
A Multi-objective Approach to Solve the Build
Orientation Problem in Additive Manufacturing

Marina A. Matos1, Ana Maria A.C. Rocha1[0000−0001−8679−2886], Lino A.
Costa1[0000−0003−4772−4404], and Ana I. Pereira2[0000−0003−3803−2043]

1 ALGORITMI Center, University of Minho, 4710-057 Braga, Portugal
aniram@live.com.pt, arocha@dps.uminho.pt, lac@dps.uminho.pt

2 Research Centre in Digitalization and Intelligent Robotics (CeDRI), Polytechnic
Institute of Bragança, 5300-253 Bragança, Portugal

apereira@ipb.pt

Abstract. Additive manufacturing (AM) has been increasingly used
in the creation of three-dimensional objects, layer-by-layer, from three-
dimensional (3D) computer-aided design (CAD) models. The problem
of determining the 3D model printing orientation can lead to reduced
amount of supporting material, build time, costs associated with the de-
posited material, labor costs, and other factors. This problem has been
formulated and studied as a single-objective optimization problem. More
recently, due to the existence and relevance of considering multiple cri-
teria, multi-objective approaches have been developed.
In this paper, a multi-objective optimization approach is proposed to
solve the part build orientation problem taking into account the support
area characteristics and the build time. Therefore, the weighted Tcheby-
cheff scalarization method embedded in the Electromagnetism-like Algo-
rithm will be used to solve the part build orientation bi-objective prob-
lem of four 3D CAD models. The preliminary results seem promising
when analyzing the Pareto fronts obtained for the 3D CAD models con-
sidered. Concluding, the multi-objective approach effectively solved the
build orientation problem in AM, finding several compromise solutions.

Keywords: Additive Manufacturing, 3D Printing, Multi-objective Op-
timization, Build Orientation

1 Introduction

Additive manufacturing (AM) processes involve the use of three-dimensional
(3D) computer-aided design (CAD) data to create physical models. Typically,
AM is characterized by four processing stages: model orientation, creation of
supports, slicing, and path planning [17]. AM allows the production of a wide
range of shapes, with very complex geometries and not requiring many post-
processing actions. The layered manufacturing processes apply physical or chem-
ical phenomena to construct parts, adding layer-by-layer material. This type of
manufacture began in the years 80 by Kruth [10]. Currently, layered manufac-
turing processes are used in several areas such as medical sciences (e.g. dental



restorations and medical implants), jewelry, footwear industry, automotive in-
dustry and aircraft industry [16].

Over the years, the adoption of Rapid Prototyping (RP) technologies to fab-
ricate a prototype model from a CAD file has grown and has been implemented
in many model manufacturing companies due to its effectiveness in the prototype
model development at a reduced time [2]. The performance of an RP depends
on the orientation of the parts on the printer platform, that is, each piece must
have the correct orientation in order to improve the surface quality, minimize
the number of support structures and minimize the manufacturing time [19].

The automatic selection of the best orientation manages to reduce or elimi-
nate errors involved throughout the model construction process [22]. The selec-
tion of the best orientation is a very important factor because affects the time
and print quality, amount of supporting material, shrinkage, distortion, resin
flow, material cost, volume and support area and has a better precision of the
model [16,23]. Several approaches have been carried out to determine the orien-
tation of a model based on single-objective optimization. Usually the objective
functions used for optimal build orientation were the build height, staircase ef-
fect, volumetric error, volume of support structures and part area in contact
with support structures, surface quality, surface roughness and build deposition
time [2,3,11,14,18,19,22].

