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Functional Electrical Stimulation for
Gait Rehabilitation

Master dissertation
Master Degree in Industrial Eletronics and Computers

Dissertation supervised by
Professora Doutora Cristina P. Santos

November 2018



A C K N O W L E D G E M E N T S

To my father and grandfather - thank you for the support and for all the help and
knowledge you provided.

I would like to thank my advisor, Professor Cristina P. Santos, for the opportunity
to work on this project, for all the guidance and for encouraging me to always work
towards the best possible results. I would also like to thank Professor Jorge Martins,
from IST, for providing the stimulator that made this project possible and for all the
advice and help given.

To the doctoral student Joana Figueiredo, i would like to thank you for all the
valuable input and support, and for always taking the time out to help. I would
also like to thank everyone in the laboratory, for being welcoming and making it a fun
place to work in.

A special thank you to my sister, for her valuable help in the design of this thesis,
for volunteering as a test subject and for all the encouragement and support along the
way.

Thank you to my friends Joana, Mariana and Beatriz, for the never-ending advice
and for all the trips and moments we shared. It would not have been possible without
you.

I would also like to thank Inês, Primo and Tiago, for all the memorable times we
spent together throughout these 5 years. Working with you was as rewarding as it was
enjoyable.

Finally, a special thank you to my mother and the rest of my family and friends, for
their endless support throughout this journey.

i





A B S T R A C T

Conditions that can lead to a full or partial motor function loss, such as stroke or
multiple sclerosis, leave people with disabilities that may interfere severely with lower
body movements, such as gait. Drop Foot (DF) is a gait disorder that results in a
reduced ability or total inability to contract the Tibialis Anterior (TA) muscle, causing
an inability to raise the foot during gait. One of the most effective methods to correct
DF is Functional Electrical Stimulation (FES). FES is a technique used to reproduce
the activation patterns of functional muscles, in order to create muscular contractions
through electrical stimulation of the muscles’ nervous tissue.

FES has first been introduced in 1961. However, the available commercial
FES systems still do not take into account the fact that the gait differs from
subject to subject, depending on their physical condition, muscular fatigue and
rehabilitation stage. Therefore, they are unable to provide a personalized assistance
to the user, delivering constant stimulation pulses that are only based on gait
events. Consequently, they promote the early onset of fatigue and generate coarse
movements. This thesis aims to tackle the aforementioned issues by developing a
FES system for personalized DF correction, tailored to each individual user’s needs
through the use of a Neural Network (NN).

A Non-Linear Autoregressive Neural Network with Exogenous inputs (NARX
Neural Network) was used to model the dynamics of the electrically stimulated TA
muscle, in a novel approach that uses both the foot angle and the foot velocity. The
model was combined with a Proportional Derivative controller to help compensate
for any external disturbances. In order to create more natural movements, reference
trajectories were obtained by recording the foot angle and velocity of healthy subjects
walking at different speeds.

The system has been validated with a healthy subject walking at 3 different speeds
on a treadmill: 1 km/h, 1.5 km/h and 2 km/h. It was able to track the desired
trajectory for every speed, thus creating a more natural movement and effectively
correcting DF gait.

Keywords: Functional Electrical Stimulation; Drop Foot; Artificial Intelligence-based
control; Closed-loop Control.
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R E S U M O

Condições que podem levar a perdas totais ou parciais de funções motoras,
como o acidente vascular cerebral ou a esclerose múltipla, deixam as pessoas com
incapacidades que podem interferir severamente com movimentos dos membros
inferiores, como a marcha. Pé Pendente (PP) é um distúrbio da marcha que resulta
numa incapacidade de contrair o músculo TA, causando uma incapacidade de
contrair o pé durante a marcha. Um dos métodos mais eficientes para corrigir o PP é
a Estimulação Elétrica Funcional (EEF). EEF é uma técnica utilizada para reproduzir
os padrões de ativação dos músculos funcionais, de modo a gerar contrações através
de estimulação elétrica do tecido nervoso muscular.

EEF foi introduzida pela primeira vez em 1961. No entanto, os sistemas comerciais
de EEF disponı́veis no mercado não têm em conta que a marcha difere dependendo
do sujeito, da sua condição fı́sica, da fadiga muscular e da fase de reabilitação.
Posto isto, são incapazes de fornecer uma assistência personalizada ao utilizador,
aplicando pulsos de estimulação constantes baseados apenas nos eventos da marcha.
Consequentemente, promovem o inı́cio precoce da fadiga e geram movimentos
bruscos. Esta dissertação tem como objetivo a resolução dos problemas mencionados
acima, com o desenvolvimento de um sistema personalizado de EEF para a correção
do PP, adaptado às necessidades individuais de cada utilizador através do uso de
uma Rede Neuronal (RN).

Uma Rede Neuronal Auto-Regressiva com inputs Externos foi utilizada para
modelar a dinâmica do músculo TA eletricamente estimulado, com uma abordagem
inovadora que utiliza o ângulo do pé e a velocidade do pé. O modelo foi
combinado com um controlador Proporcional Derivativo, para compensar quaisquer
perturbações externas. De modo a gerar movimentos mais naturais, a trajetória de
referência foi obtida gravando o ângulo e a velocidade do pé de sujeitos saudáveis a
andar a diferentes velocidades.

O sistema foi validado com um sujeito saudável a andar a 3 velocidades diferentes
numa passadeira: 1 km/h, 1.5 km/h e 2 km/h. Foi capaz de seguir a trajetória
desejada para todas as velocidades, gerando um movimento mais natural e
efetivamente corrigindo a marcha de PP.

Keywords: Estimulação Eléctrica Funcional; Pé Pendente; Controlo baseado em Inteligência
Artificial; Controlo em Malha Fechada.
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I N T R O D U C T I O N

1.1 motivation

Conditions that can lead to full or partial motor loss, as is the case of Cerebral
Palsy, Stroke, Multiple Sclerosis, Amyotrophic Lateral Sclerosis, Muscular Dystrophy,
Poliomyelitis, Muscular Atrophy and Spinal Cord Injuries, leave people with
disabilities that interfere severely with their daily activities (Melo et al. (2015)).
According to the World Health Organization, of the 15 million people that suffer
a stroke worldwide every year, 5 million remain permanently disabled. The
Portuguese Society of Cerebrovascular Accident, reported that 16% of stroke patients
develop slight to moderate disabilities while 41% lose their independence completely.
Furthermore, a study conducted in the United Kingdom (Godwin et al. (2011))
concluded that the yearly rehabilitation cost for each stroke patient averaged at 13

000 €. When it comes to multiple sclerosis, the World Health Organization estimates
that it affects 2.5 million people worldwide, while in Portugal, it affects over 8

thousand people. A global study on multiple sclerosis (Giovannoni and Pepper (2015))
found that, in Germany, a person spends around 5000 € every year for non-medical
treatments, which is the case of rehabilitation. The disabilities that come as a
consequence of these conditions can affect upper limb movements, which is the case
of grasp, or lower limb movements, such as gait. They affect the patients’ quality of
life and, in some cases, may even lead to a loss of independence. Hence, there is a
growing need for more economic and effective rehabilitation methods.

If the disability is caused by a disruption in the neural pathways, but the
muscles remain fully functional and contain excitable nerves, they are still able to
contract, despite being paralyzed or paretic. These contractions can be achieved
with Neuromuscular Electrical Stimulation, NMES, which aims at reproducing the
activation pattern of functional muscles. However, in order to use these contractions
for a useful task, Functional Electrical Stimulation (FES) is necessary, as it is a form

1



2 Chapter 1. introduction

of NMES used specifically to produce a useful movement (Sheffler and Chae (2007)).
Additionally to reproduce muscle patterns, FES is also commonly used to benefit
breathing, intestinal, urinary, and sexual functions (de Souza et al. (2017)).

Functional Electrical Stimulation (FES) can replace the central nervous system,
generating the necessary potential to induce a muscular contraction (Kesar et al.
(2008)). It works by stimulating the nervous tissue of the paralyzed muscle so
that it contracts, consequently generating movement. The pulses with which they
are stimulated can have different parameter values, such as amplitude, frequency or
width. Being able to vary the pulse’s parameters in real-time is important, given
the non-linear behaviour muscles exhibit while being electrically stimulated (Hunt
et al. (1998)). It should also be taken into account that different muscles have different
characteristics and, therefore, need different stimulation patterns.

Drop Foot (DF) is a gait disorder that results in a reduced ability or total inability
to contract the TA muscle. Subjects affected by DF are more prone to falls, since they
cannot lift the foot off the ground completely. In the case of the elderly, this lack of
mobility can even be fatal. It is estimated that 75% of the people that survive a stroke
are affected by some kind of lower limb weakness and, of those, 20% are affected by
DF (Johnson et al. (2004)). If the DF is caused by damaged nerves, FES can have a
crucial part in achieving a partial or full recovery, since the electric pulses delivered
to the muscle help strengthen the synaptic connections of the spinal cord (Brend et al.
(2015)). However, if it is the consequence of a progressive neurological disease, it will
affect the patient throughout his life.

Even though FES has been used since 1961, when the first system to correct drop
foot was created by Liberson, W. T.; Holmquest, H. J.; Scot, D.; Dow (1961), most of the
recently developed systems still use pre-programmed movements, not only to assist
gait but also to generate hand movements (Burridge et al. (2007), Khattar et al. (2012),
Van Swigchem et al. (2011), Venugopalan et al. (2015)). Taking into account the fact
that muscular activation patterns are different for every subject, depending on their
physical condition, muscular fatigue and rehabilitation stage (Gorgey et al. (2009)),
it is important to provide a personalized assistance for each user.

FES devices for DF correction are meant to be simple and easy to use, being usually
constituted by two electrodes, one placed on top of the Common Peroneal nerve and
the other placed on top of the TA muscle, connected to a small-sized stimulator, a
sensor and a controlling unit. The aim of such systems is to provide a convenient
and ergonomic way for the subject to achieve a normal gait pattern that can be
integrated in his daily activities. The DF correction systems currently available in the
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market fail to take into consideration the time-variant dynamics of the electrically
stimulated muscles (Hunt et al. (1998)), the onset of muscular fatigue and any
external disturbances (Melo et al. (2015)), by applying a constant stimulation pulse
that only depends on the gait phase. This deprives the user of an assisted-as-needed
experience and promotes the early onset of fatigue. Hence, the systems fail to deliver
optimal excitation patterns for the muscle’s nervous system, generating non-natural
coarse movements (Brunetti et al. (2011)). Therefore, the applied stimulation intensity
must be adequate to every user, increasing and decreasing depending on the desired
movement, mimicking the biological behaviour. This makes the subject more
motivated and invested in his own recovery, since when constant high stimulation
pulse values are applied constantly, fatigue onsets faster and the subject may even feel
a slight discomfort on the area where stimulation is being applied.

In order to provide a FES rehabilitation treatment that is tailored for each user,
models are created in order to capture the dynamics of the electrically stimulated
muscle. There are two types of models that are used for FES systems: mechanistic
or biomechanical models and empirical or black-box models. Although mechanistic
models are based on the physiological properties of the muscle, they require more
parameters and more complex calibration routines. Empirical models, on the
other hand, only describe the relationship between the stimulation pulse and the
corresponding muscular movement, which means they are less complex (Previdi
(2002)). Nonetheless, they can be just as accurate and precise, since they only sacrifice
the level of detail when compared to the mechanistic models (Luzio de Melo (2014)).
Therefore, more recently, empirical models, in particular Neural Networks (NN), have
been extensively used to model both upper limb and lower limb muscles (Azura et al.
(2016), Yassin et al. (2017), Yilei et al. (2006), Popov et al. (2015), Imatz-ojanguren et al.
(2016)).

These models are able to capture the dynamics of the modeled muscle and are
created specifically for each subject. The result is a control strategy that is able to
determine which pulse value is more adequate to apply to the subject, depending on
the desired movement. This represents a personalized alternative that is able to delay
muscular fatigue, since the necessary pulse value is predicted by the model at every
given moment. Furthermore, the models are usually combined with a controller, in
order to compensate any external disturbances that may occur (Chang et al. (1997)).

It it important to further research on the most adequate control strategies, so that
the patient can not only feel comfortable when wearing the system but also have a
personalized long-lasting experience. Although the system developed in this project
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is meant to correct DF, in the long run, it could treat more than one specific gait
pathology. More stimulators can be used simultaneously to address more complex
pathologies and it could possibly be combined with a powered knee orthosis, in order
to help patients with paraplegia stand up or even walk.

1.2 problem statement

DF is a gait disorder that results in a reduced ability or total inability to contract
the TA muscle. This results in a failure to raise the foot and toes, which is called
dorsiflexion. It is most commonly a result of a disruption in the nerve pathways,
which means the nerves in the leg muscles remain fully functional. FES can act in
place of the central nervous system, generating action potential to induce muscular
contraction (Hayashibe et al. (2011)). For DF correction, it works by stimulating the
nervous tissue of the TA muscle so that it contracts, consequently raising the foot and
toes. A diagram of a DF correction system using FES can be seen in Figure 1.1.

Figure 1.1: DF correction diagram using FES: a) DF without FES and b) DF correction using
FES.

The current DF correction systems available in the market provide an open-loop
control strategy that applies constant stimulation pulse values that only depend on
the gait event. Hence, they are not tailored to the user’s needs, fail to compensate
any external disturbances and promote the early onset of fatigue. Furthermore, by
applying a constant stimulation pulse, the movements are more coarse and unnatural.

In addition to this, even though in the research field there have been advancements
in order to create more adaptable FES systems, there is still room for improvements.
In the case of DF correction, a dynamic model of the TA muscle has not yet been in
used.
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This project aims at solving this problem, by providing the user with a personalized
assistance with the creation of a dynamic model. Additionally, a controller
will be combined with the model, in order to compensate any real-time external
disturbances. The gait patterns of healthy people will also be acquired and fed into
the controller, so the DF patients can have a gait that is as close to the natural one as
possible.

1.3 goals and research questions

The purpose of this work is the creation of a wearable FES system for real-time
DF correction, so patients can achieve a healthy gait pattern. The system should be
personalized to each user’s needs, be able to provide assistance at different walking
speeds and be comfortable for daily use. Thus, to achieve this main objective, three
main questions must be answered:

• How to provide a personalized experience for each user?

To adapt the system to the user’s needs, it is necessary to find the best way to
model the electrically stimulated muscles, so that the model can not only be
tailored to the user’s anatomical characteristics, but can also be incorporated in
a real-time control strategy. Therefore, a novel way to model the electrically
stimulated TA muscle will be proposed.

• How to provide a comfortable long-lasting experience for each user?

To increase user comfort it is necessary to delay the onset of fatigue and create
a light wearable system that does not constrain the user’s daily movements. In
order to do this, an assisted-as-needed control strategy should be implemented,
so the system only delivers the necessary stimulation at any given moment.
Furthermore, a light stimulator that allows real-time update of pulse parameters
should be used for this system.

• How to ensure a natural gait pattern?

To prevent coarse movements and generate a gait pattern similar to the natural
one, it is necessary to study the gait pattern of healthy subjects and find a way
to reproduce it with FES. Moreover, it is also necessary to determine if the gait
pattern changes depending on the walking speed of the subject.
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Based on the previous identified research questions, several goals were established
in order to develop the aforementioned system:

Goal 1 Study DF and the muscles affected by this pathology;

Goal 2 Research of the best muscle modeling and control strategies for DF correction;

Goal 3 Identify the most adequate stimulator to integrate in the system;

Goal 4 Select the most adequate sensor for gait event detection and foot movement
tracking;

Goal 5 Select the most adequate microcontroller unit to implement the control
strategy;

Goal 6 Implement and test the chosen strategy to model the electrically stimulated
TA muscle;

Goal 7 Track the foot movement of healthy subjects during gait at different speeds;

Goal 8 Based on the foot movement acquired on the previous stage, create a reference
trajectory for the control strategy;

Goal 9 Implement and test the chosen control strategy;

Goal 10 Compare the performance of the model alone with the performance of the
model combined with the controller;

Goal 11 Validate the control strategy with a healthy subject;

1.4 contributions

What distinguishes this project from both the commercial and the research
prototypes available for DF correction, is the use of a Neural Networks (NN) to create
a novel dynamic model for the TA muscle, using both the foot angle and the foot
angular velocity. This creates a personalized experience for the users, since the model
is tailored to the specific dynamics of their electrically stimulated TA muscle, allowing
the system to adapt the stimulation parameters to the user’s anatomy.

This project won the 1
st place in the Fraunhofer Portugal Challenge in the MsC

category and has also yielded an article that has been submitted to the Robotics and
Automation Letters.
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1.5 thesis’ outline

This thesis proposes a novel approach to DF correction, using a NN-based control,
that models the individual dynamics of the electrically stimulated TA muscle, thus
creating a personalized experience for the user. This thesis contains six chapters in
total.

Chapter 2 contains a summary of the main FES features, and how they are applied
throughout the literature, as well as the main control strategies found in FES systems
used to generate functional movements.

Chapter 3 begins with a global view of the created system, to which follows a more
in depth look into all of the components.

Chapter 4 presents the personalized muscular model created with a NN, along with
the method that was used in its creation. Different models are tested in order to assess
which one is better fit for the real-time control strategy.

Chapter 5 uses the model created in the previous chapter, in order to implement the
real-time trajectory tracking control strategy for DF correction. Static and gait trials
are conducted with a healthy subject in order to determine the performance of the
controller.

Chapter 6 concludes the thesis, with an analysis of the work developed and a
guideline for future work.





2

S TAT E O F T H E A RT

In this chapter the commercial and research existent Functional Electrical
Stimulation (FES) systems will be examined. In particular, the sensors used, the
stimulators and its parameters and the control strategies. The chapter begins with
an explanation of what FES is, its characteristics and what it is used for. It is followed
by the types of stimulation used in FES systems, along with its benefits, and the type
of sensors used in the different systems. It is followed by an extensive study of all the
control strategies used with FES systems. Finally, the commercial systems that exist
in the market and the systems created in the research field will be presented, and the
chapter ends with a discussion of the content that was presented.

2.1 introduction

FES is used to produce functional muscular movements, by activating the muscles
with an electrical pulse, generating the necessary movements to produce a useful
task. Thus, a paralyzed muscle, once excited, can produce movements that the person
could no longer produce on its own. This technique is used in rehabilitation, to assist
lower limb or upper limb movements, in order to rehabilitate the muscles and nerve
pathways, so that the users can ultimately produce the same movements on their
own, if possible (Brend et al. (2015)). However, despite being generally said that FES
stimulates the muscle, the unit that is stimulated is normally the nerve, rather than
the muscle. This happens because the activation threshold for muscle fiber is much
greater, compared to the activation threshold of nerve cells (Peckham and Knutson
(2005)), as can be seen in Figure 2.1. Sometimes the muscle fibre is in fact stimulated,
but that is reserved for cases when the muscle is denervated (Eberstein and Eberstein
(1996)).

9
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Figure 2.1: Stimulus amplitude necessary to produce a muscle response. Adapted from
Peckham and Knutson (2005).

A FES system is constituted by three main components: the actuator or stimulator,
the sensor and the control unit. The actuator creates and delivers the pulses to the
desired muscle; the sensors track the joint’s kinematic movements and in the case of
gait correction systems, detect the gait events and the control unit implements the
control strategy that sends the pulse parameters of the actuator, so that the resultant
movement is in accordance to what is expected. The components of FES and their
main functions can be seen in Figure 2.2.

Figure 2.2: FES components and their main functions.

2.2 actuator

In a FES system, the actuator is generally an electrical stimulator that generates a
series of electrical pulses to be delivered to the muscle through electrodes, creating
a muscular movement. The electrical stimulator is constituted by 3 stages: the Pulse
Generator, which can be an oscillator circuit or a microcontroller that allows the control
of the pulse’s parameters - frequency, width and amplitude -, the Waveform Modulator
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which modulates the pulse with a carrier signal, in order to make it more adequate to
stimulate muscles and the Output Stage, that amplifies the pulse to high-level voltage
or current.

