3 4 5 > and < 1 2 2 3 > exists
an arbitrary gap pattern 1−x(1, 2)−3. A rigid gap pattern is a pattern where gaps
contain a fixed size for all the database occurrences of the sequence pattern, i.e.
pi = qi,∀i. To denote a rigid gap the −r(n)− notation is used, where n is the size
of the gap. The 1−r(2)−3 is a pattern of length 4, in the sequences < 1 2 5 3 4 5 >

and < 1 1 6 3 >. Each gap position is denoted by the ”.” (wildcard) symbol,
meaning that it matches any symbol of the alphabet. A pattern belongs to one
of three classes: maximal, closed or all. A sequence pattern is maximal if it is not
contained in any other pattern, and closed when all its extensions have an inferior
support than itself. The all refers to when all the patterns are enumerated. When
extending a sequence pattern S =< s1 s2 . . . sn >, with a new event sn+1, then

Protein Sequence Pattern Mining with Constraints 3

S is called a base sequence and S ′ =< s1 s2 . . . sn sn+1 > the extended sequence.
If an event b occurs after a in a certain sequence, we denoted it as: a → b, and a

is called the predecessor, pred(a → b) = a, and b the successor, succ(a → b) = b.
The pair is frequent if it occurs in at least σ sequences of the database.

Constraints represent an efficient way to prune the search space [9, 10]. Con-
sidering the user’s point of view, it also enables to focus the search on more in-
teresting sequence patterns. The most common and generic types of constraints
are:

– Item Constraints: restricts the set of the events (excludedEventsSet) that
may appear in the sequence patterns,

– Gap Constraints: defines the (minGap) minimum distance or the maximum
distance (maxGap) that may occur between two adjacent events in the se-
quence patterns,

– Duration or Window Constraints: defines the maximum distance (window)
between the first and the last event of the sequence patterns.

– Start Events Constraints: determines that the extracted patterns start with
the specified events (startEvents).

Another useful feature in sequence mining, in particular to protein pattern
mining, is the use of Equivalent/Substitution Sets. When used during the mining
process an event can be substituted by another event belonging to the same set.
A ”is-a” hierarchy of relations can be represented through substitution sets.

Depending on the target application of the frequent sequence patterns other
measures of interest and scoring can be applied as posterior step of the mining
process. Since the closed and the maximal patterns are not necessarily the most
interesting we designed our algorithm in order to find all the frequent patterns.
From the biological point of view, rigid patterns allow to find more well con-
served regions, while arbitrary patterns permit the cover of a large number of
sequences in the database.

The problem we address in this paper can be formulated as follow: given a
database D of linear sequences, a minimum support, σ, and the optional param-
eters minGap, maxGap, window, excludedEventsSet, startEventsSets and substi-
tutionSets, find all the arbitrary or rigid gap frequent sequence patterns that
respect the defined constraints.

3 Algorithm

The proposed algorithm uses a Bottom-Up search space enumeration and a com-
bination of frequent pairs of events to extend and find all the frequent sequence
patterns. The algorithm is divided in two phases: scanning phase and sequence
extension phase. Since the frequent sequences are obtained from the set of fre-
quent pairs, the first phase of the algorithm consists in traversing all the se-
quences in the database and building two auxiliary data structures. The first
structure contains the set of all pairs of events found in the database. Each pair

4 Pedro Gabriel Ferreira Paulo J. Azevedo

representation points to the sequences where they appear (through a sequence
identifier bitmap). The second data structure consists of a vertical representation
of the database. It contains the positions or offsets of the events in the sequences
where they occur. This information is required to ensure that the order of the
events along the data sequence is respected. Both data structures are thought
for quick information retrieval. At the end of the scanning phase we obtain a
map of all the pairs of events present in the database and a vertical format rep-
resentation of the original database. In the second phase the pairs of events are
successively combined to find all the sequence patterns. These operations are
fundamentally based on two properties:

Property 1 (Anti-Monotonic) All supersequences of an infrequent sequence
are infrequent.

Property 2 (Sequence Transitive Extension) Let S =< s1 . . . sn >, CS is
its cover list and OS the list of the offset values of S for all the sequences in
CS. Let P = (sj → sm), CP is it cover list and OP the offset list of succ(P)
for all sequences in CP . If succ(S) = pred(P), i.e., sn = sj, then the extended
sequence E =< s1 . . . snsm > will occur in CE, where CE = {X : ∀X in CS ∩
CP , OP (X) > OS(X)}.

