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This paper is devoted to the study of the initial value problem of nonlinear frational di�erential equations involving a

Caputo type frational derivative with respet to another funtion. Existene and uniqueness results for the problem are

established by means of the some standard �xed point theorems. Next, we develop the Piard iteration method for solving

numerially the problem, and obtain results on the long-term behaviour of solutions. Finally, we analyze a population growth

model and a gross domesti produt model with governing equations being frational di�erential equations that we have

introdued in this work. Copyright



 2009 John Wiley & Sons, Ltd.

Keywords: Frational alulus, frational di�erential equations, population growth model, gross domesti

produt model

1. Introdution

Frational alulus is a branh of mathematis that studies integrals and derivatives of non-integer order. Leibniz and L-Hôpital

have already wondered what would be a derivative of order 0:5. Although in the beginning frational alulus had a development

as a pure mathematial idea, in reent deades its use has also spread into many other �elds of siene suh as physis,

mehanis, and bioengineering [13, 19℄. Various phenomena of visoelastiity, di�usion proedures, relaxation vibrations,

eletrohemistry, et. are suessfully desribed by frational di�erential equations (FDE). The researhers tried to suggest

several types of frational operators to desribe more aurately these phenomena (see, e.g., [1, 6, 7, 22, 28℄). Due to the

large number of de�nitions that exist for frational derivatives, one simple way to deal with suh a variety is to ombine those

onepts to a single one by onsidering frational derivatives of funtion f with respet to another funtion [21℄. Moreover,

as the purpose operator depends on a kernel, it provides, besides the order, any number of free parameters to better alibrate

a system. Therefore, we �nd the theory of FDEs with derivatives depending on a kernel, as a promising area for further

investigations. In this paper, we intend to present the fundamentals of a theory for FDEs with a general derivative. For related

results onerning FDEs with di�erent type of frational derivatives, we refer to [2, 3, 4, 9, 10, 17, 25℄.

The outline of the paper is the following. In Setion 2, we present the main de�nition of this work: the  -Caputo frational

derivative, that is, a Caputo-type derivative of a funtion with respet to another funtion; in Theorem 1, we prove that this

operator is the left inverse of the frational integral. Setion 3 is devoted to the study of FDEs with  -Caputo frational

derivatives. First, in Setion 3.1, the problem of existene and uniqueness of solutions is investigated. Then, based on the Piard

iteration method, we present a sheme for solving this type of FDEs. Setion 3.3 ontains results on the long-term behaviour

of solutions de�ned on suÆiently large intervals. In Setion 4, possible appliations of the theory developed in this paper to
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model a population growth and a gross domesti produt are presented.As governing equations of a mathematial formulation

of those models we propose frational di�erential equations with the  -Caputo frational derivative. Finally, we �nish the paper

by a onlusion setion.

2. Preliminaries

In the following and throughout the text, � > 0 is a real, x : [a; b℄! R an integrable funtion and  2 C

n

[a; b℄ an inreasing

funtion suh that  

0

(x) 6= 0, for all x 2 [a; b℄.

The  -Riemann{Liouville frational integral of x of order � is de�ned as

I

�; 

a+

x(t) :=

1

�(�)

∫

t

a

 

0

(�)( (t) �  (�))

��1

x(�) d�;

and the  -Riemann{Liouville frational derivative of x of order � is de�ned as

D

�; 

a+

x(t) :=

(

1

 

0

(t)

d

dt

)

n

I

n��; 

a+

x(t)

=

1

�(n � �)

(

1

 

0

(t)

d

dt

)

n

∫

t

a

 

0

(�)( (t) �  (�))

n���1

x(�) d�:

Here, n = [�℄ + 1. In partiular, for suitably hosen  , we obtain some well known frational operators, like the Riemann{

Liouville, the Hadamard and the Erd�elyi{Kober type. The frational integrals satisfy the semigroup law [15℄: let �; � > 0, then

the relation

I

�; 

a+

I

�; 

a+

x(t) = I

�+�; 

a+

x(t)

holds. In the present work, we deal with a Caputo type di�erential operator.

De�nition 1 Let � > 0 and  2 C

n

[a; b℄ be a funtion suh that  is inreasing and  

0

(x) 6= 0, for all x 2 [a; b℄. Given

x 2 C

n�1

[a; b℄, the  -Caputo frational derivative of x of order � is de�ned as

C

D

�; 

a+

x(t) := D

�; 

a+

[

x(t) �

n�1

∑

k=0

x

[k℄

 

(a)

k!

( (t) �  (a))

k

]

where

n = [�℄ + 1 for � =2 N; n = � for � 2 N;

and

x

[k℄

 

(t) :=

(

1

 

0

(t)

d

dt

)

k

x(t):

If x 2 C

n

[a; b℄, then the  -Caputo frational derivative of x an be represented by the expression (f. [5, Theorem 3℄)

C

D

�; 

a+

x(t) := I

n��; 

a+

(

1

 

0

(t)

d

dt

)

n

x(t):

Thus, if � = m 2 N, we have

C

D

�; 

a+

x(t) = x

[m℄

 

(t);

and for � =2 N, we have

C

D

�; 

a+

x(t) =

1

�(n � �)

∫

t

a

 

0

(�)( (t) �  (�))

n���1

x

[n℄

 

(�) d�:

Some known frational derivatives are just partiular ases of the  -Caputo frational derivative. For appropriate hoies of

the kernel  , we obtain the Caputo frational derivative [21℄ (for  (t) = t), the Caputo{Hadamard frational derivative [11, 14℄

(for  (t) = ln(t)) and the Caputo{Erd�elyi{Kober frational derivative [18℄ (for  (t) = t

�

).

