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Abstract. The renewed interest in phages as antibacterial agents has led to the
exponentially growing number of sequenced phage genomes. Therefore, the
development of novel bioinformatics methods to automate and facilitate phage
genome annotation is of utmost importance. The most difficult step of phage
genome annotation is the identification of promoters. As the existing methods
for predicting promoters are not well suited for phages, we used machine
learning models for locating promoters in phage genomes. Several models were
created, using different algorithms and datasets, which consisted of known
phage promoter and non-promoter sequences. All models showed good per-
formance, but the ANN model provided better results for the smaller dataset
(92% of accuracy, 89% of precision and 87% of recall) and the SVM model
returned better results for the larger dataset (93% of accuracy, 91% of precision
and 80% of recall). Both models were applied to the genome of Pseudomonas
phage phiPsa17 and were able to identify both types of promoters, host and
phage, found in phage genomes.
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1 Introduction

Bacteriophages, or phages, are viruses that exclusively kill bacteria [1]. In the last
decades, phages have been extensively studied and their genomic information has
increased exponentially, mainly due to their therapeutic potential against bacterial
infections, at a time when the rise of antibiotic resistance in pathogenic bacteria rep-
resents a serious health problem [2]. Thus, such abundance of data demands the
development of bioinformatics methods to facilitate genome annotation. The main
obstacle in genome annotation is the identification of promoters, which are specific
DNA regions responsible for transcription initiation. Identification of promoters is
difficult, because these are composed of short, non-conserved elements. However, it is
crucial for understanding and characterising phage genetic regulatory networks, which
may allow to design better phages with applications in biotechnology and medicine [3].

Promoters are poorly described for phage genomes. Indeed, only the phiSITE
database provides a list of identified promoters for 29 phage genomes [4]. Some phages

© Springer Nature Switzerland AG 2020
F. Fdez-Riverola et al. (Eds.): PACBB 2019, AISC 1005, pp. 105–112, 2020.
https://doi.org/10.1007/978-3-030-23873-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23873-5_13&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23873-5_13&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23873-5_13&amp;domain=pdf
https://doi.org/10.1007/978-3-030-23873-5_13


are able of encoding their own RNA polymerase (RNAP). Hence, besides host pro-
moters, which are recognized by the host’s RNAP, the genome of these phages con-
tains promoters that are recognized by their intrinsic RNAP [5].

A few general-purpose promoter prediction tools for bacterial genomes have been
developed, using diverse computational algorithms. The most recent tools are based on
machine learning models, such as CNNpromoter_b, using deep learning networks [6],
BPROM, using linear discriminant analysis (LDA) [7], and bTSS finder, using artificial
neural networks (ANN) [8]. However, these tools still return numerous false positives
[9]. Such tools were developed using bacterial promoters and only search for the
typical bacterial motifs of the −35 and −10 elements (TTGACA and TATAAT,
respectively), thus not being suitable for phages genomes. Therefore, these are not able
to find promoters recognized by phage own RNAP nor host promoters with different
motifs. Other tools, such as the widely-used PromoterHunter available on the phiSITE
website, have additional disadvantages like requiring the weight matrices of the two
promoter elements as input and limiting the size of the input genome sequence [4]. For
phages, only PHIRE software was developed for predicting regulatory elements [10].
However, it only searches for conserved sequences with 20 base pairs or more and
requires installation.

Therefore, in this work, machine learning models were trained using phage
sequences for identifying both types of promoters found in phage genomes and dif-
ferent motifs of each promoter type.

2 Methods

2.1 Data

The positive data used to train the models was retrieved from the phiSITE database and
available publications, consisting of 800 promoter sequences from 53 phage genomes.
Since there are no sequences identified as non-promoters, sequence fragments of 65
base pairs were randomly selected from the 53 genomes to form the negative sets,
provided that the selected fragment did not include a known promoter. There is no
consensus length for promoters, so the fragment size was chosen according to the size
of the biggest collected promoter.

