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Abstract

We construct a mathematical model of kinetic type in order to describe the immune
system interactions in the context of autoimmune disease. The interacting populations
are self-antigen presenting cells, self reactive T cells and the set of immunosuppressive
cells consisting of regulatory T cells and Natural Killer cells. The main aim of our work
is to develop a qualitative analysis of the model equations and investigate the existence
of biologically realistic solutions. Having this goal in mind we describe the interactions
between cells during an autoimmune reaction based on biological considerations that are
given in the literature and we show that the corresponding system of integro-differential
equations has finite positive solutions. The asymptotic behaviour of the solution of the
system is also studied. We complement our mathematical analysis with numerical sim-
ulations that study the sensitivity of the model to parameters related to proliferation of
immunosuppressive cells, destruction of self-antigen presenting cells and self reactive T
cells and tolerance of SRTCs to self-antigens.
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1 Introduction

The number of people affected by autoimmune diseases is on the rise, especially in Western
countries [8]. This debilitating condition takes a devastating toll on affected families and has
a considerable economic impact on both families and states. There are more than 80 differ-
ent autoimmune diseases, such as inflammatory bowl disease, type 1 diabetes and multiple
sclerosis. The exact cause of this surge remains unclear, but environmental changes associ-
ated with industrialization have been long suspected. Biologically, the mechanisms leading to
autoimmune disease involve many factors and depend on a complex combination of genetic,
epigenetic, molecular and cellular elements that result in pathogenic inflammatory responses
in peripheral tissues commanded by CD4" effector memory T cells that react to self-antigens
[13].



The role of certain cell populations, such as regulatory T lymphocytes (Tregs) and Natural
Killer cells (NKCs), in controlling autoimmunity is demonstrated in a variety of experimen-
tal animal models. Also, there is a significant number of studies suggesting that defective
regulation by Tregs or NKCs may be an underlying cause of human autoimmune diseases.
The fact that such cell populations are an essential component of immune homoeostasis can
potentially provide a therapeutic opportunity for active immune regulation that can have a
long time effect in controlling the development of autoimmunity [9]. The importance of such
cell populations in the mechanisms of suppression of autoimmunity has constituted the first
motivation for the development of our mathematical model.

On the other hand, the application of mathematical models to biological and medical
problems has stimulated a growing interest in the scientific community due to the recognized
capability of such models in giving valuable predictions concerning the biological or medical
problem. See, for example, references [21, 22, 26] which collect several works on this topic

In general, such mathematical models are based on non-linear systems of differential
equations with quadratic terms that describe the interactions between cells of the different
populations. In particular, a kinetic modelling approach, like the one first developed in [6]
for the tumour growth and then used in many other papers, see for example, [2, 3, 4, 7],
is oriented to describe the interactions between the tumour and immune system that occur
at a cellular level and thus can give some insights about the early stage of the disease. At
the same time, such a model provides a macroscopic analogue that can be derived from the
kinetic approach, which can be used either to describe successive biological stages in which
macroscopic structures are more relevant or to investigate mathematically some qualitative
properties of the solution and their counterpart in the biological reality. The scientific interest
of the kinetic modelling approach constitutes the second motivation for our work.

In this article our principal goal is to construct a biologically realistic mathematical model
describing autoimmunity, since, to the best of our knowledge, there is very few work on
mathematical modelling of the process of autoimmunity in the literature [12, 18, 28|. This is
certainly true in relation to mathematical models applying kinetic theory in describing the
interactions between cell populations involved in the process [12, 18]. If, on the one hand,
building up a system of equations based on acceptable biological principles is in itself an
important contribution to the field, on the other hand making sure that such a system is
analytically well behaved is also fundamental when establishing a consistent mathematical
model. In fact, constructing a mathematical model of integro-differential equations in which
the biological premisses are compatible with certain mathematical requirements on the model
equations, such as existence and uniqueness of solution of the system equations, positivity of
solution and non appearance of blowups, can be a difficult task to undergo.

We believe that the main contribution of this work is that we were able to base the model
equations describing the interaction of cells during an autoimmune reaction on biological
considerations that are given in the literature, and are explained in Section 2, but also we
were able to show that the corresponding system of integro-differential equations has finite
positive solutions and predict the asymptotic behaviour of these solutions.

More in detail, our model describes the interactions among three different population cells,
namely self antigen presenting cells (SAPCs), self reactive T cells (SRTCs) and immunosu-
pressive cells (ISCs), such as Tregs and NKCs. The cells of the interacting populations are



characterized by a microscopic functional state or activity variable, u € [0, 1], which defines
a specific biological function of each cell. The behaviour of each interacting population is
described, at the kinetic (cellular) level, by its distribution function. The model equations
then constitute a nonlinear system of integro-differential type that describes the evolution of
the distribution functions.

As expected, it is important to guarantee that the mathematical model describes as real-
istically as possible the evolution of the cellular system being considered and that the param-
eters characterizing the model can be effectively related to biophysical quantities. Therefore,
from the biological theory we should derive certain conditions that must be verified by the
parameters of our model. Having this idea in mind, we present, in Section 2, the biological
theory on autoimmunity that we take into consideration when establishing our mathematical
model. In Section 3, we first describe, mathematically, the microscopic cellular interactions
among the populations considered in our analysis and then we derive the model equations in
its kinetic formulation as well as in the corresponding macroscopic setting. The qualitative
analysis of the model equations is performed in Section 4, where we prove the existence of a
global solution to the macroscopic system and investigate its asymptotic behaviour. In Sec-
tion 5, we apply our kinetic system to study the regulatory effect of ISCs on the proliferation
and activation of SRTCs in an autoimmune reaction. The system is solved numerically by
discretizing the kinetic equations in the activation state variable and using a quadrature rule
in the numerical integration. Finally, in Section 6, we summarize our results and discuss
some possible ideas to be developed as a continuation of our paper.

2 Biological considerations

In this section we give an overview of how autoimmunity plays out in individuals with a
predisposition for the disease and how, so called regulatory cells combat the autoimmune
process. We base this overview on several references, [1, 8, 9, 11, 13, 16, 19, 20, 23, 24, 25, 27,
29], that can be found in the literature on this subject and where the mechanisms involved
in autoimmunity are described.

