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Abstract

Two similar Penicillium isolates could not be identified as previously described species in a survey of orchard apples from

Tunisia for patulin-producing fungi. These isolates are described as novel species using multilocus DNA sequence analysis of

partial b-tubulin, calmodulin and nuclear ribosomal internal transcribed spacer regions; and morphological, physiological

and biochemical characteristics. The isolates were considered negative for patulin production since the IDH gene fragment

was not detected and the compound detected at the same retention time of patulin (14.9min) showed a different UV

spectrum using U-HPLC/UV-DAD. In terms of phylogeny, the two isolates clustered with Penicillium section Ramosa and are

closely related to Penicillium chroogomphum, Penicillium lenticrescens and Penicillium soppii. Furthermore, their macro- and

micromorphological traits differed from these species. Hence, the isolates represent a novel species in Penicillium section

Ramosa and the name Penicillium tunisiense sp. nov. is proposed, with the type strain MUM 17.62T (=ITEM 17445T).

INTRODUCTION

Several fungal species cause various apple rots [1]. Some
penicillia are responsible for apple spoilage particularly
within Penicillium subgenus Penicillium. Penicillium expan-
sum causes blue rot of apples and produces the mycotoxin
patulin that contaminates apples and apple products [2–5],
which may be harmful to human health [6, 7]. Other con-
taminants of apples include Penicillium solitum and Penicil-
lium crustosum [8, 9]. However, other fungi-spoil food and
accurate identification of species are necessary to effectively
control the quality of apple and apple-based products.

Traditionally, fungal identification relied on culture-based
and morphological analyses. This often resulted in misiden-
tifications since such techniques were mostly dependent on
subjective characteristics. Although there are some morpho-
logical and phenotypical traits that differentiate closely
related species such as the ones from section Brevicompacta
and Ramosa, for example, how the rami are arranged (more
or less appressed) or the species extrolite profile [9], these
traits may not be sufficient. New solutions to Penicillium
taxonomy are crucial to mycotoxin research and health
[10], and a practical approach for Penicillium identification
based on mycotoxin traits was proposed by Paterson et al.

[11]. Currently, highly specific molecular biology techniques
allow this differentiation in a more robust way. Phylogenetic
analysis of Penicillium species is normally based on the ITS
or benA genes and might include additional markers such
as CAL and RPB2 genes [12]. The thorough phylogeny of
Penicillium described by Visagie et al. [13] provides solid
information for the identification of new isolates based on
molecular techniques.

As part of a study that investigated the presence of patulin-
producing fungi in apples purchased in Tunisian city mar-
kets, two Penicillium isolates could not be assigned to
previously described species. Here we report the multilocus
phylogenetical, biochemical, physiological and morphologi-
cal characterisation that was applied to describe Penicillium
tunisiense, a novel species within Penicillium section
Ramosa.

METHOD

Fungal isolates

A total of 56 Penicillium fungi were isolated from 270
orchard apples randomly collected from public markets in
three different Tunisian towns: Gafsa (South, n=90);
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Kasserine (Centre, n=90); and Tunis (North, n=90). The
two strains of the proposed new species (MUM 17.62T and
MUM 17.80) were isolated from the surface of Aziza apples
from Tunis. Both isolates are deposited in the Micoteca da
Universidade do Minho (MUM) culture collection, Braga,
Portugal. The ex-type strain (MUM 17.62T) is also depos-
ited at ITEM Microbial Culture Collection of ISPA, Italy,
with the accession number ITEM 17445T.

Molecular characterisation

The isolates were subjected to DNA extraction using a
method adapted from Rodrigues et al. [14]. DNA was dis-
solved in 50–100 µl of ultrapure water, depending on the
yield, and stored at �20

�
C.

As an initial step to identify the isolates, amplification of the
partial benA gene was performed using 0.2 µM Bt2a and
Bt2b primers (Table 1), 1�VWR Taq DNA Polymerase
Master Mix with 1mM MgCl2 (VWR) and approximately
50 ng template DNA in a 50 µl reaction volume. The PCR
cycling protocol is described in Table 2. Obtained amplicons
were purified using the NZYGelpure kit (NZYtech) and
sent for Sanger sequencing to Stab Vida Lda (Madan
Parque, Caparica, Portugal). The obtained benA gene
sequences were compared with those in the NCBI database
using BLAST to determine fungal species that have similar
DNA sequences.

