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Abstract: This paper aims to compare primal-dual interior point multidimensional filter line search methods for
nonlinear programming. The multidimensional filter is based on the constraint violations and aims to enforce
their convergence to zero. To prevent convergence to feasible nonoptimal points a standard monotone sufficient
reduction condition is also imposed on the barrier function for a trial iterate to be acceptable. Nonmonotone
reduction conditions that allow an increase in the filter entries and in the barrier function at each iteration are also
implemented. Numerical experiments with both variants as well as a comparison with a merit function approach
are reported.
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1 Introduction
A primal-dual interior point method for nonlinear op-
timization that relies on a filter line search strategy to
allow convergence from poor starting points is pro-
posed. Some line search frameworks use penalty
merit functions to enforce progress toward the solu-
tion.

Recently Fletcher and Leyffer [5] proposed a fil-
ter method, as an alternative to merit functions, as a
tool to guarantee global convergence in algorithms for
nonlinear constrained optimization [4, 6]. This tech-
nique incorporates the concept of nondominance to
build a filter that is able to accept trial points if they
improve the objective function or the constraints vio-
lation instead of a combination of those two measures
defined by a merit function.

Thus the filter replaces the use of a merit func-
tion. The update of a penalty parameter that is associ-
ated with the penalization of the constraints in a merit
function is avoided.

The filter technique has been already adapted to
unconstrained optimization [7], as well as to inte-
rior point methods in different ways. A filter with
two entries in a trust region context is presented in
[11], while authors in [13, 14, 15] propose a filter
line search approach. In these papers, the filter com-
ponents are the barrier function and the norm of the
constraints violation. Another extension of the filter
approach to interior point methods defines three com-
ponents for the filter measuring feasibility, comple-

mentarity and optimality [2, 3]. These measures come
naturally from the optimality conditions of the barrier
problem.

In this paper we propose a primal-dual interior
point method with a multidimensional filter technique
in a line search implementation. The goal of this
multidimensional filter is to encourage convergence
to primal feasibility points by enforcing every con-
straint violation to zero. For nearly feasible points,
the method also guarantees a monotonic decrease of
the barrier function.

However, enforcing monotonicity of the involved
measures can slow the rate of convergence. So, a non-
monotone strategy, similar to that proposed in [8], is
incorporated in the trial point acceptability conditions
of the algorithm. The nonmonotone line search tech-
nique that has been successfully applied in an uncon-
strained optimization context [8, 9] and in systems of
nonlinear equations [1] can be viewed as a generaliza-
tion of the standard sufficient reduction conditions in
the sense that the conditions that are used to define a
new acceptable point are relaxed without affecting the
convergence properties.

The paper is organized as follows. Section 2
briefly describes the interior point framework, Section
3 presents the herein proposed multidimensional fil-
ter line search method and Section 4 summarizes the
nonmonotone sufficient reduction conditions. Section
5 contains the numerical experiments and the conclu-
sions and future developments make Section 6.



2 The Interior Point Framework
Here we consider the formulation of a nonlinear cons-
trained optimization problem with simple bounds as
follows:

minx∈IRn F (x)
s.t. b ≤ h(x) ≤ b + r

l ≤ x ≤ u
(1)

where hj : IRn → IR for j = 1, . . . ,m and F :
IRn → IR are nonlinear and twice continuously dif-
ferentiable functions. r is the vector of ranges on
the constraints h, u and l are the vectors of upper
and lower bounds on the variables and b is assumed
to be a finite real vector. Elements of the vector r,
l and u are real numbers subject to the following
limitations: 0 ≤ rj ≤ ∞, −∞ ≤ li, ui ≤ ∞ for
j = 1, . . . ,m, i = 1, . . . , n. Constraints of the form
b ≤ h(x) ≤ b + r are denoted by range constraints.
When upper and lower bounds on the x variables
do not exist, the vector x is considered free. Equa-
lity constraints are treated as range constraints with
r = 0.

This section briefly describes an infeasible
primal-dual interior point method for solving (1). We
refer to [12] for details. Adding nonnegative slack
variables w, p, g and t, problem (1) becomes

min F (x)
s.t. h(x)−w = b

h(x) + p = b + r
x− g = l
x + t = u

w,p, g, t ≥ 0.