Recently, multi-objective approaches have been developed to determine the
optimal object building orientation, essentially by reducing the multi-objective
problem to a single-objective one using classical scalarization methods such as
the weighted sum method. Cheng et al. [4] formulated a multi-objective opti-
mization problem focused on the surface quality and production cost of the parts,
obtaining solutions for all types of surfaces, whether with complex geometries
or not, or even for curved surfaces. The Particle Swarm Optimization (PSO)
algorithm was used in [12] to solve a multi-objective optimization problem in
order to get the desired orientations for the support area, build time and sur-
face roughness. A multi-objective optimization approach considering as objective
functions the surface roughness and the build time, for different models, was de-
veloped by Padhye and Deb in [15]. They used the NSGA-II (Non-dominated
Sorting Genetic Algorithm) and MOPSO (Multi-Objective Particle Swarm Opti-
mization) algorithms to obtain the Pareto front. Gurrala and Regalla [7] applied
the NSGA-II algorithm to optimize the strength of the model and its volumetric
shrinkage as objective functions. They concluded, through the Pareto front, that
with the shrinkage of the part its strength increases in the horizontal and verti-
cal directions. A genetic algorithm was used in [1] for solving a multi-objective
build orientation problem. They optimized several variables, yield and tensile
strength, elongation and vickers hardness, for material properties used, surface
roughness, support structure and build time and cost.

In this paper, we propose a multi-objective optimization approach to opti-
mize the support area and the build time in order to get the best orientation
of 3D CAD models using the Electromagnetism-like algorithm combined with
weighted Tchebycheff scalarization method is proposed. The weighted Tcheby-



cheff method was selected since it can be used to solve problems with nonconvex
Pareto fronts and can find non-extreme solutions (trade-offs) in the presence of
multiple conflicting criteria. Four models previously used in a single-objective
context will be used [19].

This paper is organized as follows. Section 2 introduces the build orientation
optimization problem and the multi-objective optimization approach used in
this study. The description of the models used in the numerical experiments, the
Pareto fronts obtained for each model as well as an appropriate discussion for
each one is presented in Sect. 3. Finally, Sect. 4 presents the conclusions of this
study and the future work.

2 Optimization Problem

2.1 Part Orientation

The surface finish of an object obtained through additive manufacturing process
is highly important. A good surface finish can decrease or even eliminate time
spent in subsequent post-processing (finishing). Part orientation can affect the
surface finish due to the slicing process and the support material usage in the
build of the part. Rotating a part to a different orientation can decrease the
support usage and build time of a part.

One of the problems affecting the surface finish of the part is the staircase
effect. The layer thickness have an impact on the staircase effect, since the smaller
the thickness of the model layer the staircase effect will also be smaller, resulting
in a better surface finish. This effect is related to the cusp height (CH) that is
based on the maximum distance between the part surface and the model surface
[13] (see Fig. 1). The CH is given by CH = t cos (θ), where t is the layer thickness
and θ is the angle between the part surface and the CH.

Fig. 1: Cusp Height

In addition, the CAD model area is also very important for the construction
of the part. For some functions, a direction vector d is required and is calculated



by x2 + y2 + z2 = 1, where the variables x, y, and z are given by (1):

d =

x = sinβ × cosα
y = sinβ × sinα
z = cosβ

(1)

Figure 2 shows the unit direction vector d with the variables represented.

Fig. 2: Unit direction vector of build orientation [9].

2.2 Objective Functions

There are different measures that can be considered to determine the best build
orientation for an improvement of the surface finish. Some of them take into
account factors as the part accuracy, building time, structure support and part
stability. The build orientation of a model can improve the accuracy of the part
and reduce the number of generated supports, and consequently decrease the
final building costs. At the same time, the construction/build time should be
reduced in order to decrease the final building costs too. Thus, in this study
a multi-objective optimization to determine the build orientation of a 3D CAD
model according to two factors: the support area and the build time will be used.

The support area is defined as the total area of the downward-facing facets,
that is, the quantity of supports to be used in the construction of the part, mea-
sured through the total contact area of the external supports with the object. In
fact, the support area mostly affects post-processing and superficial finish [9,19].

The support area (SA) can be defined by

SA =
∑
i

Ai

∣∣dTni∣∣ δ (2)

δ =

{
1, if dTni < 0

0, if dTni > 0

where Ai is the area of the triangular face i, d is the unit vector of the direction of
construction of the triangular face i, ni is the normal unit vector of the triangular
face i and δ is the initial function [9]. In this study, it was considered the vector



d = (0, 0, 1)T to be the direction of slicing after a rotation along the angles (x, y),
taking into account that each angle is between 0 and 180 degrees.