It is well known that T cells derive from the common lymphoid in the bone marrow
and migrate through the bloodstream into the thymus, where they undergo several different
maturation phases. An important role of thymic maturation of T cells is the positive selection
for those T cells that recognize self-MHC molecules and negative selection against those
T cells that react to self-antigens, in other words that have antigen receptors specific to
self-antigens. The development of autoimmune disease is related to the breakdown of self-
tolerance mechanisms, that in a healthy individual prevent the majority of self reactive T
cell clones from entering the periphery. That being said, even in a healthy human body there
exist circulating SRTCs [11]. SRTCs are usually controlled by both intrinsic and extrinsic
mechanisms of tolerance in the periphery.

The intrinsic mechanism involves a T cell receiving a tolerising TCR signal in advance
of encountering its antigen, presented by a professional antigen presenting cell (APC), so
that the T cell will not become fully activated. The extrinsic tolerance mechanism is the
dominant form of immune suppression carried out by regulatory cell populations such as
Tregs and NKCs. In people with genetic predisposition to autoimmunity, one or several
of these tolerance mechanisms are defective, resulting in expansion of SRTCs that cannot



be controlled by, for example Tregs. The expansion of SRTCs is due to their exposure to
self-antigens by SAPCs.

In immunology, an adapted immune response occurs when immature dentritic cells (DCs),
which are the most important APCs, settle at the site of infection, become activated and
undergo maturation. Meanwhile, naive T cells, each having a specific antigen receptor, con-
stantly circulate through the peripheral lymphoid tissues, browsing many DCs as they carry
out brief contacts, and receiving two signals, one allows the discrimination of the antigen
presented by DCs and the other allows the interplay with co-stimulatory molecules on the
same DCs. After making a stable interaction with DCs presenting their cognate antigen,
naive T cells can be activated and proliferate into memory effector T cells. The proliferation
of T cells is considerable and is driven by cytokine interleukin- 2 (IL-2), which can be pro-
duced by DCs. In fact, T cells undergo numerous rounds of cell division, following exposure
to an intracellular pathogen, expanding up to 50.000 fold in the course of about a week [16].
The same process of activation/proliferation takes place in an autoimmune response to self
antigens, but in this case SRTCs have antigen receptors specific to self-antigens. The cloned
SRTCs migrate to their targeted tissue where cytotoxic mechanisms and uncontrolled inflam-
mation induced by cytokines produced by these T cells result in tissue damage, consequently
causing autoimmune disease. The damage to host tissue results in an increased concentra-
tion of self-antigens that will activate more SRTCs when presented to these cells by SAPCs,
eventually worsening the autoimmune attack to host tissues.

Regulatory T cells are a subpopulation of CD4™ T cells believed to be important mediators
within the immune system. Actually, the importance of regulatory T lymphocytes in the
control of autoimmunity is scientifically a well established theory [1, 9, 20, 24, 25, 29|, in
fact, there are several studies that suggest that Treg deficits may be one of the causes of
human autoimmune disease. An important line of research on autoimmunity is to study the
mechanisms of suppression performed by Tregs, which to date are not fully understood. It is
believed that Tregs can carry out their suppressive function either through contact dependent
mechanisms, such as directly targeting the action of effector T cells as well as modulating
the maturation and/or function of APCs which are required for the activation of the former,
and/or through contact-independent mechanisms [20]. Here we are interested in the contact
dependent mechanisms induced by the interaction between Tregs , SRTCs and SAPCs. Tregs
down-modulate the capacity of APCs to initiate immune responses, and therefore preventing
the ability of APCs to activate effector T cells. Another potential mechanism of Treg mediated
suppression is cell-contact dependent cytolysis of target cells. It has been shown that activated
Tregs by APCs induce apoptosis of effector T cells through a tumor-necrosis factor related
apoptosis-inducing ligand death receptor pathway. Therefore, in autoimmunity, the main
functional properties of Tregs involve suppression by modulation of SAPC maturation or
function and suppression by direct or indirect killing of SRTCs and SAPCs.

Increasing evidence shows that Natural Killer cells play a relevant role in organic-specific
and systemic autoimmune diseases [23, 27]. As several other cells belonging to the innate
arm of the immune system, NKCs can secrete cytokines and chemokines. Both activation of
cytolytic response and secretion of regulating soluble factors are dependent on a wide variety
of surface and intracellular receptors that, interact with the appropriate ligand leading to ac-
tivation or inhibition of a given cell function. As is usual in a biological system, the balance
between opposite signals is responsible for the outcome in the microenviroment, and therefore



NKCs can both influence and regulate the activities of adaptive immune responses, in par-
ticular of effector T cells and APCs through well identified surface receptors. It appears that
NKCs may play opposite roles with both regulatory and inducer activity in autoimmunity.
Of course, here we are interested in their regulatory activity. There is clear evidence that
NKCs can recognize self-antigens which express ligands for activating receptors and therefore
it is believed that NKCs can aggress both SRTCs and SAPCs upon triggering with toll-like
receptor (TLR) or stimulation with IL2 or IL15 cytokines. There are consistent findings that
indicate that NKCs can strongly regulate T cell responses and influence adaptive immunity.
It is known that NKCs can interact with APCs that produce interleukin 12 (also known as
NKC stimulating factor) which triggers both proliferation and cytolytic activity of NKCs.
Several reports have shown that IL2-activated NKCs can lyse SAPCs and that NKC-SAPC
interaction can lead to cytokine production. Indeed, the NKC mediated elimination of a given
SAPC before self-antigen presentation to SRTCs should impede an optimal T cell activation,
and therefore the adaptive immune response can be shut down by NKCs. In conclusion,
NKCs possess the ability of protecting from the occurrence of autoimmune disease through
secretion of immune regulating cytokines, such as IL10, IL5 and IL13 and by eliminating
SAPCs and SRTCs through, for example, the triggering of activating receptors.

Autoimmunity diseases are, in many cases, chronic, meaning that patients suffering from
theses conditions go through relapses, where symptoms return after a certain period of remit-
tance (where symptoms are absent). In several autoimmune diseases this relapse-remittance
behaviour occurs even in the absence of treatment. Here, we do not model the relapse-
remittance behaviour. Our model concentrates on the cellular dynamics when an autoim-
mune episode occurs, particularly on the interplay between SAPCs-SRTCs-Tregs/NKCs that
can either result in an autoimmune cascade and consequently in illness or in an aborted
autoimmune response by regulation via Tregs /NKCs.