The generated stimulation should be biphasic, so that there are no charge imbalances
in the skin, which can damage the tissue (Low et al.). The classical stimulation
pulse shape is rectangular with a typical stimulation pulse often having a ramping
up and down of stimulus, to avoid sudden muscular responses (Melo et al. (2015)).
These types of pulses are more commonly used in open-loop FES systems, where a
physician or the subject calibrates the pulse parameters - frequency, amplitude and
width - to comfortable levels, and these values are constantly applied throughout the
stimulation. The classical FES waveform is depicted in Figure 2.3.

Figure 2.3: Typical FES waveform with balanced charges.

As more FES systems are being created, the tendency is shifting towards closed-loop
control strategies that are able to provide a personalized assisted-as-needed
assistance to the user. Therefore, the classic FES waveform is no longer the most
recommended, since the pulse must ideally vary in accordance to the movements
being made, the speed at which they are being made and the user of the system (Seel
et al. (2016b)). The waveform of a stimulation pulse generated during closed-loop
control, can have different widths, frequencies or amplitudes, as it should adapt to the
user’s movements. This type of adaptable FES pulse can be seen in Figure 2.4.
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Figure 2.4: Adaptable FES waveform with balanced charges.

2.2.1 Stimulation Parameters

There are three stimulation parameters in a FES pulse: frequency, amplitude and
width. Frequency is directly connected to force generation, meaning that higher pulse
frequencies generate higher muscle force. However it is also associated with muscle
fatigue, having been proved in various studies that lowering stimulation frequency
results in less fatigue of the stimulated muscle (Gorgey et al. (2009), Gregory et al.
(2007), Kesar et al. (2008)). Even though high frequencies increase the rate of muscle
fatigue, frequencies that are too low create a series of muscular twitches. Therefore, a
balance must be found when choosing the stimulation frequency, so that the muscle
does not fatigue too quickly, but there is still a smooth muscular contraction.

Both the pulsewidth and the pulse amplitude are linked to muscle fiber
recruitment, which in turn results in stronger muscle contractions (Doucet et al.
(2012)). However the necessary pulsewidth and amplitude values to produce a
movement vary from case to case, depending on the different pain thresholds of
the user, the electrode-skin interface and the muscular groups being stimulated
(Sheffler and Chae (2007)).

The reviews made by Melo et al. (2015) and Meng et al. (2017), collected the
information of a large amount of commercial and research stimulators’ parameters.
Table 2.1 was created, in order to provide a more global look at the pulse’s parameter
values. This table was based on the data obtained on the reviews and on the data of
other stimulators created for research in Chen et al. (2004) and Simonsen et al. (2016)).
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Table 2.1: FES pulse parameters’ most common and maximum values

Parameter Definition Unit Common Values Maximum Value

Frequency
Number of pulses

produced per second
Hertz (Hz) 20 - 50 Hz 200 Hz

Width
Time span of a

single pulse
Second (s) 0 - 500 us 1000 us

Amplitude
Intensity of the

pulse
Ampere (A) 0 - 100 mA 260 mA

2.2.2 Types of Stimulation

There are currently three types of stimulation that are used in FES: conventional
stimulation, asynchronous stimulation and sequential stimulation. Conventional
stimulation only uses one channel to stimulate a muscle group, while both
asynchronous and sequential stimulation use multiple channels. This is done in order
to divide the stimulated muscle into different groups of muscle units, using multiple
electrodes to stimulate the same area covered by one single electrode in conventional
stimulation (Nguyen et al. (2011)), which is depicted in Figure 2.5.

Figure 2.5: Electrode placement for a) conventional stimulation b) asynchronous or sequential
stimulation. The active electrode is represented by the red dotted line.

In sequential stimulation pulse trains are delivered sequentially to each
stimulation channel, while in asynchronous stimulation the active stimulation
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channel is switched after each individual pulse is delivered (Downey et al. (2014)).
Figure 2.6 depicts the different pulses corresponding to the different types of
stimulation.

Figure 2.6: Different types of stimulation: conventional, asynchronous and sequential.
Adapted from Downey et al. (2015b).

The sequential and asynchronous stimulation methods have been proved to reduce
muscle fatigue caused by FES (Pournezam et al. (1988), Popović and Malešević (2009)
Nguyen et al. (2011), Maneski et al. (2013), Downey et al. (2014), Downey et al.
(2015a)). The study conducted in Pournezam et al. (1988) indicated that the lower the
frequency applied in each channel, the faster the muscle recovery time was and the
longer it took for the muscle to become fatigued. This study was backed by Popović
and Malešević (2009), which compared conventional stimulation with multi-pad
asynchronous stimulation, and concluded that with the latter a better resistance to
muscle fatigue was achieved. Furthermore, Nguyen et al. (2011) used three different
fatigue measures in one patient to compare the conventional stimulation with four
electrode sequential stimulation, and concluded that during sequential stimulation
the fatigue took 280% more time to onset, when using a stimulation frequency of
40Hz. Following the same concept and stimulation frequency, Maneski et al. (2013)
noted that asynchronous stimulation doubles the time interval before fatigue sets in,
when compared to the conventional one.
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Although the fatigue related benefits produced by asynchronous or sequential
stimulation have been extensively proven in various studies, Downey et al. (2014)
points out that these two types of stimulation, on account of being delivered in pulses
of lower frequency when compared to the conventional one, may cause a force ripple
in the stimulated muscle. This force ripple happens when the muscle contractions are
not fully fused, resulting in a more coarse/unstable movement, which can be solved by
higher frequency stimulation pulses, like the ones applied by conventional stimulation.
This force ripple may be a problem when feedback control is necessary (Downey
et al. (2015a)), however efforts must be made in order to substitute conventional
stimulation by sequential or asynchronous stimulation on closed-loop FES systems,
as it allows patients to use the systems for longer periods of time.

2.3 sensors

The sensors provide information about the joint’s kinematic parameters, based on
the joint movements. They are generally used to measure the angle or the torque of
the controlled joint. In gait assistance, they are used to detect the gait events, so the
system knows when to apply stimulation. The most commonly used sensors in FES
systems are Forse-sensing Resistor (FSR)s and foot switches for gait event detection;
gyroscopes, accelerometers, Inertial Measurement Unit (IMU)s and goniometers for
joint angle estimation; Electromyography (EMG) signals for muscle activation and
dynamometers or transducers for joint torque calculation. There are however, other
sensors that are not as widespread, but that have also provided some good results.
Magnetic sensors were used in (Chen et al. (2004)) to calculate the ankle angle and
computer vision was used in (Simonsen et al. (2016)) to detect hand opening and
closing events.

2.3.1 FSRs

Forse-sensing Resistor (FSR)s are sensors that change resistance when a force is
applied to them. They are usually used to detect gait events. By being placed on
the foot of the patient, they can detect when a specific part of the foot is in contact
with the ground, which is usually linked to a specific gait event. The foot switch is the
most frequent sensor for gait event detection found in commercial DF systems, and
it consists of a FSR that is placed under the heel and can easily recognize the stance
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or the swing phases (Meng et al. (2017)). Figure 2.7 depicts a wireless FES system to
correct DF, where the wireless foot switch can be seen and the actuator is wrapped
around the dorsiflexor muscles.

Apart from gait event detection, in (Knutson et al. (2012)) FSRs were used to detect
hand opening, in a system designed to control hand movements in stroke patients. It
uses a glove with FSRs in the healthy hand, to measure the degree of hand opening
and replicates these movements in the affected hand with electrical stimulation.

Figure 2.7: Wireless FES system to correct DF with foot switch.

2.3.2 Inertial Sensors

Inertial sensors are used to monitor gait (Rueterbories et al. (2014)) and to provide
information about the joint’s kinematic movements, since they can provide the
joint’s angle, angular velocity and acceleration. They are frequently small in size,
have low power consumption and are widely available on the market (Sprager and
Juric (2015)).

The WalkAide® system is an open-loop commercial system for DF correction that
uses an inertial sensor embedded in the stimulation band that is placed around the
Tibialis Anterior (TA) muscle, to detect the gait phases. This is an improvement for
the patient, as the system only has one wearable component, being able to be used in
activities that do not require shoes, improving the user’s quality of life. In Seel et al.
(2016b) and Seel et al. (2016a) an Inertial Measurement Unit (IMU) is used to detect
gait events and to estimate the foot angle, simultaneously. In Watanabe and Tadano
(2017) and in Basith et al. (2016) inertial sensors are used to estimate the knee angle in
closed-loop fuzzy control strategies.
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Using inertial sensors to detect gait events and estimate the angle of the joint is an
effective way to reduce the number of sensors that are placed on the subject, creating
more ergonomic and efficient systems.

2.3.3 Electromyograpy Sensors

Electromyography (EMG) sensors measure muscular activation by calculating the
voltage potential measured by two electrodes placed side-by-side on the muscle. The
bioelectric or EMG signals of the muscles provide the user’s intention of movement,
being ideal for subjects with intact neural pathways. However, paraplegic and
tetraplegic subjects are not able to generate EMG signals, and some patients with
paralyzed limbs cannot provide EMG signals with an amplitude big enough to be
measured correctly with the electrodes. Therefore, in order to use these sensors, the
subject still has to retain voluntary muscular contractions that can be measured by
the system. EMG signals provide the muscular activation that is used as input for the
control strategies in Hsieh et al. (2009), Yeom and Change (2011) and Chen et al. (2013),
used to control the ankle movement. A FES system with EMG sensors is depicted in
Figure 2.8.

Although EMG signals are used in orthosis and exoskeletons to control the
movement of the joints, they are less used in wearable FES systems due to the
complexity of signal acquisition and processing. The proximity of the electrodes
that deliver the stimulation pulse to the muscle and the ones used to acquire the EMG
signals makes it harder to remove the stimulation artifacts from the acquired signal,
since the signal acquisition system is monitoring the same muscle that is being
stimulated. Some commercial systems, that will be discussed further in the chapter,
also monitor the EMG signals of healthy limbs to reproduce the movements in the
affected limbs with FES.
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Figure 2.8: FES system with EMG sensors.

2.4 control strategies

In FES systems, the control unit communicates with the sensors and with the
stimulator, and is the component where the control strategy is implemented. In this
section, the control strategies found in the literature will be analyzed, in order to
assess what still needs to be done in the scope of DF correction and to determine
what control strategies yield the best results.

When it comes to FES control strategies, there are different control combinations
that can be used, which can mainly be divided in trajectory tracking control strategies
and EMG-based control strategies. Trajectory tracking control aims at following a
defined joint trajectory, reducing the error between the desired trajectory and the real
one as much as possible. EMG-based control focuses on controlling a joint based on
the bioelectric signals of a muscle, which represent the movement intentions of the
user. The downsides of EMG-based control are the fact that some patients that require
FES are paraplegic, tetraplegic or simply do not have an EMG signal amplitude big
enough to be acquired by the system, rendering this control useless in those types
of patients and the complexity of signal acquisition and processing. Although
trajectory tracking control generally does not take into account the movement
intentions of the user, it can be used with any patient. There is also a possibility
to combine the trajectory tracking control strategy with the EMG signals, using
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the bioelectrical signal to create a muscular model and tracking the desired trajectory
based on that model.

The control strategy can use only a controller, in order to control a joint’s torque or
angle. The diagram for this strategy is depicted in Figure 2.9, where Td represents the
desired reference trajectory, e represents the error between the desired trajectory and
the real trajectory, Tr, and u represents the controller variable. The most common
controllers in FES systems are the Proportional Integral Derivative (PID) or fuzzy
controllers, however, using a simple controller introduces a big time-delay in trajectory
tracking control (Ferrarin and D’Acquisto (1996)), not being useful for real-time control
purposes, such as gait.

Figure 2.9: Feedback closed-loop controller.

There is also the possibility of using just a model, in open-loop configuration, to
control a joint using FES. When it comes to the model, a diversity of them are used
in the literature ((Fujita et al. (1998), Imatz-ojanguren et al. (2016), Chang et al. (1997),
Chen et al. (2004), Azura et al. (2016), Previdi (2002), Yassin et al. (2017), Yilei et al.
(2006)), Kesar et al. (2008), Li et al. (2015), Quintern et al. (1997), Tu et al. (2017)). The
biomechanical models are the most complete ones,since they require more complex
calibration routines, that may not always be feasible in subjects with pathologies. The
model calibration routine is necessary in order to match the model’s parameters to
the user’s anatomical characteristics. The biomechanical model more widespread in
literature is the Hill-type muscle model, which is formed by three independent factors:
the force-length relationship, the force-velocity relationship and the nonlinear muscle
activation dynamics under isometric contraction (Le et al. (2010)). The nonlinear
muscle activation dynamics are frequently modeled with a Hammerstein structure,
which comprises a static nonlinearity in series with a linear dynamic. This structure is
used mostly due to the nonlinear nature of electrically stimulated muscles and due
to its connection to biophysics. The static nonlinearity, f (u), represents the Isometric
Recruitment Curve (IRC) - static gain relation between stimulus activation level, u(t),
and the output torque, when the muscle is in an isometric contraction, w(t). The linear
dynamics, G(q), represent the muscle contraction dynamics, which are combined with
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the Isometric Recruitment Curve (IRC) to output the generated torque, y(t) (Le et al.
(2010)). The Hammerstein structure can be seen in Figure 2.10.

Figure 2.10: Hammerstein structure.

As an alternative for complex biomechanical models, empirical or black-box
models started to be used to model the dynamics of the electrically stimulated muscle,
since the transparency of the model is not as important as its accuracy (Previdi (2002)).
A black-box model is a model that is viewed in terms of its inputs and outputs, often
by means of a transfer function. In FES systems, the stimulation parameter delivered
to the skin is the input and the joint movement that it generated, be it torque or angle,
is the output.

A neural network is a type of black-box model. It can be trained with the input and
output data of the stimulated muscle, in order to output the correct stimulation pulse
depending on the desired trajectory. Neural networks tend to have good performance
controlling the joint’s movements, regardless of the muscular nonlinear behaviour
(Chen et al. (2004)). Instead of neural networks, other type of nonlinear functions can
be used to model the electrically stimulated muscle dynamics (Previdi (2002), Luzio
de Melo (2014)). A diagram of FES using a model to control the joint can be seen in
Figure 2.11, where Td represents the desired reference trajectory, Tr represents the real
trajectory and Us represents the model variable.

Figure 2.11: Diagram of a FES system open-loop control using a model.

Ultimately, a model performs better in controlling a joint’s movement than just a
controller, because some tracking errors do exist, but the time lag which appears when
using just a controller does not (Quintern et al. (1997)). Nonetheless, combining a
model with a controller provides the best tracking performance, since the controller
is able to compensate for any modeling errors that inevitably occur in real-time and
the model avoids time delays. This type of control is depicted in Figure 2.12, where Td
represents the desired reference trajectory, e represents the error between the desired
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trajectory, Td, and the real trajectory, Tr, Uc represents the controller variable, Um
represents the model variable and Us represents the final pulse value applied to the
muscle.

Figure 2.12: Control diagram of a model combined with a controller.

All these different control configurations will be discussed in the following sections,
being divided in Trajectory Tracking Control Strategies, EMG-based Control Strategies and
EMG-based Trajectory Tracking Control Strategies. There will also be presented tables
gathering the most important details of each control strategy discussed.

2.4.1 Trajectory Tracking Control

The aim of this control is to follow a provided trajectory, trying to eliminate the
error between the desired trajectory and the real trajectory. The trajectories that are
normally used in FES control are either the joint’s angle or the joint’s torque. This
type of control has the advantage of also being able to be used in paraplegic or
tetraplegic subjects, since it does not require bioelectric signals from muscles, which
these subjects cannot provide.

The following subsections will analyze the different trajectory tracking controls that
are more commonly used in literature, all of which can be seen in Table 2.2, arranged
by year.
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Table 2.2: Trajectory tracking control strategies

Article Control Implemented
FES

Controlled Variable
Feedback sensor Validation Method

Controlled
Variable

Ferrarin and D’Acquisto (1996) PID Control Pulse Width Electrogoniometer - Knee Angle

Quintern et al. (1997)
Inverse Biomechanic

Model-based
PID Control

Pulse Width Electrogoniometer
5 subjects with

spinal cord
injury

Knee Angle

Chang et al. (1997)
Neural Network

plus PID
Control

Pulse Amplitude Potentiometer
1 healthy subject
& 1 paraplegic

subject

Knee Angle

Chen et al. (2004)
Neural Network

plus Fuzzy Control
Pulse Intensity

Magnetic-
Resistive
Position
Sensor

3 subjects
w/ Hemiplegia

& 1 healthy
subject

Ankle Angle

Knutson et al. (2012)
Contralaterally

Controlled
FES

Pulse
Duration

Bend
Sensors

9 subjects
w/ hemiplegia

Hand
Opening

Qiu et al. (2014) PID Control Pulse Intensity
Electronic

Goniometer
5 healthy subjects Knee Angle

Downey et al. (2015b)
RISE-based

Control
Pulse Width Optical Encoder 4 healthy subjects Knee Angle

Seel et al. (2016b)
Iterative
Learning
Control

Pulse Intensity
Inertial

Measurement
Unit

6 subjects
w/ Drop Foot

Ankle Angle

Simonsen et al. (2016)
Closed-Loop

Control
Pulse Duration Kinect Sensor

9 subjects
w/ Stroke

Hand Opening
and Grasping

Basith et al. (2016)
Fuzzy Logic

Control
Pulse Duration

Accelerometers
and Gyroscopes

2 healthy subjects Knee Angle

Watanabe and Tadano (2017) Fuzzy Control Pulse Intensity Inertial Sensor 3 healthy subjects Knee Angle

Tu et al. (2017)
Hammerstein
Model-based

Fuzzy Control

Pulse Width
Two-axis Wire
Potentiometer

3 healthy subjects Ankle Angle

Fuzzy Logic Control Strategies

In order to control the knee flexion angle, a fuzzy logic control strategy was designed
by Basith et al. (2016). Two fuzzy controllers were designed, depending on what
joint movement was meant to be performed: a Single Input Single Output (SISO)
controller for maximum hip flexion, maximum hip extension, maximum knee flexion
and maximum ankle plantarflexion movements, and a Multiple Input Single Output
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(MISO) controller for maximum knee extension and maximum ankle dorsiflexion. The
controllers were designed for seven muscles, with each of the target angles taken
from previous studies in the literature, and the output of the controllers was the
duration of the stimulation pulse. The SISO controllers’ input was the error between
the desired joint angle and the current joint angle and the MISO controllers’ input was
the error and also the desired range of joint - difference between the maximum joint
angle obtained in the current cycle and the target angle. The rules sets for the fuzzy
logic controllers were designed following the nature of the gait movement.

Although both the MISO and SISO controllers were designed, in this study the SISO
controller for knee flexion angle was the only one tested. In order to test it, the Bicefs
Femoris Long Head muscle was stimulated in two healthy subjects. The control was
tested in three trials for each subject. The constant target angle was always achieved
within 2 to 10 cycles with a Mean Square Error (MSE) of less than 7°. The study also
concludes that the stimulation’s pulse parameters vary according to the subject’s
physical characteristics, since subject B, being heavier and taller than subject A,
required a higher pulse voltage. Furthermore, it is stated that the pulse’s parameters
should be adjusted during the stimulation in order to compensate muscle’s fatigue,
instead of just the pulse duration, considering it was noted that the muscle reacted
differently to the exact same pulse duration in different occasions. Although the
results of this study were not extremely positive, it does give important insight as to
why the focus of FES control strategies should be on the pulse’s parameters and why
open-loop strategies are not the most adequate when using FES.

The aim of the study conducted in Chen et al. (2004) was to correct DF in hemiplegic
patients. In order to do that, a neural network with a fuzzy logic controller was used.
The approach used was a black-box control, since the data used for the neural network
learning process was obtained by stimulating the TA muscle with random pulse
intensity values and recording the ankle angle it generated. The neural network is
used to estimate the necessary stimulation intensity and its input is the desired ankle
angle. After the muscle responds to this stimulation, the ankle angle is measured by
the sensor and the error input for the fuzzy controller is the difference between the
desired angle and the ankle angle generated by the stimulation. The fuzzy controller
will provide a stimulation intensity based on this error, in order to correct any
discrepancy between the pulse delivered to the muscle and the actual movement it
provoked. The control diagram can be seen in Figure 2.13, where θd is the desired
ankle angle, θr is the real ankle angle, In is the pulse intensity predicted by the model,



24 Chapter 2. state of the art

If is the pulse intensity output by the controller and Is is the pulse intensity applied to
the muscle.