The build time includes the scanning time of the solid, the scanning time
of the solid contours and the scanning time of the support needed for the part,
where the scanning times of the solid and its contours are independent of the
construction direction, and the scanning time of the support depends on your
volume.

The preparation time of the piece encompasses the precise time for the plat-
form to move downwards during the construction of each layer, the scraping
time of this and other times of preparation of the part. This time depends on
the total number of slices of the solid, the number of slices dependent on the
height of the construction direction of a particular part of the piece. Therefore,
minimizing this height and the number of layers, can decrease the construction
time of the part [9,19].

The build time (BT) is given by (3):

BT = max(dT v1, d
T v2, d

T v3)−min(dT v1, d
T v2, d

T v3) (3)

where d is the direction vector and v1, v2, v3 are the vertex triangle facets.

2.3 Multi-objective Approach

Based on the part build orientation problem, the multi-objective optimization
intends to simultaneously minimize the support area and the build time, defined
in equations (2) and (3). The general multi-objective optimization problem is
formulated as

min f(θx, θy) = {f1(θx, θy), f2(θx, θy)}
s.t. 0 ≤ θx ≤ 180

0 ≤ θy ≤ 180
(4)

where the objective functions f1(θx, θy) and f2(θx, θy) are, respectively, the sup-
port area, SA in (2), and the part building time, BT in (3). In this problem, the
θx and θy are the rotation along the x-axis and the y-axis, respectively.

Approximating the Pareto optimal set is the main goal of a multi-objective
optimization algorithm. A first attempt to solve this problem is to reformulate
the multi-objective optimization problem to a single-objective one using a scalar-
ization method in order to obtain different trade-offs between the objectives [8].
In scalarization methods, weights and/or goals are introduced. The simplicity is
the main advantage of the weighted sum method based on the linear combina-
tion of the objectives. However, in the case of problems with nonconvex fronts, it
is not possible to find non-supported solutions since there is no weights yielding
these elements of the Pareto set.

In this paper, the weighted Tchebycheff scalarization method will be applied
since it is suitable to tackle nonconvex problems. In this method, introduced by
Steuer and Choo [21] , the L∞ norm is minimized, i.e., the maximum distance
to a reference point (or aspiration levels) is minimized. This method can be
used as an a posteriori approach in which the decision making process takes



place after the search. In this case, the reference point is defined as the ideal
vector and the weights are uniformly varied to obtain different trade-offs. The
ideal vector can be computed by determining the optimum of each objective.
In this manner, after the search, a set of Pareto optimal solutions is presented
as alternatives and the decision maker can identify the compromises and choose
according to his/her preferences. A disadvantage of the weighted Tchebycheff
method is, however, that in addition to the non-dominated points also weakly
non-dominated points can be found [5].

The weighted Tchebycheff method is defined by:

min maxi=1,...,k [wi(fi(x)− z?i )]
s.t. x ∈ χ, (5)

where k is the number of objective functions, wi are the components of the
weights vector, fi is the i−th objective function, z?i are the components of the
ideal vector and χ is the feasible set of the decision vectors.

Finally, the single-objective optimization problem to be solved, that resulted
from a transformation of the multi-objective problem (4) through the weighted
Tchebycheff scalarization method, is given by

min max {w1(f1(x)− z?1), w2(f2(x)− z?2)}
s.t. 0 ≤ θx ≤ 180

0 ≤ θy ≤ 180.
(6)

In this study, we are interested in the Electromagnetism-like (EM) algorithm,
proposed in [6] and specifically designed for solving bound constrained optimiza-
tion problems, to solve the problem (6). The EM algorithm is a population-based
stochastic search method for global optimization that mimics the behavior of
electrically charged particles. EM algorithm simulates the electromagnetism the-
ory of physics by considering each point in the population as an electrical charge.
The EM uses an attraction-repulsion mechanism to move a population of points
towards optimality. The steps of the EM algorithm for bound constrained opti-
mization are described in Algorithm 1 as shown below.