The  -Caputo frational derivative of a power funtion is given next. Let � 2 Rwith � > n. The  -Caputo frational derivative

of the funtion

x(t) = ( (t) �  (a))

��1

is given by the formula

C

D

�; 

a+

x(t) =

�(�)

�(� � �)

( (t) �  (a))

����1

:

The  -Caputo frational derivative is a left inverse of the  -Riemann{Liouville frational integral. Below we generalize

Theorems 4 and 5 of [5℄.
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Theorem 1 Let x : [a; b℄! R. The following holds:

1. If x 2 C[a; b℄, then

C

D

�; 

a+

I

�; 

a+

x(t) = x(t):

2. If x 2 C

n�1

[a; b℄, then

I

�; 

a+

C

D

�; 

a+

x(t) = x(t) �

n�1

∑

k=0

x

[k℄

 

(a)

k!

( (t) � (a))

k

:

Proof For proving 1 observe that, by de�nition,

C

D

�; 

a+

I

�; 

a+

x(t) := D

�; 

a+

[

I

�; 

a+

x(t) �

n�1

∑

k=0

(I

�; 

a+

x)

[k℄

 

(a)

k!

( (t) �  (a))

k

]

:

Attending that

(I

�; 

a+

x)

[k℄

 

(t) =

(

1

 

0

(t)

d

dt

)

k

I

�; 

a+

x(t)

=

1

�(�� k)

∫

t

a

 

0

(�)( (t) �  (�))

��k�1

x(�) d�;

we dedue the following relation

∣

∣

∣(I

�; 

a+

x)

[k℄

 

(t)

∣

∣

∣ �

kxk

�(�� k + 1)

( (t) �  (a))

��k

;

and thus (I

�; 

a+

x)

[k℄

 

(a) = 0, for all k = 0; 1; : : : ; n � 1. Therefore,

C

D

�; 

a+

I

�; 

a+

x(t) = D

�; 

a+

I

�; 

a+

x(t) =

(

1

 

0

(t)

d

dt

)

n

I

n��; 

a+

I

�; 

a+

x(t) =

(

1

 

0

(t)

d

dt

)

n

I

n; 

a+

x(t) = x(t);

whih ends the �rst point of the proof. To prove 2, let

y(t) := x(t) �

n�1

∑

k=0

x

[k℄

 

(a)

k!

( (t) � (a))

k

:

Thus, I

�; 

a+

C

D

�; 

a+

x(t) = I

�; 

a+

D

�; 

a+

y(t); and so it is enough to prove that I

�; 

a+

D

�; 

a+

y(t) = y(t): For this purpose, observe that

I

�; 

a+

D

�; 

a+

y(t) =

1

�(�)

∫

t

a

 

0

(�)( (t) �  (�))

��1

D

�; 

a+

y(�) d�

=

1

 

0

(t)

d

dt

{

1

�(�+ 1)

∫

t

a

 

0

(�)( (t) �  (�))

�

D

�; 

a+

y(�) d�

}

:

Integrating by parts, we obtain

? :=

1

�(�+ 1)

∫

t

a

 

0

(�)( (t) �  (�))

�

D

�; 

a+

y(�) d�

=

1

�(�+ 1)

∫

t

a

( (t) �  (�))

�

d

d�

[

(

1

 

0

(�)

d

d�

)

n�1

I

n��; 

a+

y(�)

]

d�

=

[

( (t) � (�))

�

�(�+ 1)

(

1

 

0

(�)

d

d�

)

n�1

I

n��; 

a+

y(�)

]

t

a

+

1

�(�)

∫

t

a

( (t) �  (�))

��1

d

d�

[

(

1

 

0

(�)

d

d�

)

n�2

I

n��; 

a+

y(�)

]

d�:

Sine

(

1

 

0

(�)

d

d�

)

n�1

I

n��; 

a+

y(�) =

1

�(1� �)

∫

�

a

 

0

(s)( (�) �  (s))

��

y(s) ds;

we dedue that

∣

∣

∣

∣

∣

(

1

 

0

(�)

d

d�

)

n�1

I

n��; 

a+

y(�)

∣

∣

∣

∣

∣

�

kyk

�(2� �)

( (�) � (a))

1��

;
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and so

(

1

 

0

(�)

d

d�

)

n�1

I

n��; 

a+

y(�) = 0 at � = a:

Thus, performing again integration by parts, we obtain the equality

? =

1

�(�)

∫

t

a

( (t) �  (�))

��1

d

d�

[

(

1

 

0

(�)

d

d�

)

n�2

I

n��; 

a+

y(�)

]

d�

=

[

( (t) �  (�))

��1

�(�)

(

1

 

0

(�)

d

d�

)

n�2

I

n��; 

a+

y(�)

]

t

a

+

1

�(�� 1)

∫

t

a

( (t) � (�))

��2

d

d�

[

(

1

 

0

(�)

d

d�

)

n�3

I

n��; 

a+

y(�)

]

d�

=

1

�(�� 1)

∫

t

a

( (t) � (�))

��2

d

d�

[

(

1

 

0

(�)

d

d�

)

n�3

I

n��; 

a+

y(�)

]

d�:

Repeating this proedure, we arrive to

? =

[

( (t) �  (�))

��n+2

�(�� n + 3)

(

1

 

