
ANEXO II – COEFICIENTE DE CONDUTIBILIDADE TÉRMICA "IN-SITU"

AII.1. JUSTIFICAÇÃO

O conhecimento da resistência térmica real dos componentes da envolvente do edifício¹ é muito importante, quer em edifícios novos, como em edifícios antigos, pois:

- Edifícios novos de forma a determinar se a qualidade da construção corresponde à que foi proposta pelo projecto. A utilização de material ou mão-de-obra de baixa qualidade pode levar a que componentes do edifício não tenham a performance inicialmente projectada;
- Edifícios antigos o conhecimento da resistência térmica da envolvente é importante para determinar se o edifício necessita da aplicação, ou não, de isolamento térmico ou outras medidas para baixar o consumo energético. Assim, através da medição "in-situ", é possível justificar um

¹ Um componente da envolvente do edifício é uma porção da envolvente do edifício que tem uma construção consistente, tal como uma parede, cobertura, pavimento, janela, porta.

- investimento em medidas de redução do consumo energético que não seria possível através de cálculos a partir de dados publicados;
- Edifícios de teste com o conhecimento da resistência térmica real dos componentes dos edifícios é possível testar materiais novos, que não possuem valores tabelados para a resistência térmica, assim como aumentar o rigor das simulações da performance energética efectuadas.

AII.2. MÉTODO UTILIZADO

O método utilizado para o cálculo da resistência térmica "in-situ", de elementos da envolvente, foi a técnica do Somatório ASTM (Norma C1155 – 95), que dita o cumprimento de certos requisitos para que seja possível obter a resistência térmica "in-situ" dos elementos da envolvente com um alto grau de confiança:

- O percurso do fluxo de calor tem de ser perpendicular à superfície em questão, ou seja, não podem existir fenómenos que perturbem o fluxo de calor, tais como pontes térmicas, entre outros;
- Tem de haver um gradiente térmico significativo entre o exterior e o interior;
- Têm de ser escolhidos intervalos de tempo que não provoquem diferenças na resistência térmica calculada em mais de 10%.

A partir desta técnica, é possível obter a resistência térmica de elementos da envolvente com a colocação de sensores de temperatura² na superfície exterior e interior e com a colocação de sensores de fluxo de calor³ no elemento da envolvente, que necessita obter a resistência térmica. Assim, os dados recolhidos "in-situ" são:

.

² Um sensor de temperatura é um aparelho que produz um sinal contínuo, função da temperatura, como por exemplo um termopar.

³ Um sensor de fluxo de calor é um aparelho que produz um sinal contínuo, função do fluxo de calor, como por exemplo um transdutor de fluxo de calor.

- Temperatura superficial interior do elemento $i T_{is}$ (Figura All.1);
- Temperatura superficial exterior do elemento i Tes (Figura All.2);
- Fluxo de calor através do elemento i qi (Figura All.1);

Figura AII.1 – Sensor de fluxo de calor e temperatura superficial interior instalados na Célula de Teste Convencional.

Figura All.2 – Sensor de temperatura superficial exterior instalado na Célula de Teste não Convencional.

Assim, para cada intervalo de tempo escolhido (cada intervalo de tempo terá de ser múltiplo de 24h), a resistência térmica estimada (R_e) é calculada a partir das Equações All.1 e All.2:

Análise do Comportamento Térmico de Construções não Convencionais através de Simulação em VisualDOE

Equação All.1 Equação All.2

$$R_{\rm e} = \frac{\sum_{k=1}^{M} \Delta T_{\rm Sk}}{\sum_{k=1}^{M} Q_{ik}}; \qquad \Delta T_{\rm S} = T_{i\rm S} - T_{\rm eS} \text{ com:}$$

M – intervalo de tempo escolhido.

Com o intuito de atestar uma boa performance desta técnica, é necessário executar o teste da convergência (CR_n), entre a Re de dois intervalos de tempo consecutivos, pelo qual a convergência terá de ser < 0.1 e o intervalo de tempo do teste de convergência recomendado (n) é de 12h. Assim, o teste de convergência é executado aplicando a Equação All.3:

Equação All.3

$$CR_n = \frac{R_e(t) - R_e(t - n)}{R_e(t)}$$

Além de teste da convergência, também será necessário verificar a variância do valor da resistência térmica $[V(R_e)]$, de forma a garantir bons resultados, aplicando a Equação All.4:

Equação All.4

$$V(R_e) = [s(R_e)/M\acute{e}dia(R_e)]*100$$
 com:

 $S(R_e)$ – é a variância de R_e calculado com N-1 graus de liberdade; N – número de valores de R_e (N \geq 3).