Randomly generate the population
Evaluate the population and select the best point
while maximum number of function evaluations is not reached do

Compute the charges
Compute the total forces
Move the points except the best point
Evaluate the new population and select the best point

end

Algorithm 1: EM algorithm

The EM algorithm starts with a population of randomly generated points
from the feasible region. All points are evaluated (the corresponding objec-
tive function values are computed) and compared in order to identify the best



point. Analogous to electromagnetism, each point in the space is considered as
a charged particle. The charge of each point is related to the objective function
value and determines the magnitude of attraction or repulsion of the point over
the others in the population. Points with lower objective function values attract
others while those with higher function values repel. The charges are used to
find the total force exerted on each point as well as a direction for each point
to move the points in the subsequent iterations. The total force vector exerted
on each point by the other points is the sum of individual component forces,
each depending on the charges. According to the electromagnetism theory, each
individual force is inversely proportional to the square of the distance between
the two points and directly proportional to the product of their charges. Then,
the normalized total force vector exerted on the point is used to move the point
in the direction of the force by a random step size. The best point is not moved
and is carried out to the subsequent iteration. This process is repeated at least
for a maximum number of objective function evaluations and the best point is
identified as the output of the algorithm. A fully description of the EM algorithm
can be found in [20].

3 Numerical Experiments

3.1 Models Description

In this section, we present the 3D CAD models that will be used. First, the
CAD models should be converted into an STL (STereoLithography) format that
is the standard file type used by most common 3D printing file formats. The
STL files describe only the surface geometry of a 3D object, not presenting
color, texture, or other common attributes of the CAD model. This represents
a 3D solid object using triangular faces. The more complex the models are, the
greater their number of triangular faces.

Figure 3 shows the STL files of the models that will be used in the present
study, already used in a single-objective optimization study in [19]: Air Duct,
Rear Panel Fixed, Rocket Shot and 45 Degree Short. Table 1 presents the data
of the models studied in this work, namely the Size (width × height × depth),
the volume (Vol.), the number of triangles (Triangles) and the number of slices
(Slices) of each model. A slicing along the z-axis of 0.2 mm height was considered.

Table 1: Data of the models.
Size
(mm)

Vol.
(cm3)

Triangles Slices

Air Duct 52 × 109.9 × 102.5 30.6 6024 529

Rear Panel Fixed 142.5 × 142.5 × 113 46.2 3008 676

Rocket Shot 61.4 × 66.9 × 61.37 20.8 10616 324

45 Degree Short 157.5 × 125 × 157.5 80.8 66888 625



Rear panel fixed Air duct Rocket shot 45 degree short

Fig. 3: STL representation of the models.

The numerical experiments were carried out on a PC Intel(R) Core(TM)i7-
7500U CPU with 2.9GHz and 12.0GB of memory RAM. The EM algorithm was
coded in MATLAB Version 9.2 (R2017a) as well as all the optimization code
developed to solve the problem (6).

3.2 Results

In order to compute the solutions of the problem (6), we used the objective
functions SA in (2) and BT in (3), that were normalized using the ideal and nadir
vectors. The ideal vector z? is constructed with the individual optimal objective
values, corresponding to the lower bound of each objective in the entire feasible
space. The nadir vector znad represents the upper bound of each objective in the
entire Pareto optimal set. Normalized values of the i-th objective function can
be computed by

fnormi (x) =
fi(x)− z?i
znadi − z?i

.

The weights were uniformly varied, i.e., (w1, w2) ∈ {(0, 1), (0.1, 0.9), . . . , (1, 0)}.
A population size of 20 and a maximum number of function evaluations of 2000
were considered for the EM algorithm. For each combination of weights, 30 in-
dependent runs were performed. In addition, the software Simplify 3D was used,
which is a 3D model printing simulator, to show the solutions found for each
model.

The Pareto fronts for the different models will be displayed. In all graphs, the
solutions obtained are plotted with a blue dot and the non-dominated ones are
marked with a red circle. Representative solutions will be selected to discuss the
trade-offs between the objectives and identify the features associated to these
solutions.