In this study two other control strategies were compared to the neural network
with fuzzy logic control, in order to evaluate the performances. The first control tested
was an open-loop control, using only the neural network previously created. The
network was trained offline with the data obtained by stimulating the TA muscle with
random pulse intensity values and simultaneously recording the ankle angles. It was
concluded that the neural network benefited from a lower learning rate, as it produced
better learning results. The second control strategy tested was a neural network with
a Proportional Integral Derivative (PID) controller and the Kp, Kd e Ki values were
obtained with continuous tests to obtain the best values. The neural network with
PID controller performed better than the neural network alone, having a lower Root
Mean Square Error (RMSE). The neural network with the fuzzy controller had the
best performance of the three control strategies tested. Although the RMSE values
do not differ greatly from the neural network with PID controller to the neural
network with the fuzzy controller, the PID controller’s parameters took a lot of time
to tune correctly.

Figure 2.13: Neural network plus fuzzy logic control diagram. Adapted from Chen et al. (2004).

A hip-knee exoskeleton was combined with FES to induce ankle movement in Tu
et al. (2017). Both the plantarflexion and the dorsiflexion movements, which are the
lowering and raising of the foot and toes, respectively, were controlled in this work.
The response of the electrically stimulated muscle was modeled with a Hammerstein
structure. For the plantarflexion movement, the Soleus and the Gastrocnemius muscles
were stimulated in a coordinated manner, and for the dorsiflexion movement the
TA muscle was stimulated. Each muscle was modeled individually and a fuzzy
controller was used for each one, in order to determine the necessary pulsewidth in
order to follow the desired trajectory. Since the Gastrocnemius and the Soleus muscles
control the same movement, coordination parameters needed to be found in order to
assess which muscle had the biggest influence in the plantarflexion movement, thus
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Figure 2.14: Control diagram for plantarflexion and dorsiflexion. Adapted from Tu et al. (2017).

rehabilitating the ankle movement properly. The study concluded that a parameter
value of 0.7 for the Soleus muscle and a parameter value of 0.3 for the Gastrocnemius
muscle produced the best control performance, which indicates that the Soleus muscle
has more substantial influence in the plantarflexion movement.

The control of the ankle angle was based on a desired trajectory and the control
diagram can be seen in Figure 2.14, where θd is the desired ankle angle, θr is the
real ankle angle, eT A and eS+G are the tracking error, α and β are the coordinating
parameters for the Soleus and the Gastrocnemius, respectively. UT A, US and UG are the
control variables for the TA, Soleus and Gastrocnemius muscles, respectively; TT A, TS

and TG are the torque values for the TA, Soleus and Gastrocnemius muscles respectively
and TT is the total combined of torque produced by the 3 muscles to generate the ankle
movement.

The results showed that the controller was able to track the desired trajectory better
in the first 5 seconds, when the muscle required a smaller stimulation pulsewidth to
generate the same movements when compared with the pulsewidth required after 55

seconds of stimulation. This was probably caused by the onset of muscle fatigue in
the dorsiflexor and plantarflexor muscles, which seems to increase the longer FES is
applied to the muscles.

Along with the fuzzy controller, PID controllers are also used extensively in FES
systems. The latter will be analyzed in the next section.
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PID Control Strategies

Ferrarin and D’Acquisto (1996) implemented a closed-loop PID controller to control
the knee angle. The parameters were calculated with the Ziegler-Nichols method and
the input of the controller was the error between the desired angle and the measured
one. Three configurations were possible in this work: constant angle reference,
predefined variable angle reference and a Master-Slave configuration, where the
angle reference was controlled in real-time by a joint of another subject. By analyzing
the frequency response of the implemented control, it was concluded that it can only
be used to control slow movements, since the time delay does not allow for fast
movements to be controlled with favorable results.

In Qiu et al. (2014) three different PID controllers with three different parameter
tuning algorithms were compared, one based on a Back Propagation (BP) neural
network, one based on the Genetic Algorithm (GA) and one using the traditional
Ziegler-Nichols method. The aim was to control the knee joint angle with a
FES stimulator. The two controllers with adjustable parameters (BP and GA), had
significantly better results, with the GA PID controller performing better in the
beginning of the simulations. The classic PID controller has also been compared with a
fuzzy controller in Watanabe and Tadano (2017). The article focuses on FES for cycling
rehabilitation, by controlling the angle of the knee. Both controllers were tested for
constant value control and trajectory tracking control. In the constant value control
the performance of the controllers was pretty similar and acceptable. In the tracking
control, however, the fuzzy controller performed better. Ultimately, the performance
of the two controllers for fast tracking control was not satisfactory.

These studies corroborate what was concluded in Ferrarin and D’Acquisto (1996)
and Chang et al. (1997), that the basic FES control without a model is not the most
adequate method to compensate angle error in real-time during gait, mainly due to its
time delay in trajectory tracking.

Quintern et al. (1997) combined a PID controller with an inverse biomechanical
model to control the knee angle. The controlled pulse variable was the width and
the PID controller parameters were found in a computer simulation. The control was
tested in isometric conditions and with a freely swinging shank. In order to compare
the performance of the controller, a closed-loop control using only the PID controller
was used. The performance of this controller had a significant time lag of 330 ms and
130 ms for the freely swinging shank and the isometric conditions, respectively, when
compared to the much smaller 30 ms time lag of the PID controller combined with



2.4. Control Strategies 27

the inverse model when controlling the freely swinging shank. Thus, it was concluded
that the inverse model can improve the controller’s performance significantly, as it
can compensate for the nonlinearities of the electrically stimulated muscle and, if the
target angle is constant, it can also compensate for time delays. The control loop
diagram can be seen in Figure 2.15, where θd is the desired ankle angle, θr is the real
ankle angle, Um is the pulse value predicted by the model, Uc is the pulse value output
by the controller and u is the pulse value applied to the muscle.

Figure 2.15: Control diagram of PID control with inverse biomechanical model. Adapted from
Quintern et al. (1997)

In Chang et al. (1997) a PID controller with a NN was implemented in order to
control the knee angle. The multilayered feedforward time delay NN was trained
with the signals acquired from stimulating the muscle with different amplitude pulses
and the resulting knee angles. The PID controller parameters were tuned using the
Ziegler-Nichols method. In order to assess the performance of the controller, besides
the PID controller with the neural network, the PID controller and the neural network
were also tested alone, with two sinusoidal references of 0.5 and 1 Hz. With the
reference of 1 Hz the neural network was able to follow the desired trajectory, after
overcoming an initial tracking time lag, presenting a RMSE of 8.15°. With the reference
of 0.5 Hz it was able to track the trajectory without a time lag, presenting a RMSE of
6.73°. The PID controller alone presented a higher time lag when tracking both
the 0.5 and 1 Hz references, presenting a RMSE of 17.86° and 19.75°, respectively,
which corroborates the results presented in Ferrarin and D’Acquisto (1996). The
PID controller with the neural network presented the best results, being able to
improve the performance of the neural network controller, presenting a RMSE of
7.24° and 5.32°, for the 0.5 Hz and 1 Hz trajectory, respectively. This shows that the
PID controller is able to compensate any modeling errors that can occur. The PID
controller alone was the one that presented the biggest average tracking error and
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the PID controller with the neural network had the smallest error, being only slightly
smaller than the one of the neural network controller alone.

Iterative Learning Control

The study in Seel et al. (2016a) aims to correct DF during gait. The ankle angle is the
tracked variable and the pulse amplitude is the controlled variable. However, in order
to avoid discrepant pulses, the pulsewidth varies proportionally to the amplitude,
while the frequency remains constant. The ILC aims at improving the performance of
tasks with a periodic nature (Seel et al. (2011)), which is the case of gait, by analyzing
previous strides and learning from it. This way, the delay that seems to be inherent to
controllers that are not supported by a model (Ferrarin and D’Acquisto (1996), Chang
et al. (1997)) is compensated, since the controller is able to determine the duration
of previous strides and stimulate the muscles even before the swing phase begins,
in order to correct the ankle pitch angle. Given the difference, e, between the desired
angle θd and the real angle, θr, the ILC controller increases/decreases whether the
number of time samples before the swing phase of the next step the stimulation is
applied, δ, or the stimulation parameters, Uc. The control strategy can be seen in the
diagram of Figure 2.16.

This control was tested with six subjects with DF walking in real-time and the
reference trajectory was obtained from data of the gait of healthy subjects. The gait
proved to be within the desired range of values after the first stride, and remained
within the reference values, even if the muscles were fatigued.

Figure 2.16: Diagram of the ILC.

In Seel et al. (2016b) the work was continued, this time controlling the pitch angle
of the ankle and the roll angle, as depicted in Figure 2.17. For this purpose a
decentralized ILC was implemented, in order to correct both joint angles. In order
to do this, the Tibialis Anterior and the Fibularis Longus muscles were stimulated.
The system was tested with four subjects with DF, and concluded that in order
for the ankle joint to be at optimum position, both muscles must be stimulated
simultaneously. However, the contribution of each muscle must be determined,
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similarly to what was done to correct plantarflexion in Tu et al. (2017). The ILC proved,
once again, that it was able to maintain the ankle angles within the desired healthy
range while compensating muscular fatigue.

Figure 2.17: Roll and pitch angles of the ankle.

Asynchronous Closed-Loop Control

Downey et al. (2015b) designed a closed-loop controller for asynchronous
stimulation and compared it with conventional stimulation. The aim of this study
was to track a desired angle trajectory for the knee joint, for which a model was
created. In order to avoid torque discontinuities in the knee joint, when switching
channels, there was a brief period of time when both channels were simultaneously
activated, each with a percentage of the input pulse value, creating a smooth transition.
The controller was designed based on Robust Integral of the Sign of the Error (RISE),
which switched between the stimulation channels while implementing the chosen
transition period, aiming at following the defined trajectory. The controls were tested
on four healthy subjects: the asynchronous stimulation with 4 channels, with a 16

Hz pulse frequency in each channel, and the conventional stimulation with a 64 Hz
pulse frequency in one channel. Although the tracking errors of both controllers were
very similar, with the biggest difference being 0.82°, the Successful Run Time (SRT)
of the asynchronous stimulation averaged at more then double the time of the
conventional one. This study shows that asynchronous stimulation is, in fact, able
to delay the on-set of fatigue on electrically stimulated muscles. However, the control
was only tested on a modified leg extension machine. In order to obtain more precise
results, asynchronous stimulation should be tested in real-time gait, as the authors
suggest.
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Contralateral Control

Knutson et al. (2012) implemented Contralaterally Controlled (CC) FES to improve
hand opening in hemiplegic stroke patients. This type of control stimulates the hand
extensors of the paretic hand proportionally to the hand opening of the healthy
hand. The healthy hand wears a glove with bend sensors, that detect the degree
of hand opening. The duration of the stimulation pulse is controlled based on the
opening of the healthy hand. The system was tested in 9 hemiplegic subjects during 6

weeks, showing a hand opening degree improvement of about 17°, which increased
to 27.8° 3 months after the end of the treatment. Although this type of control cannot
be used in real-time gait for lower limbs, since the legs cannot perform the same
movement at the same time, patients can use it to train movements while sitting or
laying down, hopefully matching the paretic limb movements’ to the healthy ones,
becoming increasingly closer to physiological movements.

Vision-based Closed-Loop Control

Although the control designed in Simonsen et al. (2016) cannot yet be used for
DF correction during gait, it is an interesting approach to rehabilitation with FES. A
closed-loop system for the rehabilitation of hand opening and grasping movements
of hemiparetic patients was designed, using a Kinect® sensor. The sensor was able
to differentiate between the hand and the object to be handled. When the hand
was at the correct distance from the object, a pulse would stimulate the correspondent
muscles in order to open the hand and then another pulse would stimulate the hand
grasping muscles, when the hand was in the correct position to grasp the object. The
duration of the pulses would vary according to the time it took for the subject to open
the hand and to place the object on a specified area, in the case of hand opening and
grasping, respectively. The subjects were asked to grab two cylinders, one with 40

mm of diameter and the other with 75 mm. The system was able to increase the
percentage of successful grasps with the small cylinder, but was unable to do the
same with the larger cylinder. This was mainly because the larger cylinder needed the
hand to open wider, and most patients were unable to perform this movement.

Although a control using a Kinect® sensor is not yet able to be used to correct gait
pathologies, it can be used in the rehabilitation of specific movements, in both upper
and lower limbs.
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Table 2.3: EMG-based control strategies

Article Control Implemented
FES

Controlled Variable
Feedback sensor Validation Method

Controlled
Variable

Hsieh et al. (2009)
EMG-controlled

FES
Pulse

Intensity

EMG Muscle
Signal

Activation

1 hemiplegic
subject

-

Yeom and Change (2011)
Autogenic

EMG-controlled
FES

-
EMG Muscle

Signal
Activation

1 healthy
subject

Ankle
Torque

Hayashibe et al. (2011)

Hammerstein
Model-based

Dual Predictive
Control

Pulse
Width

Calibrated
Dynamometer

Simulation
Ankle
Torque

Johnson and Fuglevand (2011)
EMG-based
Prediction

Control

Pulse Width
Pulse Frequency

Force
Transducer/
Goniometer

5 subjects
Thumb
Torque/

Angle

Chen et al. (2013)

EMG-based
Self-adaptive

Open-loop
Control

Pulse
Width

Goniometer
1 subject

w/ drop foot
Ankle
Angle

Li et al. (2015)

Hammerstein
Model-based

Predictive
Control

Pulse Width
EMG Muscle

Signal
Activation

1 healthy subject
Muscle

Activation

2.4.2 EMG-based Control Strategies

The aim of EMG-based control strategies is to detect the user’s intentions and
reproduce the activation pattern of the muscles, by electrically stimulating the
muscles with a pulse proportional to the EMG signals. This control requires
complicated hardware, since the Residual Stimulation Artifact (RSA) needs to be
removed from the acquired EMG signal, in order to obtain the real movement intention
of the subject. An EMG signal with a substantial amplitude is also fundamental,
meaning that paraplegic, tetraplegic or subjects with weak muscular bioelectric
signals cannot use the system. When compared to trajectory tracking control, it is
more intuitive, because the subject controls the stimulation pulse depending on his
movement intentions.

The following subsections will analyze the different EMG-based controls that are
more commonly used in literature, all of which can be seen in Table 2.3.
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Proportional EMG-based Control

Yeom and Change (2011) developed a new filtering technique to remove the RSA
from the acquired EMG signal, in order to generate ankle dorsiflexion movements
proportional to the muscle activation signal. The acquired EMG signal passed
through three stages before being able to generate the proportional stimulation
pulse: an EMG blanking stage to filter the main stimulation artifact, since it would
saturate the EMG acquisition system, an amplification and filtering stage, commonly
used in ordinary EMG acquisition systems, and finally an adaptative Gram-Schmidt
Prediction-Error-Filter, to remove the remaining RSA. This was the first time an
adaptive filter was used in the rehabilitation FES field to cause ankle dorsiflexion.

The system was tested on a healthy subject. The EMG electrodes were placed on
the TA muscle and the stimulation electrodes were placed in the region of the Common
Peroneal nerve. The Common Peroneal nerve was stimulated with a gain 80 times
higher than the EMG signal. In order to measure the ankle torque, an Ankle-Foot
Orthosis (AFO) was placed on the subjects leg. The system was able to stimulate the
nerve in accordance to the acquired muscle activation signal. Furthermore, the EMG
signal of the TA muscle was compared with and without stimulation, and they were
found to be identical, which means the novel Gram-Schmidt Prediction-Error-Filter
performs as expected. Although the system performs well with a healthy subject, it
should be tested on subjects with drop foot, since they may not be able to generate a
muscle activation signal with the required amplitude, as the authors point out.

In Hsieh et al. (2009) both the dorsiflexion and plantarflexion movements were
controlled based on the muscles’ EMG signals. In order to do this, the TA
muscle and the Gastrocnemius muscles were stimulated with FES, for dorsiflexion and
plantarflexion, respectively. The stimulation was triggered by the acquired residual
EMG signals of the muscles, which influenced the pulse’s amplitude accordingly. The
system was tested on a hemiplegic subject and, after 12 weeks of training, the mean
gait velocity had doubled, the stride length had improved significantly and the
subject, who could not walk without support previously, could walk independently
on level ground.

Chen et al. (2013) created a system for DF correction, that consists of stimulating
the TA muscle with stimulation envelopes obtained from EMG signals acquired
from healthy subjects walking at different speeds. The control used a step frequency
prediction algorithm, in order to apply to the TA muscle the corresponding EMG
envelope, thus generating a gait pattern close to the healthy one. Although the
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system was open loop, by varying the stimulation envelope based on the step
frequency, it was able to perform better than gait without FES assistance and gait
assisted by FES using a classic trapezoidal envelope, when tested in a patient with
DF. The subject was able to increase his step frequency by 4 steps per minute, when
aided by the system. This shows the EMG signals of healthy subjects provide yield
better results when compared to the that the classical trapezoidal FES stimulation
pulse.

The objective of the study conducted in Johnson and Fuglevand (2011) was the
creation of a generalized transfer function between the EMG and stimulation
patterns (pulse amplitude and frequency) with one subject, that could be extended to
other subjects. Another goal was to find an optimized transfer function for individual
subjects. The thumb joint was used for this test, because it only has one extensor
and one flexor muscle. In order to find the optimized transfer function of each
subject, first, the relation between the EMG signals and the joint’s torque was found.
Second, the relation between the stimulation patterns and the joint’s torque was
found. Since both relations have something in common, the torque, a transfer function
between EMG signals and stimulation parameters was found. In order to create the
generalized transfer function, the stimulation parameters, frequency and amplitude,
were multiplied, creating a normalized current. The normalized relation between
normalized torque and current was related to the EMG and torque relationship,
creating the generalized transfer function.

In order to assess the performance of the optimized transfer function, the subjects’
desired torque trajectory was compared to the real one, obtaining the average RMSE
value of 16°, showing that the system is able to reproduce the torque trajectories for
each subject. To evaluate the performance of the generalized transfer function, the
previously recorded EMG data was used to generate the correspondent pulse, then
was applied to all the subjects, including the subject whose data was used to generate
the transfer function. The best predictions occurred for the subject that was used
to create the function. For the other subjects, however, the RMSE in this case was
significantly larger, about 31°. The transfer function was also used to generate a
desired angle joint movement. In this case, the RMSE was very close to the one of the
optimized transfer function, about 18.5° for the subject who generated the generalized
function. For one of the other test subjects, the joint movement was extremely
identical to the desired one, even though the generalized transfer function was
created with data from another subject. The results are promising, indicating that
the system could be used to generate joint movements in paraplegic subjects, since
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an optimized transfer function cannot be used in such subjects, because they do not
have EMG signals in paralyzed muscles.

While in Hayashibe et al. (2011) the Hammerstein model was used to model both
the excitation dynamics and the contraction dynamics of the muscle, in Li et al. (2015)
only the excitation dynamics are modeled. In this work, the torque of the ankle
joint is ignored and the aim is to follow a predefined muscle activation trajectory.
The Hammerstein model is used to model the excitation dynamics of the muscle
and the parameters are estimated with a Kalman filter. The model is identified by
stimulating the TA muscle group with gradually increasing pulse width until the
plateau is reached, while measuring the correspondent EMG values. The predictive
controller’s input is the desired muscle activation and the output is the stimulation
pulse to be applied to the muscle, so that the desired trajectory is followed. In Figure
2.18 the diagram for this control strategy is presented, where EMGd is the desired
muscle activation, EMGp is the EMG activation predicted by the excitation model,
EMGr is the real muscle activation, e is the error between EMGd and EMGp, and u is
the stimulation control variable.

Figure 2.18: Model predictive control strategy. Based on Li et al. (2015).

Four different muscle activation patterns were tested: random amplitude level
with constant contraction duration, random amplitude level with random contraction
duration, a natural pattern with continuous contraction and an actual TA muscle
contraction pattern. The developed control was tested with one able-bodied subject
and it was found to perform well for all the patterns it was tested with, with an
average RMSE of 0.0523.