In what follows, we model the interactions between SAPCs and SRTCs considering that
the activation/proliferation of SRTCs is due to their exposure to self-antigens by SAPCs.
We also consider that the damage to host tissue, resulting from inflammation induced by
cytokines produced by SRTCs, increases the number of SAPCs that will activate more SRTCs.
Regulation of the autoimmune process is modelled through the interactions between SAPCs
and ISCs and between SRTCs and ISCs. We consider that ISCs, on the one hand downgrade
the function of SAPCs aand SRTCs, and on the other hand eliminate both SAPCs and
SRTCs.

3 The mathematical model for autoimmunity

In this section, we construct a mathematical model based on the Boltzmann-like kinetic theory
[10] for the autoimmune response against self antigens. We start with the description of the
binary cellular interactions and then we derive the kinetic equations giving the evolution
of the distribution functions associated to the considered populations. Finally we define
macroscopic variables in terms of suitable mean quantities of the distribution functions and
formally derive the macroscopic balance equations for these variables.

Our approach follows the research line first proposed by Bellomo and Forni in [6] and then
essentially developed in papers [2, 3, 4, 7]. For a further reading on the interplay between



mathematics and biology, we suggest the recent review on the subject presented in [5] and
the references therein cited.

3.1 Microscopic cellular interactions

We consider a biological system of three interacting cell populations p;, ¢ = 1,2, 3, that are
involved in the development of autoimmunity. More precisely, we consider the population p;
of self antigen presenting cells, the population po of self reactive T cells, and the population
p3 of immunosuppressive cells mainly constituted by T regulating cells and Natural Killer T
cells.

The cellular activity

Following the biological considerations of Section 2, the functional state of each cell population
pi is described by a real variable u € [0, 1], called the biological activity, which is defined as
follows.

e For the population p; of SAPCs, the activity variable u represents the ability to stim-
ulate and activate the SRTCs. If u is equal to zero, then the stimulation by SAPCs
does not activate the SRTCs and, therefore, does not induce an autoimmune response.
Increasing values of v indicate a growing efficiency of SAPCs in activating the SRTCs.

e For the population py of SRTCs, the activity variable u is the quantity of cytokines
secreted by SRTCs. If u is equal to zero, then SRTCs do not produce cytokines, corre-
sponding to the case where SRTCs are tolerant to self-antigens, therefore recognizing
them as non offensive agents. Increasing values of w indicate a growing efficiency of
SRTCs in producing cytokines that will trigger an inflammatory cascade and, conse-
quently, an autoimmune response.

e For the population p3 of ISCs, the activity variable u is the ability to inhibit the autoim-
mune response by either suppressing the activity of SAPCs and SRTCs, or eliminating
SAPCs and SRTCs. We will, however, for this population neglect the presence of
internal degrees of freedom.

The internal state of the biological system is described by the set of distribution functions
associated to the considered populations, f;: [0,00] x [0,1] — RT, i = 1,2, 3, such that f;(t,u)
gives the number of cells of population p; with activity v € [0, 1] at time ¢t > 0. The expected
number of cells of each population p; at time ¢ > 0 is then given by

1
ni(t):/o fitu)du,  i=1,2,3. (1)

Our assumptions
In our mathematical model, as a simplification of the biological reality, we consider the
following assumptions.

(A1) We only consider binary interactions between cells.

(A2) The interactions between cells are instantaneous and homogeneous in space.



(A3) The binary interactions between cells of populations p; (SAPCs), p2 (SRTCs) and ps3
(ISCs) can change the activation of SAPCs and SRTCs as well as the size of each
population by both creating more SAPCs, SRTCs and ISCs or by destroying SAPC
and SRTCs. In the first case, the interactions are conservative, whereas in the second
case they are either proliferative or destructive interactions.

(A4) For population ps, the distribution function is independent of its functional state, so

that f3 = f3(t).

Assumption (Aj) is rather natural when describing biological cellular systems and means
that all effective interactions in our model occur between a pair of cells. Assumption (Ag)
indicates that our model does not describe the relapse-remittance behaviour of autoimmune
disease (see Section 2) and that the evolution of our biological system is uniform with respect
to space variables. Assumption (As) is motivated by the biological considerations presented
in Section 2, in particular by the fact that during an immune response to either antigens (in
immunity) or self-antigens (in autoimmunity) there occurs proliferation of both effector T
cells and regulatory T cells as well as an increase of circulating APCs. Also, the job of ISCs
during such an immune reaction is to down regulate both proliferation of effector T cells and
APCs and their activity. Finally, as a simplification we assume in (A4) that the population
of immunosuppressive cells is homogeneous with respect to their biological activity, since in
our model we do not consider the effect of the interactions between the cell populations on
the activity of Tregs and NKCs. Therefore, we neglect the presence of internal degrees of
freedom for this population.

The microscopic interactions

In order to describe the evolution of the distribution functions f;, it is necessary to model
the microscopic binary interactions between SAPCs, SRTCs and ISCs, in accordance with
the biological considerations described in Section 2 and with the assumptions listed above.

SAPCs conservative interactions
We consider conservative interactions between SAPCs and SRTCs as well as between SAPCs
and ISCs, which do not modify the total number of SAPCs. The interactions between SAPCs
and SRTCs affect the activity of SAPCs by increasing their capacity of activating SRTCs,
which means increasing the functional state of SAPCs. This in turn implies that SRTCs
will better recognize self-antigens transported by SAPCs as foreign agents and that a more
efficient stimulation of SRTCs by contact with SAPCs will be obtained.

On the other hand, conservative interactions between SAPCs and ISCs result in a de-
creasing ability of SAPCs to present and activate SRTCs. Biologically, this means that ISCs
induce a suppressive effect in the function of SAPCs.