Figure 4 plots the solutions obtained in the objective space for the Rear Panel
Fixed model. The table next to the Pareto front chart presents the angles and
objective function values for the four representative non-dominated solutions
of the Pareto front (solutions A to D). The Pareto front is nonconvex for this
problem. Solutions A and D are the optimal solutions in terms of SA and BT,
respectively. Solutions B and C are different trade-offs between the objectives. It



Solution θx θy SA BT

A 90.0 180.0 536.1 113.1

B 124.7 149.9 15173.0 111.3

C 139.2 142.7 18204.0 95.8

D 180.0 134.9 21189.8 43.3

Fig. 4: Pareto front and representative solutions for the Rear Panel Fixed model.

Solution A
(θx, θy) = (90.0, 180.0)

Solution B
(θx, θy)=(124.7, 149.9)

Solution C
(θx, θy)=(139.2, 142.7)

Solution D
(θx, θy)=(180.0, 134.9)

Fig. 5: Representation of the solutions A, B, C and D of Rear Panel Fixed model.

is observed that solution B is little more advantageous in terms of BT in relation
to solution A, but it is quite worse in terms of SA. When comparing solution C



with solution D, a large decrease in the BT value and a small degradation in the
SA value can be observed.

The 3D representations of solutions A to D can be seen in Fig. 5. Solution A,
with the best value of SA and the worst value of BT, corresponds to the angles
(90.0, 180.0). Conversely, solution D in the other extreme of the Pareto front
has the angles (180.0, 134.9). There are other solutions that represent different
compromises between the two objectives. Solution B with angles (124.7, 149.9)
does not require many supports, but in terms of BT spends more time. Solution
C with angles (139.2, 142.7) has a lower height (better in terms of BT), but
requires many supports, as can be viewed in Fig. 5.

Figure 6 shows the Pareto front obtained for the Air Duct model and the
table indicates the angles and objective function values for the six representative
non-dominated solutions selected (solutions A to F). In this problem, the Pareto
front is also nonconvex. Solutions A and B have similar values of BT, but solution
B is significantly worse than solution A with respect to SA. This stresses the
importance of identifying the compromises between the objectives. The gain in
BT achieved by solution B when compared to solution A is negligible and the
loss in terms of SA is large. Therefore, solution A is clearly preferable than
solution B. When comparing the other compromise solutions between C and F,
it is observed an improvement in terms of BT, but a degradation in the value of
SA.

Solution θx θy SA BT

A 180.0 180.0 4264.7 109.9

B 35.1 0.1 6398.6 109.6

C 64.0 179.6 9462.0 104.3

D 72.6 23.4 10591.0 95.2

E 72.6 48.8 11807.8 85.2

F 126.2 90.0 12736.3 52.0

Fig. 6: Pareto front and representative solutions for the Air Duct model.

The 3D representations of solutions A to F for the Air Duct model are pre-
sented in Fig. 7. The best solution in terms of SA is the solution A with ori-



Solution A
(θx, θy) = (180.0, 180.0)

Solution B
(θx, θy) = (35.1, 0.1)

Solution C
(θx, θy) = (64.0, 179.6)

Solution D
(θx, θy)=(72.6, 23.4)

Solution E
(θx, θy)=(72.6, 48.8)

Solution F
(θx, θy)=(126.2, 90.0)

Fig. 7: Representation of the solutions A, B, C, D, E and F of Air Duct model.

entation (180.0, 180.0). The minimum value of BT is obtained with orientation
(126.2, 90.0) corresponding to solution F. The remaining solutions are compro-
mise solutions between the two objectives. In particular, solutions D and E have
a similar θx value and a different θy value, where a rotation in y-axis is observed.
This means that an improvement was obtained in terms of BT, since the orien-
tation of the object to be printed led to a smaller height, but at the expense of
an increase in the number of supports as can be seen in Fig. 7. The variation of
θy allows to reduce BT from solution D to solution E (but SA increases).