2.4.3 EMG-based trajectory tracking control

In Hayashibe et al. (2011) dual predictive control was used in order to track a
desired ankle torque trajectory for DF correction. The muscular dynamics of the
subjects were modeled with the Hammerstein model. In this study, two models were
created, the excitation model, which predicted the EMG signal based on the pulse
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width of the stimulation pulse, and the contraction model, which predicted the ankle
torque based on the TA muscle’s EMG signal. The initial model parameters, for each
model, were identified with the data of two healthy subjects. In order to gather the
data, each subjects’ TA muscle was stimulated with different pulse widths, while the
EMG activity of the TA muscle was recorded and the ankle’s torque was measured.
Two controllers were designed, the activation controller and the stimulation controller.
The activation controller was fed the desired torque trajectory value and the torque
value of the joint predicted with the contraction model. The EMG signal calculated by
the activation controller and the EMG signal predicted with the excitation model were
then fed to the stimulation controller, that calculated the pulse width stimulation in
order to achieve the desired trajectory. The control diagram can be seen in Figure 2.19,
where Td is the desired torque trajectory, Tp is the torque predicted by the contraction
model, Tr is the real torque and ea is the error between the desired torque trajectory,
Td and the torque predicted by the contraction model, Tp; EMGd is the EMG signal
calculated by the activation controller, EMGp is the EMG signal predicted by the
excitation model, EMGr is the real EMG signal, es is the error between EMGd and
EMGp, and u is the stimulation control variable.

The parameters of both the contraction and the excitation models could be updated
in real-time using a Kalman filter. The control was tested in a simulated environment,
with the identified muscle model used to simulate the muscle response. The results
were good, since the dual predictive controller was able to generate suitable control
signals, even when the contraction and excitation model parameters were not
updated. This showed the stability of the model when the parameters were static
and when they were time-varying. The downside of this study was that the control
strategy was not tested in real subjects, probably due to the difficulty to find a
portable torque sensor that could be easily inserted in the system. The results,
although very good, were only obtained in a simulated environment.

2.5 fes systems

A wide range of FES systems has been created since the first one in 1961 (Liberson,
W. T.; Holmquest, H. J.; Scot, D.; Dow (1961)), however, the only ones available in the
market for the treatment of specific pathologies do not provide closed-loop assistance.
Currently, the only commercial lower limbs neuroprostheses available in the market
are the ones used to treat DF. That is the case of the Bioness L-300® and the WalkAide®
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Figure 2.19: Dual predictive control diagram. Based on Hayashibe et al. (2011).

wireless systems, both created to correct DF. These systems are constituted by a band
with electrodes, that straps over the dorsiflexor muscles, and a sensor for gait event
detection. While the Bioness L-300® uses a foot switch sensor to detect the event, the
WalkAide® uses an inertial sensor embedded in the band, making the system even
more portable by only containing one wearable component. Bioness Inc. also created
a wireless device that helps affected patients regain more natural hand movements,
the Bioness H-200®. The device is controlled by a hand-held control unit that allows
the user to choose the movement he wants to perform, be it reach, grasp or pinch.
The stimulator then applies the stimulus in a precise sequence, in order to achieve the
movement. Although these systems help the users regain movements, they provide
constant stimulation pulses that do not take into account muscle fatigue.

The existing FES systems have been divided into two categories: commercial
systems and non-commercial systems. The next section will present the commercial
and non-commercial existing FES systems, as well as their characteristics.

2.5.1 Commercial Systems

VIVALTIS created a line of portable and wireless electrical stimulators, PHENIX®.
The stimulators, referred to as PODs, allow real-time change of the stimulation
parameters while also providing biofeedback of the muscular movement. All the
products available allow a pulse intensity of up to 100 mA, have a pulse width range
from 30 ms to 300 ms and a pulse frequency range from 1 Hz to 400 Hz, except for
PHENIX Nano Portable®, that has a pulse width range of up to 4000 µs and a pulse
frequency up to 150 Hz. The PHENIX® stimulators can be used to treat a wide range
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of pathologies, depending on the user’s necessities. The system can be seen in Figure
2.20 (a).

Fesia Technology created a system specific for the treatment of DF, the
FesiaWalkPHENIX®. The system consists of an IMU, to detect gait events, and a
stimulator, which uses an electrode matrix to help delay the onset of fatigue. The
stimulator can generate pulses of up to 80 mA of amplitude, 100Hz of frequency and
a width from 150 µs to 750 µs. The stimulator can be controlled wirelessly and has a
friendly graphical interface (Malešević et al. (2017)). The system can be seen in Figure
2.20 (b).

XFT Medical created a system based on biofeedback to rehabilitate hand
movements. The stimulation pulses generated are based on the EMG signals of
the muscles. The system is equipped with mirror therapy, which means that the
person can also control the affected limb with the unaffected one, allowing a greater
freedom of movements, that may not be achievable just by controlling the affected
limb with its own EMG signals.

The FESarray® stimulator, created by Tecnalia (Serbia (2011)), is a commercial device
that allows multi-channel functional electrical stimulation, via an array of electrodes.
This device allows asynchronous stimulation, which has been proven to reduce
fatigue in users when compared to conventional stimulation (Popović and Malešević
(2009), Nguyen et al. (2011), Maneski et al. (2013)). The frequency of the pulse created
by this device ranges from 1 to 50 pulses per second, the amplitude can go up to 50mA
and the duration ranges from 50µs to 1000µs. Both the developed system and the array
of electrodes can be seen in Figure 2.20 (c).

Figure 2.20: Commercial functional electrical stimulators. (a) PHENIX USB Micro®, (b)
FesiaWalk® and (c) FESarray®. Adapted from Serbia (2011).
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Table 2.4 was created to summarize the differences and characteristics of each
commercial FES system presented.

Table 2.4: Commercial FES systems’ characteristics
Amplitude Frequency Pulsewidth No. of Channels Application

PHENIX®
0 to 100 mA 1 to 400 Hz 30 ms to 300 ms 2 (Multiplexed) Wide Range

FesiaWalk®
0 to 80 mA 0 to 100 Hz 150 to 750 MIC Electrode Matrix Drop Foot

FESArray®
0 to 50 mA 1 to 50 Hz 50 to 1000 µs Electrode Array -

2.5.2 Non-Commercial Systems

The system created by Luzio de Melo (2014) is a modular stimulation system, ISTim,
composed by four independent stimulation units, Modular Stimulation Unit (MSU)s,
and a controller. The system can be seen in Figure 2.21 (a). The pulse generated by this
stimulator can reach a frequency of up to 200 Hz, a pulse width of up to 503 µs and
a pulse amplitude of up to 50 V. This system was created in order to fulfill a market
need of a small and wearable FES systems that can be programmed and usable in
any pathology that can be aided by FES, however it has not yet reached the market.
The benefit, when compared to the commercial PHENIX stimulators, is that the PODs
have two multiplexed stimulation channels each, while each ISTim comes with four
independent stimulation channels. The system can be seen in Figure 2.21 (a).

Chen et al. (2004) developed a stimulator with three selectable pulse frequency
values: 25 Hz, 35 Hz and 50 Hz. The stimulation amplitude ranges from 0 mA to 100

mA and the pulse width from 0 µs to 300 µs. The system, similarly to the ISTim, also
has 4 independent stimulation channels, but in this stimulator only the stimulation
amplitude can be controlled independently for each channel. Furthermore, the
system is also portable, small and easily operated.

A wireless wearable functional electrical stimulator controlled by an Android
phone with real-time-varying stimulation parameters, Edison-STIM, was designed by
Wang et al. (2017) as a four-channel research prototype for post-stroke patients. The
stimulus values range from 20 Hz to 80Hz, 100 µs to 600 µs and up to 60 V, for
frequency, width and amplitude of the pulse, respectively. This stimulator was created
with a wrist-band concept, in order to help stroke patients, as can be seen in Figure
2.21 (b).



2.6. Discussion 39

Figure 2.21: Non-commercial functional electrical stimulators. (a) ISTim and (b) EDISON-Stim.
Adapted from Luzio de Melo (2014) and Wang et al. (2017).

Table 2.5 was created to summarize the differences and characteristics of each
non-commercial FES system presented.

Table 2.5: Non-commercial FES systems’ characteristics
Amplitude Frequency Pulsewidth No. of Channels Application

ISTim 0 to 50 V 0 to 200 Hz 0 to 503 µs 4 (Fully Independent) Wide Range
Chen et al. (2004) 0 to 100 mA 25 / 35 / 50 Hz 0 to 300 µs 4 (Amplitude Independent) -

Edison-STIM 0 to 60 V 20 to 80 Hz 100 to 600 µs 4 ( - ) Hand Movements

2.6 discussion

The main goal of this project is to create a DF correction system that provides
a personalized experience for the user, is wearable and ergonomic and ensures a
natural gait pattern. Given that FES systems are divided into three components -
stimulator or actuator, sensor and control unit - a literature research was made to
determine what solution was best for each component. The most important aspect of
the control unit is the control strategy implemented, therefore that was the focus of
the research for this component. The results for each component are presented in the
following sections.

Actuator

Given that this project aims at providing a personalized user assistance that helps
delay the onset of fatigue, the stimulator should allow the real-time update of the
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pulse parameters. Furthermore, knowing that the pulse frequency is directly linked
to muscle fatigue (Gorgey et al. (2009), Gregory et al. (2007), Kesar et al. (2008)), the
chosen pulse parameter to control in real-time should only the pulsewidth or the pulse
amplitude. Considering the research aspect of this project and the risks inherent to
implanted electrodes (Sheffler and Chae (2007)), surface electrodes will be used.

Another successful way to help delay the onset of fatigue, is the use of sequential
or asynchronous stimulation (Pournezam et al. (1988), Popović and Malešević (2009),
Nguyen et al. (2011), Maneski et al. (2013), Downey et al. (2014)) instead of
conventional stimulation. However, due to the small size of the Tibialis Anterior
(TA) muscle, conventional stimulation will be used in this project.

Considering the existing FES stimulators presented in Chapter 2.5, two were eligible
to be used in this project: the commercial PHENIX® stimulator created by VIVALTIS
and the non-commercial ISTim created by Luzio de Melo (2014). Since the Instituto
Superior Técnico was able to provide one of the Modular Stimulation Unit (MSU)s
of the ISTim Modular Stimulation Unit, that was the chosen stimulator for this project.
This stimulator is portable and smaller than the palm of a hand, allows the update
of all the pulse parameters in real-time and can support USART communication,
meaning it can communicate with any control unit that supports the same interface.

Sensor

Given this project aims at correcting DF, it is necessary to detect the gait events,
therefore FSRs or an IMU could be used. However, it is also necessary to obtain the
real-time foot angle kinematics, such as the foot angle and angular velocity. The FSR
does not provide information about the joint’s kinematic parameters, thus an IMU
was chosen for this project.

Using only one sensor for both tasks effectively reduces the number of sensor that
have to be placed on the user, thus helping create more ergonomic and efficient
system that do not constrain user movements.

Control Strategy

After analyzing the control strategies, the trajectory tracking control was chosen
instead of the EMG-based control strategy, due to the complexity of the acquisition
and processing of the bioelectric signal. When it comes to the specific trajectory
tracking control strategy, models combined with controllers yield the best results
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(Quintern et al. (1997)). Therefore, that will be the configuration for the control strategy
used for DF correction in this project.

Empirical models are preferred over biomechanical models for real-time control
strategies, since they require less parameters and need a less complex calibration
routine, while maintaining the same level of accuracy (Previdi (2002)). The Neural
Networks (NN) is the most common empirical model used in FES systems and it
generates good results when combined with a controller (Chang et al. (1997), Chen
et al. (2004)). Furthermore, the literature research showed that models are usually
paired with Proportional Integral Derivative (PID) or fuzzy controllers, being no
indication of a significant difference between the their performance for fast tracking
(Watanabe and Tadano (2017)). Thus, the control strategy for this project will consist
of a NN combined with a PID controller. The specific NN chosen for this project will
be explained in Chapter 4.

The choice of a trajectory tracking control helps delay the onset of fatigue by
providing gradual stimulation that corresponds to the desired movement. However,
in order to generate natural movements, the reference trajectory should be based on
natural movements. Thus, the reference trajectory for this project will be obtained
from healthy subjects, as it has proven to achieve good results (Seel et al. (2016b),
Knutson et al. (2012), Ferrarin and D’Acquisto (1996)).





3

G E N E R A L O V E RV I E W

This chapter provides an overview of the implemented system. It specifies the
characteristics of each component, its role on the overall system and how the
components communicate and complement each other. It ends with a system testing
and a description of the necessary functionalities of the system.

3.1 introduction

Functional Electrical Stimulation (FES) systems are meant to be small and practical,
since they should be used on a daily basis to help its users perform everyday tasks
that cannot be correctly performed otherwise. Therefore, the systems must also be
wearable and not interfere with any of the users movements. FES systems for Drop
Foot (DF) correction are comprised of a stimulator and electrodes, to stimulate the
Tibialis Anterior (TA) muscle, a sensor to to acquire the foot kinematic parameters and
a Microcontroller Unit (MCU), to implement the control strategy.

The system designed for this project should provide a personalized assistance that
helps reduce the onset of fatigue, compensates external disturbances and generates
more natural movements. Hence, the stimulator must allow the real-time update
of pulse parameters, so the provided stimulation can vary according to the desired
movement; the sensor should provide real-time data that can be used to estimate the
foot angle and its angular velocity; and the MCU should have enough peripherals
to communicate with the sensor and the stimulator, have enough memory for the
implementation of the control strategy, as well as for the gait event detection algorithm,
while simultaneously being small and light.
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3.2 system overview

The human average walking step frequency is around 2 Hz, being able to reach
2.5 Hz depending on the subject (Ji (2015), Kumar and Kumar (2017)). Therefore, the
foot movement sampling rate should be 10 times higher in order to assure no aliasing
occurs, which would be 25 Hz. Nonetheless, the sampling rate should be high enough
to capture the varying dynamics of the foot movement during one step (Sprager and
Juric (2015)), therefore, a sampling frequency of 500 Hz should be sufficient. The
signal acquisition should also be done with a frequency 10 times higher than the
sampling rate, which should be no less than 5 kHz. The system must comply with
the time scales that can be seen in the diagram of Figure 3.1.

Figure 3.1: Time scale constraints for the system.

As stated in the previous chapter, a DF correction system is generally composed
by a stimulator, a sensor and a MCU. In order to create a system personalized
to the user’s needs, it is necessary to model the electrically stimulated TA muscle.
The model will be created and tested using MATLAB® running on an ASUS®

computer with an Intel® Core™ i73537U processor at 2 GHz. Thus, the MCU should
support USART communication to be able to communicate with the computer where
MATLAB® is running. Furthermore, it should also feature enough peripherals to
provide communication with the inertial sensor and the stimulator. Based on this,
the system’s components should follow the following requirements:

1. MCU

(i) Small and light;

(ii) Supports I2C and USART communication;

(iii) Features at least 2 USART ports;

(iv) Operates at no lower than 5 kHz;

(v) Provides sufficient memory to implement the control strategy;

2. Stimulator



3.2. System Overview 45

(i) Small and light;

(ii) Allows for real-time update of pulse parameters with a frequency of at least
25 Hz;

(iii) Produces a biphasic pulse;

(iv) Supports USART communication;

3. Inertial Sensor

(i) Small and light;

(ii) Allows a sampling rate of 500 Hz;

(iii) Supports I2C communication;

Based on these requirements the chosen components were the STM
NUCLEO-32F303K8® MCU, used to implement the control strategy; the MSU
from the ISTim Modular Stimulation System (Luzio de Melo (2014)), used to deliver
the stimulation pulse to the TA muscle; the MPU6050® Inertial Measurement Unit
(IMU) to acquire the foot kinematic parameters; and the Future Technology Devices
International Ltd. (FTDI) USB to serial converter, used to support the communication
between the MCU and MATLAB®. All the components for the designed DF correction
system can be seen in Figure 3.2.

Figure 3.2: The DF correction system.
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This system was designed to be simple, lightweight and easy to use on a daily
basis. The components will be presented in depth in the next sections.

3.3 microcontroller unit

The MCU implements the control strategy responsible for the personalized DF
correction strategy. Therefore, it was required to be small and light, to support I2C
communication for the IMU and to support 2 USART communication peripherals for
the stimulator and for the USB to serial converter. It was also required to operate at
a minimum of 5 kHz and to have sufficient memory for the implementation of the
model and the control strategy.

The chosen MCU was the STM NUCLEO-32F303K8®, since it is small but has a high
range of peripheric features. It features I2C and USART communication interfaces
and provides 2 USART peripherals. It has an Arm® Cortex®-M4 32-bit CPU with
72 MHz maximum CPU frequency and features 64 Kbytes of Flash memory and 12

Kbytes of SRAM (STMicroelectronics (2018)). In Figure 3.3 it is possible to identify the
used pinout of the MCU.

Figure 3.3: Pinout of the used peripherals in the MCU.
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3.4 modular stimulation unit

The stimulator is responsible for applying the stimulation pulse to the TA muscle,
after its parameters are determined by the control strategy implemented in the MCU.
Hence, it is important that this component allows the real-time update of the pulse
parameters, produces a biphasic pulse, so there are no charge imbalances in the skin
(de Souza et al. (2017)), and supports USART communication. It is also important that
the stimulator is small and light, to allow for a portable solution.

Of the stimulators identified in section 2.5, two of them satisfy the requirements: the
PHENIX® from VIVALTIS and the ISTim Modular Stimulation Unit created by Luzio de
Melo (2014). Since the Instituto Superior Técnico was able to provide one of the MSUs
of the ISTim Modular Stimulation Unit, that was the chosen stimulator for this project.
This stimulator is portable and smaller than the palm of a hand and allows the update
of all the pulse parameters in real-time. The full range of the MSU’s parameter values
can be seen in Table 3.1.

Table 3.1: Pulse parameter range available in the MSU.

Pulse Parameters

Width 0 µs to 503 µs
Amplitude 0 V to 50 V
Frequency 0 Hz to 200 Hz

In section 2.2.1, it was stated that frequency usually remains the same throughout
the stimulation, since it is directly linked to the increase of muscular fatigue. Hence,
for this system the pulse parameter to be updated could either the pulse amplitude
or the pulsewidth, since they are both related to muscle fibre recruitment. Given the
pulse amplitude and pulsewidth range available in the MSU, the pulsewidth spans
through a wider range of values. Therefore, that was the parameter chosen to be
updated in the control strategy.

The MSU also delivers biphasic pulses, to prevent skin damage, and is able to update
pulse parameters in real-time with a frequency up to 250 Hz. Given the human step
frequency of 25 Hz, this is enough for this project. The MSU can be seen in Figure 3.4.
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Figure 3.4: MSU used by the system.

There are two electrodes attached to the MSU, the indifferent electrode and the active
electrode. For this system, the active electrode was placed on top of the motor point
of the TA muscle and the indifferent electrode was placed over the Common Peroneal
nerve, as can be seen in Figure 3.5.

Figure 3.5: Electrode positioning to stimulate the Tibialis Anterior muscle. The red dot
represents the active electrode.

The MSU communicates with the MCU through serial communication. The
communication protocol consists of 5 bytes of data: the first byte is to signal that
data will be sent/requested; the remaining 4 bytes contain the update values for each
of the pulse’s parameters: amplitude (A), frequency (F), and positive (P) and negative
(N) widths. The baudrate for the serial data transmission is 111111 bits per second
(defined by the manufacturer). The communication protocol can be seen in Figure 3.6.
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Figure 3.6: Communication protocol between MCU and MSU.

3.5 inertial measurement unit

In order to provide feedback for the controller and to detect gait events, it is
necessary to have real-time access to the foot’s kinematic parameters, particularly to
the foot angle and its angular velocity. In order to obtain these kinematic parameters,
a small and light component that was easily placed on the foot was necessary. It
was also required that the component supported I2C communication and allowed a
sampling rate of 500 Hz.