The gain and loss terms corresponding to these conservative interactions are given by
e 1)
C
Gl = [ [ 0w wul) wwwnose v
o Jo

§=2,3

1
DS / 7 (, w) f5(t, w)dw,

§=2,3



where the encounter rates 77%02) and 77%) are

77%;) (an) = 612(U - 1)27 775? (U w) = C13 U27 for v, W € [Oa 1]7
and c19 and c¢13 are positive constants characterizing the progress of SAPCs towards increasing
(c12) or decreasing (c13) their activation state due to the interaction with SRTCs and ISCs,
respectively. Moreover, the corresponding transition probability densities are given by the
following nonnegative functions

2(u—w 2(v —u)
(1) ——5 foru>w (1) —— foru<uw
¢12 (Uv w; ’LL) = (U - 1) ) Q1)13 (U7 w’ U) = v )
0 foru <w 0 for u>wv
which satisfy the conditions
' a
[ eewan=1, =23 (2)
0

SRTCs conservative interactions
The conservative interactions between SRTCs and SAPCs increase the production of cy-
tokines by SRTCs. This has to do with the fact that SRTCs are effector memory T cells
that are able to retain information. On the other hand, SRTCs participate in conservative
interactions with ISCs, that contribute to weaken the production of cytokines by SRTCs, due
to the inhibiting effect of ISCs on the SRTC function.

Accordingly, we define the corresponding gain and loss terms as follows

1(t, u) Z / / 172] OR ¢2] (v, w;yu) fo(t,v) f;(t, w)dvdw

=13
— fa(t,u) Z/nzj (u, w) fj(t, w)dw

7=1,3

The respective encounter rates are given by

né‘i) (v,w) = ea1(v — 1)2, né? (v, w) = ca3 v?, for wv,w €0,1], (3)

where v, w € [0,1] and ¢o1 and co3 are non—negative constants.
The transition probability densities 1/}5 and g3 2 for these interactions are defined as

2(u —v) .
@) —— foru>v, w'<w<l
Pyt (v, wiu) = (v—1) : (4)
0 foru<wv or 0 <w<w*
2y —
@) (1)2 ) foru <w
wQS(Uuw;u): v 9
L 0 for u >wv



and they satisfy a condition analogous to (2). Furthermore, w*€]0,1] is a parameter of
the model, that is related to the tolerance of SRTCs to self-antigens, in the sense that the
greater the value of w* the less efficient are SAPCs in increasing the activity of SRTCs after
encounter.

SRTCs proliferative interactions
We consider that proliferative encounters between SRTCs and SAPCs increase the number
of SRTCs after presentation of self-antigens by SAPCs. The gain term is given by

1 1
%W%M—AAPQWWWMMMQMMM,

where the proliferation transition rate Pg )(v, w;u) is

Pz(f)(v, w;u) = pg) (u, w)d(v — u),

with pg) (u, w) being the proliferation rate and ¢ the Dirac delta function. This means that

the newborn cells inherit the same aggressive state as the mother cell. Therefore, the gain
term simplifies to, see [7],

1
Py[f](t,u) = fz(t,u)/o pg)(u,w)fl(t,w)dw.

Here, we will assume that the proliferation rate pézl) (u, w) is a non-negative constant,

pg)(u,w) = P21, u,w € [0,1].

SAPCs proliferative interactions

The autoimmune cascade, resulting from the cytokine production by SRTCs after encounter
with self-antigens, causes a damage to the host tissue which, in turn, increases the concentra-
tion of self-antigens that will be transported by SAPCs. We then consider that encounters
between SAPCs and SRTCs increase the number of SAPCs and the corresponding gain term
is given by

1
Pif)(tw) = fu(t,u) /0 D (u, w) fot, w)dw.

We will consider that the new SAPCs resulting from these interactions have the same aggres-
sive state as those of the mother SAPCs, and assume that the proliferation rate p%)(u, w) is
a non-negative constant,

pglz)@vw) = P12, u,w € [0,1].

ISCs proliferative interactions

Like other effector T cells, when participating in an autoimmune response, the ISCs require
the activation by self-antigens on SAPCs and the possible costimulation result in the pro-
liferation of Tregs and NKCs. This type of interactions is then of proliferative type for the
ISCs and the corresponding gain term is given by

1
Pylf)(t,u) = fa(t) /0 P (u, w) f1 (8, w)elw.

9



Once again, we consider that the newborn ISCs inherit the same aggressive state as the

mother ISCs and that the proliferation rate pg) (u,w) is a non-negative constant, that is

p(g?i)(u,w) = ps1, u,w € [0,1].

SAPCs destructive interactions

We consider that some interactions between SAPCs and ISCs result in the elimination of
SAPCs and, thus, are of destructive type for SAPCs. The corresponding loss term is given
by

1
1%Ume=ﬁaw[£anMWﬁmwmm

where the destruction rate dg? (u,w) is assumed to be a non-negative constant,

d%)(u,w) = di3, u,w € [0,1].

SRTCs destructive interactions
Finally, we assume destructive encounters between SRTCs and ISCs that decrease the number
of SRTCs by direct elimination of these last cells. The corresponding loss term is

1
mmww—hwmédﬁmwﬁmmm,

where the destruction rate d%) (u,w) is assumed to be a non-negative constant, that is

a8 (w,w) = dg,  ww € [0,1].

The description given here of the relevant interactions involved in our biological system
is a crucial step in the derivation of the model equations giving the dynamics of the cellular
populations in autoimmune diseases. Obtaining these model equations will be the objective
of the next subsection.

3.2 The model equations

Starting from the description of the microscopic cellular dynamics given in the previous
subsection, we will derive the evolution equations for the distribution functions f;(t,u), i =
1,2,3, and then obtain the balance equations for the number of cells of each population
defined by the u-averaged functions n;(t), i = 1,2, 3.

The kinetic evolution equations

The evolution equations for the distribution functions f;, ¢ = 1,2, 3, can be derived as suitable
balance equations which equate the time derivative of f; to the global interaction operator
obtained by summing the respective individual operators of conservative, proliferative or
destructive type, see [7]. The system so obtained consists of the following three coupled
integro-differential equations

U 1 1
Ocfi(t,u) = 2012/0 (u—w)fi(t, v)dv/o fa(t,w)dw — c19 (u — 1) f1(t, u)/o fa(t,w)dw

10



1

+2c13f3(1) / (v —u)fi(t,v)dv — c13 u?fi (t,u)f3(t)

u

1
+p12 f1(t7u)/0 fo(t,w)dw — di3 f1(t,u) f3(t), (5)

u 1
Ocfa(t,u) = 2021/0 (u— v)fg(t,v)dv/ fi(t,w)dw — co1(u — 1)*

w*

1

1
fa(t,u) /0 fi(t,w)dw + 2¢a3 f3(t) / (v —u)fot,v)dv — 023u2f2(t, u) f3(t)

u

1
T porfoltsw) /0 £t w)dw — das folt, u) fo(), (6)
1
) = pafs(®) /0 1t w)dw, (7)

for all u € [0,1] and ¢ € RT. In the above equations (5)-(7), we use the notation pi2, po1,
P31, d13, dog and c¢13, co1, co3 that has been introduced in Subsection 3.1 for the proliferative,
destructive and conservative rates, respectively.