Figure 8 shows the Pareto front obtained for the Rocket Shot model and the
table indicates the angles and objective function values for five representative
solutions (solutions A to E). Again, a nonconvex Pareto front was obtained.
From the figure and the table, it turns out that solutions A and B have the same
BT value. Therefore, solution A is preferable to solution B since has a better
value of SA. Looking at solutions from C to E, it can be observed that, along the
Pareto front, they constitute improvements in terms of BT, but worsening the
values of SA. The 3D representations of solutions A to E are presented in Fig. 9.
Solution A with orientation (180.0, 180.0) is the best in terms of SA and has fewer
brackets. Conversely, the solution E with the angles (90.1, 135.0) minimizes BT



but has the worst SA value. The remaining solutions are trade-offs between the
two objectives. It should be noted that solution B with orientation (180.0, 0.0) is
similar to solution A in terms of BT, but it is worse in terms of SA. This is due to
the fact that rotating the solution A by 180 degrees in the y-axis corresponds to
a solution with the same height. The solution D with orientation (104.6, 135.0)
when compared to solution C with orientation (97.9, 90.0) improves significantly
in terms of BT with a small degradation of the value of SA, as it can be seen in
Fig. 9.

Solution θx θy SA BT

A 180.0 180.0 924.4 66.9

B 180.0 0.0 1258.8 66.9

C 97.9 90.0 4077.1 61.4

D 104.6 135.0 4637.5 53.2

E 90.1 135.0 4661.3 45.2

Fig. 8: Pareto front and representative solutions for the Rocket Shot model.

In Figure 10, it is presented the Pareto front obtained for the 45 Degree Short
model as well as the corresponding angles and objective function values for the
four representative non-dominated solutions (solutions A to D). As it can be
seen, the Pareto front has some nonconvex regions. Solution A is the solution
with the best SA value. Solution B represents a large improvement of the value
of BT when compared to solution A. However, this implies some degradation of
the SA value. Between solutions B and D there is a significant increase in SA
and a slight reduction in the value of BT. Thus, solution B seems to be a good
compromise between SA and BT. Solution D is the solution with the best BT
value but with a large value of SA.

The 3D representations of solutions A to D are presented in Fig. 11. Solution
A with the angles (89.9, 135.3) has the best SA value, but the worst BT value.
On the other extreme of the Pareto front, solution D with orientation (0.0, 0.0)
has the best value of BT, since its orientation reduces the height of the model.
However, this solution has the worst SA value since many supports are required.



Solution A
(θx, θy)=(180.0, 180.0)

Solution B
(θx, θy)=(180.0, 0.0)

Solution C
(θx, θy)=(97.9, 90.0)

Solution D
(θx, θy)=(104.6, 135.0)

Solution E
(θx, θy)=(90.1, 135.0)

Fig. 9: Representation of the solutions A, B, C, D and E of Rocket Shot model.

Solution θx θy SA BT

A 89.9 135.3 19246.3 222.7

B 175.8 90.0 23755.4 157.5

C 91.6 45.0 33597.0 144.9

D 0.0 0.0 39241.8 125.0

Fig. 10: Pareto front and representative solutions for the 45 Degree Short model.



Solution A
(θx, θy)=(89.9, 135.3)

Solution B
(θx, θy)=(175.8, 90.0)

Solution C
(θx, θy)=(91.6, 45.0)

Solution D
(θx, θy)=(0.0, 0.0)

Fig. 11: Representation of the solutions A, B, C and D of 45 Degree Short model.

Solutions B and C with the angles (175.8, 90.0) and (91.6, 45.0), respectively, are
compromise solutions between BT and SA. Solution C is better in BT and worse
in SA when compared to solution B.

4 Conclusions and Future Work

In this paper, it is proposed a multi-objective approach to the build orientation
optimization problem. The support area and the build time of 3D models are
optimized simultaneously. Four building 3D CAD models are studied.

The weighted Tchebycheff scalarization method was used to transform the
multi-objective problem into a single-objective one and embedded in the Electro-
magnetism-like algorithm to solve this multi-objective optimization problem. It
is observed that the convexity of Pareto fronts depends on the 3D CAD mod-
els being optimized. All Pareto fronts obtained for the 3D models considered
have nonconvex regions. This highlights the importance of using a scalarization
method that can achieve nonsupported solutions. These results allow us to per-
ceive the relationship between the objectives for each of the models. Moreover,
it is possible to identify the trade-offs between the objectives and select the



most appropriate solution. Therefore, it is clear the advantage of using a multi-
objective approach that considers different criteria to find the best orientation
of building 3D CAD models.

For future work, it is intended to apply this approach to multi-objective
orientation problems with other criteria and with other more complex models.
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