0

(�)

d

d�

)

I

n��; 

a+

y(�)

]

t

a

+

1

�(�� n + 2)

∫

t

a

( (t) �  (�))

��n+1

d

d�

I

n��; 

a+

y(�)d�

=

1

�(�� n + 2)

∫

t

a

( (t) �  (�))

��n+1

d

d�

I

n��; 

a+

y(�)d�

=

[

( (t) �  (�))

��n+1

�(�� n + 2)

I

n��; 

a+

y(�)

]

t

a

+

1

�(�� n + 1)

∫

t

a

 

0

(�)( (t) � (�))

��n

I

n��; 

a+

y(�)d�

= I

��n+1; 

a+

I

n��; 

a+

y(t) = I

1; 

a+

y(t):

In onlusion, we prove the desired formula:

I

�; 

a+

D

�; 

a+

y(t) =

1

 

0

(t)

d

dt

I

1; 

a+

y(t) = y(t):

3. Frational Di�erential Equations

This setion ontains our main results. We prove existene and uniqueness results for the initial value problem of nonlinear FDE

involving  -Caputo frational derivative

C

D

�; 

a+

x(t) = f (t; x(t)), develop the Piard iteration method for solving this problem

and for a partiular ase of FDEs we establish results on the long-term behaviour of solutions.

3.1. Existene and uniqueness of solution

Consider the problem (P ), given by the nonlinear FDE

C

D

�; 

a+

x(t) = f (t; x(t)); t 2 [a; b℄;

subjet to the initial onditions

x(a) = x

a

and x

[k℄

 

(a) = x

k

a

; k = 1; : : : ; n � 1;

where

1. 0 < � =2 N and n = [�℄ + 1,

2. x

a

and x

k

a

, for k = 1; : : : ; n � 1, are �xed reals,

3. x 2 C

n�1

[a; b℄ suh that

C

D

�; 

a+

x exists and is ontinuous in [a; b℄,

4. f : [a; b℄�R! R is ontinuous.

Also, we denote x

0

a

:= x

a

. We �rst prove an equivalene relation between the frational Cauhy problem (P ) and the Volterra

integral equation.

Theorem 2 A funtion x 2 C

n�1

[a; b℄ is a solution to problem (P ) if and only if x satis�es the following frational integral

equation

x(t) = I

�; 

a+

f (t; x(t)) +

n�1

∑

k=0

x

k

a

k!

( (t) �  (a))

k

: (1)

4 Copyright
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Proof This result is a onsequene of Theorem 1. The impliation (P )) (1) is lear: applying the operator I

�; 

a+

to both sides

of the equation

C

D

�; 

a+

x(t) = f (t; x(t)) and using the initial onditions, we obtain (1). To prove the onverse, we apply the

operator

C

D

�; 

a+

to both sides of equation (1) and use the fat that

C

D

�; 

a+

( (t) �  (a))

k

= 0; 8k 2 f0; 1; : : : ; n � 1g;

to obtain

C

D

�; 

a+

x(t) = f (t; x(t)). Finally, we have to prove that the initial onditions are also met. It is lear that x(a) = x

a

.

Also, diret omputations lead to

x

[1℄

 

(t) =

x

0

(t)

 

0

(t)

=

1

�(�� 1)

∫

t

a

 

0

(�)( (t) �  (�))

��2

f (�; x(�)) d� +

n�1

∑

k=1

x

k

a

(k � 1)!

( (t) �  (a))

k�1

;

and so x

[1℄

 

(a) = x

1

a

. Repeating this proess, we arrive to

x

[n�1℄

 

(t) =

(x

[n�2℄

(t))

0

 

0

(t)

=

1

�(�� n + 1)

∫

t

a

 

0

(�)( (t) �  (�))

��n

f (�; x(�)) d� + x

n�1

a

:

Sine f (�; x(�)) is ontinuous on [a; b℄, there exists a positive onstant A suh that

∣

∣

∣

∣

1

�(�� n + 1)

∫

t

a

 

0

(�)( (t) �  (�))

��n

f (�; x(�)) d�

∣

∣

∣

∣

� A

( (t) �  (a))

��n+1

�(�� n + 2)

;

whih vanishes at the initial point t = a, and thus x

[n�1℄

 

(a) = x

n�1

a

.

Theorem 3 Assume that funtion f is Lipshitz ontinuous with respet to the seond variable, that is, there exists a positive

onstant L suh that

jf (t; x

1

) � f (t; x

2

)j � Ljx

1

� x

2

j; 8t 2 [a; b℄8x

1

; x

2

2 R: (2)

Then, there is a onstant h 2 R

+

suh that there exists a unique solution to problem (P ) on the interval [a; a + h℄ � [a; b℄.

Proof Let h be a real satisfying the onditions

L

( (a + h)�  (a))

�

�(�+ 1)

< 1 and a+ h � b:

De�ne the set

U :=

{

x 2 C

n�1

[a; a+ h℄ :

C

D

�; 

a+

x 2 C[a; a+ h℄

}

; (3)

and the operator F : U ! U by the rule

F [x ℄(t) := I

�; 

a+

f (t; x(t)) +

n�1

∑

k=0

x

k

a

k!

( (t) � (a))

k

: (4)

We �rst prove that F is well de�ned, that is, F (U) � U. For that purpose, onsider a funtion x 2 C

n�1

[a; a+ h℄. It is lear that

the map t 7! F [x ℄(t) is of lass C

n�1

. Also,

C

D

�; 

a+

F [x ℄(t) =

C

D

�; 

a+

I

�; 

a+

f (t; x(t)) +

n�1

∑

k=0

x

k

a

k!