(2)

Incorporating the nonnegativity constraints in
logarithmic barrier terms in the objective function,
problem (2) is transformed into

min bµ ≡ F (x)− µ
m∑

j=1
ln(wj)− µ

m∑
j=1

ln(pj)−

−µ
n∑

i=1
ln(gi)− µ

n∑
i=1

ln(ti)

(3)
subject to the same set of equality constraints, where
bµ is the barrier function and µ is a positive barrier
parameter. This is the barrier problem associated with
(1). Under acceptable assumptions, the sequence of
solutions of the barrier problem converges to the so-
lution of the problem (1) when µ ↘ 0. Thus primal-
dual interior point methods aim to solve a sequence
of barrier problems for a positive decreasing sequence
of µ values. Optimality conditions for the barrier pro-

blem produce the standard primal-dual system

∇F (x)−∇h(x)Ty − z + s = 0
y + q − v = 0

WVe1 = µe1

PQe1 = µe1

GZe2 = µe2

TSe2 = µe2

h(x)−w − b = 0
w + p− r = 0
x− g − l = 0

x + t− u = 0,

(4)

where v, q, z and s are the dual variables, ∇F (x)
is the gradient vector of F (x), ∇h(x) is the Jaco-
bian matrix of the constraints h, W = diag(wj), P =
diag(pj), G = diag(gi), T = diag(ti), V = diag(vj),
Q = diag(qj), Z = diag(zi) and S = diag(si) are
diagonal matrices, y = v − q, e1 and e2 are m and n
vectors of all ones. The first two equations define the
conditions of dual feasibility, the next four equations
are the µ-complementarity conditions and the last four
define the primal feasibility. This is a nonlinear sys-
tem of 5n + 5m equations in 5n + 5m unknowns.

Applying the Newton’s method to solve (4), we
obtain the system of equations

−H(x,y)∆x + ∇h(x)T∆y + ∆z −∆s =
= ∇F (x)−∇h(x)Ty − z + s

∆y −∆q + ∆v = y + q − v
∆w + V−1W∆v = µV−1e1 −w
P−1Q∆p + ∆q = µP−1e1 − q
G−1Z∆g + ∆z = µG−1e2 − z
T−1S∆t + ∆s = µT−1e2 − s
∇h(x)∆x−∆w = w + b− h(x)
∆p + ∆w = r −w − p
∆x−∆g = l− x + g
∆x + ∆t = u− x− t

(5)

for the Newton directions ∆x,∆s,∆z,∆g,∆t,
∆y,∆w,∆p,∆q and ∆v, where H(x,y) =

∇2F (x)−
m∑

j=1
yj∇2hj(x).

For easy of presentation we introduce the follow-
ing notations:

ρ ≡ w + b− h(x)
α ≡ r −w − p
υ ≡ l− x + g
τ ≡ u− x− t.

(6)

In a line search context, and after the search di-
rections have been computed, the algorithm proceeds
iteratively, choosing a step size αk ∈ (0, αmax

k ] at



each iteration and determining the new iterates by
xk+1 = xk + αk∆xk, sk+1 = sk + αk∆sk, . . . ,
vk+1 = vk + αk∆vk. αmax

k is the longest step size
that can be taken, with an upper bound of 1, along
these directions to assure the nonnegativity of the
slack and dual variables.

Implementation details to provide initial values
for all the variables in this interior point paradigm as
well as to solve system (5) and to compute µ and αmax

are described in [12].
The procedure that decides which trial step size

is accepted in this interior point method is a multidi-
mensional filter line search method.

3 Multidimensional Filter Line
Search Method

In this section we briefly present the main ideas of a
multidimensional entry filter method based on a line
search approach. To abbreviate the notation we set

u = (x,w,p, g, t,y,v, q, s,z),
u1 = (x,w,p, g, t),
∆ = (∆x,∆w,∆p,∆g,∆t,∆y,∆v,∆q,∆s,∆z),
∆1 = (∆x,∆w,∆p,∆g,∆t),
h = (ρ,α,υ, τ ).

To adapt the methodology of a multidimensional
filter as given in [7] to this interior point method, and
to encourage convergence to feasible points, we pro-
pose the use of the 2m + 2n elements of the vector h
as the filter entries. These components measure pri-
mal infeasibility as stated in the optimality conditions
(4).

The notion of filter is based on that of dominance.
In our case, a point u+ is said to dominate a point u−
whenever

|hi(u1
+)| ≤ |hi(u1

−)| for all i = 1, . . . , 2m + 2n.

Filter methods aim to accept a new trial point if it
is not dominated by any other point in the filter.

After a search direction ∆k has been computed,
the line search method considers a backtracking pro-
cedure, where a decreasing sequence of step sizes αk,l

∈ (0, αmax
k ] (l = 0, 1, ...), with liml αk,l = 0, is tried

until an acceptance criterion is satisfied. Here, we use
l to denote the iteration counter for the inner loop.