The sensor that meets these requirements is an Inertial Measurement Unit (IMU).
For this project, the InvenSense Inc. MPU-6050® IMU was used, as it has a 3-axis
accelerometer and a 3-axis gyroscope and features an I2C communication interface
(Invensense (2013)). The MCU (master) and the IMU (slave) communicate through I2C,
with a bus speed of 400 kHz. The MCU receives the raw pitch, roll and yaw values
from the accelerometer and gyroscope and uses them to calculate the foot angle. The
acquisition is done with a sampling frequency of 500 Hz, which is in accordance to
the time scale constraints of the system.

The foot angular velocity is the unfiltered gyroscope pitch value and the foot angle
is calculated by fusing the data from the accelerometer and the gyroscope, using a
complementary filter (Filippeschi et al. (2017)). The complementary filter is stated in
Equation 1.

θ = αg × θg + αa × θa (1)

Where θ is the estimated foot pitch angle, θg is the foot pitch angle integrated from
the gyroscope pitch axis, θa is the foot pitch angle estimated from the accelerometer
axis values and αg and αa are the filter constants, that were tuned to 0.98 and 0.02,
respectively.
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There is a 5 second calibration routine, where the subject remains static in order to
calculate the gyroscope offset and the pitch angle of the stationary IMU. The IMU was
placed in the top of the foot (Anwary et al. (2018), Kwakkel et al. (2015)), inside of a
black box, in a way that would not limit the subjects movements. The black box can
be attached to the foot with a strap or with the user’s shoelaces, for a more simplistic
approach. The positioning of the sensor can be seen in Figure 3.7.

Figure 3.7: (a) InvenSense Inc. MPU-6050® IMU, (b) IMU foot placement.

3.6 usb to serial converter

The model and the signals used to acquire data for the model were created in
MATLAB®. Therefore it was necessary to send the signals in real-time to the MCU. To
ensure the communication between the MCU and the computer, where the MATLAB®

was running, the USB-RS232 FTDI Converter was used. The baudrate for the serial
data transmission is 115200 bits per second.

The communication protocol consists of MATLAB® waiting for the character that
signals the request for a signal (r) and then sending the signal to the MCU. When the
MCU finishes receiving the signal it sends a character to indicate it received the signal
successfully (e), and the communication is terminated. The communication protocol
can be seen in Figure 3.8.
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Figure 3.8: Communication protocol between MCU and MATLAB®.

3.7 system testing

Tests were made in order to ensure that the system was respecting the required time
constraints, since for a real-time DF correction control application, there cannot be
unexpected time delays. In order to do this, an oscilloscope was used to visualize the
signals.

The first test was to identify the model’s time response for one prediction, as this
is crucial for the time response of the control strategy. This test was done with the
model operating alone, after it was first implemented in the MCU. The test was done
by toggling a pin on the MCU to high when the model prediction function begins and
toggling it back to off when it exits the function. The oscilloscope probe was connected
to the pin and in Figure 3.9 the toggling of the pin can be seen.

Figure 3.9: Neural network response time visualized with an oscilloscope.

Figure 3.9 shows that the model needs 5 ms in order to make one prediction, which
means it has a time response of 200 Hz. Given the human step frequency of 2.5 Hz,
this value is well within the acceptable limits.
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The control strategy must take into account the response time of the model,
therefore it cannot operate faster than 200 Hz. Given the lack of control loop response
time information in the literature, the chosen response time was 125 Hz, since it
respects the human step frequency of 2.5 Hz and also the response time of the model
(200 Hz).

The response time of the control loop was tested with the system operating in
real-time DF correction mode, in order to take into account the worst case scenario.
The test was done by toggling a pin on the MCU everytime the control loop
interruption occurred. The oscilloscope probe was connected to the pin and in Figure
3.10 the toggling of the pin can be seen, and therefore the time response of the control
loop.

Figure 3.10: Control loop response time visualized with the oscilloscope.

Figure 3.10 shows that the pin is toggled every 8 ms, which means the control loop
is running at 125 Hz, as expected.

Lastly, the IMU sampling rate was tested with the system operating in real-time
DF correction mode, to ensure it was 500 Hz, as required by the time scales defined
previously. For this project, the MCU clock speed was set to 64 MHz, which respects
the acquisition rate set by the time scales of 5 KHz. The test was done by toggling a pin
on the MCU everytime a sampling interruption occurred. The oscilloscope probe was
connected to the pin. In Figure 3.11 the toggling of the pin can be seen and, therefore,
the rate at which the IMU data was sampled.
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Figure 3.11: Sampling rate of the IMU visualized with an oscilloscope.

Figure 3.11 shows that the pin is toggled every 2 ms, which means the IMU values
are being sampled at at 500 Hz, as expected.

3.8 project layout

Following the choice of the system’s components, it is necessary to outline the
subsequent steps to be taken in order to develop the DF correction control strategy.
The proposed trajectory tracking control strategy can be seen in Figure 3.12 and it is
divided in two main elements: the NN model and the PD controller, which will be
presented in depth in Chapter 4 and Chapter 5, respectively.

Figure 3.12: Control diagram of the proposed trajectory tracking control strategy.

In order to model the dynamics of the electrically stimulated muscle it is necessary
to acquire real-time data of the foot angle correspondent to the stimulation pulse, that
covers the full range of motion of the foot. This is necessary because DF affects the
swing gait phase, which ranges from the lowest foot angle value, approximately -45º,
to the highest, approximately 20º, in healthy subjects, as can be seen in Figure 3.13.
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Figure 3.13: Foot ROM obtained with an IMU placed on the foot of a healthy subject walking
at 1 km/h.

The NN model is responsible for capturing the dynamics of the electrically
stimulated TA muscle and will be implemented in the MCU for the real-time control
strategy, as stated previously. Since this model is tailored to each user’s needs, a
calibration should be done everytime a new user intends to use the system, to ensure
the model is personalized to the user’s anatomical needs. The calibration will be
used to apply different stimulus to the user’s TA muscle, so the full dynamics of
the muscle can be captured by the model. In order to create the personalized model,
the steps outlined in Figure 3.14 will be taken and properly documented throughout
Chapter 4.

Figure 3.14: Steps to be taken in order to model the electrically stimulated TA muscle.
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The trajectory tracking control strategy is responsible for correcting DF during
real-time gait. In order to do this, it should use a reference trajectory that is based on
healthy gait patterns, as to generate foot movements similar to natural ones. Since DF
only affects one of the gait phases, the control strategy should only be applied when
the gait cycle corresponds to that phase. Therefore, there is a necessity to identify
the gait events in real-time, wearing the IMU that is also being used to acquire the
foot kinematics, in order to reduce the number of sensors placed on the subject. The
model created in Chapter 4 should be combined with a controller, in order to help
reduce fatigue and compensate for any external disturbances. This will provide a
more robust and effective control strategy.

The model should be validated alone and then paired with the controller, to compare
their performances. Finally the implemented control strategy should be validated
during real-time, to see if it able to correct DF. In order to create this control strategy,
the steps outlined in Figure 3.15 will be taken and properly documented throughout
Chapter 5.

Figure 3.15: Steps to be taken in order to implement and validate the proposed control strategy.
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M O D E L I N G E L E C T R I C A L LY S T I M U L AT E D M U S C L E S

This chapter focuses on modeling the dynamics of the electrically stimulated
muscles. It starts with a brief introduction followed by the methods used to created
the models. Afterwards, the results will be presented and the chapter will end with a
discussion on the subject.

4.1 introduction

The control strategy that is going to be used for this project is a trajectory tracking
control strategy, using a model combined with a Proportional Derivative (PD)
controller, as was stated in the previous chapters. Hence, it is necessary to determine
which is the best option to model the electrically stimulated Tibialis Anterior (TA)
muscle.

There are two types of approaches used to model the electrically stimulated
muscles: mechanistic or biomechanical models and empirical or black-box models.
Mechanistic models usually have a large amount of parameters that need to be tuned,
since they are largely based on the physical properties of the limb they are trying to
model (Previdi (2002)). For Functional Electrical Stimulation (FES) systems, empirical
models only need the pulse parameter used and the corresponding joint’s movement
kinematics, in order to find the relation between them and create the desired model.
Mechanistic models, such as biomechanical models or Hammerstein structures, are
more accurate and precise, but the level of authenticity they entail is only achieved
with complex calibration routines. Furthermore, the amount of parameters required
to create this type of models is usually very high, which can affect the real-time
performance of the system (Luzio de Melo (2014)). Empirical models are able to
overcome these problems by finding the relation between the inputs and outputs of
the system. This is done by sacrificing the level of detail and parameters required
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to create the model when compared to mechanistic models, but the outcome is a less
complex model that is still able to perform in real-time.

The model for this project is meant to represent the inverse dynamics of the
electrically stimulated TA muscle, by predicting the pulsewidth to be applied to
the muscle, given a desired joint kinematic trajectory. Empirical models require a
less complex calibration routine, which is important when modeling the muscles
of subjects with disabilities. They are less complex, when compared to mechanistic
models, and thus generally more suitable to be integrated in a real-time control
strategy. Therefore, an empirical model was chosen for this project.

4.2 methods

In this section a model is created with the purpose of being integrated in a trajectory
tracking control strategy to control Drop Foot (DF). Firstly, the chosen model will be
presented, followed by the signals used to train the Neural Networks (NN) and the
data acquisition method used. The NN were created and trained in MATLAB® and the
best performing Non-Linear Autoregressive Neural Network with Exogenous input
(NARX Neural Network) was implemented in the Microcontroller Unit (MCU).

4.2.1 Neural Network

NNs have been extensively used in Functional Electrical Stimulation (FES) research
projects to model electrically stimulated muscles, be it for upper limb movements
(Fujita et al. (1998), Imatz-ojanguren et al. (2016), Popov et al. (2015)) or for lower
limb movements (Chang et al. (1997), Chen et al. (2004), Azura et al. (2016), Previdi
(2002), Yassin et al. (2017), Yilei et al. (2006)), given they can model the non-linear
behaviour of the electrically stimulated muscles. Although, in the past, it was more
common to use feedforward neural networks with FES (Chen et al. (2004) Chang et al.
(1997) Fujita et al. (1998)), the most recent projects use recurrent neural networks, in
particular NARX Neural Networks (Azura et al. (2016) Yassin et al. (2017) Yilei et al.
(2006) Previdi (2002) Popov et al. (2015) Imatz-ojanguren et al. (2016)). Considering
that the main goal of this project is to correct DF during real-time gait and since the
use of a non-linear model provides a more accurate model for the control of the full
range of motion of a joint (Previdi (2002)), a NARX Neural Network was chosen to
model the electrically stimulated TA muscle in this project.
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Non-Linear Autoregressive with Exogenous input (NARX) models are a class of
discrete-time non-linear systems that establish non-linear relationships between past
observations and future outputs (Previdi (2002), Lin et al. (1996)). These models are
useful for FES research purposes because of the small number of required parameters
and their ability to represent the nonlinear dynamic behaviour of the electrically
stimulated muscle (Previdi and Carpanzano (2003)). This model is represented by
Equation (2):

y(t) = f (u(t), u(t− 1), ..., u(t− n), y(t− 1), ..., y(t−m)) + e(t) (2)

where y(t) is the output predicted by the model, u(t) is the input and e(t) represents
disturbances and modelling errors at time t. f is the non-linear function that describes
the system’s behavior and n and m are the regression orders of the input and output,
respectively. When the function f is represented by a Multilayer Perceptron (MLP), a
feedforward NN, the result is a NARX Neural Network. The NARX Neural Network
is a type of Recurrent Neural Network (RNN) that only has feedback between the output
and input layers (Lin et al. (1997)). In order to benefit from the characteristics of the
NARX model while also taking advantage of the adaptability of neural networks, the
chosen model is a NARX Neural Network. A diagram of the NARX Neural Network
can be seen in Figure 4.1.

Figure 4.1: NARX Neural Network diagram.
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The NARX Neural Network can operate in two modes: Series-Parallel mode and
Parallel mode (Maria and Barreto (2007)). In Series-Parallel mode the values that are
fed back into the NN are real values output by the system. This mode is represented in
Equation (2) and in Figure 4.2, where the output predicted by the model is represented
by ŷ(t).

Figure 4.2: Series-Parallel mode NARX Neural Network diagram.

In Parallel mode the values estimated by the model are fed back into the NN as
inputs in the correct regression order. This mode is represented by Equation (2), where
the outputs predicted by the model are represented by ŷ(t) in Figure 4.3.

NARX Neural Networks are generally trained in Series-Parallel mode, so that the
weights are updated accordingly, but in real-time control they are usually used in
Parallel mode. Thus, for this project, the NN will be trained in Series-Parallel mode
and afterwards it will be used in Parallel mode for real-time prediction.

In order to have a basis for performance comparison, initially a direct model was
created, having as input the pulsewidth, given it spans through a wider range of
values on the chosen stimulator, (as explained in section 3.4), and as output the foot
angle. Afterwards, the basic inverse model was created, which has as input the foot
angle and as output the pulsewidth. Finally, a dynamic inverse model was created.
This model uses as input, both the foot angle and the foot angular velocity. The
three models will be presented in the following sections and the data present in the
figures was normalized using Equation 3, where y represents the normalized value, X
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Figure 4.3: Parallel mode NARX Neural Network diagram.

represents the array of data to be normalized and x represents the value within the
array to be normalized.

y =
x−min(X)

max(X)−min(X)
(3)

Direct Model

The direct model was created using the applied pulsewidth as exogenous input
and the resulting foot angle as output, to train the NARX Neural Network. It is
the direct model because it models the behaviour of the TA muscle after being
electrically stimulated with different pulsewidths. The model is represented by
Equation 4, which is based on Equation 2.

θ(t) = f (PW(t), PW(t− 1), ..., PW(t− n), θ(t− 1), ..., θ(t−m)) + e(t) (4)

where θ(t) is the foot angle predicted by the model, PW(t) is the pulsewidth input
and e(t) represents disturbances and modelling errors at time t. f is represented by a
MLP and n and m are the regression orders of the input and output, respectively. A
diagram of this model is represented in Figure 4.4.
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Figure 4.4: Direct model NARX Neural Network diagram for: (a) training and (b) real-time
prediction.

Basic Inverse Model

The basic inverse model was created using the foot angle as exogenous input
and the applied pulsewidth as output, to train the NARX Neural Network. It is
the inverse model because it models the inverse relationship of the electrically
stimulated TA muscle. This means that, given a desired foot angle the model outputs
the pulsewidth that must be applied. The model is represented by Equation 5.

ˆPW(t) = f (θ(t), θ(t− 1), ..., θ(t− n), PW(t− 1), ..., PW(t−m)) + e(t) (5)

where ˆPW(t) is the pulsewidth predicted by the model, θ(t) is the foot angle input
and e(t) represents disturbances and modelling errors at time t. f is represented by a
MLP and n and m are the regression orders of the input and output, respectively. A
diagram of this model is represented in Figure 4.5.

Figure 4.5: Basic inverse model NARX Neural Network diagram for: (a) training and (b)
real-time prediction.

There is a delay from the moment the stimulation pulse is applied until the TA
muscle responds to the stimulus (Chang et al. (1997)). Given that the NARX Neural
Network is used for time series prediction, the pulsewidth was shifted 1 second in
order to remove this delay, so the NN can properly be trained with the data. This
process can be seen in Figure 4.6.
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Figure 4.6: Response time removal on training data: (a) original data and (b) data with
response time delay removed.

Dynamic Inverse Model

The dynamic inverse model was created using both the foot angle and its angular
velocity as exogenous input. As output the applied pulsewidth that generated the foot
movement was used to train the NARX Neural Network. It is the dynamic inverse
model because it uses two kinematic foot parameters, the angle and the angular
velocity. The model is represented by Equation 6.

(t) = f(θ(t), θ(t− 1), ..., θ(t− n), θ̇(t), θ̇(t− 1), ..., θ̇(t− n), PW(t− 1), ..., PW(t−m)) + e(t) (6)

where ˆPW(t) is the pulsewidth predicted by the model, θ(t) is the input foot angle,
θ̇(t) is the input foot angular velocity and e(t) represents disturbances and modelling
errors at time t. f is represented by a MLP and n and m are the regression orders of
the input and output, respectively. A diagram of this model is represented in Figure
4.7.

Figure 4.7: Dynamic inverse model NARX Neural Network diagram for: (a) training and (b)
real-time prediction.
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As in the case of the basic inverse model depicted in Figure 4.6, the pulsewidth was
also shifted for the dynamic training data, in order to remove the delay of the muscle
response.

4.2.2 Model Excitation Signals

The selection of signals used to train the NARX Neural Network is very important,
since the stimulus is applied directly to the patient’s leg. Therefore, a gradual
recruitment of the muscle fibers is preferred over abrupt recruitment, which is
especially true in the current case of DF correction because the foot movement is
progressive. Furthermore, abrupt muscular stimulation with high amplitude values
may cause the onset of fatigue sooner as well as cause discomfort for the patient (Le
et al. (2010)).

The signals must be able to generate the whole range of joint movements, in order
for the model to capture the full Range of Motion (ROM) of the foot. There are
some signals that are able to achieve this such as white noise (Farahat and Herr (2005)),
Triangular Ramps (TR), Staircase Ramps (STR), Pseudo-Random Binary Sequences (PRBS)
(Schauer and Hunt (2000)), Pseudo-Random Multi-Level Sequences (PRMS) (Previdi
and Carpanzano (2003), Previdi et al. (2005)) and Filtered Random Noise (FRN). PRMS
are more adequate than PRBS, since they are distributed throughout the whole range
of the joint movement.

Since the model is meant to express the dynamic behaviour of the electrically
stimulated muscle, dynamic excitation signals are the most appropriate for model
identification purposes (Le et al. (2010)). The only signals with dynamic behaviour
are the white noise, the PRBS, the PRMS and the FRN. PRMS is a deterministic signal
similar to white noise which covers the full range of motion. FRN is a signal resultant
of low-pass filtering white noise. Based on this, the candidate input signals are FRN
and PRMS, which are depicted in Figure 4.8 a) and Figure 4.8 b), respectively.

An offset and gain are applied to both signals to ensure they stay within the full
ROM of each subject. These offset and gain values are based on the minimum
pulsewidth value that generates a foot motion for each subject and the saturation
pulsewidth value, where the foot angle stops increasing despite the pulsewidth
continues to increase. These values differ from subject to subject and may even
differ for the same subject under different conditions. Hence, after the minimum
and saturation values are obtained, personalized PRMS and FRN signals are created.
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Figure 4.8: Excitation signals selected: a) FRN and b) PRMS.

In order to obtain the minimum and saturation values, a TR, is applied in the
beginning of every experiment. The TR increases linearly from 0 µs to 200 µs and
then decreases back to 0 µs, as can be seen in Figure 4.9.

Figure 4.9: TR applied at the beginning of every experiment.

The procedure done to acquire training data for the NARX Neural Network is
described in the next section.

4.2.3 Model Data Acquisition

In order to personalize the model to the user’s TA muscle characteristics, there
needs to be a calibration routine done for each user. This allows the acquisition of data
specific to the user, by applying different signals to the TA muscle and recording the
corresponding foot kinematic parameters. This data is then used to train the model,
thus assuring that the model is personalized to the user’s needs. This is necessary
because, as mentioned previously, electrically stimulated muscles have a time-variant
dynamic that varies depending on the subjects, their physical condition and muscular
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fatigue (Gorgey et al. (2009)). Thus, this section describes the model data acquisition
calibration routine, necessary to tailor the model to the user’s anatomic characteristics.

Since during the swing phase no external forces, besides gravity, are applied to
the foot, the experimental setup must take this into account. Therefore the subject was
placed in a sitting position that kept the foot from touching the ground and allowed
the ankle to move without restriction. An IMU was strapped to the foot, in order to
acquire the kinematic parameters of the foot. The setup can be seen in Figure 4.10.
The subject was a 23 year old neurologically intact female, since the muscle response
between healthy subjects and impaired subjects is very similar (Chang et al. (1997)).

Figure 4.10: Model data acquisition experimental setup.

For this project, the pulse amplitude and frequency remain constant and the
pulsewidth is controlled. The frequency is set at 30 Hz for every subject, since it
should not have a value that is too low that it generates muscular twitches, but not
too high that it promotes the early onset of fatigue (Downey et al. (2015b)). The pulse
amplitude must be adjusted according to the subject. In order to do this, firstly a
constant pulse of 70 µs is applied to the TA muscle and the amplitude is increased
slowly starting at 0 V. When the muscle reaches a steady contraction, that means the
adequate amplitude value has been reached and it remains constant throughout the
rest of the trials. For this subject, the adequate pulse amplitude value was 28 V.