To further characterize the samples, amplification reactions
of ITS, CAL and TEF-1a were prepared as described above
using the corresponding primer pairs detailed in Table 1

and PCR cycling protocols in Table 2. PCR amplicons were
sequenced as described above.

Sequences obtained for benA, ITS and CAL were aligned
with type strain sequences from different Penicillium sec-
tions (Table 3) retrieved from the NCBI database (www.
ncbi.nlm.nih.gov/). Alignment was performed using
CLUSTAL_W [15] followed by visual inspection and, when
necessary, manual correction using MEGA7.0 [16]. Data sets
were concatenated in Seaview version 4.6.3 [17] in order to
perform a multigene phylogeny. The most suitable model
was determined in MEGA 7 based on the lowest Bayesian
information criterion. Maximum-likelihood analyses were
performed through an automatic calculation of the initial
tree by applying the neighbour-joining and BioNJ algo-
rithms to a matrix of pairwise distances estimated using the
maximum-composite-likelihood approach, and then select-
ing the topology with superior log likelihood value. This
was followed by a heuristic search with the nearest-neigh-
bour-interchange method. Bootstrap analysis [18] was per-
formed on 1000 replicate samples in order to support the
nodes. All positions containing gaps and missing data were
eliminated.

DNA fingerprinting of the two isolates by the M13 probe
was performed using 0.8 µM primer (Table 1), 1�VWR
Taq DNA Polymerase Master Mix with 1mM MgCl2 and
50 ng of template DNA Master in a 25 µl reaction volume.
The PCR cycling protocol is described in Table 2. Products
were separated by electrophoresis on 1.5% agarose gel in
TAE buffer at a constant voltage of 60 V for 90min. Finger-
printing band patterns were compared using BioNumerics

Table 1. Details of the primers used and target zone

Target zone Primer Sequences Reference

Beta-tubulin gene (benA) Bt2a 5¢-GGTAACCAAATCGGTGCTGCTTTC-3¢ [33]

Bt2b 5¢-ACCCTCAGTGTAGTGACCCTTGGC-3¢

Bt1b 5¢-GACGAGATCGTTCATGTTGAACTC-3¢

Calmodulin (CAL) Cl1 5¢-GARTWCAAGGAGGCCTTCTC-3¢ [34]

Cl2a 5¢-TTTTTGCATCATGAGTTGGAC-3¢

Translation elongation factor 1-alpha (TEF-1a) EF1c 5¢-TCGTCGTTATCGGCCACGTC-3¢ [35]

EF6 5¢-CTTSTYCCARCCCTTGTACCA-3¢

Nuclear ribosomal internal transcribed spacer regions (ITS) ITS1 5¢-TCCGTAGGTGAACCTGCGG-3¢ [36]

ITS4 5¢-TCCTCCGCTTATTGATATGC-3¢

Isoepoxydon dehydrogenase gene (IDH) IDH1 5¢-CAATGTGTCGTACT GTGCCC-3¢ [30]

IDH2 5¢-ACCTTCAG TCGCTGTTCCTC-3¢

M13 fingerprinting M13 5¢-GAGGGTGGCGGTTCT-3¢ [37]

Table 2. PCR cycling programs used for amplification

Gene Initial denaturing Cycles Denaturing Annealing Elongation Final elongation

benA, ITS, IDH 95
�
C, 5min 35 95

�
C, 1min 56

�
C, 45 s 72

�
C, 90 s 72

�
C, 10min

CAL 95
�
C, 10min 35 95

�
C, 50 s 55

�
C, 50 s 72

�
C, 1min 72

�
C, 7min

TEF-1a 94
�
C, 5min 42 94

�
C, 1min 62

�
C, 30 s 72

�
C, 90 s 72

�
C, 10min

M13 94
�
C, 2min 40 94

�
C, 2 s 50

�
C, 1min 72

�
C, 2 s 72

�
C, 6min
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Table 3. Strains used for phylogenetic analysis of the new Penicillium species isolated from Tunisian orchard apples

With the exception of Trichocoma paradoxa, all correspond to type strains of the indicated species. GenBank accession numbers of the benA, ITS and

CAL sequences used to reconstruct the phylogenetic tree presented in Fig. 1 are listed here.