C

D

�; 

a+

( (t) �  (a))

k

= f (t; x(t))

is ontinuous in [a; a+ h℄. Next, we shall show that F is a ontration. Given x

1

; x

2

2 U, we have

kF (x

1

)� F (x

2

)k = max

t2[a;a+h℄

jF [x

1

℄(t)� F [x

2

℄(t)j = max

t2[a;a+h℄

jI

�; 

a+

(f (t; x

1

(t))� f (t; x

2

(t)))j

� L

( (a + h)�  (a))

�

�(�+ 1)

kx

1

� x

2

k;

whih proves that F is a ontration. By the Banah �xed point theorem, we get the result of the theorem.

Next, we prove the existene of a solution to the frational Cauhy problem (P ) using on the Shaefer �xed point theorem.

Theorem 4 Assume that funtion f is ontinuous and there exist two positive onstants k

0

and k

1

suh that

jf (t; x)j � k

0

+ k

1

jx j; 8t 2 [a; b℄8x 2 R:

Then, there exists a onstant h > 0 suh that problem (P ) has at least one solution de�ned on the interval [a; a + h℄ � [a; b℄.

Math. Meth. Appl. Si. 2009, 00 1{15 Copyright



 2009 John Wiley & Sons, Ltd. 5

Prepared using mmaauth.ls



Mathematial

Methods in the

Applied Sienes R. Almeida, A.B. Malinowska and M.T.T. Monteiro

Proof Let h > 0 be suh that a + h � b and

1�

k

1

�(�+ 1)

( (a + h)� (a))

�

> 0:

Consider the set U and the operator F : U ! U de�ned by (3) and (4), respetively. We shall divide the proof in four steps.

Claim I: F is ontinuous.

Let (x

n

) be a sequene onverging to x in U. Then,

kF (x

n

)� F (x)k = max

t2[a;a+h℄

jF [x

n

℄(t)� F [x ℄(t)j = max

t2[a;a+h℄

jI

�; 

a+

(f (t; x

n

(t))� f (t; x(t)))j

� kf (�; x

n

(�))� f (�; x(�))k

( (a + h)�  (a))

�

�(�+ 1)

:

Sine f is a ontinuous funtion, we have

F (x

n

)� F (x)! 0 as n!1:

Claim II: F maps bounded sets into bounded sets in U.

We prove that, for all r > 0, there exists some r

0

> 0 suh that

8x 2 A

r

:= fx 2 U : kxk � rg : kF (x)k � r

0

:

Indeed, given x 2 A

r

, and using the relation

jf (t; x(t))j � k

0

+ k

1

kxk � k

0

+ k

1

r; 8t 2 [a; a+ h℄;

we have

kF (x)k �

k

0

+ k

1

r

�(�+ 1)

( (a + h)�  (a))

�

+

n�1

∑

k=0

jx

k

a

j

k!

( (a + h)�  (a))

k

:= r

0

;

whih is independent of t and x , and so F is uniformly bounded.

Claim III: F maps bounded sets into equiontinuous sets in U.

Let t

1

; t

2

2 [a; a+ h℄ with t

1

< t

2

, A

r

de�ned as in Claim II, and set the signum funtion

sgn(�) :=

{

1 if � > 1

�1 if � 2 (0; 1):

Then, for all x 2 A

r

:

jF [x ℄(t

2

)� F [x ℄(t

1

)j

� jI

�; 

a+

(f (t

2

; x(t

2

))� f (t

1

; x(t

1

)))j +

n�1

∑

k=0

jx

k

a

j

k!

[

( (t

2

)�  (a))

k

� ( (t

1

) �  (a))

k

]

=

1

�(�)

∣

∣

∣

∣

∫

t

2

a

 

0

(�)( (t

2

)�  (�))

��1

f (�; x(�)) d� �

∫

t

1

a

 

0

(�)( (t

1

) �  (�))

��1

f (�; x(�)) d�

∣

∣

∣

∣

+

n�1

∑

k=0

jx

k

a

j

k!

[

( (t

2

) �  (a))

k

� ( (t

1

) � (a))

k

]

�

k

0

+ k

1

r

�(�)

[
∫

t

1

a

sgn(�) 

0

(�)

[

( (t

2

)�  (�))

��1

� ( (t

1

)�  (�))

��1

]

d�

+

∫

t

2

t

1

 

0

(�)( (t

2

)�  (�))

��1

d�

]

+

n�1

∑

k=0

jx

k

a

j

k!

[

( (t

2

) �  (a))

k

� ( (t

1

) � (a))

k

]

�

k

0

+ k

1

r

�(�+ 1)

[sgn(�) [( (t

2

)�  (a))

�

� ( (t

2

)�  (t

1

))

�

� ( (t

1

)�  (a))

�

℄ + ( (t

2

)�  (t

1

))

�

℄

+

n�1

∑

k=0

jx

k

a

j

k!

[

( (t

2

) �  (a))

k

� ( (t

1

) � (a))

k

]

:

Sine the right-hand side of the above inequality onverges to zero as t

2

! t

1

, we have that F [x ℄(t

2

)! F [x ℄(t

1

). As a

onsequene of Claims I{III together with the Arzel�a{Asoli Theorem, we onlude that F is ompletely ontinuous.