3.1 Sufficient reduction
Line search methods that use a merit function ensure
sufficient progress toward the solution by imposing

that the merit function value at each new iterate sa-
tisfies an Armijo condition with respect to the current
iterate.

Adopting this idea, we consider the trial iterate
uk(αk,l) = uk +αk,l∆k during the backtracking line
search technique to be acceptable if it leads to suffi-
cient progress in one of the 2m + 2n following mea-
sures compared to the current iterate, i.e., if

|hi(u1
k(αk,l))| ≤ (1− γf ) |hi(u1

k)| (7)

holds for some i ∈ I and fixed constant γf ∈ (0, 1),
where I = {1, . . . , 2m + 2n}.

However, to prevent convergence to a feasible
point that is nonoptimal, and whenever, for the cur-
rent iterate, we have

|hi(u1
k)| ≤ h

min
i and ∇bµ(u1

k)
T∆1

k < 0 (8)

for some h
min
i ∈ (0,∞], for all i ∈ I , the following

sufficient reduction criterion on the barrier function is
imposed on the trial point u1

k(αk,l):

bµ(u1
k(αk,l)) ≤ bµ(u1

k) + ηbαk,l∇bµ(u1
k)

T∆1
k (9)

instead of (7). Here ηb ∈ (0, 0.5) is a constant. Ac-
cording to a previous publication on filter methods [4],
we call a trial step size αk,l for which (8) holds, a “bµ-
step”. Similarly, if a “bµ-step” is accepted as the final
step size αk in iteration k, we refer to k as a “bµ-type
iteration”.

3.2 The filter definition
At each iteration k, the algorithm also maintains a fil-
ter, here denoted by

F k ⊆
{
h ∈ IR2m+2n : |hi| ≥ 0, for all i ∈ I

}
.

Following the ideas in [13, 14, 15], the filter here
is not defined by a list but as a set F k that contains
those combinations of values of h1,. . ., h2m+2n that
are prohibited for a successful trial point in iteration
k. Thus a trial point uk(αk,l) is rejected, if(

h1(u1
k(αk,l)), . . . , h2m+2n(u1

k(αk,l))
)
∈ F k.

At the beginning of the optimization, the filter is
initialized to

F k ⊆
{
h ∈ IR2m+2n : |hi| ≥ h

max
i , for all i ∈ I

}
(10)

for sufficiently large positive constants
h

max
1 , . . . , h

max
2m+2n, so that the algorithm will

never accept trial points that have values of h1,. . .,
h2m+2n larger than h

max
1 , . . . , h

max
2m+2n, respectively.



The filter is augmented, using the update formula

F k+1 = F k ∪
{
h ∈ IR2m+2n :

|hi| > (1− γf ) |hi(u1
k)|, for all i ∈ I

}
(11)

after every iteration in which the accepted trial step
size satisfies (7). On the other hand, if (8) and (9)
hold for the accepted step size, the filter remains un-
changed.

Finally, in some iterations it is not possible to find
a trial step size αk,l that satisfies the above criteria.
If the backtracking multidimensional line search tech-
nique finds a trial step size αk,l < αmin, the filter is
reset to the initial set.

Our interior point multidimensional filter line
search algorithm for solving constrained optimization
problems is as follows:

Algorithm 1
Given: Starting point u0, constants h

min
i > 0, hmax

i >
0, for all i ∈ I , γf ∈ (0, 1), ηb ∈ (0, 0.5), αmin > 0.

1. Initialize. Initialize the filter (using (10)) and set
k ← 0.

2. Check convergence. Stop if the relative measures
of primal and dual infeasibilities are less or equal
to 10−4.

3. Compute search direction. Compute the search
direction ∆k from the linear system (5).

4. Backtracking line search.

4.1 Initialize line search. Compute the longest
step size αmax

k to ensure positivity of slack
and dual variables. Set l ← 0, αk,l =
αmax

k .
4.2 Compute new trial point. If the trial step

size becomes too small, i.e., αk,l < αmin,
go to step 8. Otherwise, compute the trial
point uk(αk,l).

4.3 Check acceptability to the filter. If(
h1(u1

k(αk,l)), . . . , h2m+2n(u1
k(αk,l))

)
∈

F k, reject the trial step size and go to step
4.6.

4.4 Check sufficient decrease with respect to
current iterate. If (7) holds, accept the trial
step and go to step 5. Otherwise go to step
4.6.

4.5 Check sufficient decrease with respect to
current iterate. If αk,l is a bµ-step size ((8)
holds) and the Armijo condition (9) for the
bµ function holds, accept the trial step and
go to step 5.