Section Species Culture collection number GenBank accession number

benA ITS CAL

Brevicompacta Penicillium

astrolabium

MUM 06.161=CBS 122427=NRRL 35611 DQ645793 DQ645804 DQ645808

Penicillium

bialowiezense

CBS 227.28=IBT 23044=IMI 092237=LSHBP 71=NRRL 865 AY674439 EU587315 AY484828

Penicillium

brevicompactum

CBS 257.29=ATCC 10418=ATCC 9056=DSM3825=FRR 862=IBT 23045=IMI

040225=LSHBP 75=MUCL 28647=MUCL 28813=MUCL 28935=MUCL

30240=MUCL 30241=MUCL 30256=MUCL 30257=NRRL 2011=NRRL

862=NRRL 864=QM 7496

AY674437 AY484912 AY484813

Penicillium

buchwaldii

CBS 117181=IBT 6005=IMI 304286 JX313182 JX313164 JX313148

Penicillium

fennelliae

CBS 711.68=ATCC 22050=ATCC 52492=FRR 521=IHEM 4389=IMI

151747=MUCL 31322

JX313185 JX313169 JX313151

Penicillium kongii AS 3.15329 KC427171 KC427191 KC427151

Penicillium

neocrassum

MUM 06.160=CBS 122428=NRRL 35639 DQ645794 DQ645805 DQ645809

Penicillium olsonii CBS 232.60=IBT 23473=IMI 192502=NRRL 13058=NRRL 13716 AY674445 EU587341 DQ658165

Penicillium

spathulatum

CBS 117192=IBT 22220 JX313183 JX313165 JX313149

Penicillium

tularense

CBS 430.69=ATCC 22056=FRR 899=IFO 31740=IMI 148394=NRRL 5273=AS

3.14006

KC427175 AF033487 JX313135

Ramosa Penicillium

chroogomphum

CBS 136204=KCTC 46041=JZB 2120005 KP684056 KC594043 KP684057

Penicillium

jamesonlandense

CBS 102888=DAOM 234087=IBT 21984=IBT 24411 DQ309448 DQ267912 KJ866985

Penicillium

kojigenum

CBS 345.61=ATCC 18227=CCRC 31515=FRR 3442=IFO 9581=IMI

086562=LSHBBB394=MUCL 2457=NRRL 3442=QM 7957

KJ834463 AF033489 KJ867011

Penicillium

lanosum

CBS 106.11=ATCC 10458=FRR 2009=IFO 5851=IFO 6099=IMI

040224=LSHBP 86=MUCL 29232=NRRL 2009=QM 7591

DQ285627 DQ304540 FJ530974

Penicillium

lenticrescens

CBS 138215=DTO 129A8 KJ775168 KJ775675 KJ775404

Penicillium

raistrickii

CBS 261.33=ATCC 10490=FRR 1044=IFO 6104=IMI

040221=LSHBB100=NRRL 1044=NRRL 2039=QM 1936=VKMF-337

KJ834485 AY373927 KJ867006

Penicillium ribium CBS 127809=DAOM 234091=IBT 16537=IBT 24431 DQ285625 DQ267916 KJ866995

Penicillium

scabrosum

CBS 683.89=FRR 2950=IBT 3736=IMI 285533=DAOM 214786 DQ285610 DQ267906 FJ530987

Penicillium simile CBS 129191=ATCC MYA-4591 FJ376595 FJ376592 GQ979710

Penicillium soppii CBS 226.28=ATCC 10496=FRR 2023=IFO 7766=IMI 040217=MUCL

29233=NRRL 2023=QM 1964=IBT 18220

DQ285616 AF033488 KJ867002

Penicillium

swiecickii

CBS 119391=FRR 918=IBT 27865=IMI 191500=NRRL 918 KJ834494 AF033490 KJ866993

Penicillium

tunisiense

MUM 17.62T=ITEM 17445T MG586970 MG586956 MG586974

Penicillium

tunisiense

MUM 17.80 MG586971 MG586957 MG586975

Penicillium

virgatum

CBS 114838=BBA 65745 KJ834500 AJ748692 KJ866992

Chrysogena Penicillium

chrysogenum

CBS 306.48=ATCC 10106=ATHUM2889=CCRC 30564=FRR 807=IBT

5233=IMI 024314=IMI 092208=LSHBAd 3=LSHBP 19=MUCL 29079=MUCL

29145=NCTC 589=NRRL 807=NRRL 810=QM 7500

AY495981 AF033465 JX996273

Penicillium rubens CBS 129667=NRRL 792=IBT 30129=ATCC 9783 JF909949 JX997057 JX996263