Hence, the basic idea is to successively extend a frequent pair of events with
another frequent pair, as long as the predecessor of one pair is equal to the suc-
cessor of the other. This joining step is sound provided that the above mentioned
properties (1 and 2) are respected. The joining of pairs combined with a breadth
first or a depth first traversal yields all the frequent sequences patterns in the
database.

3.1 Scanning Phase

The first phase of the algorithm consists in the following procedure: For each
sequence in D, obtain all ordered pairs of events, without repetitions. Consider
the sequence 5 in the example database of table 1(a). The obtained pairs are:
1 → 2, 1 → 3, 1 → 4, 2 → 2, 2 → 3, 2 → 4 and 3 → 4. During the determination
of the pairs of events the first auxiliary data structure, that consists of an N-
bidimensional matrix, is built and updated. N corresponds to the size of the
alphabet. The N2 cells in the matrix correspond to the N 2 possible combinations
of pairs. We call this structure the Bitmap Matrix. Each Cell(i, j) contains the
information relative to the pair i → j. This information consists of a bitmap
that indicates the presence (1) or the absence (0) in the respective sequence
(i-th bit corresponds to the sequence i in D) and an integer that contains the
support count. This last value allows a fast support checking. For each pair
i → j we update the respective Cell(i, j) in the Bitmap Matrix, by activating
the bit corresponding to the sequence where the pair occurs and incrementing the
support counter. As an example, for the pair 1 → 3, the Cell(1, 3) is represented
in figure 1(b):

Protein Sequence Pattern Mining with Constraints 5

Sid Sequence

1 < 1 2 3 4 5 >

2 < 1 3 4 >

3 < 2 3 2 3 >

4 < 3 2 1 >

5 < 1 2 2 3 4 >

Fig. 1. (a) An example database; (b) Content of the Cell(1,3) in the Bitmap Matrix;
(c) Representation of event 2 in the Offset Matrix

This means that the pair occurs in the database sequence 1, 2 and 5 and has
a support of 3. Simultaneously, as each event in the database is being scanned, a
second data structure called Offset Matrix is also being built. Conceptually, this
data structure consists of an adjacency matrix that will contain all the offset
(positions) of all the events in the entire database. Each event is a key that
points to a list of pairs <Sid,OffsetList>, where OffsetList is a list of all the
positions of the event in the sequence Sid. Thus, the Offset Matrix is a vertical
representation of the database. Figure 1(c) shows the information stored in the
Offset Matrix for the event 2.

3.2 Sequence Extension Phase

We start by presenting how arbitrary gap patterns are extracted. In section
3.4 we will show how easily our algorithm can be adapted to extract rigid gap
patterns. For implementing the extension phase we present two tests (algorithms)
that conjunctively are necessary and sufficient conditions to consider as frequent
a new extended sequence.

input : S(BaseSequence); P (ExtensionP air); σ(Min.Support)
CS = bitmap(S) and CP = bitmap(P)
C

S′ = CS ∩ CP
if support(C

S′) ≥ σ , then return OK.

Algorithm 1: Support Test

This is a quick test that implements property 1. The bitmap function gets
the correspondent bitmaps of S and P . The intersection operation is also very
fast and simple and the support function retrieves the support of the intersec-
tion bitmap. This test allows the verification of a necessary but not sufficient
condition for the extended sequence to be frequent. A second test is necessary
to guarantee that the order of the events is kept along the sequences that CS′

bitmap points to.
Algorithm 2 assumes that, for each frequent sequence, additional information

besides the sequence event list is kept during the extension phase. Namely, the
corresponding bitmap that for the case exposed in algorithm 1 will be CS′ if S′

6 Pedro Gabriel Ferreira Paulo J. Azevedo

input : C
S′ (Bitmap); S(Base Seq); P (Ext. P air); σ(Sup.)