As the number of promoters in the whole genome is several orders of magnitude
lower than the non-promoters, having more negative than positive cases in the dataset
should be more adequate for finding promoters in phage genomes. Therefore, two
datasets were created, both comprising the 800 positive cases, though with different
negative sets: Dataset1 including 1600 negative sequences and Dataset2 including
2400 negatives.

2.2 Features

Twelve different motifs were previously found in the collected phage promoters, using
motif finder tools like MEME [11]. Eight of these motifs represent the elements of host
promoters and four are recognized by the intrinsic RNAP (Table 1). Data features
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included the sizes and scores of these motifs, which were calculated using Position
Specific Scoring Matrices (PSSM) with pseudocounts of 1, as well as information
about phage lifecycle, family and host. The free energy value and the frequency of
adenines and thymines were also calculated for each sequence, as these express the
stability of the DNA molecule, which is expected to be lower in the promoter region.
The free energy value was calculated by summing the unified nearest-neighbor
(NN) energy values of each dinucleotide that were defined by SantaLucia et al. [12].
The datasets were standardized and the recursive feature elimination (RFE) method was
used to select the most relevant features of the datasets. RFE was applied using
Random Forests as estimator and removing one feature at each iteration. After applying
this method, some features representing the host and motif sizes were eliminated from
the datasets. The final datasets are available at: https://github.com/martaS95/
PhagePromoter/Data.

2.3 Models

Machine learning models were built to classify sequence fragments as promoters or
non-promoters, using four different models: artificial neural networks (ANN), support
vector machines (SVM), random forests (RF) and k-nearest neighbors (KNN). For each
algorithm, two models were trained with each dataset (Dataset1 or Dataset2), creating
eight models. These models were optimized using the Grid Search method. Table 2
describes the tested values of model hyperparameters, which were selected empirically,
and the best values obtained for the hyperparameters.

The models were further evaluated using cross-validation with 5-folds and the
selected metrics were accuracy, precision and recall. Confusion matrices and Matthews
correlation coefficients (MCCs) were also calculated for all models. These steps were
performed using the Python library Scikit-learn [13].

Table 1. Description of the motifs identified in the collected data. In the consensus sequence,
Y = C or T; M = A or C; R = A or G; W = A or T; N = A, C, G or T.

Type Element Size
(bp)

Phages Consensus sequence

Host −10 6 Almost all (51) TATAAT
Host −35 6 Almost all (50) TTGACA

Host −10 8 T4 e CBB TATAAATA
Host −35 7 T4 GTTTACA
Host −35 7 CBB TGAAACG

Host −35 9 T4 AWTGCTTTA
Host −35 14 Lambda-like TTGCN6TTGC

Host −35 14 Mu-like CCATAACCCCGGAC
Phage None 23 T7-like TAATAAGACTCACTAAAGGGAGA
Phage None 21 phi-C31 CCGGGTTGCCGACTCCCTTMC

Phage None 27 phiKMV-like CGACCCTGCCCTACTCCGGGCTYAAAT
Phage None 32 KP34-like AGCCTATAGCRTCCTACGGGGYGCTATGTGAA
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3 Results and Discussion

The results of model evaluation are presented in Table 3. Globally, all models showed
good results, as these presented high accuracy and precision and acceptable recall. The
models trained with Dataset1 present higher recall while the models trained with
Dataset2 have higher accuracy. The SVM and KNN models also show higher precision
with Dataset2. For Dataset1, the model with best performance was the ANN model
with 92% of accuracy, 89% of precision and 87% of recall. Although the RF model
presented the highest precision (91%), it also had the lowest recall (83%). For Dataset2,
both SVM and RF models presented the highest precision (91%) and the ANN model
the highest recall (83%). The KNN model performed slightly worse for both datasets.

Since the differences between these metrics are not significant, confusion matrices
were also generated to evaluate the performances of the models and MCCs were
calculated from them. These results are represented in Tables 4, 5, 6 and 7.