Additionally, we write the initial conditions for ¢ = 0 of the system (5)-(7) as

f0,u) = fL(u),  fa(0,u) = f3(u), f3(0) = f3. (8)

The macroscopic balance equations

From the kinetic system (5)-(7), we can derive the corresponding macroscopic model describ-
ing the time evolution of the number of cells of each population, namely n;(t), i = 1,2, 3,
which have been defined in Section 3, see expression (1). The balance equations for the
evolution of n;(t), i = 1,2,3, are obtained by suitable integration of the kinetic equations
(5)-(7) over the biological activity variable u € [0, 1]. Conservative interactions do not give
any contribution to the equations of n;(t), since they do not modify the number of cells of
each population. Therefore, the system of ordinary differential equations obtained in this
way is

n1(t) = prani (H)na(t) — dizni (t)ns(t), 9)
n2(t) = parna(t)ni(t) — dagna(t)ns(t), (10)
hg(t) = pains(£)n(1). (11)

For this system, we consider the following initial data

n1(0) = nY, n2(0) =nY, n3(0)=n3, with n) >0 for i=1,2,3. (12)
Some notes on the model equations
The system (9)-(11) of ordinary differential equations represents the macroscopic analogue of

the kinetic system (5)-(7) of partial differential equations describing the microscopic dynamics
between cells.

11



As expected, the description obtained with the kinetic system is more detailed and reflects
how the microscopic interactions among cells affect the activity of the various populations
and how they contribute to the evolution of the distribution functions f;(¢,u), i = 1,2,3.
This system will be the one used in the numerical simulations performed in Section 5.

The mathematical analysis of the kinetic system is obviously a complex task but the
existence of a unique local solution to our initial value problem (5)-(7) and (8) can be stated.
In fact, papers [2] and [3] prove local existence theorems for an initial value problem that
is more general than the one formulated here. Therefore, such theorems guarantee the well-
posedness of our initial value problem.

On the other hand, the description obtained with the corresponding macroscopic system
(9)-(11) gives information at a global (macroscopic) scale and only reflects information about
the changes on the number of cells of each population. Other aspects, in particular those
associated to the cellular activity, are embedded in the macroscopic dynamics and are not
directly recognizable in the balance equations.

The mathematical analysis of the macroscopic system is easier than that of the kinetic
system and there are certain circumstances in which relevant information on the solution
to the kinetic system can be extracted from the mathematical analysis of the macroscopic
equations. This aspect will be exploited in Section 4. In fact, in our kinetic system (5)-
(7), we have considered that during proliferative encounters cloned cells inherit the same
aggressive state as their mother cell, at a constant proliferation rate, and, additionally, that
the destructive encounters occur at a constant destruction rate. Under these assumptions, it
is proven in [4] that the boundedness of the solution of their macroscopic system implies the
boundedness of the solution to their kinetic system. A careful analysis of the results stated
in the above quoted paper [4] guarantees their application to our macroscopic and kinetic
systems. Therefore, the boundedness of the solution to our macroscopic system (9)-(11),
say n;(t), i = 1,2, 3, also implies the boundedness of the solution to our kinetic system (5)-
(7), say fi(t,u), i = 1,2,3. More precisely, from paper [4], we can bound ||f;(t,-)||1, where
fi(t,-) € L1(0,1) and || fi(t,-)||1 is the norm of f;(¢,-) in the Lebesgue space L;(0,1).

In paper [4], it is also proven that, under the same assumptions, if n;(t) blows up then so
does [ fi(t,)]]1-

4 Qualitative analysis of the model

From the discussion developed at the end of the previous section, we can conclude that the
basic information on the microscopic model given by the system (5)-(7) is contained in the
corresponding macroscopic model (9)-(11). Therefore, in what follows we give a detailed
qualitative description of the solutions to system (9)-(11), by introducing an additional as-
sumption on the proliferative parameters po; and p3;. More specifically, we will prove in
Theorem 4.1 the existence and uniqueness of a global solution to the Cauchy problem associ-
ated to our macroscopic system (9)-(11) with initial conditions (12) and study the asymptotic
behaviour of the solution in the particular case where po;/p31 < 1.

We start with the following result concerning the positivity of the existing solutions to the
Cauchy problem (9)-(11), (12).
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Lemma 4.1. Let n(t) = (ni(t),na(t), n3(t)) be a solution of the Cauchy problem (9)-(11),
(12) defined on the time interval [0, T, with T such that 0<T <oo. Then ny(t) > 0, na(t) >0
and n3(t) > 0, for all t € [0,T].

Proof.

(i) First we prove the positivity of nq(t).

Let us assume that there exists ¢; €]0,7] such that ny(t;) =
and T3 = n3(t;) and consider the function N(t) = (Ny(t), No
the differential system (9)-(11) with initial conditions

0. Then, we take ny = nQ(tl)
(t), N3(t)) to be a solution to

Ni(0) =0, No(0) =mge®™h  N3(0) = 7.
Therefore, by the Picard method [14], we can easily obtain
Ni(t) =0, Ns(t)=ms, for tel0,T],
and from the system (9)-(11), we have
Ni(t) =0, No(t) = —dozmzNa(t), Ns(t) =0,

so that, s
Ni(t) =0, No(t) =mpe®mti=0  Ny(t)=my, for tel0,T).

In particular, for ¢t = ¢, we have
Ni(t1) = 0=na(t1), Na(t1) =72 =na(t1), Niz(t1)="n3=n3(t1).

Both solutions n(t) = (n1(t), na2(t), n3(t)) and N(t)=(N1(t), N2(t), N3(t)) to the system (9)-
(11) are defined on [0,7] and take the same value at ¢t = ;. Consequently, they coincide on
the interval [0,7]. Then, we obtain

nl(O) = Nl(O) = 0,

which contradicts the fact that n1(0) > 0. Therefore, there does not exist ¢; €]0, 7] such that
n1(t1) = 0. Since the function ny(¢) is continuous and n1(0) > 0, we conclude that ny(t) > 0
for all ¢ € [0, T7.