seqLst = getSeqIdLst(C
S′);1

Ev = succ(P);2
cnt = 0;3
foreach Sid in seqLst do4

Ov = offsetLst(Sid, Ev);5
Y = offsetLastEvent(Sid, S);6

W = offsetStartEvent(Sid, S);7
if ∃X ∈ Ov, X > Y then8

cnt = cnt + 1;9
if (X − Y) < n then n = (X − Y)10
if (X − Y) > m then m = (X − Y)11

end12
diffT est(cnt, σ);13

end14
if cnt ≥ σ then15

return OK;16
end17

Algorithm 2: Order Test

is determined to be frequent. Also two offset lists in the form <Sid, offset> are
kept. One will contain the offset of the last event of the sequence, offsetLastEvent,
and will be used for the ”Order Test”. The second, offsetStartEvent, contains the
offset of the first event of the sequence pattern in all the Sid where it appears.
This will be used when the verification of the window constraint is performed. In
the Order Test, given a bitmap resulted from the support test, the getSeqIdLst
function returns the list of the sequence identifiers for the bitmap. The function
offsetLst returns a list of offset values of the event in the respective Sid. For each
sequence identifier it is tested whether the extension pair has an offset greater
than the offset value of the extended sequence. This implements the computation
of CE and the offsetList of succ(E) as in property 2. At line 13 the diffTest

function performs a simple test to check whether the minimum support is still
reachable. At the end of the procedure (lines 15 to 17) it is tested whether the
order of the extended sequence pattern is respected in a sufficient number of
database sequences. In the positive case the extended sequence is considered
frequent. Given algorithm 1 and 2, property 3 guarantees the necessary and
sufficient conditions to safely extend a base sequence into a frequent one.

Property 3 (Frequent Extended Sequence) Given a minimum support σ,
a frequent base sequence S =< E1 . . . En >, where |S| ≥ 2 and a pair P = Ek →
Ew. If En = Ek, then S′ =< E1 . . . En gn,k Ek >, where gn,k = −x(n,m)− if
in arbitrary gap mode or −r(n)− if in rigid gap mode, is frequent if algorithm 1
and 2 return OK.

3.3 Space Search Traversal

Guided by the Bitmap Matrix the search space can be traversed using two possi-
ble approaches: breadth first or depth first. For both cases the set of the frequent
sequences starts as the set of frequent pairs. In the depth first mode it starts
with a sequence of size 2 that is successively expand until it can not be further
extended. Then we backtrack and start extending another sequence. The advan-
tage of this type of traversal is that we don’t need to keep all the intermediary
frequent sequence information, in contrast with the breadth first traversal where

Protein Sequence Pattern Mining with Constraints 7

all the information of the sequences size k need to be kept before the sequences of
size k+1 are generated. This yields is some cases, a significant memory reduction.

3.4 Rigid Gap Patterns

The algorithm described in 2 is designed to mine arbitrary gap patterns. Using
gIL to mine rigid gap patterns requires only minor changes in the Order Test
algorithm. Lines 4 to 11 in algorithm 2 are rewritten in algorithm 3. In this
algorithm, first it is collected (in gapLst) the size of all the gaps for a certain
sequence extension. Next, for each gap size it is tested whether the extended
sequence is frequent. One should note that for rigid gap patterns, two sequence
patterns with the same events are considered different if the gaps between the
events have different size, e.g., < 1 · · 2 > is different from < 1 · · · 2 >.

foreach Sid in seqLst do1
Ov = offsetLst(Sid, Ev);2

Y = offsetLastEvent(Sid, S);3
W = offsetStartEvent(Sid, S);4
if ∃X ∈ Ov, X > Y then5

gap = X − Y ; gapLst.add(gap);6
end7

end8
foreach R in gapLst do9

foreach Sid in seqLst do10
Repeat Step 2 to 4;11
if ∃X ∈ Ov, (X − Y) = R then12

cnt = cnt + 1;13
end14

end15
if cnt ≥ σ then16

return OK;17
end18

end19

Algorithm 3: Algorithm changes to mine rigid gap patterns

4 Constraints

The introduction of constraints in the gIL algorithm like min/max gap, window
size, items exclusion is a straightforward process and translates into a consid-
erable performance gain. These efficiency improvements are naturally expected
since (depending on the values of the constraints) the search space can be greatly
reduced. The introduction of substitution sets is also very easy to achieve. Im-
plementing events exclusion constraint and substitution sets turns out to be a
natural operation. Simple changes in the Bitmap Matrix (that guides the se-
quence extension) and in the Offset Matrix (discriminates the positions of the
events in every sequence where they occur) enable this implementations. The new
features are introduced between the scanning phase and the sequence extension
phase. The min/max gap and window constraints constitute an additional to be
applied when the sequence is extended.

8 Pedro Gabriel Ferreira Paulo J. Azevedo

4.1 Events Exclusion, Start Events and Substitution Sets

The event exclusion constraint is applied by traversing the rows and columns
of the Bitmap Matrix where the excluded events occurs. At that positions the
support 1 count variable in the respective cells is set to zero. Start events con-
straints are also straightforwardly implemented by allowing extensions only to
the events in StartEventSets.