Assim se a variância for menor que 10%, o valor a utilizar para a resistência térmica do elemento da envolvente é o valor médio de todos os R_e calculados.

AII.3. APLICAÇÃO ÀS CÉLULAS DE TESTE

Para o caso de estudo – Células de Teste, existem quatro componentes da envolvente convenientemente equipados para a realização deste método de cálculo da resistência térmica, como se pode observar na Figura All.3:

- Parede Sul do compartimento Sul da Célula de Teste não Convencional (CTnC);
- Parede Oeste do compartimento Sul da Célula de Teste não Convencional (CTnC);
- 3. Parede Oeste do compartimento Norte da Célula de Teste não Convencional (CTnC);
- 4. Parede Este da Célula de Teste Convencional (CTC);

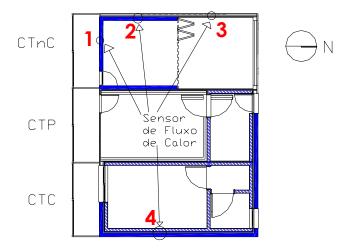


Figura All.3 – Distribuição dos sensores de fluxo de calor nas Células de Teste.

De forma a aplicar este método de cálculo da resistência térmica "in-situ" foi necessário cumprir os requisitos impostos pela Norma ASTM C1155-95, pelo que:

 Para garantir que os fluxos de calor são perpendiculares à superfície, os sensores de fluxo de calor foram instalados a meio das paredes e em locais onde não existiam pontes térmicas;

- Foram escolhidos intervalos de dados (Tabela All.1) que se situavam no Verão ou Inverno, para promover maiores gradientes térmicos;
- Com os dados escolhidos, foi calculada a Resistência térmica através da Equação All.1 e All.2 e confirmado que esta não varia mais de 10% entre os vários intervalos escolhidos, como mostra a Tabela All.2.

Tabela All.1 – Intervalos de dados utilizados para o cálculo da resistência térmica "in-situ"

Parede	Intervalo de dados					
	1	2	3			
1	1 a 4 de Junho	9 a 12 de Junho	14 a 17 de Junho			
2	1 a 4 de Junho	9 a 12 de Junho	14 a 17 de Junho			
3	1 a 4 de Junho	9 a 12 de Junho	14 a 17 de Junho			
4	1 a 4 de Junho	9 a 12 de Junho	14 a 17 de Junho			

Tabela AII.2 – Verificação da variação da Resistência térmica por intervalo de dados

Parede		Térmica (m².º valo de dado		Variação entre Intervalos de dados			
	1	2	3	1 -> 2	2 -> 3	3 -> 1	
1	0.32	0.36	0.33	10%	7%	4%	
2	3.03	2.95	2.93	3%	1%	3%	
3	1.04	1.01	1.07	3%	5%	2%	
4	2.28	2.10	2.22	8%	5%	3%	

Por último, é necessário confirmar a boa performance dos valores da Resistência Térmica calculados. Como tal, foi aplicada a Equação All.3 e All.4 de forma a executar o teste da variância e o teste da convergência aos valores obtidos. Na Tabela All.3 são apresentados os resultados obtidos com a aplicação dos testes referidos à Resistência Térmica calculada para as quatro paredes seleccionadas das Células de Teste:

Tabela All.3 – Teste de variância e convergência para os valores calculados da resistência térmica "in-situ"

Parede	Teste de Variância			Teste de Convergência					
	Variância Média		< 10%	Re (t-n); n=12h		< 0.1			
	variaricia	Media	< 10 <i>/</i> 0	1	2	3	1	2	3
1	0.000393	0.34	0.12%	0.32	0.37	0.32	0.01	0.02	0.03
2	0.002942	2.97	0.10%	2.98	2.97	2.80	0.02	0.01	0.04
3	0.000809	1.04	0.08%	1.02	0.99	1.06	0.02	0.02	0.01
4	0.008521	2.20	0.39%	2.24	1.91	2.11	0.02	0.09	0.05

Com todos os testes aplicados e sendo o resultado favorável, é possível afirmar com um alto grau de confiança que a resistência térmica das paredes

seleccionadas das Células de Teste é a média da resistência térmica calculada para os três intervalos de tempo, ou seja:

- Parede Sul do compartimento Sul da Célula de Teste não Convencional (CTnC) – 0.34 m².°C/W;
- Parede Oeste do compartimento Sul da Célula de Teste não Convencional (CTnC) – 2.97 m².°C/W;
- Parede Oeste do compartimento Norte da Célula de Teste n\u00e3o Convencional (CTnC) – 1.04 m².°C/W;
- 4. Parede Este da Célula de Teste Convencional (CTC) 2.2 m².°C/W.