4.6 Choose new trial step size. Set αk,l+1 =
αk,l/2, l← l + 1, and go back to step 4.2.

5. Accept trial point. Set αk ← αk,l and uk ←
uk(αk).

6. Augment the filter if necessary. If k is not a
bµ-type iteration, augment the filter using (11).
Otherwise, leave the filter unchanged.

7. Continue with next iteration. Increase the itera-
tion counter k ← k + 1 and go back to step 2.

8. Reset the filter. Reset the filter using (10) and
continue with the regular iteration in step 7.

4 Nonmonotone sufficient reduction
conditions

Nonmonotone line search methods that use a merit
function ensure sufficient progress toward the solution
by imposing that the merit function value at each new
iterate satisfies an Armijo condition with respect to
the maximum merit function value of a prefixed num-
ber of previous iterates. We refer to [8] for details.
Thus, the standard condition which implies a mono-
tonic decrease of the merit function is relaxed without
affecting the global convergence.

Adapting this idea to the multidimensional filter
approach, a trial iterate uk(αk,l) = uk + αk,l∆k

in the backtracking nonmonotone line search tech-
nique is considered acceptable, if it leads to sufficient
progress in one of the following measures, when com-
pared to a previous iterate that yields the maximum
value of the corresponding measure within the last
m(k) iterates, where m(0) = 0 and 0 ≤ m(k) ≤
min{m(k − 1) + 1,M}, k ≥ 1 (M is a nonnegative
integer), i.e., if

|hi(u1
k(αk,l))| ≤ (1− γf ) hi,max (12)

holds for some i ∈ I where

hi,max = max
0≤j≤m(k)

|hi(u1
k−j

)|.

The acceptability Armijo condition imposed on
the barrier function at the trial iterate u1

k(αk,l) is also
relaxed and given by

bµ(u1
k(αk,l)) ≤ max

0≤j≤m(k)
bµ(u1

k−j
)+ηbαk,l∇bµ(u1

k)T∆1
k

(13)
instead of (9).



Table 1: Numerical results
Filter method l2 merit function

Problem Nit Nfeas Nbµ Nit Nmf

HS1 24 27 26 24 27
HS2 42 44 25 42 44
HS3 1 2 0 1 2
HS4 5 6 2 5 6
HS5 12 120 119 9 26
HS6 8 9 1 8 9

HS10 (13) (14) (0) (13) (14)
HS11 8 23 15 8 9
HS12 15 32 17 15 16
HS14 8 9 0 8 9
HS15 (9) (10) (2) (18) (20)
HS16 (11) (12) (1) (11) (12)
HS17 5 6 2 7 10
HS18 11 12 0 12 76
HS19 25 26 0 31 48
HS20 (22) (23) 1 (22) (25)
HS21 5 6 0 5 6
HS23 26 29 4 31 78
HS24 15 16 11 16 19
HS27 16 17 0 17 70
HS28 6 7 0 6 7
HS30 8 9 0 8 9
HS31 13 24 14 13 14
HS32 8 9 2 8 34
HS33 10 11 2 10 11

The inclusion of the nonmonotone strategy also
affects the updating of the filter which in this case is:

F k+1 = F k ∪
{
h ∈ IR2m+2n :

|hi| > (1− γf ) hi,max, for all i ∈ I
}

.

(14)
The corresponding algorithm for the interior point

multidimensional filter method with the nonmonotone
line search strategy is similar to Algorithm 1. The ref-
erences to equations (7), (9) and (11) should be re-
placed by (12), (13) and (14) respectively. Further-
more, m(0) = 0 should be included in step 1 and the
updating formula m(k) = min{m(k − 1) + 1,M}
should precede the increase of the iteration counter k
in step 7.

5 Numerical experiments
We tested this interior point framework with a mul-
tidimensional filter line search technique on 50 small
constrained problems from the Hock and Schittkowski

Table 2: Numerical results (cont.)
Filter method l2 merit function

Problem Nit Nfeas Nbµ Nit Nmf

HS34 10 11 2 10 12
HS35 2 3 0 2 3
HS36 (9) (10) (2) (9) (10)
HS37 (14) (71) (70) (13) (14)
HS38 33 95 94 25 38
HS41 (26) (27) (21) (9) (11)
HS42 12 13 0 12 13
HS43 12 13 2 12 13
HS44 19 20 1 19 20
HS45 4 5 2 4 5
HS46 15 37 22 15 194
HS48 7 8 1 7 8
HS49 14 15 7 14 15
HS50 14 15 7 14 64
HS51 6 7 0 6 57
HS52 9 10 0 9 10
HS53 8 9 1 9 14
HS55 11 12 2 11 12
HS60 12 56 46 11 18
HS63 11 26 16 11 12
HS64 (54) (271) (232) (55) (235)
HS65 9 10 2 9 10
HS76 4 5 0 7 8
HS77 (18) (35) (19) (18) (48)
HS79 13 14 3 11 65

(HS) collection [10]. The tests were done in double
precision arithmetic with a Pentium 4 and Fortran 90.