Fasciculata Penicillium

commune

CBS 311.48=ATCC 10428=ATCC 1111=CCRC 31554=DSM2211=IBT

6200=IFO 5763=IMI 039812ii=IMI 039812iii=NRRL 890=QM 1269=VKMF-

3233

AY674366 AY213672 KU896829

Penicillium

crustosum

CBS 115503=ATCC 52044=FRR 1669=IBT 5528=IBT 6175=IMI 091917=NCTC

4002

AY674353 AF033472 DQ911132

Penicillium

polonicum

CBS 222.28=IBT 12821=IMI 291194=MUCL 29204=NRRL 995 AY674305 AF033475 KU896848

Penicillium

solitum

CBS 424.89=ATCC 9923=CBS 288.36=FRR 937=IBT 3948=IFO 7765=IMI

039810=IMI 092225=LSHBP 52=MUCL 28668=MUCL 29173=NRRL 937

AY674354 AY373932 KU896851
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version 7.6.2 (Applied Maths NV; www.applied-maths.
com).

Analysis of the IDH gene was performed through amplifica-
tion of the IDH1–IDH2 primer pair (Table 1) in conjunc-
tion with a longer fragment of the benA gene as an internal
amplification control (primers Bt2a and Bt1b, Table 1). The
amplification reaction and PCR cycling protocol were the
same as described above for the benA gene. PCR products
were separated by electrophoresis on 1% agarose gel in TAE
buffer at a constant voltage of 80 V for 45min.

Extraction and analysis of patulin

Patulin extraction was performed for each fungal isolate as
described by Morales et al. [19]. Samples were analysed
using a U-HPLC equipped with a Shimadzu UV-DAD
detector (276 nm). Patulin content was determined by chro-
matographic separation performed on a reverse phase C18
column (Brisa LC2 Teknocroma; 250�4.6, 5 µm) with a 5%
acetonitrile/water mobile phase, pumped at 1mlmin�1. The
retention time of patulin was 14.9min.

Morphological characterisation

Morphological characterisation of MUM 17.62T and MUM
17.80 was performed based on Visagie et al. [12]. The fol-
lowing culture media and incubation temperature were
used: Czapek yeast autolysate (CYA) agar at 15, 25, 30 and
37

�
C, malt extract agar (MEA), oatmeal agar (OA), yeast

extract sucrose (YES) agar, glycerol nitrate (G25N) agar and
creatine sucrose neutral (CSN) agar at 25

�
C. After 7 days,

digital images of colonies were obtained as described in
Simões et al. [20] and macro- and micromorphological
characters were examined under light optical microscopy
and scanning electron microscopy. Colours and codes in
descriptions are those from the Methuen Handbook of Col-
our [21].

Light microscopy

The slides for light optical microscopic observations were
prepared using tissue removed from 7 days old colonies
grown on MEA and mounted in lactic acid and lactophenol
cotton blue. Excess conidia were washed using drops of

96% ethanol. Morphologies were observed using an optical
microscope (Leica DM5000B). Length and width of stipe,
metulae, phialides and two perpendicular diameters of the
conidia were measured and rounded off to 0.5 µm.

Scanning electron microscopy

Scanning electron microscopy was performed on samples
fixed for 18 h at 4

�
C using 3% glutaraldehyde in PBS buffer

followed by overnight incubation at 4
�
C with 1% aqueous

osmium tetroxide, dehydrated in increasing ethanol series
(50, 70, 80, 90 and 100%) for 10min and dried in a desicca-
tor. The samples were added to aluminium pin stubs with
electrically conductive carbon adhesive tape (PELCO Tabs)
and sputter-coated with gold. Observation was performed
using an ultrahigh resolution field-emission scanning elec-
tron microscope NanoSEM-FEI Nova 200 (FEI).