Afterwards, it is necessary to determine the subject’s minimum and saturation
pulsewidth values. In order to do this, the TR seen in Figure 4.9 is applied. The
minimum pulsewidth is assumed to be the one that causes an increase of 0.5º of
the foot angle. The saturation pulsewidth is achieved when the foot angle stops
increasing, despite the pulsewidth continues to increase. The process can be seen in
Figure 4.11.
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Figure 4.11: Identification of minimum and saturation pulsewidth values: (a) subject’s foot
angle data acquired when the TR pulse is applied, (b) minimum and saturation
angle values identified and (c) minimum and saturation correspondent pulsewidth
values.

The FRN and PRMS pulses, explained in the previous section, are then created
based on the determined minimum and saturation pulsewidth values. In order
to assess the robustness of the model, both pulses were created with different
behaviours. FRN at 0.1 Hz, 0.2 Hz and 0.3 Hz, to represent slow, intermediate
and fast movement transitions, respectively, and PRMS created with slow movement
transitions and fast movement transitions. These transitions are meant to generate
slower or faster foot movements, thus generating a diverse range of data. The created
signals can be seen in Figure 4.12.

The signals in Figure 4.12 were applied to the subject’s TA muscle and the
corresponding foot kinematic parameters were recorded, with the setup shown in
Figure 4.10. Each FRN and PRMS signal generates a muscular response which
translates into a foot movement. Three trials were made for each pulse type, in
order to gather a wide range of data for the model creation. The signals applied to
the TA muscle as well as the corresponding foot angle data obtained from one trial
can be seen in Figure 4.13.

After the training data was obtained, the direct model, basic inverse model and
dynamic inverse model were trained with it. The results obtained from the trained
models will be examined in the following section.

4.3 results

The performance of the NARX Neural Network models was assessed in terms
of percentage based on a Goodness of Fit (GOF), measured with Normalized Root
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Figure 4.12: Input signals used to stimulate the TA muscle: (a) FRN with slow transitions, (b)
FRN with intermediate transitions, (c) FRN with fast transitions, (d) PRMS with
slow transitions and (e) PRMS with fast transitions.

Figure 4.13: Input signals used to stimulate the TA muscle and correspondent foot angle: (a)
FRN with slow transitions, (b) FRN with intermediate transitions, (c) FRN with
fast transitions, (d) PRMS with slow transitions and (e) PRMS with fast transitions.
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Mean Square Error (NRMSE) (Le et al. (2010), Luzio de Melo (2014)). This metric is
represented in Equation 7:

Goodness of Fit =

(
1−

(
‖yre f − y‖
‖yre f − yre f ‖

))
× 100 (7)

where yref represents the reference data and y represents the model output. The
GOF ranges between −∞, which symbolizes very poor fit, and 100 %, which
symbolizes a perfect fit.

The models were trained using the data acquired in the previous section, after
it was normalized using Equation 3, and the training of the was done offline, using
MATLAB®. For the training of the NARX Neural Network the data was divided
in blocks, leaving 70% for training, 15% for validation and 15% for testing, given
the high amount of training data. The activation function used on the MLP was the
hyperbolic tangent and the training algorithm used was the Levenberg-Marquardt. The
weights were initialized randomly, between -1 and 1, and the NARX Neural Network
was trained with 2 different stopping criteria: upon reaching 500 training epochs or
if the validation error increases 6 times in a row. The validation MSE was calculated
by comparing the expected values with those output by the NARX Neural Network.
A flowchart of the training algorithm can be seen in Figure 4.14, where Val MSE
represents the validation error of the current training epoch, P Val MSE represents
the validation error of the previous training epoch and Val Fail represents the number
of consecutive increases in validation error.

Tests were made for each type of model, with a varying number of neurons (5, 10
and 20) and hidden layers (1 and 2) of the NARX Neural Network, this was done to
see if an increasing number of neurons in each hidden layer, and an increase in hidden
layers, generates a NARX Neural Network with a better performance. For each type
of signal three prediction trials were done.

In order to assess the robustness of the models trained with fast, medium and slow
FRN and PRMS, validation tests were made. This was done by using a model trained
with one type of signal (fast, medium or slow) and then using this model to predict
the remaining type of signals. The tests were done with NARX Neural Networks
with 20 neurons in each hidden layer and for models with 1 and 2 hidden layers. The
regression orders were set to m=n=2, since in Previdi and Carpanzano (2003) the MSE
of the NARX Neural Network with m=n=2, only increased 0.003 when compared to
the model that performed better, with m=3 and n=4.
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Figure 4.14: Flowchart of the training algorithm.
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4.3.1 Direct Model

The input of the NARX Neural Networks used to create the direct model is the
pulsewidth applied to the subject’s TA muscle and the output is the corresponding
foot angle. In Figure 4.15 the results for the NARX Neural Networks trained with the
signals from the first trial can be seen. The model is able to predict the foot angle with
high accuracy for models trained with FRN, with 85.20%, 90.43% and 82.85% accuracy,
for slow, medium and fast transitions, respectively. When it comes to the PRMS the
accuracy drops to 65.43% and 53.16%, for slow and fast transitions, respectively. The
results for all the trials of the models trained with FRN can be seen in Table 4.1 and
the results for all the trials of the models trained with PRMS can be seen in Table 4.2.

Figure 4.15: Direct model results for first trial with 1 hidden layer and 5 neurons: (a) FRN
with slow transitions, (b) FRN with intermediate transitions, (c) FRN with fast
transitions, (d) PRMS with slow transitions and (e) PRMS with fast transitions.

Based on the results of Table 4.1 it can be concluded that the NARX Neural
Networks with 2 hidden layers perform better for every number of neurons in
the hidden layers. However, the difference in accuracy between NARX Neural
Network with 1 and 2 hidden layers is low for signals with medium transitions,
with a difference of 3.34%, 2.01% and 1.56% for 5, 10 and 20 neurons respectively. For
signals with slow transitions this difference increases to 7.77%, 12.03% and 17.16% for
5, 10 and 20 neurons respectively. For signals with fast transitions these differences
are low for 10 and 20 neurons, with an accuracy of 1.93% and 2.27%, respectively. For
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Table 4.1: Results for direct model with 5, 10 or 20 neurons and 1 or 2 hidden layers, trained
with FRN signals.

No. Neurons No. Layers Trial 1 Trial 2 Trial 3 Average Transitions
1 78.57% 61.41% 75.02% 71.67%

5

2 82.85% 69.71% 83.64% 78.73%
1 81.89% 60.00% 83.20% 75.03%

10

2 83.63% 66.96% 80.28% 76.96%
1 79.78% 66.34% 84.58% 76.90%

20

2 83.39% 68.36% 85.75% 79.17%

Fast

1 90.08% 83.53% 82.06% 85.22%
5

2 90.43% 87.11% 88.15% 88.56%
1 92.99% 87.46% 87.43% 89.29%

10

2 94.20% 90.74% 88.95% 91.30%
1 93.70% 88.99% 83.47% 88.72%

20

2 94.58% 89.87% 86.40% 90.28%

Medium

1 84.10% 58.91% 79.89% 74.30%
5

2 85.20% 79.47% 81.53% 82.07%
1 79.91% 80.56% 28.92% 51.09%

10

2 80.19% 59.29% 49.88% 63.12%
1 84.48% 55.60% 38.64% 51.09%

20

2 85.09% 53.63% 66.03% 68.25%

Slow

a Best results for each No. of neurons are colored green.

NARX Neural Networks with 5 neurons this difference increases to 7.06%. Hence if
a model trained with FRN with medium transitions is used in the control strategy,
it can be composed of only 1 hidden layer while if it is trained with FRN with slow
transitions it should be composed of 2 hidden layers, since it results in a more accurate
model.

When it comes to the number of neurons in each hidden layer, Table 4.1 shows that
there is no significant difference in the performance of the model depending on the
number of neurons of the hidden layer. The maximum performance difference for
models with 2 hidden layers trained with medium transitions is only 2.74%, between
10 neurons and 5 neurons in each layer.

Similarly to what happened with the models trained with FRN signals, it can be
seen in Table 4.2 that models with 2 hidden layers perform better than models with
1 hidden layer, with the highest accuracy difference of 38.39% for the models with 20

neurons trained with fast transitions. Models with 2 hidden layers perform similarly
despite the number of neurons in the hidden layer, with a decrease of 4.15% when
reducing from 20 neurons to 10 for models trained with fast transitions. Overall,
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models trained with PRMS have a worst performance than models trained with
FRN, with a decrease in performance of 25.63% for models with 20 neurons and 2

hidden layers trained with signals with fast transitions and a decrease in performance
of 26.67% for models with 20 neurons and 2 hidden layers trained with signals with
slow transitions.

Table 4.2: Results for direct model with 5, 10 or 20 neurons and 1 or 2 hidden layers, trained
with PRMS signals.

No. Neurons No. Layers Trial 1 Trial 2 Trial 3 Average Transitions

1 48.69% 64.44% -53.58% 19.85%
5

2 54.18% 71.07% 31.34% 52.20%
1 46.72% 60.81% 31.35% 46.29%

10

2 60.37% 53.81% 33.99% 49.39%
1 52.70% 52.24% -61.00% 14.65%

20

2 53.16% 77.16% 30.31% 53.54%

Fast

1 -1.52% 68.78% 0.12% 22.46%
5

2 77.02% 61.76% -5.76% 44.34%
1 68.33% 67.37% -2.89% 44.27%

10

2 83.03% 57.45% -3.79% 45.56%
1 65.39% 58.57% -1.98% 40.66%

20

2 65.43% 64.24% -4.93% 41.58%

Slow

a Best results for each No. of neurons are colored green.

The results of the validation tests to assess the robustness of the models trained with
FRN signals can be seen in Table 4.3. For both types of models, with 1 hidden layer and
with 2, the models trained with signals with slow transitions are the ones that are
able to predict other types of signals better. The difference is small for the prediction
of fast signals, with only an increase in accuracy of 4.23% and 1.87%, for models with
1 and 2 hidden layers, respectively, when compared to models trained with medium
transitions. For the prediction of medium signals, this difference increases to 6.57%
and 7.46%, for models with 1 and 2 hidden layers, respectively, when compared to
models trained with fast transitions.
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Table 4.3: Results for robustness tests for models trained with FRN signals.

2 Hidden Layers 1 Hidden Layer

Transitions Fast Medium Slow Fast Medium Slow

Fast 85.08% 65.71% 69.45% 78.71% 59.66% 63.96%
Medium 62.68% 94.41% 69.66% 57.32% 87.40% 55.01%

Slow 64.55% 73.17% 84.28% 61.55% 66.23% 82.34%

a Best prediction results for each type of transition are colored green.
b Grey boxes indicate results for signals of the same type.

The results of the validation tests to assess the robustness of the models trained with
PRMS signals can be seen in Table 4.4. It is clear that the models with 2 hidden layers
are able to predict different types of signals with more accuracy, with an increase
in performance of 20.38% for the prediction of signals with slow transitions and an
increase of 9.78% for the prediction of signals with fast transitions.

Table 4.4: Results for robustness tests for models trained with PRMS signals.

2 Hidden Layers 1 Hidden Layer

Transitions Fast Slow Fast Slow

Fast 51.43% 57.74% 51.13% 47.96%
Slow 36.77% 67.76% 16.39% 61.20%

a Best prediction results for each type of transition
are colored green.
b Grey boxes indicate results for signals of the same
type.

Overall, models trained with PRMS have low prediction accuracy, with the highest
prediction average of 53.54% (Table 4.2), for models with 2 hidden layers and 20

neurons in each layer. The highest prediction average for models trained with FRN
is 91.30% (Table 4.1), for models trained with 2 hidden layers and 10 neurons in
each layer. This likely happens because FRN has a gradual behaviour, which makes
it easier to model, while PRMS have sudden abrupt changes. Given that natural
muscular movement also consists of continuous transitions, such as FRN, henceforth
PRMS will be discarded, and only FRN will be used to train the basic inverse model
and the dynamic inverse model.
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4.3.2 Basic Inverse Model

The input of the NARX Neural Network used to create the basic inverse model is
the foot angle and the output is the pulsewidth applied to the subject’s TA muscle
that caused the foot movement. In Figure 4.16 the results for the NARX Neural
Network trained with the signals from the first trial can be seen. The model is able
to predict the applied pulsewidth with satisfactory accuracy, with 78.99%, 68.45% and
62.64% accuracy, for slow, medium and fast transitions, respectively. The results for
all the trials of the model trained with FRN can be seen in Table 4.5.

Figure 4.16: Basic inverse model results for first trial with 2 hidden layers and 5 neurons: (a)
FRN with slow transitions, (b) FRN with intermediate transitions, (c) FRN with
fast transitions.

Based on the results of Table 4.5 it can be concluded that the NARX Neural
Networks with 2 hidden layers perform better for every number of neurons in the
hidden layers. The difference in accuracy between models with 1 and 2 hidden layers
is significant, especially for models trained with slow transitions, with an average
decrease in performance of 25.36%, 43.59% and 18.68%, for models with 5, 10 and
20 neurons, respectively. For models with 2 hidden layers, the ones with 20 neurons
in each layer generate the best average results for all cases. However, the difference
between models with 20 neurons and models with 10 or 5 neurons was very small,
having the highest average difference of 2.2% for models trained with slow transitions,
and 1.46% for models trained with medium differences.

The results of the validation tests to assess the robustness of the models trained
with FRN signals can be seen in Table 4.6. For both types of models, trained with 1

hidden layer and with 2 hidden layers, the models trained with signals with medium
transitions are the ones that are able to predict other types of signals better. For the
prediction of slow signals, the difference in prediction accuracy from models trained
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Table 4.5: Results for basic inverse model with 5, 10 or 20 neurons and 1 or 2 hidden layers,
trained with FRN signals.

No. Neurons No. Layers Trial 1 Trial 2 Trial 3 Average Transitions
1 61.31% 53.02% 57.69% 57.34%

5

2 62.96% 55.82% 62.64% 60.47%
1 53.51% 49.95% -24.31% 26.38%

10

2 57.85% 54.96% 63.34% 58.72%
1 58.74% 52.93% 65.44% 59.04%

20

2 62.23% 58.20% 62.33% 60.92%

Fast

1 71.17% 65.50% 63.01% 66.56%
5

2 72.94% 66.77% 68.45% 69.39%
1 78.18% 66.18% 62.89% 69.08%

10

2 78.43% 67.96% 65.25% 70.55%
1 77.04% 62.83% 54.48% 64.68%

20

2 80.10% 70.92% 61.52% 70.85%

Medium

1 46.33% 36.16% 56.77% 46.42%
5

2 67.68% 68.66% 78.99% 71.78%
1 45.24% -57.71% 74.30% 20.61%

10

2 45.14% 72.07% 75.40% 64.20%
1 33.81% 52.50% 77.69% 54.67%

20

2 71.08% 70.37% 78.61% 73.35%

Slow

a Best results for each No. of neurons are colored green.
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with fast and medium signals is small for models with 2 hidden layers and more
significant for models with 1 hidden layer, reaching 3.57% and 6.78%, respectively.
For the prediction of fast signals, the difference in prediction accuracy from models
trained with slow and medium signals is more significant, reaching 8.96% and 26.37%,
for models with 2 hidden layer and 1 hidden layer, respectively. Hence, models with
2 hidden layers appear to be more robust when it comes to the predicting other
types of signals. Models trained with fast transitions are able to predict signals with
medium transitions better than models trained with slow transitions, by a small
difference of 1.92% for models with 2 hidden layers and a significant difference of
13.4% for models with 1 hidden layer.

Table 4.6: Results for robustness tests for models trained with FRN signals.

2 Hidden Layers 1 Hidden Layer

Transitions Fast Medium Slow Fast Medium Slow

Fast 64.35% 57.12% 56.06% 55.61% 49.21% 47.33%
Medium 55.04% 78.60% 59.63% 53.01% 75.93% 54.11%

Slow 46.08% 55.20% 76.91% 26.64% 35.81% 68.25%

a Best prediction results for each type of transition are colored green.
b Grey boxes indicate results for signals of the same type.

Overall, in the case of the basic inverse model, NARX Neural Networks with 2
hidden layers are able perform better than those with 1 hidden layer, despite the
number of neurons in each layer. Furthermore, they are also able to more accurately
predict other types of signals, when compared to models with 1 hidden layer. Basic
inverse models should be trained with signals with medium transitions, given they
are able to predict other types of signals more accurately.

4.3.3 Dynamic Inverse Model

The inputs of the NARX Neural Network used to create the dynamic inverse
model are the foot angle and its angular velocity, and the output is the pulsewidth
applied to the subject’s TA muscle that caused the foot movement. In Figure
4.17 the results for the NARX Neural Network trained with the signals from the
first trial can be seen. The model is able to predict the applied pulsewidth with
good accuracy, with 89.05%, 93.9% and 69.49% accuracy, for slow, medium and fast
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transitions, respectively. The results for all the trials of the model trained with FRN
can be seen in Table 4.7.

Figure 4.17: Dynamic inverse model results for first trial with 2 hidden layers and 20 neurons:
(a) FRN with slow transitions, (b) FRN with intermediate transitions, (c) FRN with
fast transitions.

Based on the results of Table 4.7, it can be seen that, similarly to what happened
with the basic inverse model, the models with 2 hidden layers perform better for
all types of signals. Furthermore, the dynamic inverse model is able to predict
the signals with higher accuracy when compared to the basic inverse model, by
comparing the results of Table 4.5. For models with 20 neurons and 2 hidden layers,
with the dynamic inverse models the performance increases 7.15%, 5.6% and 8.06%,
for models trained fast, medium and slow transitions, respectively, when compared to
the same basic inverse model.

The results of the validation tests to assess the robustness of the models trained with
FRN signals can be seen in Table 4.6. For both types of models, with 1 hidden layer and
with 2 hidden layers, the models trained with signals with fast transitions are the
ones that are able to predict other types of signals better. For models with 2 hidden
layers, the models trained with fast transitions are able to increase the prediction
accuracy of signals with medium transitions by 8.4%, when compared to models
trained with signals with slow transitions, and increase the prediction accuracy of
signals with slow transitions by 6.72%, when compared to models trained with signals
with medium transitions.

Furthermore, when comparing Table 4.6 with Table 4.8, it can be seen that the
dynamic inverse model is able to perform better when predicting different types
of signals, with an increase of 2.29% for signals with fast transitions, an increase of
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Table 4.7: Results for dynamic inverse model with 5, 10 or 20 neurons and 1 or 2 hidden layers,
trained with FRN signals.

No. Neurons No. Layers Trial 1 Trial 2 Trial 3 Average Transitions
1 61.74% 51.89% 54.35% 55.9%

5

2 63.75% 53.14% 55.25% 57.38%
1 64.03% 49.21% 51.81% 55.02%

10

2 66.01% 66.64% 60.57% 64.41%
1 60.34% 52.70% 67.14% 60.06%

20

2 69.49% 64.27% 70.44% 68.07%

Fast

1 53.05% 70.51% 66.18% 63.25%
5

2 72.42% 65.44% 72.81% 70.22%
1 70.52% 63.26% 76.43% 70.07%

10

2 84.38% 67.67% 62.26% 71.44%
1 81.31% 68.48% 75.65% 75.15%

20

2 83.90% 73.95% 71.49% 76.45%

Medium

1 58.83% 64.38% 71.30% 64.84%
5

2 84.78% 68.58% 78.53% 77.30%
1 87.15% 73.32% 71.48% 77.32%

10

2 86.89% 73.18% 81.86% 80.64%
1 88.06% 73.91% 78.41% 80.13%

20

2 89.05% 72.65% 82.54% 81.41%

Slow

a Best results for each No. of neurons are colored green.
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Table 4.8: Results for robustness tests for models trained with FRN signals.
2 Hidden Layers 1 Hidden Layer

Transitions Fast Medium Slow Fast Medium Slow
Fast 68.20% 72.89% 68.09% 66.23% 64.62% 45.38%

Medium 57.33% 80.48% 61.37% 40.52% 80.01% 44.52%
Slow 34.25% 64.49% 88.13% 24.38% 53.62% 72.13%

a Best prediction results for each type of transition are colored green.
b Grey boxes indicate results for signals of the same type.