When substitution sets are activated, one or more sets of equivalent events
are available. For each set of equivalent events one has to form the union of
the rows (horizontal union) and columns (vertical union) in the Bitmap Matrix,
where those events occur. The vertical union is similar to the horizontal union.
Moreover, for all the equivalent events, one needs to pairwisely intersect the
sequences where they occur and then perform the union of the offsetLists for
the intersected sequences. This results in the new offsetLists of the equivalent
events.

4.2 Min / Max Gap and Window Size

These constraints are trivially introduced in the ”Order Test”. In algorithm 2, the
test in line 8 is extended with three additional tests: (X−Y) < maxGap AND (X−
Y) > minGap AND (X − W) < windowSize.

5 Experimental Evaluation

We evaluated our algorithm along different variables using two collections of
synthetic and real datasets. To generate the synthetic datasets we developed a
sequence generator based on the Zipfian distribution. This generator receives
the following parameters (see table 1(a)): number of sequences, average length
of the sequences, alphabet size and a parameter p that expresses the skewness
of the distribution. This generator has allowed us to generate sequences with a
relative small alphabet. The evaluated variables for this datasets were: support,
dataset size (number of sequences), and sequence size. Additionally, we tested the
mushroom dataset used at the FIMI workshop [4]. To represent real life data, we
used several datasets of proteins. The Yeast (saccharomyces cerevisiae) dataset
is available at [5] and PSSP used for protein secondary structure prediction [3].
We also used a subset of the non Outer Membrane proteins obtained from [8].
The properties for this datasets are summarized in table 1(b). It is interesting
to notice that, for all datasets, gIL’s scanning phase time is residual (less than
0.4 seconds).

Since gIL finds two types of patterns we performed evaluation against two
different algorithms. Both are in memory algorithms, assuming that the database
completely fits into main memory. For the arbitrary gap patterns from the all
patterns class we compared gIL with the SPAM [1] algorithm. SPAM has shown

1 Future interactions on this dataset still have the Bitmap Matrix intact since the
bitmaps remain unchanged

Protein Sequence Pattern Mining with Constraints 9

Symbol Meaning

S Number of Sequences (x 103)

L Avg. Length of the sequences

R Alphabet Size

P Distribution Skewness

DataSet NumSeq AlphabetSize AvgLen MinLen MaxLen

Yeast 393 21 256 15 1859

PSSP 396 22 158 21 577

nonOM 60 20 349 53 1161

mushroom 8124 120 23 23 23

Table 1. (a) Parameters used in the synthetic data generator; (b) Properties of the
proteins datasets

to outperform SPADE [11] and PrefixSpan [7] and is a state-of-the-art algorithm
in transactional sequence pattern mining. The datasets suffer a conversion into
the transactional dataset format, in order to be processed by SPAM. In this
conversion each customer is considered as a sequence and each itemset contains
a unique item (event).

For the rigid gap patterns we compared gIL with Teiresias [6], a well known
algorithm from the bioinformatics community. It can be obtained from [2]. It is,
as far as we know, the most complete and efficient algorithm for mining closed
(called ”most specific” in their paper) frequent rigid gap patterns. Closed pat-
terns are a subset of all frequent sequence patterns. In this sense, gIL (which
derives all patterns) tackles a more general problem and consequently considers
a much larger search space than Teiresias. Besides minimum support, Teiresias
uses two additional parameters. L and W are respectively the number of non-wild
cards events in a pattern and the maximum spanning between two consecutive
events. Since gIL starts by enumerating patterns with size 2, we will set L=2
and W to the maxGap value. All the experiments2 were performed using exact
discovery, i.e. without the use of substitution sets, and on a 1.5GHz Intel Cen-
trino machine with 512MB of main memory, running windows XP Professional.
The applications were written in C/C++ language.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 0.1 0.2 0.3 0.4 0.5

T
im

e
 (

S
e
c
s
)

Support (x 100)%

Zipf-L60-R20-P0 Num. Seq: 1K

gIL
SPAM

 0

 500

 1000

 1500

 2000

 2500

 3000

 0.1 0.2 0.3 0.4 0.5

T
im

e
 (

S
e
c
s
)

Support (x 100)%

Zipf-L60-R20-P0 Num. Seq: 2K

gIL
SPAM

 0

 100

 200

 300

 400

 500

 1 2 3 4 5 6 7 8

T
im

e
 (

S
e
c
s
)