As expected, the ANN model has the lowest number of false negatives (FN) and the
highest number of false positives (FP) for both datasets. For Dataset1, the RF model
has the lowest number of FP but the highest number of FN. For Dataset2, both RF and
SVM models have the lowest number of FP, but the SVM has less FN than the RF
model. Correlating these values using MCC, it is possible to see that for Dataset1, both
SVM and ANN have the highest MCC value and SVM model has also the highest
MCC value for Dataset2. Nevertheless, the small differences between the calculated
MCCs indicate that all models present similar performances.

Table 2. Hyperparameter values tested for each model, using Grid Search. The best values are
highlighted by color: in red are the best values obtained using Dataset1 and in blue are the ones
obtained using Dataset2. The values in green were the same for the two datasets.

Model Parameter Values tested for Grid Search 

ANN

solver for weight optimization 
activation function 
alpha 
hidden layer size 

lbfgs, sgd, adam
identity, logistic, tanh, relu
0.0001, 0.001, 0.01
(15,),(25,),(50,),(75,),(100,)

SVM
C (regularization) 
gamma 
kernel

1,2.26,10,15,20 
auto,0.001,0.01, 0.05, 0.1 
linear, rbf, poly, sigmoid

RF

number of trees in the forest 
number of features 
minimum number of samples to split an internal node 
minimum number of samples to be at a leaf node 
maximum depth of the tree 
bootstrap 
criterion 

20, 40, 60, 80,100
auto,2,3,6,10 
2, 3, 6, 10 
2, 3, 6, 10 
2, 3, None
True, False
gini, entropy

KNN ,7,5,3srobhgienforebmuN 9

108 M. Sampaio et al.



Table 3. Mean values of accuracy, precision and recall for each model after a 5-fold CV

Dataset1 Dataset2
Models Accuracy Precision Recall Accuracy Precision Recall

ANN 0.92 0.89 0.87 0.93 0.87 0.83
SVM 0.92 0.89 0.86 0.93 0.91 0.80
RF 0.92 0.91 0.83 0.93 0.91 0.79
KNN 0.91 0.89 0.84 0.92 0.90 0.78

Table 4. Confusion matrices of the ANN models for both datasets

Dataset1 (1600 negatives) Dataset2 (2400 negatives) 
 Predicted 

Real  Positive Negative Total Predicted 
Real  Positive Negative Total 

Positive 694 106 800  Positive 661 139 800 
Negative 87 1513 1600 Negative 94 2306 2400 

 Total 781 1619 2400   Total 755 2445 3200 
MCC 0.82   MCC 0.81  

Table 5. Confusion matrices of the SVM models for both datasets

Dataset1 (1600 negatives) Dataset2 (2400 negatives) 
 Predicted 

Real  Positive Negative Total Predicted 
Real  Positive Negative Total 

Positive 685 115 800  Positive 641 159 800 
Negative 75 1525 1600  Negative 68 2332 2400 

 Total 760 1640 2400   Total 709 2491 3200 
MCC 0.82   MCC 0.80  

Table 6. Confusion matrices of the RF models for both datasets

Dataset1 (1600 negatives) Dataset2 (2400 negatives) 
 Predicted 

Real  Positive Negative Total Predicted 
Real  Positive Negative Total 

Positive 666 134 800  Positive 628 172 800 
Negative 69 1531 1600  Negative 68 2332 2400 

 Total 735 1665 2400   Total 696 2504 3200 
MCC 0.81   MCC 0.79  
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Data from confusion matrices confirms that the number of FN is higher than the
number of FP in all models, which might be explained by the fact that the negative
sequences selected to train the model were putative and not proven to be negative.
Thus, the negative cases set may encompass promoter sequences that have not yet been
identified which can prompt the models to predict a promoter as negative. Another
possible explanation for these results is that some known promoters have motif
sequences very distinct from the consensus, thus their scores regarding these features
will be low, inducing the model to classify them as negatives.

Although all models presented similar performance, only two were selected to be
applied to the case study: the ANN model trained with Dataset1 and the SVM model
trained with Dataset2.