RESULTS AND DISCUSSION

Molecular characterisation

Fifty-six Penicillium isolates were obtained during the cur-
rent survey of orchard apples from Tunisia. Although ITS is
the recommended DNA barcode for fungi [22], this marker
is not variable enough for distinguishing all closely related
species in Penicillium [22–24]. For that reason and consid-
ering that b-tubulin is a better discriminative marker that
allows identification of Penicillium to species level [12, 23],
partial benA gene sequencing of the 56 isolates was
performed. BLAST results showed that the majority were P.
expansum (sequence identity �99%), with some isolates
being classified as P. solitum, P. crustosum, P. polonicum
and P. bialowiezense. However, two isolates were signifi-
cantly different from other species included in the NCBI
database (sequence identity <90%) with the closest align-
ments indicating a possible connection with Penicillium sec-
tion Ramosa. Those two isolates were designated
Penicillium species with culture collection numbers MUM
17.62T and MUM 17.80.

To confirm their phylogenetic placement within Penicillium,
combined sequences (ITS, benA and CAL) were aligned
against those of type strains belonging to section Ramosa

Table 3. cont.

Section Species Culture collection number GenBank accession number

benA ITS CAL

Penicillium

verrucosum

CBS 603.74=ATCC 48957=ATHUM2897=CECT 2906=FRR 965=IBT

12809=IBT 4733=IMI 200310=IMI 200310ii=MUCL 28674=MUCL

29089=MUCL 29186=NRRL 965

AY674323 AY373938 DQ911138

Penicillium Penicillium

expansum

CBS 325.48=ATCC 7861=ATHUM2891=CCRC 30566=FRR 976=IBT

3486=IBT 5101=IMI 039761=IMI 039761ii=MUCL 29192=NRRL

976=VKMF-275

AY674400 AY373912 DQ911134

Penicillium

italicum

CBS 339.48=ATCC 10454=DSM2754=FRR 983=IBT 23029=IMI

039760=MUCL 15608=NRRL 983=QM 7572

AY674398 KJ834509 DQ911135

Outgroup Trichocoma

paradoxa

CBS 788.83 KF984556 JN899398 KF984670

Talaromyces

rugulosus

CBS 371.48=ATCC 10128=CCRC 31518=IMI 040041=LSHB Ad27=MUCL

31201=NCTC 592=NRRL 1045=QM 7661

KF984575 JN899374 KF196868
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and the closely related section Brevicompacta. Furthermore,

members of sections Chrysogena, Fasciculata and Penicil-

lium, the majority of which were found in the current survey

or have been previously described as primary causing agents

of blue mould in apples and pears [1], were also included.

The analysis comprised 35 nucleotide sequences and a total

of 955 positions in the final data set. In the obtained

phylogenetic tree (Fig. 1), the two unidentified isolates are

placed in a monophyletic clade that is composed exclusively

by section Ramosa strains and is supported by 83% of the

bootstrap samples. Therefore, the two isolates are classified

as Penicillium section Ramosa clustering with P. chroogom-

phum, P. lenticrescens and P. soppii (supported by 99% of

the bootstrap samples). The close relationship between these

P. kongii AS 3.15329
T

P. brevicompactum CBS 257.29
NT

P. neocrassum MUM 06.160
T

P. bialowiezense CBS 227.28
T

P. fennelliae CBS 711.68
NT

P. astrolabium MUM 06.161
T

P. olsonii CBS 232.60
NT

P. buchwaldii CBS 117181
T

P. spathulatum CBS 117192
T

P. tularense CBS 430.69
T

P. jamesonlandense CBS 102888
T

P. swiecickii CBS 119391
T

P. kojigenum CBS 345.61
T

P. lanosum CBS 106.11
NT

P. ribium CBS 127809
T

P. simile CBS 129191
T

P. raistrickii CBS 261.33
NT

P. scabrosum CBS 683.89
HT

P. lenticrescens CBS 138215
HT

P. chroogomphum CBS 136204
HT

P. soppii CBS 226.28
NT

MUM 17.80

MUM 17.62T

P. virgatum CBS 114838
T

P. chrysogenum CBS 306.48
NT

P. rubens CBS 129667
T

P. expansum CBS 325.48
NT

P. italicum CBS 339.48
NT

P. verrucosum CBS 603.74
NT

P. polonicum CBS 222.28
T

P. commune CBS 311.48
T

P. solitum CBS 424.89
NT

P. crustosum CBS 115503
NT

T. rugulosus CBS 371.48
NT

T. paradoxa CBS 788.83

100

96

100

100

98

99

100

100

99
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99

99
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99
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81100

