Degradation of textile dyes in aqueous solutions using type-Fenton bimetallic zeolite catalysts

Bebiana L.C. Santos1*, António M. Fonseca1,2, Isabel C. Neves1,2

1Center of Chemistry, Chemistry Department, University of Minho, 4710-057 Braga, Portugal
2CEB – Center of Biological Engineering, University of Minho, 4710-057 Braga, Portugal

*e-mail del autor de contacto E-mail: id7175@alunos.uminho.pt and ineves@quimica.uminho.pt

Textile dyes are growing to be a problematic class of pollutants to the environment. The disposal of dyes in water resources has bad aesthetic and health effects, since most of them are carcinogenic and mutagenic [1,2], so it is important to remove them from the environment. Effective and economic treatment by advanced oxidation processes (AOPs) has been attracted great and continuous interest for the degradation of these pollutants [3]. The heterogeneous Fenton-like processes have been paid great attention for its low cost, high efficient and mild conditions among these AOPs processes (20-50°C and atmospheric pressure) [3,4]. Recently, several iron- and copper- based heterogeneous Fenton catalysts have been investigated to be efficient catalytic systems [4]. In this work, in the preparation of type Fentom catalysts, zeolite NaY was used to support Fe, Cu and Mn. The type-Fenton catalysts, mono and bimetallic, were prepared by ion exchange method and the catalysts were tested in degradation of textile dyes in a batch reactor using H2O2 at different temperatures and atmospheric pressure. It was observed that iron type-Fenton catalysts are active for the degradation of dyes, but when the reaction is performed with bimetallic type-Fenton zeolite catalysts the degradation becomes faster.

Acknowledgements
This work has been developed under the scope of the projects: BioTecNorte (operation NORTE-01-0145-FEDER-000004), PTDC/AAGTEC/5269/2014, and Centre of Chemistry (UID/QUI/00686/2013 and UID/QUI/0686/2016).

References