3.1 Case Study: Pseudomonas Phage PhiPsa17

The two models were applied to the genome of Pseudomonas phage phiPsa17, to test
their predictive capacity. This lytic phage belongs to the Podoviridae family and was
extracted from Pseudomonas syringae. It encodes its own RNAP which means its early
genes are transcribed by the host RNAP whereas middle and late gene are transcribed
by phage intrinsic RNAP [14]. Thus, two types of promoters are expected to be found
in its genome: host promoters, with the −10 and/or −35 elements, and phage promoters
with sequence similar to those of T7-like virus. There are no promoters of this phage in
phiSITE. Analysing the study of Frampton et al. [14], 1 host promoter was identified in
the early region of the genome using BPROM tool [7] and 11 phage promoters were
identified using MEME [11], considering only the 100 base pairs upstream of the
predicted genes. As all predicted genes are in the direct strand, the models were only
applied to the direct strand of this genome and searched the whole genome sequence
for promoters. The results predicted by both models are summarized in the Venn
diagrams of Fig. 1.

The SVM model predicted 16 promoters, 3 host and 13 phage promoters, while the
ANN predicted 25 promoters, 8 host and 17 phage promoters. 14 promoters were
identified by both models (2 host and 12 phage promoters) and 12 correspond to the
promoters previously predicted by Frampton et al. [14]. The other promoters predicted
by the models have lower scores and less common motifs for the −35 and −10 ele-
ments. The promoters predicted by both models are close to the predicted genes, except
for the 2 host promoters. As expected, the ANN model predicted more promoters than

Table 7. Confusion matrices of the KNN models for both datasets

Dataset1 (1600 negatives) Dataset2 (2400 negatives) 
 Predicted 

Real  Positive Negative Total Predicted 
Real  Positive Negative Total 

Positive 672 128 800  Positive 627 173 800 
Negative 81 1519 1600  Negative 69 2331 2400 

 Total 753 1647 2400   Total 696 2504 3200 
MCC 0.80   MCC 0.79  
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the SVM model. Thus, although a careful analysis of the results is required, these
models presented good performance as both were able to identify all promoters pre-
dicted by Frampton et al. [14].

Comparing these results with the results of other tools, CNNpromoter_e predicted
31 host promoters for this genome, which is a higher number than expected for this
genome since this phage only uses the host RNAP for transcribing early genes. None of
these promoters were identified by the models. PromoterHunter tool only predicted
three promoters which correspond to one host promoter predicted by both models and
two predicted by the ANN model. Regarding phage promoters, PHIRE program
identified 10 of the 11 phage promoters previously identified by MEME. Therefore, the
developed models are better than these tools because they can recognize both promoter
types, host and phage, and with different motifs of each, so there is no need to use
different tools for identifying different promoters.

4 Conclusions

In this work, we propose methods to identify promoters in phage genomes, during
genome annotation. Several machine learning models were trained with phage data,
using two different datasets. All models showed good performance, but the ANN
model provided better results for the smaller dataset whereas the SVM model returned
better results for the larger dataset. The ANN model is expected to predict more
promoters than the SVM model, so it can result in more false positives when applied to
new data. On the other hand, the SVM predicts less promoters, so it may result in more
false negatives.

The number of false negatives is higher than the number of false positives for all
models, which might be explained by the high variety of phage promoter motifs and by
the fact that the set of negative examples may encompass unidentified promoter
sequences. In addition, the proportion between positive and negative cases in the
datasets is much lower than the real proportion of promoters and non-promoters in a
genome. The models identified phage promoters previously predicted by other tools
and manually curated, but the number of phage genomes with identified promoters that
were not used to train the models is very low. Therefore, having more phage promoter
and non-promoter sequences experimentally identified is crucial to validate the models
and improve promoter identification.

Fig. 1. Venn Diagrams representing the number of host and phage promoters predicted by SVM
and ANN models for phiPsa17 phage genome
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Nevertheless, as these models are the first to use phage data and to identify different
motifs for both promoter types, they are undoubtedly useful for facilitating and
speeding up the task of predicting promoters in phage genomes.
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