First, we compare the standard monotone line
search strategy (Algorithm 1) with a similar interior
point method based on a l2 merit function approach.
Tables 1 and 2 summarize the results.

Some of the chosen values for the cons-
tants are similar to the ones used in [15]:
h

min
i = 10−4 max

{
1, |hi(u1

0)|
}

, h
max
i =

104 max
{
1, |hi(u1

0)|
}

, for all i ∈ I , γf = 10−5,

ηb = 10−4, αmin = 10−12.
The algorithms use a symmetric positive definite

quasi-Newton BFGS approximation to the matrix H.
In the first iteration, the iterative process uses a pos-
itive definite approximation to ∇2F (x0). However,
when this matrix is nearly singular or ill-conditioned
the identity matrix is used instead. Results inside
parenthesis in the tables were obtained with the iden-
tity matrix in the first iteration.

The tables report on values of the number of ite-
rations (Nit) needed to achieve a solution according



Table 3: Different filter nonmonotone results
Filter method

Problem Nit Nfeas Nbµ

HS1 32 35 34
HS5 14 104 103
HS11 8 9 1
HS12 15 16 1
HS15 (17) (18) (0)
HS23 27 28 4
HS31 13 14 4
HS37 (14) (16) (15)
HS38 32 40 39
HS46 15 16 1
HS60 12 13 3
HS64 (60) (165) (123)
HS77 (18) (19) (3)

to the convergence tolerance referred to in Algorithm
1, the number of h evaluations (Nfeas) and the num-
ber of bµ evaluations (Nbµ) in the filter method, and
the number of merit function evaluations (Nmf ) in the
merit function approach.

We may observe that the two methods behave
similarly on almost 50% of the problems. On the re-
maining problems, for example, HS5, HS11, HS12,
HS31, HS37, HS38, HS41, HS60, HS63 and HS64 the
number of function h evaluations in the filter method
exceeds the number of merit function evaluations in
the merit function approach. The opposite situation
occurs on the problems HS15, HS17, HS18, HS19,
HS20, HS23, HS24, HS27, HS32, HS34, HS46,
HS50, HS51, HS53, HS76, HS77 and HS79. We re-
mark that the l2 merit function depends on bµ and h
meaning that r merit function evaluations correspond
to r bµ evaluations and r h evaluations.

We now compare the monotone and the non-
monotone variants of the multidimensional filter
method. For the implementation of the nonmonotone
line search strategy, we considered M = 5. The
obtained results were similar for the majority of the
problems. Table 3 contains the list of the problems
with different results.

Based on the cumulative results illustrated in the
Table 4 we may observe that although the two filter
method variants require more iterations than the merit
function approach they gain in the number of barrier
function and constraints evaluations, in particular the
nonmonotone variant where significant reductions on
the Nfeas and Nbµ are registered.

A comparison based on CPU time could be more
appropriate in this case. However, as these prelimi-

Table 4: Cumulative results
Nit Nfeas Nbµ

Filter method (monotone) 672 1301 796
Filter method (nonmonotone) 696 964 447

l2 merit function 670 1510 1510

nary numerical experiments involve small problems,
CPU time registering is not an easy task. We intend to
go on testing the herein proposed method using larger
problems and in this situation CPU time measuring
will be adopted.

6 Conclusions
We present an interior point multidimensional filter
line search method for solving a nonlinear constrained
optimization problem. The novelty here is that a cer-
tain emphasis is given to primal feasibility measures
in order to consider a new iterate to be acceptable. Do-
ing this we avoid the need for a feasibility restoration
phase. However, whenever a trial iterate is consid-
ered feasible, according to a given tolerance, and the
appropriate search direction is descent for the barrier
function bµ, the algorithm imposes on the trial iterate
an Armijo condition in order to be acceptable.

Relaxed acceptability conditions were also im-
posed on the trial iterates breaking the standard mono-
tonicity requirements.

Both algorithms were tested with a set of small
problems and compared with a similar interior point
method based on a merit function approach. The nu-
merical experimentations favor the multidimensional
filter line search method in particular its nonmonotone
version.

Future developments will focus on the global con-
vergence analysis of the algorithm. The extension of
the multidimensional filter to an interior point method
needs an adequate theoretical understanding.
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