DataBase Size (x 103 Sequences)

Zipf-L60-R20-P0 Sup = 30%

gIL
SPAM

Fig. 2. (a) Support variation with Zipf database size=1K; (b) Support variation with
Zipf database size=2K; (c) Scalability of gIL w.r.t. database size with a support of 30%

2 Further details and results can be obtained from an extended version of this paper.

10 Pedro Gabriel Ferreira Paulo J. Azevedo

5.1 Arbitrary Gap Patterns Evaluation

 0

 500

 1000

 1500

 2000

 0.04 0.06 0.08 0.1

T
im

e
 (

S
e
c
o
n
d
s
)

Support (x 100)%

Mushroom (Flexible Patterns)

gIL
SPAM

 0

 100

 200

 300

 400

 500

 0.15 0.2 0.25 0.3

T
im

e
 (

S
e
c
s
)

Support (x 100)%

Zipf-L*-R20-P0 Num. Seq: 1K maxGap=15

128
256
320
512
640

 0

 20

 40

 60

 80

 100

 25 50 75 100 125 150 175 200

R
e
la

ti
v
e
 T

im
e
 %

Constraint value

PSSP: maxGap and window Constraints

maxGap
Window

Fig. 3. (a) Support variation for the Mushroom dataset; (b) Scalability of gIL w.r.t
sequence size for different support values (c) Performance evaluation using maxgap and
windowgap constraints;

We start by comparing the efficiency of SPAM with the gIL algorithm without
constraints. In figure 2(a) and 2(b) we tested different values of support for two
datasets of 1K and 2K respectively. The sequences have an average length of
60 and an alphabet of 20 events. It was clear in these two experiments that for
relative smaller dataset sizes and lower support values gIL becomes more efficient
than SPAM. Figure 2(c) shows the scalability of the algorithms in respect to the
dataset size for a support of 30%. This graphic shows that gIL scales well in
relation to the dataset size.

In order to test a dataset with different characteristics, namely larger alpha-
bet size, small length and greater dataset size, we used the Mushroom dataset,
see figure 3(a). In figure 3(b) we have runtimes of gIL for datasets with one
thousand sequences and different values of average sequence length. It was im-
posed a maxGap constraint of 15. As we observed during all the experiments,
there is a critical point in the support variation, typically between 10% and 20%,
that translates into an explosion of number of frequent patterns. This leads to
an exponential behaviour in the algorithm’s runtime. Even so, we can see that
gIL shows similar behaviour for the different values of sequence length. Figure
3(c) measures the relative performance time, i.e. the ratio between the mining
time with constraints and without constraints. These values were obtained for
a support of 70%. Runtime without constraints was 305 seconds. It describes
the behaviour of the algorithm when decreasing the maxGap and the Window
values.

In respect to memory usage both algorithms showed a low memory demand
for all the datasets. For the Mushroom dataset which was the most demanding
in terms of memory, SPAM used a maximum of 9 MB for a support of 4% and
gIL a constant memory usage of 26 MB for all the support values. gIL shows a
constant and support independent memory usage since once the data structures
are built for a given dataset they remain unchanged.

Protein Sequence Pattern Mining with Constraints 11

5.2 Rigid Gap Patterns Evaluation

 0

 100

 200

 300

 400

 500

 0.05 0.1 0.15 0.2

T
im

e
 (

S
e
c
o
n
d
s
)

Support (x 100)%

Yeast (Rigid Patterns) L=2 W=10

gIL
Teiresias

 0

 100

 200

 300

 400

 500

 600

 0.1 0.15 0.2 0.25 0.3

T
im

e
 (

S
e
c
o
n
d
s
)

Support (x 100)%

Yeast (Rigid Patterns) L=2 W=15

gIL
Teiresias

 0

 20

 40

 60

 80

 100

 120

 140

 0.1 0.15 0.2 0.25 0.3

T
im

e
 (

S
e
c
o
n
d
s
)

Support (x 100)%

PSSP (Rigid Patterns) L=2 W=15

gIL
Teiresias

Fig. 4. (a) Support variation for the Yeast dataset, with L=2 and W(maxGap) =
10; (b) Support variation for the Yeast dataset, with L=2 and W(maxGap) = 15; (c)
Support variation for the PSSP dataset, with L=2 and W(maxGap) = 15