74
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0.050

sect. Brevicompacta

sect. Ramosa

sect. Fasciculata

sect. Penicillium

Outgroup

sect. Chrysogena

P. tunisiense sp. nov.

Fig. 1. Combined phylogeny for ITS, benA and CAL sequence data of the two P. tunisiense isolates (MUM 17.62T and MUM 17.80) with

other Penicillium species detailed in Table 3. Trichocoma paradoxa (CBS 788.83) and Talaromyces rugulosus (CBS 371.48) were used as

outgroups. Model selected: TN93+G+I. The percentage of trees in which the associated taxa clustered together in the bootstrap test

(1000 replicates) is shown above the branches. The tree is drawn to scale, with branch lengths measured in the number of substitu-

tions per site. T, ex-type strain; HT, holotype strain; NT, neotype strain.
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three previously described species was also reported by
Rong et al. [25]. Furthermore, the molecular phylogenetic
data presented herein confirms the separation of MUM
17.62T and MUM 17.80 from P. chroogomphum, P. lenti-
crescens and P. soppii, as they are placed in an individual
branch supported by 100% of the bootstrap samples. Previ-
ous studies have shown that, despite the close relationship,
strains from sections Brevicompacta and Ramosa can be
separated from each other [13, 25, 26]. In the analyses pre-
sented in Fig. 1, the majority of section Brevicompacta
strains are clustered in an independent monophyletic
branch (supported by 99% of the bootstrap samples) with
the exceptions being P. spathulatum, P. buchwaldii and
P. tularense. This is an expected situation since they share
morphological and phenotypic characteristics with section
Ramosa species [27], which can explain the greater distance
between these three species and the others in section
Brevicompacta.

The TEF-1a gene was not included in the phylogenetic anal-
ysis as the complete dataset was not congruent due to
unavailability of sequences in GenBank for all the strains
considered in this study. Nevertheless, the TEF-1a sequence
was informative as it had a nucleotide difference between
the two novel strains (Fig. S1a, available in the online ver-
sion of this article). This is a synonymous change, that is, it
does not affect the amino acid sequence and so it is unlikely
to have biological significance. It gives, however, a clear
indication that the two isolates correspond to individual
strains and not clones, a result confirmed by the DNA fin-
gerprinting profile obtained using the M13 primer
(Fig. S1b).

Morphology and physiology analyses

Molecular results showed that two isolates considered in
this study belong to Penicillium section Ramosa. Neverthe-
less, is also important to consider morphological and physi-
ological criteria. Detailed morphological descriptions are
given in the species description.

MUM 17.62T and MUM 17.80 conidia have slight colour
differences depending of the medium used (greenish grey
in CYA, MEA and G25N agar, greyish green in YES agar
and CSN agar, dull green in OA). Furthermore, the two
isolates sporulate abundantly, whereas P. lenticrescens and
P. soppii sporulate sparsely and P. chroogomphum moder-
ately after 7 days of growth [13, 25]. The reverse plates of
our isolates show dark pigmentation, but no production of
soluble pigments, including on CSN agar where both
strains appear to be neutral. The lack of soluble pigmenta-
tion also occurs in P. chroogomphum and P. lenticrescens
as well as no production of acid. The two isolates do not
produce sclerotia while P. soppi does. Microscopically,
members of section Ramosa have divergent rami [27], as
observed in P. soppii and in MUM 17.62T and MUM
17.80. However, there are evident morphological differen-
ces (Table 4) such as the more conspicuous ellipsoidal
conidia than observed in P. chroogomphum. The conidia
are also characterised as being small and finely rough,
which is more similar to P. soppii than to the other spe-
cies. In addition, the conidiophores of the two isolates
bear four to five metulae with four to six phialides,
whereas P. chroogomphum has two to three metulae with
three to eight phialides [25] and P. soppii has three to five
metulae with five to eight phialides [28].