(ii) We now proceed to prove that nq(t) > 0 for all ¢ € [0, T.

Analogously to what we have done in (i), let us assume that there exists t2 €]0,7] such
that na(t2) = 0. We put n; = ny(t2) and ng = ng(f2) and consider the function N(t) =
(N1(t), Na(t), N3(t)) to be a solution to the system (9)-(11) satisfying the initial conditions

N1 (0) = figetis Jo? Na()dt N (0) =0, N3(0) = fige Pt Jo? Mt
By the Picard method [14], we then obtain
No(t) =0, tel0,T],
and the system (9)-(11) gives

Nl(t) = —dlgNl(t)Ng(t), Ng(t) = pglNl(t)Ng(t), for ¢ E]O,T]

13



Consequently, we have

Ny (1) = 7y a2 (07 Na(e)ar=J3 Nawyar

No(t) =

1

)

S RN

9

N3(t) = ﬁ36p31 (— fo7§2 Ni(t)dt'+ [T Ny (t’)dt’)

for t €]0,T]. In particular, for t = 5, one gets

Nl(tg) = ﬁl = nl(t_g), Ng(t_g) =0= ng(t_g), N3(£2) = ﬁ3 = ng(tg).

We then conclude, as before, that ny(0) = N2(0) = 0, which contradicts the fact that
n2(0) > 0. Therefore, there does not exist 2 €]0,T] such that na(t2) = 0, and the continuity
of the function na(t), together with the condition ne(0) > 0, guarantees that na(t) > 0 for all
te0,T].

(iii) Finally, we prove that n3(t) > 0 for all ¢ € [0, T7.

To this end, we rewrite equation (11) in the form

4 (ln ng(t)) = pa1ni(t), t€[0,T].

dt
Since ny(t) is positive, we conclude that the function Inng(¢) is monotonically increasing on
[0,7] and the same happens with the function ng(t). Therefore, n3(t) > 0 for all ¢ € [0, 7.
The proof of Lemma 4.1 is then complete. O

We will now proceed to analyse the existence and uniqueness of solution to the Cauchy
problem (9)-(11), (12), as well as study the asymptotic behaviour of the solution to this
system. As we will see, the results crucially depend on the value of the ratio pa;/psi. See the
discussion in paper [4] for a similar problem.

In particular, for ps;/ps1 < 1, we prove existence and uniqueness of a global solution
to the Cauchy problem (9)-(11), (12) and study the asymptotic behaviour, in the following
theorem.

Theorem 4.1. Let us assume that the proliferative rates pa1 and p3y are such that pa1 < p31.
Then the Cauchy problem (9)-(11) and (12) has a unique solution n(t) = (n1(t), na(t), n3(t))
defined on all Ry. Moreover, this solution satisfies the conditions

Jim (1) =0, (13)
dim () =0, (14)
t_l)lgloo n3(t) = a < 400, (15)

whatever are the corresponding initial data (12).

Proof.

(i) Firstly, we start by proving that the Cauchy problem (9)-(11), (12) has a unique global
(in time) solution.

14



Let J C Ry be the maximal interval on which the solution of problem (9)-(11) and (12) can
be defined. By Lemma 4.1, we have that functions nq(t), na(t), ns(t) are positive for all
telJ.

We now put p2; = Aps1, with 0 < A < 1, and rewrite equations (10) and (11) in the form

%(111 ng(t)) = Ap31n1(t) — dasns(t), (16)
d
= (m ng(t)) = p31na (). (17)
Moreover, we use equation (11) to obtain
1 ng(t)
ni(t) = — 18
1) p31 n3(t) (18]
and equation (10) to obtain
na(t
’I’Lzét; = )\pglnl(t) — dggng(t). (19)
By combining equations (18) and (19), we can write
(1) < )\ﬁs(t) ’
na(t) = ns(t)
that is J J
il <)\ =
g7 <1n ng(t)) <A o (ln ng(t)>,
and integrating between 0 and ¢, we get
0
na(t) < Cima(t),  with Oy = ”i( ). (20)
n3(0)
Now, from equation (9), using inequality (20), we obtain
ny < <p1201n§_1 - d13>n1n3. (21)

Consequently, if p120n§_1 — dy3 < 0, from inequality (21) we have that ni(t) is a non-
increasing function and therefore n(¢) is bounded, since 0 < n;(t) < n1(0). On the other
hand, if p1aCny " — di3 > 0, then we use equation (11) to obtain ni (t)ns(t) = na(t)/ps1 and
inequality (21) implies
hl S (puClng‘l — d13> T.L'g,.
b31 P31
Integrating between 0 and ¢, we get

m(©) = m(0) < T2 (m(0) - () - %2 (ma(0) ~ na(0)). (22)

Let us consider now the function f defined on RT by

C d
f(x):—lpﬁx)‘—ﬁx, z € RS,
A p31 P31
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whose first and second order derivatives are, respectively, given by

d
Fla)y=0 221 58 gy oy - 1) 2222 g e Ry (23)
P31 P31 P31

It is easy to verify that f is bounded from above and therefore we have

flx) < f(@), ==0,

where

1 dis 1/(A=1)
=] .
[Cl p12]
Consequently, by conditions (22), we conclude that
ni(t) —n1(0) < f(z) — f(n3(0)) < +oo0, for teJ (24)

Inequality (24), together with equations (16) and (17), implies that J = R*, and this proves
that our Cauchy problem has a unique solution in RT.

(ii) We now proceed to study the asymptotic behaviour of the solution, by proving conditions
(13), (14) and (15). Equations (18) and (19), together with the fact that n3(t) is a monotonous
increasing function, give

—Cy, for teRT.

0
na(t) < ni( ) ny(t)e” !, for teRT,
n3(0)
and this implies that
ng(t) < ang(t)e_CQt, for te€ R+, (25)
where C3 = n;?&o()o), since n3(t) is monotonously increasing.
3
Now, by equation (9) together with inequality (25), we have that
v (t
nl( ) < ])1203’03@)67021t — dlgng(t), for teRT.
ni(t)
Introducing a suitable constant 8 such that 0 < 8 < di3, we arrive at the following inequality
d _
o7 (hl 711(75)) < <p12C'36 Ot —dy3+ ﬁ) n3(t) — Bns(t)

IN

(mege*CQt —di3 + ﬂ) ng(t) — (Y, (26)

where Cy = fng3(0), since n3(t) is monotonously increasing.