In order to assess the performance of gIL in the mining of rigid gap pat-
terns we compared it with Teiresias [6], for different proteins datasets. In figure
4(a) and 4(b) the Yeast dataset was evaluated for two values of maxGap(W),
10 and 15. The results showed that gIL outperforms Teiresias by an order of
magnitude. When comparing the performance of the algorithms in relation to
the PSSP (figure 4(c)) and the nonOM (figure 5(a)) datasets, for a maxGap of
15, gIL outperforms Teiresias by a factor of 2 in the first case. This difference
becomes more significant in the second case. The nonOM dataset has a greater
average sequence length, but a small dataset size. This last characteristic results
into a smaller bitmap length yielding a significant performance improvement. As
we already verified in the arbitrary gap experiments, gIL memory usage main-
tains nearly constant for all the tested support values (figure 5(b)). Figure 5(c)
shows the linear scalability of gIL in relation to the number of frequent sequence
patterns.

6 Conclusions

We presented an algorithm called gIL, suitable to work with databases of linear
sequences with a long average length and a relative small alphabet size. Our
experiments showed that for the particular case of the proteins datasets, gIL ex-
hibits superior performance to state-of-the-art algorithms. The algorithm has a
high adaptability, and thus it was easily changed to extract two different types of
patterns: arbitrary and rigid gap patterns. Furthermore, the data organization
allows a straightforward implementation of constraints and substitution sets.
These features are pushed directly into the mining process, which in some cases
enables the mining in useful time of otherwise untractable problems. In this sense
gIL is an interesting and powerful algorithm to be applied in a broader range

12 Pedro Gabriel Ferreira Paulo J. Azevedo

 0

 50

 100

 150

 200

 250

 300

 0.1 0.15 0.2 0.25 0.3

T
im

e
 (

S
e
c
o
n
d
s
)

Support (x 100)%

nonOM (Rigid Patterns) L=2 W=15

gIL
Teiresias

 0

 5

 10

 15

 20

 25

 30

 35

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M
e
m

o
ry

 (
M

B
)

Support (x 100)%

Yeast (Rigid Patterns) L=2 W=5

gIL
Teiresias

 0

 5

 10

 15

 20

 20 40 60 80

T
im

e
 (

S
e
c
o
n
d
s
)

Num. of Freq. Seq. Patterns x1000

Yeast (Rigid Patterns) L=2 MaxGap=5

gIL

Fig. 5. (a) Support variation for the nonOM dataset, with L=2 and W(maxGap) = 15;
(b) Memory usage for the Yeast dataset, with L=2 and W(maxGap) = 5; (c) Scalability
of gIL w.r.t number of sequences for the Yeast dataset

of domains and in particular suitable for biological data. Thus, even when per-
forming extensions an event at a time (using a smart combination of some of the
most efficient techniques that have been used in the task of itemset and sequence
mining) one can obtain an algorithm that efficiently handles the explosive nature
of pattern search, inherent to the biological sequence datasets.

References

1. J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining using a
bitmap representation. In Proceedings of the 8th SIGKDD International Confer-

ence on KDD and Data Mining, 2002.

2. IBM Bioinformatics. Teiresias. http://www.research.ibm.com/bioinformatics/.
3. James Cuff and Geoffrey J. Barton. Evaluation and improvement of multiple se-

quence methods for protein secondary structure prediction. In PROTEINS: Struc-

ture, Function, and Genetics, number 34. WILEY-LISS, INC, 1999.
4. Fimi. Fimi workshop 2003 (mushroom dataset). http://fimi.cs.helsinki.fi/fimi03.
5. GenBank. yeast (saccharomyces cerevisiae). www.maths.uq.edu.au.
6. A.Floratos I. Rigoutsos. Combinatorial pattern discovery in biological sequences:

the teiresias algorithm. Bioinformatics, 1(14), January 1998.
7. J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. Pre-

fixSpan: Mining sequential patterns efficiently by prefix projected pattern growth.
In Proceedings of the International Conference on Data Engineering, ICDE 2001.

8. Psort. Psort database. http://www.psort.org/.
9. Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns: General-

izations and performance improvements. In Proceedings 5th International Confer-

ence on Extending DataBase Technology, 1996.
10. Mohammed J. Zaki. Sequence mining in categorical domains: Incorporating con-

straints. In In Proceedings of 9th International Conference on Information and

Knowledge Management, CIKM 2000.
11. Mohammed J. Zaki. Spade: An efficient algorithm for mining frequent sequences.

Machine Learning, 42(1-2):31–60, 2001.