Claim IV: To onlude the proof, we show that the set

T := fx 2 U : x = �F (x) for some � 2 (0; 1)g

6 Copyright
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is bounded. Let x 2 T and � 2 (0; 1) be suh that x = �F (x). For all t 2 [a; a+ h℄, we have

jF [x ℄(t)j �

k

0

+ k

1

kxk

�(�+ 1)

( (t) �  (a))

�

+

n�1

∑

k=0

jx

k

a

j

k!

( (t) �  (a))

k

;

and so

kxk < kF (x)k �

k

0

+ k

1

kxk

�(�+ 1)

( (a + h)�  (a))

�

+

n�1

∑

k=0

jx

k

a

j

k!

( (a + h)�  (a))

k

;

, kxk �

k

0

�(�+1)

( (a + h)�  (a))

�

+

∑

n�1

k=0

jx

k

a

j

k!

( (a + h)�  (a))

k

1�

k

1

�(�+1)

( (a + h)�  (a))

�

;

whih proves that T is bounded. By the Shaefer �xed point theorem, F has a �xed point.

Corollary 1 Assume that funtion f is ontinuous and bounded. Then, there is at least one solution to problem (P ), de�ned on

some interval [a; a+ h℄.

3.2. Piard iteration

Let us reall that, by Theorem 2, x is a solution of problem (P ) if and only if x is a solution of the equation

x(t) = I

�; 

a+

f (t; x(t)) +

n�1

∑

k=0

x

k

a

k!

( (t) �  (a))

k

: (5)

Consider the sequene of funtions (x

m

)

1

m=0

, de�ned reursively through

{

x

0

(t) =

∑

n�1

k=0

x

k

a

k!

( (t) �  (a))

k

x

m+1

(t) = I

�; 

a+

f (t; x

m

(t)) +

∑

n�1

k=0

x

k

a

k!

( (t) � (a))

k

; m = 0; 1; 2; : : : :

Under the assumptions of Theorem 3, we shall prove that (x

m

)

1

m=0

onverges uniformly on the interval [a; b℄ to a funtion x that

veri�es equation (5). Set

M := max

t2[a;b℄

jf (t; x

0

(t))j:

We prove, by indution, that for all m 2 N[ f0g, the following inequality holds:

jx

m+1

(t) � x

m

(t)j � M

L

m

�((m + 1)�+ 1)

( (t) �  (a))

(m+1)�

:

First, we have that

jx

1

(t)� x

0

(t)j =

∣

∣

∣I

�; 

a+

f (t; x

0

(t))

∣

∣

∣ � MI

�; 

a+

1 = M

( (t) �  (a))

�

�(�+ 1)

:

On the other hand,

jx

m+2

(t)� x

m+1

(t)j � I

�; 

a+

jf (t; x

m+1

(t))� f (t; x

m

(t))j � LI

�; 

a+

jx

m+1

(t)� x

m

(t)j

� M

L

m+1

�((m + 1)�+ 1)

I

�; 

a+

( (t) �  (a))

(m+1)�

= M

L

m+1

�((m + 1)�+ 1)�(�)

( (t) �  (a))

��1

�

∫

t

a

 

0

(�)

(

1 �

 (�) �  (a)

 (t) � (a)

)

��1

( (�) �  (a))

(m+1)�

d�:

Proeeding with the hange of variables

u =

 (�)�  (a)

 (t) �  (a)

;

and with the help of the Beta funtion B(�; �), we arrive to

jx

m+2

(t)� x

m+1

(t)j � M

L

m+1

�((m + 1)�+ 1)�(�)

( (t) �  (a))

(m+2)�

∫

1

0

(1� u)

��1

u

(m+1)�

du

= M

L

m+1

�((m + 1)�+ 1)�(�)

( (t) �  (a))

(m+2)�

B(�; (m + 1)�+ 1)

= M

L

m+1

�((m + 2)�+ 1)

( (t) �  (a))

(m+2)�

:

Math. Meth. Appl. Si. 2009, 00 1{15 Copyright



 2009 John Wiley & Sons, Ltd. 7

Prepared using mmaauth.ls



Mathematial

Methods in the

Applied Sienes R. Almeida, A.B. Malinowska and M.T.T. Monteiro

Now, we prove that the series

1

∑

m=0

M

L

m

�((m + 1)�+ 1)

( (b) � (a))

(m+1)�

is onvergent. Applying the ratio test, we get

lim

m!1

M

L

m+1

�((m+2)�+1)

( (b) � (a))

(m+2)�

M

L

m

�((m+1)�+1)

( (b) � (a))

(m+1)�

= L( (b) �  (a))

�

lim

m!1

�((m + 1)�+ 1)

�((m + 1)�+ 1 + �)

= 0;

sine (see Eq. (1) in [24℄)

�((m + 1)�+ 1)

�((m + 1)�+ 1 + �)

=

1

((m + 1)�+ 1)

�

(

1�

�(�� 1)

2((m + 1)�+ 1)

+O(((m + 1)�+ 1)

�2

)

)

:

Attending that

jx

m+1

(t)� x

m

(t)j � M

L

m

�((m + 1)�+ 1)

( (b) �  (a))

(m+1)�

;

for all t 2 [a; b℄, by the Weierstrass M-test [26℄, we onlude that the series

1

∑

m=0

(x

m+1

(t)� x

m

(t)) +

n�1

∑

k=0

x

k

a

k!

( (t) �  (a))

k

onverges uniformly in [a; b℄, and let x be its limit. Observe that, for all l 2 N,

l�1

∑

m=0

(x

m+1

(t)� x

m

(t)) +

n�1

∑

k=0

x

k

a

k!