Table 4. Comparison of Penicillium tunisiense MUM 17.62T with the related taxa

P. tunisiense P. chroogomphum* P. lenticrescens† P. soppii‡

CYA at 25
�
C:

Diameter (mm,

in 7 days)

11–13 7–8 12–24 25–35

Colonial colour Greenish grey Light green Greyish green Dull green

CYA at 30
�
C No growth Weak growth No growth NA

YES at 25
�
C:

Diameter (mm,

in 7 days)

16–19 7–10 17–18 NA

Conidiophores on

MEA

Borne from aerial hyphae Borne from aerial

hyphae

NA Borne from surface or aerial hyphae

Stipe (µm) 46–245�1.5–2. 50�150�2.5–3.5 150�415�3–4 300�450�2.5–4

Phialides (µm) 5.5–10�1–2 8�12�3–4 7.5–10.5�2.5–3.5 8�12�2.5–3

Conidia (µm) 1.5–3.5�1–3.5 µm 4�5�3–4 2.5–3.5�2.5–3 2.5–3

Finely rough Smooth Smooth Smooth and roughened or very delicately

roughened

Ellipsoidal, with a minor

proportion subglobose

Ellipsoidal Subglobose, with a minor

proportion ellipsoidal

At first elliptical and becoming globose to

subglobose at maturity

NA, Not available in the original description.

*Data derived from Rong et al. [25].

†Data derived from Visagie et al. [13].

‡Data derived from Raper and Thom [38] and Pitt [28].
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The two strains were isolated from the North of Tunisia, a
Mediterranean country, with an average temperature of
around 12

�
C in the coldest month and 27

�
C in the hottest.

It is common for food-borne penicillia to grow in colder

environments even if they are from warm, temperate and
subtropical regions. However, the number of Penicillium
species that grow better at 15

�
C than at 25

�
C is limited

[27]. This new species corresponded well with this group

Fig. 2. Penicillium tunisiense sp. nov. MUM 17.62T. (a) Colonies at 25
�
C, 7 days: top row, left to right, obverse CYA, MEA, YES agar and

OA; bottom row, left to right, reverse CYA, reverse MEA, obverse G25N agar and CSN agar. (b) Conidiophores (bar, 20 µm) and conidia

(bar, 10 µm) under light microscopy. (c) Conidiophores (bar, 10 µm) and conidia (bar, 1 µm) as observed using scanning electron

microscopy.
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since its colony diameter average (12.8mm) is wider at
15

�
C on CYA with good sporulation leading to the assump-

tion that its optimal temperature is lower than 25
�
C with a

colony diameter average of 11.6mm. Species that grow and
sporulate well at 25

�
C, but have lower optimum growth

temperature may be called psychrotolerant [29]. Although
the closely related species P. soppii is considered to be psy-
chrotolerant [28], it does not sporulate well at 25

�
C. Fur-

thermore, both isolates do not grow at 30
�
C, a shared

characteristic with P. lenticrescens. However, there is no
indication if P. lenticrescens can grow at lower temperatures
in the literature. The more recently described P. chroogom-
phum, forms larger colonies at 16

�
C but differs from the

novel isolates and P. lenticrescens, due to its ability to grow,
even if slowly, at 30

�
C (Table 4). When compared with the

most common isolated species of this survey (P. expansum)
this novel species has no ability to rot (results not shown)
and produce patulin in apples.

Patulin production

Both strains were IDH negative (results not shown), i.e. they
lack the ability to convert isoepoxydon to phyllostine during
the patulin biosynthetic pathway [30]. In addition, Paterson
et al. [31] found that these strains produce a compound that
has the same retention time as patulin but a different UV
spectrum using U-HPLC/UV-DAD. These results lead to
discussion that different secondary fungal metabolites may
have identical analytical data (e.g. the same retention time
and the same molecular mass). Frisvad [32] indicates that
95 secondary metabolites, including members of the patulin
biosynthetic pathway, have the same molecular mass of
patulin (M»154). Penicillium patulin producers have been
found in section Ramosa [32] but combining the molecular
and UV spectrum results both strains are considered patu-
lin-negative.