Now, for each 3, we choose t in such a way that py2C3e~¢?* —di3+ 8 = 0, and we obtain

: - ;1 Csp12
t>t th ty = 0,t d t=—1 . 27
> ty, wi o =max{0,t} an G n(dlg—ﬁ> (27)
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Then, by (26), we arrive at the following inequality

ni(t) < ny(te) e 0 for ¢ > t. (28)

which proves statement (13) on the asymptotic behaviour of n(t), since to is a well defined
positive constant and 0 < ny(ty) < +oc.

In order to study the asymptotic behaviour of ns(t), we consider equation (11),

n3(t)
— = t
() p31na(t)
and integrating from 0 and ¢, we get
ny(t) = na(0) e Jom (), (29)

so that when taking the limit we have

: — p31 [° na (t)dt!
t£+moo n3(t) = n3(0)eP3tJo ,

400 to +o00o
/ n()dt! = / na ()dt’ + / o ()t
0 0 t

0

with

6—C4t0

—+o00
< C5+n1(0) / et = Cs + n1(0), (30)

to 4

where we have used (28) and t( has been defined in (27). Considering (29) and (30), we prove
(15) on the asymptotic behaviour of ng(t).

Finally, we analyse the asymptotic behaviour of ny(t). We consider equation (10),

n2(t)
na(t)

and integrating once more between 0 and ¢, we obtain

= pa1ni(t) — dagns(t),

n2(t) _ n2(0> ef()t p21n1(t/)dt/€7 f()z d23n3(t’)dt’ S n2(0> ef()t p21n1(t’)dt/ef foi d23n$(0)dt/7 (31)

t
since n3(t) is monotonously increasing. We can easily conclude that / pa1ny (t)dt’ tends to
0

t
a constant, due to (30), and that thin <—/ dgg?’Lg(O)dt/> = —o0. Therefore, by taking
—+00 0

the limit when ¢ — +o00 in the inequality (31), we obtain condition (14) on the asymptotic
behaviour of na(t) . O

In Theorem 4.1 we prove that the solution of the macroscopic system (9)-(11) is bounded,
this in turn implies that the solution to our kinetic system (5)-(7) is also bounded. The
boundedness of the solution to the kinetic system is a very important property when solving
the system numerically. In the section that follows we perform some numerical simulations
based on the kinetic system (5)-(7) in order to study its sensitivity to certain biologically
relevant parameters.
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5 Quantitative analysis and numerical simulations

In this section, we use the kinetic equations (5)-(7) to perform numerical simulations with
the aim of illustrating the sensitivity of the model to certain parameters. In particular, we
investigate how the results reproduced by the model are affected when we vary the prolifer-
ative rate p3; of the ISCs after interacting with SAPCs, the destructive rates di3 of SAPCs
and doz of SRTCs due to their interaction with ISCs and the value of w* characterizing the
capacity of SAPCs to activate SRTCs.

The kinetic system (5)-(7) is solved numerically first by discretizing the equations in the
activation state variable (see, e.g. [15]) and then using a quadrature rule to perform the
numerical integration of the interaction terms appearing in the equations.

5.1 The approximation method

Here we give a brief introduction of the approximation method used to solve equations (5)-
(7). First, we choose a uniform discrete grid for the activation state variable u € [0, 1] and
introduce the set U of m+1 (m € N) equidistant grid points ug € [0,1], k = 0,...,m, defined
by

up = kAu,

where Au = 1/m is the step size. We assume that the tolerance parameter wx, introduced
in equation (4), coincides with the grid-point on the ¢-position in U, that is w* = uy. The
grid points uy are used for the approximation of the distribution function f;(¢,u) and we
introduce the notation

fz'k(t) = fi(tauk)7 (32)

where ¢ stands for the population p; and k indicates the localization of the activation state
variable u € [0, 1], with ¢ = 1,2,3 and k =0,1,...,m.

The grid points u are also used for the approximation of the integral collision terms
in equations (5)-(7), using the trapezoidal rule. More specifically, we consider an integral
approximation of type

ug
/ g(t,v)dv =~ Q8 [g(t,v)], 0<a<f<m, (33)
with
(t,va) + g(t,vg) =
Qlgt,v)) = L=t Lo BAv+ 3 gtv)Av,  0<a<B<m,  (34)
s=a+1
to obtain
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1 Uk
/0 £t v)dv ~ QIf;(t,v)), /0 £t v)dv ~ QS[f;(t0)], G =1,2,

1 1
/ fj(ta U)dv ~ an[fj(tvv)]’ /0 Ufj(t7v)dv ~ le[vfj(t’ U)]v Jj=12,
- (35)
1 Uk
/ Ufj(tav)dv ~ Q?[Ufj(tvv)}a /0 vfj(ta U)dv ~ QS[Ufj(t,U)], ] = 172,
1

St v)dv = QF[fi(t, v)].
Wk
Therefore, the discretization of the activation state variable u, combined with approximations
(35), allows us to transform system (5)-(7) into a suitable system of 2(m + 1) + 1 ordinary
differential equations, given by

Cgf@) = 20133 (QUT0A(t )] = wk QLA (L 0)]) — xS (1) f(0) (36)
ters |2 (un QB[ (t,0)) = Qb[i(t,0)]) = (w — V2IE(D)] QB Lfa(t,v)]
+pi2ft (1) Q' [fo(t,0)] — disfi (8) f3(t),  k=0,....m,

V(1) = 2enfy(t)( QA )] — wkQF olt 1)) — x50 500 (37)
+ea1 [2 (uch’é[fz(t,v)] - Q’S[vfz(t,v)]) QP[f1(t,v)] — (ur, — 1) f5 () QR f1 (¢, U)]]
o fE ) QR [f1(t,v)] — das fE () f5(t),  k=0,....m,

sty = pussQy A )] 9

System (36)-(38) constitutes the numerical scheme for treating the full system (5)-(7).

5.2 Results and biological interpretation

We solve numerically the ODE system (36)-(38), using the standard Maple dsolve command
with the numeric option.

As initial data, we assume small amounts of SAPCs, SRTCs and ISCs, namely we take
fi(0), i = 1,2,3, to be of the order 1072,

Moreover, in all simulations performed here, we fix the values for those parameters that
are not investigated, specifically

c13 =co3 =0.01, c12=5, co1 =10, po1 =19, pio=1.