( (t) �  (a))

k

= x

l

(t);

and sine

jf (t; x

l

(t))� f (t; x(t))j � Ljx

l

(t) � x(t)j;

we get that f (�; x

l

(�)) onverges uniformly to f (�; x(�)) in [a; b℄, as l !1. Sine

x

m+1

(t) = I

�; 

a+

f (t; x

m

(t)) +

n�1

∑

k=0

x

k

a

k!

( (t) �  (a))

k

; m = 0; 1; 2; : : : ;

letting m!1, we dedue

x(t) = I

�; 

a+

f (t; x(t)) +

n�1

∑

k=0

x

k

a

k!

( (t) �  (a))

k

;

that is, x is a solution to problem (P ). Also, we have the upper bound

∣

∣

∣

∣

∣

x(t) �

n�1

∑

k=0

x

k

a

k!

( (t) �  (a))

k

∣

∣

∣

∣

∣

�

1

∑

m=0

jx

m+1

(t) � x

m

(t)j

�

1

∑

m=0

M

L

m

�((m + 1)�+ 1)

( (t) � (a))

(m+1)�

�

M

L

1

∑

m=1

(L( (t) �  (a))

�

)

m

�(m�+ 1)

=

M

L

(E

�

(L( (t) �  (a))

�

) � 1) ;

where E

�

is the Mittag{Le�er funtion:

E

�

(z) :=

1

∑

k=0

z

k

�(k� + 1)

:

Example 1 Consider the system

{

C

D

1:5; 

0+

x(t) = x(t)

x(0) = 1; x

[1℄

 

(0) = 0:

The solution of this problem is the funtion (see Lemma 2 in [5℄).

x(t) = E

�

(( (t) �  (0))

1:5

):
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For this ase, the Piard iterative proess is desribed as

{

x

0

(t) = 1

x

m+1

(t) = 1 + I

1:5; 

0+

x

m

(t); m = 0; 1; 2; : : :

In Figure 1, we present the results for two di�erent kernels: (a)  (t) = t, (b)  (t) = t

2

. In both ases, we present the plot of

the exat solution x and three approximations of it, by onsidering x

1

, x

3

and x

5

, in the Piard iterations.

(a) For  (t) = t. (b) For  (t) = t

2

.

Figure 1. The Piard iterations with respet to the two di�erent kernels.

3.3. The long-term behaviour of solutions

Consider the following initial value problem

C

D

�; 

a+

x(t) = f (t; x(t)); x(a) = x

a

; (6)

where 0 < � < 1, x

a

2 R. We assume that  : [a;1)! R is an inreasing and unbounded funtion suh that  

0

(x) 6= 0 for all

t � a. We are interested in the behaviour of the solutions of (6) when t !1. Therefore, we have to extend previously presented

results on the existene and uniqueness of solutions.

Theorem 5 Assume that funtion f : [a; b℄�R! R is ontinuous and Lipshitz with respet to the seond variable, that is,

ondition (2) holds. Then, there exists a unique solution x 2 C[a; b℄ to problem (6).

Proof Let t

1

2 R be suh that a < t

1

< b and

L

( (t

1

)�  (a))

�

�(�+ 1)

< 1:

Then, using the same method applied in the proof of Theorem 3, we an show that there exists a unique solution x

1

2 C[a; t

1

℄ to

problem (6). This solution an be found applying the Piard iteration, presented in Setion 3.2. Now observe that, by Theorem 2,

we an write a solution to (6) in the form:

x(t) = x

a

+

1

�(�)

∫

t

1

a

 

0

(�)( (t) �  (�))

��1

f (�; x(�)) d� +

1

�(�)

∫

t

t

1

 

0

(�)( (t) �  (�))

��1

x(�) d�: (7)

Given that over the interval [a; t

1

℄ equation (6) possesses a unique solution, we an rewrite (7) as follows

x(t) = x

0

(t) +

1

�(�)

∫

t

t

1

 

0

(�)( (t) �  (�))

��1

x(�) d�;

where

x

0

(t) = x

a

+

1

�(�)

∫

t

1

a

 

0

(�)( (t) �  (�))

��1

f (�; x(�)) d�

is a known funtion. Now, let hoose t

2

= t

1

+ h

1

with h

1

> 0, suh that t

2

< b and

L

( (t

2

)�  (t

1

))

�

�(�+ 1)

< 1:

Math. Meth. Appl. Si. 2009, 00 1{15 Copyright
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By the same arguments as in the proof of Theorem 3, we an show that there exists a unique solution x

2

2 C[t

1

; t

2

℄ to equation

(6). Repeating the previous reasoning, hoosing t

k

= t

k�1

+ h

k�1

with h

k�1

> 0 suh that t

k

< b and

L

( (t

k

)�  (t

k�1

))

�

�(�+ 1)

< 1;

we an show that problem (6) possesses a unique solution x

k

2 C[t

k�1

; t

k

℄ on eah interval [t

k�1

; t

k

℄, k = 1; : : : ; l , where

a = t

0

< t

1

< : : : < t

l

= b. This shows that there exists a unique pieewise ontinuous solution to problem (6) on the interval

[a; b℄. However, sine  is ontinuous, we have

lim

"!0

+

∫

t+"

t

 

0

(�)( (t) �  (�))

��1

d� = 0:

Therefore, the obtained solution is ontinuous on [a; b℄.