DESCRIPTION OF PENICILLIUM TUNISIENSE

SP. NOV.

Penicillium tunisiense (tu.ni.si.en¢se. N.L. neut. adj. tuni-
siense pertaining to Tunisia) Fig. 2.

Typus. Tunisia, Tunis, fruits of Malus pumila Mill. (orchard
apples, also known as table apples) isolated by Salma Ouhibi
as N132 S1 on April 2014 (holotype MUM-H 17.62, culture
ex-type MUM 17.62).

Diagnosis. Slow growth on general media, no growth at
30

�
C, conidiophores biverticillate and terverticillate in older

colonies, producing finely rough walled stipes and finely
rough ellipsoidal conidia.

Description. Colony diameter, 7 days (mm): CYA 25
�
C, 11–

13; CYA 15
�
C, 12–14; CYA 30

�
C, no growth; CYA 37

�
C, no

growth; MEA 25
�
C, 11–12; YES agar 25

�
C, 16–18; G25N

agar 25
�
C, 6–8; OA 25

�
C, 9–10; CSN agar 25

�
C, 4–6.

Colony characteristics. CYA 25
�
C, 7 days: colonies raised,

margins low, narrow, entire; mycelia white; texture veluti-
nous; sporulation dense, conidia en masse greenish grey

(28C2); soluble pigments absent; scarce clear exudates;
reverse dull green (30E4). MEA 25

�
C, 7 days: colonies

raised in the centre; radially sulcate, margins low, narrow,
entire; mycelia white; texture velutinous; sporulation dense,
conidia en masse greenish grey (26C2); soluble pigments
absent; exudates absent; reverse olive (2D4). YES agar 25

�
C,

7 days: colonies raised, sunken at centre, sulcate; margins
low, narrow, irregular; mycelia white; texture velutinous;
sporulation dense, conidia en masse greyish green (27C3);
soluble pigments absent; exudates absent; reverse khaki to
olive brown (4D5-E5). G25N agar 25

�
C, 7 days: colonies

raised; margins low, narrow, entire; mycelia white; texture
velutinous; sporulation dense, conidia en masse greenish
grey (29C2); soluble pigments absent; exudates absent;
reverse greyish to olive to khaki (3E5-4D5). OA 25

�
C, 7

days: colonies low, plane, white mycelia appeared in the
centre; margins low, moderately wide, entire; mycelia white;
texture velutinous; sporulation moderately dense, conidia en
masse dull green (28D4); soluble pigments absent; exudates
absent. CSN agar 25

�
C, 7 days: Colonies low, plane; margins

low, moderately wide, entire; mycelia white; texture veluti-
nous; sporulation moderately dense, conidia en masse grey-
ish green (27C3); neutral response with no production of
acid or alkaline compounds.

Micromorphology. Conidiophores biverticillate, sub-termi-
nal branching occasionally observed and terverticillate
structures in older cultures; stipes finely rough walled, 46–
245�1.5–2.5 µm; metulae divergent, moderately swollen at
apex up to 4 µm, 9–12.5�2.5–3 µm (with a mean and stan-
dard deviation of 11±1�3.5±0.5 µm); vesicles 4–5 µm; phia-
lides ampulliform, sometimes more slender and elongated,
5.5–10�1–2 µm (with a mean and standard deviation of 7
±1.5�1.5±0.5 µm); average length metula/phialide 1.5;
conidia finely rough, ellipsoidal, with a minor proportion
subglobose, 1.5–3.5�1–3.5 µm (with a mean and standard
deviation of 2.5±0.5�1.5±0.5 µm), average width/
length=0.5, n=100.

ITS barcode. MG586956 (alternative markers:
benA=MG586970; CAL=MG586974; TEF-1a=MG586972).

Other isolate examined. MUM 17.80 isolated by Salma
Ouhibi as N293 S21 on May 2014 from the surface of
orchard apples (M. pumila) from Tunis, Tunisia. ITS bar-
code. MG586957 (alternative markers: benA=MG586971;
CAL=MG586975; TEF-1a=MG586973).

MycoBank number: MB823626.
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