In the first simulation, we consider the values

p31 =20, dig=0.35, do3=0.025 ~w*=1/30, (39)
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and the results reproduced by the model are shown in Figure 1. We can see that the ISC
population is unable to regulate the autoimmune reaction, either because of insufficient pro-
liferation of ISCs or insufficient destruction of SAPCs and/or SRTCs. The consequence is
mass proliferation of SRTCs with mass production of cytokines by these that lead to a full
autoimmune cascade and therefore trending to illness.

1 R0+
160+

140}
120-]
£ 1004

40

Figure 1: Trending to illness. Evolution of SRTCs densities in the case where the proliferation
parameter p3; and the destruction rates di3, dog are given by ps; = 20, diz3 = 0.35, doz =
0.025, and w* = 1/30.

In order to control the autoimmune reaction described in Figure 1, we will vary in turn
the values of p31, di3, d23, w* considered in (39). Hence, we will analyse the sensitivity of
the model to each of these parameters.

We start by analysing the sensitivity of the model to the proliferation rate p3;. In order
to do so we perform another simulation by changing the value of the proliferation parameter
ps1 given in (39) and considered in Figure 1. Specifically we take

ps1 =22, dig=0.35, do3=0.025 w*=1/30. (40)

The results reproduced by the model in this simulation are presented in Figure 2. We can see
that, for the values (40), the number of ISCs produced by the biological system are enough
to abort the autoimmune reaction in an efficient manner. Hence, illustrating the affect of
the proliferation rate p3; on the model, in particular on the suppression of the autoimmune
reaction.

We now analyse the sensitivity of the model to the destruction rate di3. We perform
another simulation by changing the value of the destruction parameter d;3 given in (39) and

20



SRTC

Figure 2: Immunosupression. Evolution of SRTCs densities in the case where the proliferation
parameter p3; and the destruction rates di3, dog are given by ps1 = 22, diz3 = 0.35, doz =
0.025, and w* = 1/30.

considered in Figure 1. We now assume
p3s1 =20, dig=0.6, doz=0.025 w*=1/30. (41)

The results obtained in this simulation are presented in Figure 3 and show that for the values
(41) the number of SAPCs destroyed as a consequence of their interaction with ISCs will
ultimately control the proliferation of SRTCs and therefore avoid illness.

Next, in order to analyse the effect of the destruction rate ds3 on our model, we change the
value of the destruction parameter given in (39) and considered in the simulation portrayed
in Figurel. More specifically, we take

p31 =20, diz3 =0.35, dogz =0.07, w*= 1/30. (42)

The results obtained in this simulation are illustrated in Figure 4. They show that for the
values (42), the number of SRTCs destroyed as a consequence of their interaction with ISCs
will ultimately avoid a full blown autoimmune reaction.

Finally, if we vary the value of the tolerance parameter w* used in the simulation presented
in Figure 1, so that it has a value nearer to one, namely

P31 =20, diz=0.35, das =0.025, w*=5/6, (43)

a significant lowering effect on the number of SRTCs with high activity is observed confirming
that the higher the value of w* the less efficient are SAPCs in increasing the activity of SRTCs,
resulting in an increase in the tolerance of SRTCs to self-antigens. This effect is illustrated
in Figure 5.
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SRTC

Figure 3: Immunosupression. Evolution of SRTCs densities in the case where the proliferation
parameter p3; and the destruction rates dy3, dos are given by p31 = 20, d13 = 0.6, dog = 0.025,
and w* = 1/30.

SRTC

u 30

Figure 4: Immunosupression. Evolution of SRTCs densities in the case where the proliferation
parameter p3; and the destruction rates dy3, dog are given by p3; = 20, d13 = 0.35, d23 = 0.07,
and w* = 1/30.

6 Summary and perspectives

In this work we have constructed a new mathematical model, based on the Boltzman-like
kinetic theory, describing an autoimmune response against self-antigens. In doing so, we have
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SRTC

Figure 5: Immunotolerance. Evolution of SRTCs densities in the case where the proliferation
parameter p3; and the destruction rates di3, dog are given by ps; = 20, di3 = 0.35, dog = 0.025
and w* = 5/6.

considered three interacting cell populations, which are believed to be the main players in
the autoimmune process, these being SAPCs, SRTCs and ISCs (such as Tregs and NKCs).

For all participating cell populations, we have defined an activity variable based on their
biological function.

By describing the binary cell interactions, we were able to derive the kinetic equations
that give the evolution of the distribution functions associated to the interacting cell pop-
ulations. The corresponding kinetic system consists of integro-differential equations for the
distribution functions whose integral operators describe the binary interactions among the
cell populations.

From the kinetic equations, we have formally derived the macroscopic balance equations
for the total number of cells of each population and the corresponding system consists, in our
case, of ordinary differential equations.

In our model we have assumed that during proliferative encounters cloned cells inherit the
same aggressive state as their mother cell, at a constant proliferation rate, and, additionally,
that the destructive encounters occur at a constant destruction rate. Under these assump-
tions, the boundedness of the solution to our macroscopic system implies the boundedness of
the solution to the corresponding kinetic system. In fact, the basic information on the kinetic
model is contained in the corresponding macroscopic system.

We have, therefore, presented a qualitative analysis of the macroscopic system under a
certain assumption on two of the proliferation parameters of the model. Under this assump-
tion, we have proved the existence and uniqueness of a global solution to the Cauchy problem
associated to our macroscopic system. We have also studied the asymptotic behaviour of the
solution.
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Some numerical simulations of the kinetic model have been included, in order to study
the sensitivity of the model to parameters characterizing proliferation of ISCs, destruction of
SAPCs and SRTCs and tolerance of SRTCs to self-antigens. The results reproduced by the
model have a biological counterpart consistent with the scientific descriptions reported in the
literature. Therefore, in our opinion, the model proposed in this paper results to be a suitable
and consistent mathematical tool to mimic the biological trends typical of an autoimmune
disease.

Indeed, starting from the present study, we plan, in our future work, to extend our model
to describe immunotherapy in the context of autoimmune disease and to include an artificial
inlet which represents an external drug therapy. Moreover, using optimal control theory, we
plan to establish optimal treatment strategies to decrease the number of SRTCs.
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