Corollary 2 Assume that funtion f : [a;1) �R! R is ontinuous and Lipshitz with respet to the seond variable, that is,

ondition (2) holds for all t 2 [a;1) and all x

1

; x

2

2 R. Then, there exists a unique solution x 2 C[a;1) to problem (6).

Proof Note that, under assumptions of Corollary 2, we an apply Theorem 5. Sine we an take b > a arbitrary large, it follows

that there exists a uniquely de�ned funtion x 2 C[a;1) solving problem (6).

Observe that, if f (t; 0) = 0 for all t � a, and x

a

= 0, then the funtion x(t) = 0 is a solution to initial value problem (6).

Below we prove onditions ensuring that a solution to (6), with x

a

> 0, onverges to zero as t !1.

Theorem 6 Consider problem (6) with x(a) = x

a

> 0 and funtion f : [a;1) � [0; x

a

℄! (�1; 0℄ being ontinuous and Lipshitz

with respet to the seond variable, that is, ondition (2) holds for all t 2 [a;1) and all x

1

; x

2

2 [0; x

a

℄. Moreover, assume that

f (t; 0) = 0 for all t. Then, the unique solution to (6) exists on [a;1) and satis�es 0 � x(t) � x

a

for all t � a.

Proof By Theorem 2, a solution to (6) satis�es the following

x(t) = x

a

+

1

�(�)

∫

t

a

 

0

(�)( (t) �  (�))

��1

f (�; x(�)) d�: (8)

De�ne

~

f (t; y) =











f (t; x

a

) if y > x

a

f (t; y) if 0 � y � x

a

0 if y < 0

(9)

and in this way extend the domain of f to [a;1) �R. The extended funtion

~

f satis�es assumptions of Corollary 2. Therefore,

problem (6), with funtion (9), has a unique ontinuous solution x . Now, we prove that this solution satis�es inequality

0 � x(t) � x

a

for all t � a. Suppose that x hanges the sign, that is











x(t) > 0 for a � t < t

1

x(t) = 0 for t = t

1

x(t) < 0 for t

1

< t � t

2

:

Thus, for the extended

~

f we have

{

~

f (t; x(t)) � 0 for a � t � t

1

~

f (t; x(t)) = 0 for t

1

< t � t

2

:

(10)

Combining (10) with (8) yields

x(t

2

) = x

a

+

1

�(�)

∫

t

2

a

 

0

(�)( (t

2

) � (�))

��1

~

f (�; x(�)) d�

= x

a

+

1

�(�)

∫

t

1

a

 

0

(�)( (t

2

) � (�))

��1

~

f (�; x(�)) d�

+

1

�(�)

∫

t

2

t

1

 

0

(�)( (t

2

)�  (�))

��1

~

f (�; x(�)) d�

= x

a

+

1

�(�)

∫

t

1

a

 

0

(�)( (t

2

) � (�))

��1

~

f (�; x(�)) d�

� x

a

+

1

�(�)

∫

t

1

a

 

0

(�)( (t

1

) � (�))

��1

~

f (�; x(�)) d�

= x(t

1

) = 0;

10 Copyright



 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Si. 2009, 00 1{15

Prepared using mmaauth.ls



R. Almeida, A.B. Malinowska and M.T.T. Monteiro

Mathematial

Methods in the

Applied Sienes

beause  is an inreasing funtion. But x(t

2

) < 0, a ontradition. Hene, x(t) � 0 for all t � a. Now, observe that, by

de�nition,

~

f (t; x) � 0 for all t and x . Therefore, by (8), x(t) � x

a

. We have shown that 0 � x(t) � x

a

for all t. This means

that (t; x(t)) is in the original domain of f and we onlude that x is the unique solution to originally onsidered problem.

Theorem 7 Consider problem (6) with x(a) = x

a

> 0 and funtion f : [a;1)� [0; x

a

℄! (�1; 0℄ being ontinuous and Lipshitz

with respet to the seond variable. Moreover, assume that f (t; 0) = 0 for all t, and that for all b > 0 and all ontinuous funtions

y : [a;1)! [b; x

a

℄ the following

lim

t!1

I

�; 

a+

f (t; y(t)) = �1 (11)

holds. Then, the unique solution to (6) satis�es lim

t!1

x(t) = 0.

Proof Firstly, observe that by Theorem 6 there exists a unique solution to problem (6), say x , suh that 0 � x(t) � x

a

for all

t � a. Therefore, lim

t!1

x(t) � 0. Suppose that lim

t!1

x(t) = g > 0 and de�ne

y(t) =

{

x(t) for t > t

0

x(t

0

) for t � t

0

;

(12)

where t

0

is suh that x(t) � g=2 for all t � t

0

. Clearly, y : [a;1)! [g=2; x

a

℄ is a ontinuous funtion. Applying Theorem 2 for

t > t

0

, we get

x(t) = x

a

+

1

�(�)

∫

t

a

 

0

(�)( (t) �  (�))

��1

f (�; x(�)) d�

= x

a

+

1

�(�)

∫

t

a

 

0

(�)( (t) �  (�))

��1

[f (�; x(�))� f (�; y(�))℄ d�

+

1

�(�)

∫

t

a

 

0

(�)( (t) �  (�))

��1

f (�; y(�)) d�:

(13)

Observe that the seond term in (13) is bounded. Indeed, we have

∣

∣

∣

∣

∫

t

a

 

0

(�)( (t) �  (�))

��1

[f (�; x(�))� f (�; y(�))℄ d�

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

t

0

a

 