Table 4.9: Time response for one prediction for the inverse models with 2 hidden layers.
No. of Neurons

Inverse Model 20 10 5

Basic 6.5 ms 6 ms 6.5ms
Dynamic 7.5 ms 7 ms 7.5 ms

a Best prediction results for each type of
transition are colored green.

15.77% for signals with medium transitions and 8.46% for signals with slow transitions,
when compared to the same basic inverse model.

Since the chosen model will be used in a real-time trajectory tracking control
strategy, it is important to analyze the time response of the models for one prediction.
Hence, in Table 4.9 the time span of one prediction for the basic inverse model and the
dynamic inverse model can be seen. The results show that for both inverse models,
the best time response is for the models with 10 neurons in each hidden layer. Since
dynamic inverse models proved to be the best models for signal prediction and given
that the average walking step frequency is around 2.5 Hz (section 3.2), a dynamic
inverse model with 2 hidden layers and 10 neurons in each hidden layer was chosen
to be implemented in the control strategy.

4.4 discussion

NARX Neural Networks have been used previously to model upper body muscles
for hand flexion (Popov et al. (2015)), to model quadriceps muscles (Chang et al. (1997),
Yassin et al. (2017)) and to model the TA muscle (Chen et al. (2004)). However, to the
best of the author’s knowledge, a dynamic inverse NARX Neural Network model that
uses 2 different inputs has not yet been used to model the TA muscle. Hence, the
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innovative aspect of this project is the dynamic inverse model, that uses the foot
angle and the foot’s angular velocity to model the TA muscle.

Neural Network

The chosen NN for this project was a NARX Neural Network, because is
establishes non-linear relationships between past observations and future outputs
(Previdi (2002), Lin et al. (1996)), thus being able to model the non-linear dynamic
behaviour of electrically stimulated muscles (Previdi and Carpanzano (2003)). Three
models were created for this project: a direct model, that uses a NARX Neural
Network with the pulsewidth applied to the TA muscle as input and the corresponding
foot angle as output; a basic inverse model, that uses a NARX Neural Network with
the pulsewidth applied to the TA muscle as output and the corresponding foot angle
as input; and a dynamic inverse model, that uses a NARX Neural Network with the
pulsewidth applied to the TA muscle as output and the corresponding foot angle and
angular velocity as inputs.

Model Data Acquisition

In order to adapt the models to the anatomic characteristics of each user, a
calibration method was proposed. It can be done with disabled subjects, since it
consists only of being sat down on a chair without having the foot touch the floor.
A TR is first applied, in order to find the minimum and saturation pulsewidth values
of the subject, that are then used to create the FRN and PRMS signals to apply to the
muscle, so that they capture the full ROM of the subject’s foot. FRN and PRMS
are dynamic signals, therefore being appropriate to model the dynamics of the
electrically stimulated muscle (Le et al. (2010)).

Results

The models were created with different parameters, using NARX Neural Networks
with 1 or 2 hidden layers and 5, 10 or 20 neurons, to determine which NARX Neural
Network configuration generated better predictions. Different types of FRN and
PRMS signals were used to train the models, having slow, medium and intermediate
transitions, to create a wider range of data.

The PRMS were discarded after being used to train the direct model, because they
produced models with low prediction accuracy. This was likely because of their
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abrupt behaviour, when compared to the gradual behaviour of FRN, that resembles
the continuous and also gradual natural muscular movement.

The dynamic inverse model is able to predict the pulsewidth values with more
accuracy, when compared to the basic inverse model, with an increase in accuracy
of 7.15%, 5.6% and 8.06%, for models trained with fast, medium and slow transitions,
respectively. The prediction time responses of the inverse models were also studied,
showing that both models had the lowest response time for NARX Neural Networks
with 10 neurons. Thus, since there is only 1 ms difference in response time, from the
basic inverse model to the dynamics model, and knowing that the dynamic inverse
model provided higher average accuracy predictions for all cases, the model chosen
for the control strategy was a dynamic model with 2 hidden layers and 2 neurons.



5

T R A J E C T O RY T R A C K I N G C O N T R O L S T R AT E G Y

In this chapter the implemented control strategy and steps taken to implement it are
discussed. The importance of gait event detection and muscular response time delay
removal for the control strategy are explained, followed by a brief description of how
it was implemented. Subsequently, the dynamic inverse model created in Chapter 4 is
validated for trajectory tracking and then paired with a Proportional Derivative (PD)
controller, so that the trajectory tracking control strategy can be validated. Lastly,
the trajectory tracking control strategy for Drop Foot (DF) correction is validated
with a healthy subject with a treadmill at different speeds. The Chapter ends with
a discussion of the obtained results.

5.1 introduction

This project aims at providing a personalized assistance for DF gait patients, that
helps delay the onset of fatigue and ensures a foot movement similar to the natural
one. The literature analysis in Chapter 2 demonstrated that combining a model with
a controller provides the best tracking performance, since the controller is able to
compensate for any modeling errors that inevitably occur in real-time and the model
avoids time delays inherent to the controller (Quintern et al. (1997)). Furthermore, it
led to the choice of a Trajectory Tracking control strategy over an Electromyography
(EMG)-based control strategy, due to the complexity of the acquisition and processing
of the bioelectric signal of the latter.

The trajectory tracking control strategy makes the foot follow a desired trajectory,
which in this case will be foot angle and foot angular velocity trajectories
correspondent to the swing phase, since this is the gait phase affected by DF. The
reference trajectories input to the control strategy will be created using the foot
trajectories of healthy subjects during real-time gait, so that the foot of DF subjects

83
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mimics healthy gait patterns. This will generate a biological-like movement for the
ankle of DF subjects.

5.2 methods

In this section the methods used to create the trajectory tracking control strategy
are presented. Firstly, the gait phase detection algorithm is explained, followed by
the steps taken to create the reference trajectory with the gait of healthy subjects.
Afterwards, the implemented control strategy is presented.

5.2.1 Gait Phase Detection

Gait it composed of two main phases: the stance phase, which is the phase when
the foot maintains contact with the ground, and the swing phase, which is the phase
during which the foot leaves the ground (Umberger (2010)). Since dorsiflexion is
the movement of raising the foot upwards, caused by the contraction of the Tibialis
Anterior (TA) muscle, and DF causes an inability to contract the TA muscle, DF only
affects the swing phase of gait. Starting from stance, the gait event that marks the
transition into the swing phase is the toe-off, when the foot leaves the ground. The
gait event that marks the end of the swing phase is the heel strike, when the foot
makes the first contact with the ground. The gait cycle can be seen in Figure 5.1.

Figure 5.1: Gait cycle diagram.
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Figure 5.2: Typical foot angular velocity during gait. Adapted from Sabatini et al. (2005).

Since DF only affects the swing phase of gait, it is necessary to identify when the
swing phase ends and when it begins, during real-time gait. For this purpose, the
toe-off and heel strike gait phases were identified during real-time gait, using the IMU
placed on the foot. The foot’s angular velocity was used to determined the toe-off
and heel strike events, using a simplified version of the gait event detection algorithm
designed in Figueiredo et al. (2018). A typical foot angular velocity during gait can be
seen in Figure 5.2.

Starting at the stance phase, when the angular velocity drops below a threshold
value, TRl, it signifies the toe-off event and, therefore, the start of the swing phase.
Then, after the foot velocity reaches a positive value, when the angular velocity drops
below another threshold value, TRh, it signifies the heel strike event has happened
and, therefore, the swing phase has ended. The diagram for the gait event detection
algorithm can be seen in Figure 5.3.

In order to test the algorithm, a healthy subject walked on a treadmill at three
different speeds: 1 km/h, 1,5 km/h and 2 km/h. The threshold values used were -2,1
rad/s and -3 rad/s, for TRh and TRl, respectively. The algorithm proved successful
for all speeds tested. In Figure 5.4 the algorithm was tested with the subject walking
at 1 km/h and can detect the toe-off and heel-strike events based on the thresholds,
TRh and TRl.

It is important to emphasize that the model has a delay that is specific for each
subject and based on the muscular response time. Therefore, in order to reach the
correct foot angle in the correspondent gait phase, it is important to anticipate this
delay. This was achieved by starting stimulation slightly earlier than the toe-off, how
earlier was determined by the response time of each subject. The subject’s response
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Figure 5.3: Gait event detection algorithm flowchart. Vel represents the foot angular velocity.

Figure 5.4: Real-time implementation of the gait event detection algorithm with a subject
walking on a treadmill at 1 km/h: a) Foot angular velocity and b) Gait phase
detection. The grey areas represent the swing phase and white areas represent the
stance phase.
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time is found by determining how long after the stimulation is sent, does the foot
begin to move. The response time determination for the healthy test subject can be
seen in Figure 5.5.

Figure 5.5: Test subject delay determination and removal: (a) determination of subjects
response time and (b) removal of subjects response time.

The removal of the delay caused by the muscular response time was achieved
through the gait event detection algorithm. The first step is used to determine the
duration of the stance phase, between heel strike and toe-off. Being Tst the duration
of the stance phase, Tto the beginning of toe-off and pThs the beginning of the previous
heel strike, the calculation of the duration of the stance phase can be seen in Equation
8.

Tst = Tto − pThs (8)

After this, the control is applied after the heel strike, as early before the toe-off as
the corresponding delay, knowing the full duration of the stance phase. Being Td the
time delay of the subject and Tstim the time after heel-strike when the stimulation must
start to be applied, the calculation of Tstim is explicit in Equation 9.

Tstim = Tst − Td (9)

The stimulation is afterwards terminated upon each heel strike. During the first
step the duration of the stance phase, Tst, is calculated and the stimulation is
only applied after the first step. The flowchart in Figure 5.12 can be used to better
understand the real-time delay removal strategy.
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Figure 5.6: Delay removal strategy flowchart.

In order to test the algorithm, a healthy subject walked on a treadmill at three
different speeds: 1 km/h, 1,5 km/h and 2 km/h. There was no stimulation applied to
the subject on these trials. The algorithm proved successful for all speeds. One of the
trials can be seen in Figure 5.7.

5.2.2 Reference Trajectory Acquisition

The use of FES for DF correction is mostly used with constant values, that are higher
than the necessary at moments, causing the early onset of fatigue. Furthermore, it
does not create a natural movement, since the biological movement has a gradually
increasing movement instead of a coarse one. This is why a reference trajectory
based on the movements of healthy subjects is important, to help create a movement
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Figure 5.7: Real-time implementation of the delay removal gait event detection with a subject
walking on a treadmill at 1.5 km/h: a) Foot angular velocity and b) Gait phase
detection and control strategy duration. The grey areas represent the swing phase,
the white areas represent the stance phase and the green areas represent when
stimulation is applied.

as close to the biological one as possible. The gait reference trajectory for the control
strategy was obtained from 10 healthy subjects walking on a treadmill at different
speeds. The subject’s characteristics are presented in Table 5.1.

Table 5.1: Characteristics of the subjects used for the reference trajectory

Male Female

Number of subjects 6 4

Age 24.83 ±2.22 24 ±1.83
Weight (kg) 68.16 ±6.76 57.25 ±3.2
Height (cm) 175.5 ±2.94 161.75 ±3.68

In order to acquire the gait trajectory, an IMU was placed on the foot of the subjects.
They were asked to walk on a treadmill, with no slope, at the speeds of 1 km/h,
1.5km/h and 2 km/h. The foot angle and foot angular velocity were acquired in
real-time, for 10 steps for each speed.

The trajectory of one full step of each trial was taken randomly for each subject,
considering each step begins and ends when the both the foot velocity and the foot
angle are at 0º and 0 rad/s, respectively. At each moment, the average value of
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each sample was determined to create the reference trajectory. The resulting acquired
trajectories for each speed can be seen in Figure 5.8.

Figure 5.8: Acquired gait trajectories and calculated average: (a) and (d) foot angle and
velocity for 1 km/h, respectively; (b) and (e) foot angle and velocity for 1,5 km/h,
respectively; (c) and (f) foot angle and velocity for 2 km/h, respectively. The thin
lines show each subject’s step and the thick line represents the reference trajectory.

Since DF only affects the swing phase of gait, the reference trajectory input to the
controller corresponds only to the swing phase of the reference trajectories. The final
reference trajectories can be seen in Figure 5.9.

Figure 5.9: Control gait reference trajectories for swing phase: (a) 1 km/h speed, (b) 1,5 km/h
and (c) 2 km/h.
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5.2.3 Control Strategy

For the control strategy a PD controller was chosen to pair with the dynamic
inverse NARX Neural Network model, created in section 4.2.1. The PD controller
was used due to the relative simplicity in implementation and tuning. A diagram for
the PD controller can be seen in Figure 5.10. The IMU placed on the foot provides
the foot angle, θ, used to calculate the error and the angular velocity of the foot, θ̇.

Figure 5.10: PD controller diagram.

For the PD controller, if the error value, e(t), is represented by Equation 10

e(t) = θR(t)− θ(t) (10)

where θR(t) is the desired trajectory angle and θ(t) is the real foot angle measured
by the IMU, then the PD control is represented by Equation 11

Uc(t) = e(t) ∗ Kp + θ̇(t) ∗ Kd (11)

where Uc(t) is the control variable output by the controller, e(t) is the error value of
Equation 10, θ̇(t) is the foot’s angular velocity, and Kp and Kd are the proportional and
derivative gains, respectively.

The dynamic inverse NARX Neural Network model is represented by Equation 12,
which is derived from Equation 2.

Um(t) = f (θR(t), ..., θR(t− n), θ̇R(t), ..., θ̇R(t− n), ˆPW(t− 1), ..., ˆPW(t−m)) (12)

where Um is the variable output by the model, θR is the desired foot angle trajectory,
θ̇R is the desired foot angular velocity trajectory and ˆPW is the pulsewidth value
predicted by the NARX Neural Network.
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The final control variable that is sent to the stimulator, Us, is a sum of the pulsewidth
value predicted by the model, Um, and the control variable from the PD controller, Uc.
This is given by Equation 13.

Us(t) = Um(t) + Uc(t) (13)

The control loop used for the trajectory tracking strategy, using the PD controller
paired with the dynamic inverse NARX Neural Network model, allows real-time foot
angle feedback, thus being able to overcome external disturbances. This control
strategy, which is given by Equation 13, can be seen in Figure 5.11.

Figure 5.11: Trajectory tracking control diagram of NARX Neural Network with PD controller.

The flowchart presented in Figure 5.12, can be used to better understand the
implemented control system.

In order to establish a comparison for the performance of the implemented
trajectory tracking control strategy, an open-loop control strategy using only
the dynamic inverse NARX Neural Network model was used. This strategy is
represented by Equation 12 and a diagram can be seen in Figure 5.13.

Figure 5.13: Trajectory tracking strategy with NARX Neural Network diagram.

The same trajectory was input to the open-loop control strategy and to the
trajectory tracking control strategy, to compare the performance of both strategies.
The validation are described in the following section.
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Figure 5.12: Trajectory tracking control strategy flowchart.
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5.2.4 Validation Protocols

Two configurations were used to test the trajectory tracking control strategy: a
static configuration, with the subject sitting on a chair, and a gait configuration, with
the subject walking on a treadmill. The static configuration was used to determine if
the control strategies were able to track the reference trajectories and to compare
the performance of the open-loop control strategy with the trajectory tracking
control strategy. The trajectory tracking control strategy was also tested in a static
configuration with a weight strapped to the foot, to see if the control strategy was able
to compensate external disturbances. The gait configuration was used to determine
if the trajectory tracking control strategy was able to correct DF during real-time
gait.

The open-loop control strategy and trajectory tracking control strategy were both
tested in a static configuration, while only the trajectory tracking control strategy was
tested in a gait configuration. The protocols for each validation will be described next.
However, for every validation protocol there are steps that need to be taken in order
to setup the system on the user, as follows:

1ST STEP - Shave the Common Peroneal nerve area and the Tibialis Anterior area.

2ND STEP - Place the active electrode on the motor point of the Tibialis Anterior muscle
and the indifferent electrode on the Common Peroneal nerve, as can be seen in
Figure 5.14 (a).

3RD STEP - Place the IMU on top of the foot, whether strapped to the shoe laces or
with a strap, as can be seen in Figure 5.14 (b).

4TH STEP - Find the minimum and maximum threshold values for each subject, by
applying a TR signal, as described in section 4.2.3.
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Figure 5.14: Validation setup steps: (a) Electrode placement (active electrode is red) and (b)
IMU placement.

Unrestrained Open-Loop Control Static Validation

since during the swing phase no external forces, besides gravity, are applied to
the foot, the static validation protocol tries to emulate the conditions during swing
phase. Therefore the subject was placed in a sitting position that kept the foot from
touching the ground and allowed the ankle to move without restriction. The setup
can be seen in Figure 5.15.

Figure 5.15: Static validation setup.

This validation was done using the open-loop control strategy, that uses the
dynamic inverse NARX Neural Network model. The strategy was validated with the
reference trajectory for three different speeds: 1 km/h, 1.5 km/h and 2 km/h. This is
done to see if the model is able to predict the pulsewidth correspondent to desired
reference trajectories accurately. The performance of the open-loop control strategy
is done by comparing the real foot angle trajectory with the desired trajectory,
measured using the Goodness of Fit (GOF) given in Equation 7.
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Unrestrained Trajectory Tracking Control Static Validation

The same protocol used to validate the open-loop control was used for the static
validation of the trajectory tracking control, that uses a PD controller paired with the
dynamic inverse NARX Neural Network model. This control strategy was validated
with the reference trajectory for 1 km/h, 1.5 km/h and 2 km/h. This was done to
see if the control strategy was able to follow the reference trajectories accurately.
The performance assessment of the trajectory tracking control strategy is also done by
comparing the real foot angle trajectory with the desired trajectory, and is measured
using the GOF given in Equation 7.

Weighted Trajectory Tracking Control Static Validation

In order to determine the robustness of the PD controller and its ability to
overcome external disturbances, it was validated for the same three speeds, 1 km/h,
1.5 km/h and 2 km/h, with a weight strapped to the foot.

The weight weighed 0.4 kg and it was strapped with velcro around the foot, so that
it was evenly distributed and so that it would not put too much strain on the foot.
The validation setup can be seen in Figure 5.16.

Figure 5.16: Weighted static validation setup.

Trajectory Tracking Control Gait Validation

The gait validation was done with a healthy subject on a treadmill walking at
3 speeds: 1 km/h, 1.5 km/h and 2 km/h. The trajectory tracking control strategy
was tested in real-time gait to see if it was able to track the correspondent swing
trajectory and correct DF gait. The validation setup can be seen in Figure 5.17.
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Figure 5.17: Setup of the real-time gait control validation on a treadmill.

During the validation trials, the healthy subject was instructed not to lift the foot
during the swing phase, leaving it loose, behaving like a DF patient. This was done
to see if the system was ready to be validated on DF subjects.

In order to have a term of comparison, a healthy subject was asked to walk on a
treadmill like a DF patient: trying his best not to lift the foot during the swing phase,
therefore dragging it on the floor. This creates a pseudo-DF gait that can be compared
with the subject’s gait when applying the trajectory tracking control strategy in
real-time. The resulting angle trajectory can be seen in Figure 5.18, which shows that
the main differences between healthy gait and DF gait is that upon heel strike the foot
angle is below 0° for DF gait and also that the foot drags on the floor when toe-off
should occur.

The results of all the validations described in this section will be presented in the
next section.

5.3 results

The system was validated with a healthy 23 year old female subject with 162 cm
and 60 kg. The threshold values found in the system calibration, explained in section
4.2.3, are 30 µs and 120 µs, for the minimum and threshold values, respectively. The
parameters for the PD controller were tuned manually and the values for each gain
were 1.5 and 0.7, for the kp and the kd, respectively.

Note that, in the presented results, the delay resultant of the subject’s muscular
response time, Td, has already been removed, so the performance of the validated
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Figure 5.18: Forced DF gait acquired from a healthy subject. (a) 1 km/h speed, (b) 1.5 km/h
speed and (c) 2 km/h speed. The grey areas represent the swing phase.

control strategies can be correctly determined. This delay was determined in section
5.2.2.

5.3.1 Unrestrained Open-Loop Control Static Validation

The dynamic inverse NARX Neural Network model was tested in an open-loop
control strategy to see if it was able to accurately predict the pulsewidth that must
be applied to the TA muscle, in order to follow the desired trajectory. The results for
this validation, done for the trajectories of 1 km/h, 1.5 km/h and 2 km/h, can be seen
in Figure 5.19.

The model was able to predict the trajectory for 1 km/h accurately, with 68.16%
accuracy, as shown in Figure 5.19 (a). This shows that the model is adapted to the
user’s characteristics, since without any feedback, it is able to place the foot close to
the desired positions. For the 1.5 km/h trajectory, however, the model was not able to
predict the necessary pulsewidth accurately, with an accuracy of only 23.86%, seen
in Figure 5.19 (b). This low accuracy is mostly because the trajectory for 1.5 km/h
increases the desired foot angle faster than the 1 km/h trajectory, but the model
predicts a pulsewidth pattern very similar to the 1 km/h trajectory, as can be seen
in Figure 5.19 (d) and (e). This results in the foot not being able to accompany the
desired trajectory. When it comes to the 2 km/h trajectory, the model is able to
increase the predicted pulsewidth values, when compared to the 1 km/h and 1.5
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Figure 5.19: Performance of open-loop control. Reference foot angle trajectory and real foot
angle for (a) 1 km/h, (b) 1.5 km/h and (c) 2 km/h. Applied pulsewidth for (d) 1

km/h, (e) 1.5 km/h and (f) 2 km/h.

km/h trajectories, as seen in Figure 5.19 (d), (e) and (f). The model’s prediction
tries to match the abrupt increase in the desired foot angle trajectory, however this
increase is not sufficient and the control strategy accuracy is only 22.19%, as can be
seen in Figure 5.19 (c).

5.3.2 Unrestrained Trajectory Tracking Control Validation

After the open-loop control validation, the dynamic inverse NARX Neural Network
model was paired with the PD controller in order to validate the trajectory tracking
control strategy. The control strategy was tested for the 1 km/h, 1.5 km/h and 2 km/h
speeds and the results can be seen in Figure 5.20.

This control is able to track the trajectories for the 1 km/h and 1.5 km/h speeds,
with accuracies of 77.87% and 63.32%, respectively. When it comes to the 2 km/h
speed, the control strategy has a low accuracy of only 23.72%. This happens because
the initial foot angle is higher than the initial reference angle, which does not
happen for the 1 km/h and 1.5 km/h trajectories, as can be seen in Figure 5.20 (d), (e)
and (f). Therefore during the first 100 ms only the minimum pulsewidth was applied.
When the reference trajectory then increases abruptly, so does the applied pulsewidth.
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Figure 5.20: Performance of trajectory tracking control. Reference foot angle trajectory and real
foot angle for (a) 1 km/h, (b) 1.5 km/h and (c) 2 km/h. Applied pulsewidth for
(d) 1 km/h, (e) 1.5 km/h and (f) 2 km/h.

However, this increase is not applied soon enough and thus the foot angle does not
reach the desired reference angle in time, as can be seen in Figure 5.20 (c).

A comparison of the open-loop control strategy and the trajectory tracking control
strategy can be seen in Figure 5.21. The PD controller is able to improve the
performance of the dynamic inverse model in open-loop configuration, by correcting
the model’s predictions based on the real-time foot angle and foot angular velocity.
For the 1 km/h speed the tracking performance is increased by 9.71%; for the 1.5 speed
trajectory the tracking performance is increased by 39.46%; and for the 2 km/h speed
the performance is increased only by 1.53%.

The tracking performance for the 2 km/h speed remains similar with and without
the addition of the PD controller, since the abrupt increase in the applied pulsewidth
occurs at the same time, as can be seen in Figure 5.21 (f).
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Figure 5.21: Performance comparison between open-loop and trajectory tracking control.
Reference foot angle trajectory and real foot angle for (a) 1 km/h, (b) 1.5 km/h
and (c) 2 km/h. Applied pulsewidth for (d) 1 km/h, (e) 1.5 km/h and (f) 2 km/h.
O-L stands for open-loop control, TTC stands for trajectory tracking control, PW
stands for pulsewidth and FA stands for foot angle.

5.3.3 Weighted Trajectory Tracking Control Static Validation

In order to test the robustness of the trajectory tracking control strategy and its
ability to compensate for external disturbances, an external disturbance (0.4 kg
weight) was strapped to the subject’s foot. The validation was done for 1 km/h,
1.5 km/h and 2 km/h speeds, and the results can be seen in Figure 5.22. For the 1

km/h speed, although in the beginning the foot was not able to follow the trajectory
correctly, the controller was able to increase the applied pulsewidth so that the foot
was able to match the reference trajectory, as can be seen in Figure 5.22 (a).

The tracking accuracy for the 1.5 km/h speed was very satisfactory, at 59.87%.
The foot angle was able to follow the reference trajectory very closely, as can be
seen in Figure 5.22 (b). Since the 2 km/h trajectory is the one that increases more
abruptly, in order to compensate for this disturbance the applied pulsewidth reached
the saturation threshold value of 120 µs as can be seen in Figure 5.22 (f). However, this
was not enough to make the foot track the reference trajectory accurately, indicating
that the weight restrains fast movements.

The comparison between the performance of the unrestrained and weighted
trajectory tracking control was compared in Figure 5.23. For the 1 km/h speed, the
performance of the unrestrained control is better, with an increase of 40.5%. This
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Figure 5.22: Weighted trajectory tracking control with dynamic inverse model paired with PD
controller.

was due to the slow start caused by the weight. However, at 1 s, the foot was able to
follow the rest of the trajectory accurately, as can be seen in Figure 5.23 (a).

For the 1.5 km/h speed the performance accuracy is very similar, only increasing
by 3.45% when the weight is not used. This shows the trajectory tracking control
is able to compensate external disturbances, as expected. The difference between
the control performance for the 2 km/h speed trajectory is 35.43%, improving when
the weight is not used. However, for the weighted control the subject’s saturation
pulsewidth value was reached.

5.3.4 Trajectory Tracking Control Gait Validation

After assessing the performance of the trajectory tracking control in static
configurations, the control strategy was tested in a real-time gait configuration. The
trials were done on a treadmill and, as stated previously, the subject was instructed
to let his foot as loose as possible during the swing phase, to mimic the behaviour
of DF patient’s feet. For the first trial, the treadmill was set to 1 km/h and the subject
was asked to walk 10 steps. The results of this validation can be seen in Figure 5.24.
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Figure 5.23: Performance comparison between unrestrained and weighted trajectory tracking
control. Reference foot angle trajectory and real foot angle for (a) 1 km/h, (b) 1.5
km/h and (c) 2 km/h. Applied pulsewidth for (d) 1 km/h, (e) 1.5 km/h and (f) 2

km/h. WC stands for weighted control, TTC stands for trajectory tracking control,
PW stands for pulsewidth and FA stands for foot angle.

Figure 5.24: Real-time trajectory tracking control strategy validation at 1 km/h: (a) Foot angle
and reference trajectory, (b) Gait event detection and control activation and (c)
Applied pulsewidth. The grey areas represent the stages when the stimulation is
applied (control strategy is on).
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By analyzing Figure 5.24 (a), it can be seen that at the beginning of the swing phase,
the real foot angle is 20º lower than the reference trajectory. In order to compensate
this disturbance, the controller is able to increase the applied pulsewidth, as can
be seen in 5.24 (c). As the foot angle approaches the desired trajectory the applied
pulsewidth decreases, as expected, in order to prevent the early onset of fatigue.

The pseudo-DF gait and the gait corrected with FES were compared, in order to
see if the control strategy was able to improve the gait pattern of DF patients. The red
rectangle in Figure 5.25 shows that, while in the DF gait the foot is not able to rise
above 0º at heel strike, when the trajectory tracking control strategy is applied, the
foot is able to track the desired trajectory, thus raising above 0º and generating a
foot movement similar to the healthy one.

Figure 5.25: Comparison between DF gait and gait corrected with FES at 1 km/h.

The control was then tested on the treadmill at a speed of 1.5 km/h. The subject
was, once again, instructed to let the foot relaxed and loose during the swing phase.
The results of this validation can be seen in Figure 5.26.

Once again, the initial swing foot angle is lower than the initial reference angle,
therefore the controller increases the applied pulsewidth until the difference decreases.
The pulsewidth is not constant throughout the swing phase, it changes according to
the discrepancy between the desired trajectory and the real foot angle, as can be
seen in Figure 5.26 (c). The foot angle is able to reach the desired reference angles
before the heel strike, thus generating a more natural movement.

By comparing the pseudo-DF gait with the gait corrected by the control strategy, it
can be seen that the angle at heel strike increases with the DF correction strategy.
This will prevent subjects from dragging their feet on the ground during gait, thus
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Figure 5.26: Real-time trajectory tracking control strategy validation at 1.5 km/h: (a) Foot angle
and reference trajectory, (b) Gait event detection and control activation and (c)
Applied pulsewidth. The grey areas represent the stages when the stimulation is
applied (control strategy is on).

decreasing the likelihood of tripping and falling when walking. The comparison can
be seen in the red rectangle of Figure 5.27.

Finally, the control strategy was tested with the subject walking on a treadmill at
2 km/h, with the corresponding reference trajectory being input to the controller. The
results of this validation were similar to the ones for the slower speeds and can be
seen in Figure 5.28. However, the applied pulsewidth stays longer at the maximum
threshold tolerated by the subject due to the increase in the reference angle being
more abrupt, when compared to the 1 km/h and 1.5 km/h trajectories. Regardless,
upon heel strike the foot angle is higher than 0°, as desired.

The comparison with the pseudo-DF gait, shows that not only is the foot angle
higher upon heel strike with the implemented correction strategy, but it also helps
reduce the step length, as can be seen in Figure 5.29. This happens because the foot
is no longer dragging on the floor, making it easier for the subject to walk.
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Figure 5.27: Comparison between DF gait and gait corrected with FES at 1.5 km/h.

Figure 5.28: Real-time trajectory tracking control strategy validation at 2 km/h: (a) Foot angle
and reference trajectory, (b) Gait event detection and control activation and (c)
Applied pulsewidth. The grey areas represent the stages when the stimulation is
applied (control strategy is on).
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Figure 5.29: Comparison between DF gait and gait corrected with FES at 2 km/h.

5.4 discussion

In this section, a trajectory tracking control strategy for DF correction was
proposed. An identical control strategy with a basic inverse model was used to control
the knee angle (Chen et al. (2004)). However, to the best of the authors’ knowledge,
this is the first time a reference trajectory created from the gait of healthy subjects
was used in a trajectory tracking control strategy, composed by a dynamic inverse
NARX Neural Network model of the TA muscle and a PD controller, in order to
correct DF.

Gait Phase Detection

A gait phase detection strategy was implemented, in order to determine the gait
events that mark the beginning and end of the swing phase: the toe-off and heel
strike, respectively. The algorithm proved successful for the speeds of 1 km/h, 1.5
km/h and 2 km/h. Furthermore, since there is a time delay since the stimulus is
applied until the movement begins, a delay removal method was also created. This
method was based on the duration of the subject’s stance phase, that was determined
in the beginning of each trial. During the real-time gait validation this algorithm
was able to start stimulation earlier than toe-off, thus removing the time delay
successfully.
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Results

Two configurations were used to test the trajectory tracking control strategy: a
static configuration, with the subject sitting on a chair, and a gait configuration, with
the subject walking on a treadmill. The static configuration was used to determine if
the control strategies were able to track the reference trajectories and to compare the
performance of the open-loop control strategy with the trajectory tracking control
strategy. The gait configuration was used to determine if the trajectory tracking
control strategy was able to correct DF during real-time gait.

For the open-loop validation, the dynamic inverse model predicted the correct
pulsewidth values for the 1 km/h trajectory accurately, resulting in the foot following
the desired trajectory with an accuracy of 68.16%. This showed the model was tailored
to the user’s characteristics. However, for the 1.5 km/h and 2 km/h trajectories it was
not able to predict the necessary pulsewidth, likely because the trajectories had more
abrupt increases when compared to the 1 km/h trajectory. One way to solve this
problem would be to stimulate the TA muscle with signals with more variations,
by using FRN filtered at higher frequencies, and then using the acquired data to
train the model. However, when increasing the frequency it is necessary to take into
account the comfort of the subject and its physiological limitations, since signals
with fast variations may cause discomfort and involuntary reflexes (Le et al. (2010)).

By pairing the PD controller with the dynamic inverse model, the tracking
accuracy increased by 9.71%, 39.46% and 1.53% for the 1 km/h, 1.5 km/h and 2

km/h trajectories, respectively. For the 2 km/h trajectory the increase in accuracy was
minimal because the initial foot angle angle was higher than the initial reference
trajectory, thus creating a delayed pulsewidth increase that translates in a delay in
reaching the desired trajectory. This was solved in the real-time gait validation.

The trajectory tracking control strategy was also validated with a 0.4 kg weight
strapped to the foot, to test its robustness and ability to compensate for external
disturbances. For the 1.5 km/h trajectory, the control strategy was able to match the
performance of the unrestrained validation, decreasing only by 3.45%, thus being
able to compensate the external disturbances.

Lastly, the real-time gait validation was done, to test if the trajectory tracking
control strategy was able to correct DF gait in real-time. It was tested with a healthy
subject on a treadmill at three speeds: 1 km/h, 1.5 km/h and 2 km/h. During the
swing phase, the control strategy was able to increase and decrease the applied
pulsewidth according to the reference trajectory, instead of providing a constant
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stimulation pulse throughout the swing phase, in order to help delay the onset of
fatigue. For every speed, a pseudo-DF gait pattern was compared to the foot angle
generated by the trajectory tracking control strategy in real-time. This showed that,
contrary to the DF gait, the foot was able to rise above 0°, generating a foot movement
similar to the healthy one. This prevents the subjects from dragging the foot on the
ground, thus decreasing the likelihood of falling and tripping when walking. The
implemented control strategy was also able to reduce step length.

The validation results show the system can be used for real-time DF correction,
since the muscular behaviour of healthy and paretic muscles is very similar (Chang
et al. (1997)).





6

C O N C L U S I O N S

In this thesis a novel Drop Foot (DF) correction control strategy was developed,
with the purpose of increasing the quality of life of subjects with gait impairments.

In Chapter 2 the study of Functional Electrical Stimulation (FES) methods to help
subjects with motor disabilities, used in the commercial and research areas, helped
to identify what approach had yet been taken for DF correction. An empirical
model was chosen over a mechanistic one to model the electrically stimulated Tibialis
Anterior (TA) muscle, due to the less complex calibration methods while maintaining
the same accuracy. Furthermore, the favorable results found in the literature and
the recent rise in the use of artificial intelligence methods for more user centered FES
rehabilitation techniques, made the Non-Linear Autoregressive Neural Network with
Exogenous input (NARX Neural Network) the chosen model in this project.

In Chapter 3 the requirements for the components and the system time scales were
laid out, and the chosen components were able to respect these requirements. The
result is a light and small system, that is easily wearable and inserted into daily
activities. The use of the Inertial Measurement Unit (IMU) for the acquisition of
foot kinematics limits the number of sensors placed on the subject, increasing its
simplicity, which increases user comfort and facilitates the setup of the system. The
tests, visualized with the oscilloscope, confirmed that the system is able to perform
the control strategy with a frequency of 125 Hz, respecting the time constraint the
human step frequency of 25 Hz.

In Chapter 4 Non-Linear Autoregressive Neural Network with Exogenous input
(NARX Neural Network) models with different parameters were created, in order to
determine which type of model is more suitable to be used in the real-time control
strategy. The results indicated that the models should be trained with dynamic
signals that mimic the gradual behaviour of the biological movements for more
robust and accurate solutions.
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The innovative feature of this strategy is the dynamic inverse model that uses
the foot angle as well and the angular velocity to model the electrically stimulated
TA muscle, for DF correction. This results in a more robust model, when compared
to the basic inverse model, that can be used in the real-time tracking of reference
trajectories. Furthermore, the implemented calibration method necessary to create
the personalized model for each subject is simple enough to be carried out with DF
patients, neither being very time consuming nor putting too much physical strain
on the subjects. The chosen model to implement in the trajectory tracking control
strategy was a dynamic inverse model with 2 hidden layers and 10 neurons in each
layer.

The main constraint of this system is the response time of the muscle to the delivered
stimulation. In order to overcome this obstacle a time delay removal strategy was
implemented. The measurement of the duration of the stance phase allows an early
beginning of the stimulation, so that the foot can start moving upon toe-off, thus
following the reference trajectory when expected. Furthermore, in order to generate
a movement as close to the healthy one as possible, the reference trajectories used in
the trajectory tracking control strategy were acquired from healthy subjects walking
at different speeds, as shown in Chapter 5.

Additionally, the combination of the dynamic inverse model with the Proportional
Derivative (PD) controller increased the accuracy of the reference trajectory tracking,
when compared to the dynamic inverse model in open-loop, and allowed the tracking
of the reference trajectory during real-time gait. For any of the speeds with which
the control strategy was validated on a treadmill, 1 km/h, 1.5 km/h and 2 km/h,
the control strategy was able to correct DF, by having the foot at a positive angle
every time heel strike occurred. This prevents the subjects from dragging the foot on
the ground, thus decreasing the likelihood of falling and tripping when walking.
Overall, the trajectory tracking control strategy was able to correct DF at different
speeds in real-time gait, as can be seen in Chapter 5.

This project was able to answer all the research questions proposed in Chapter 1,
throughout this dissertation.

How to provide a personalized experience for each user?

To provide a personalized experience for the user the designed system uses a
model, in particular a NARX Neural Network. This model is able to capture
the dynamics of the electrically stimulated TA muscle of each user, by acquiring
user-specific data using a calibration routine.

How to provide a comfortable long-lasting experience for each user?
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In order to provide a comfortable experience for the user, the system used light and
small components, so it would not constraint any user movements. Furthermore, a
long-lasting experience is only possible if the muscular fatigue is delayed. Therefore,
in this project a trajectory tracking control strategy, composed by a PD controller
paired with a dynamic inverse NARX Neural Network model, was used. Thus, only
the necessary stimulation pulse is applied at any given moment, depending on the
desired reference trajectory.

How to ensure a natural gait pattern?

To ensure a natural gait pattern the reference trajectory was obtained from healthy
subjects walking at different speeds. This way, the DF gait is corrected not with a
constant stimulation pulse, but with a gradual movement that matches the natural
one.

6.1 future work

The first step to be taken next is the validation of the system with DF patients.
Furthermore, in order to allow a complete freedom of movements, an wireless IMU
should be implemented. This would improve the wearability of the system, as well
as simplify the user’s setup. In the future, more stimulators could be integrated in
the system, in order to treat motor disabilities that use more than one muscle and are,
therefore, more complex.

Another aspect to be taken into account for future improvements to the system
is the speed selection. As it is, there is a manual change in the reference trajectory
depending on the chosen treadmill speed. However, it will be important to calculate
the velocity in real-time and adapt the reference trajectory, seeing as the system is
meant to be worn for daily activities. In order to do that, more gait trajectories with
healthy subjects will have to be acquired and a relation between then will have to be
found. This task can possibly be done with machine learning. Additionally, the stance
phase duration should be updated at every step, so the system’s response time delay
removal is even more effective.

The system was only tested with a healthy subject, therefore, in the first step the
subject would walk correctly, so the system could determine the duration of the stance
phase. When the system is validated with DF patients, during the swing phase of
the first step a constant pulse with the subject’s saturation threshold value should
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be applied, so the system can determine the correct stance phase duration and the
control strategy can be applied correctly during the rest of the gait (Seel et al. (2016b)).

Another important feature to be added to the system would be the control of
plantarflexion, the movement of lowering the foot and toes, which is the antagonist
movement of dorsiflexion. Usually, DF patients are also affected by slap foot, which
is an inability to perform the plantarflexion movement in a controlled manner (Tu
et al. (2017)). This world create a more robust DF correction system, by being able to
control the antagonist pair of muscles in real-time gait.
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