0

(�)( (t) �  (�))

��1

[f (�; x(�))� f (�; y(�))℄ d�

∣

∣

∣

∣

�

∣

∣

∣

∣

∫

t

0

a

 

0

(�)( (t) �  (�))

��1

f (�; x(�)) d�

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

t

0

a

 

0

(�)( (t) � (�))

��1

f (�; x(t

0

)) d�

∣

∣

∣

∣

� 2 sup

�2[a;t

0

℄;z2[0;x

a

℄

jf (�; z)j

1

�

[( (t) �  (a))

�

� ( (t) �  (t

0

))

�

℄

As  is inreasing, the last expression is a positive and dereasing funtion of t and hene bounded. Now, letting t !1 in (13)

we obtain

lim

t!1

x(t) = lim

t!1

(

x

a

+

1

�(�)

∫

t

a

 

0

(�)( (t) � (�))

��1

[f (�; x(�))� f (�; y(�))℄ d�

+

1

�(�)

∫

t

a

 

0

(�)( (t) � (�))

��1

f (�; y(�)) d�

)

and, by assumption (11), we have lim

t!1

x(t) = �1, whih ontradits to x(t) � 0. Hene, lim

t!1

x(t) = 0.

Example 2 Consider the following initial value problem

C

D

�; 

a+

x(t) = ��x(t); x(a) = x

a

> 0; � > 0: (14)

Note that assumptions of Theorem 7 are satis�ed. In fat, sine  is an inreasing and unbounded funtion, for all b > 0 and

all ontinuous funtions y : [a;1)! [b; x

a

℄, we have the following:

lim

t!1

I

�; 

a+

(��y(t)) � ��b lim

t!1

( (t) �  (a))

�

�(�+ 1)

= �1:

Therefore, there exists a unique solution x to (14), and suh solution satis�es the ondition lim

t!1

x(t) = 0. Figure 2 presents

the solutions to problem (14) for di�erent values of �, with � = 2. In plot (a), the kernel is the funtion  (t) = 2

t

, and in plot

(b), the kernel is  (t) = t. We remark that ase (b) orresponds to the (usual) Caputo frational derivative, with � = 1 being

the lassial derivative. Figure shows similarities between orresponding results with the  -Caputo derivative and the Caputo

derivative. However,  -Caputo derivative provides, besides the order, any number of free parameters to better alibrate a system.

This is a major advantage of the  -Caputo derivative over the lassial frational derivatives.
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(a) For  (t) = 2

t

. (b) For  (t) = t.

Figure 2. Solutions to equation (14) with � = 2, di�erent values of � and for two kernels.

4. Appliations to real-world problems

In this setion, we onsider appliations of FDE's, with  -Caputo frational derivatives, to the world population growth and the

gross domesti produt (GDP) of some ountries. The goal is to determine the order � and the kernel  in suh a way that

solutions to FDE's �t with given real data. Obtained in this way a frational model, we then ompared it with the lassial one

(that is, when the order is � = 1 and the kernel is  (t) = t). The least squares �tting tehnique (routine lsqurvefit from

the Matlab Optimization Toolbox [20℄) will be used to provide a solution to the problem of �nding the values of the unknown

parameter A of the theoretial model x = F (A; t). Given a ertain data onsisting of N points (

~

t

i

; ~x

i

)

i=1;:::;N

, the goal is to

minimize the sum of squared residuals, a residual being the di�erene between an observed value and the �tted value provided

by the model:

minE

abs

= min

N

∑

i=1

[~x

i

� F (A;

~

t

i

)℄

2

:

Sine  is a inreasing funtion, we impose the onstraint  (

~

t

i

) <  (

~

t

i+1

), for all i . In eah of the two appliations, we will �nd

the optimal parameters for frational models, that is, the order � and the values of the kernel in the data  (

~

t

i

), for i = 1; : : : ; N.

To ompare the eÆieny of the proedure, we present in eah ase the relative errors

E

rel

=

∑

N

i=1

[~x

i

� F (A;

~

t

i

)℄

2

∑

N

i=1

(~x

i

)

2

:

In our alulations, we use the data available from [23℄, onsisting of 28 values, from the year 1960 until 2014, measured every

two years. Then, using the best estimative of the parameters, we determine an approximation of the data with respet to the odd

years. To estimate the values of  in the odd years we do the following proedure: for eah i ,  (t

2i�1

) = ( (t

2i�2

) +  (t

2i

))=2,

exluding 2015, where  (2015) =  (2014).

4.1. World population growth

In 1798, the British eonomist Thomas Malthus published a book entitled An Essay on the Priniple of Population, where several

issues were onsidered regarding the growth of the human population. Malthus purposed a theoretial model, were the human

population exhibits exponential growth, being desribed by the linear di�erential equation N

0

(t) = �N(t), where � is the net

growth rate (birth rate minus death rate in population) and it is assumed to be onstant in time. The solution of this di�erential

equation is the exponential funtion

N(t) = N

0

exp(�t); (15)

where N

0

is the population at time t = 0. This model does not take into aount the natural onstraints of the system, like the

food and spae availability, the ompetition between speies, pollution, et. Thus, more omplex di�erential equations may be

purposed to deal with suh problems regarding real data (e.g. Verhulst and augmented logisti models). However, the Malthusian

type model with the  -Caputo frational derivative is suitable enough for this purpose, as we shall see. Let us onsider the linear

FDE

C

D

�; 

0+

N(t) = �N(t); where � 2 (0; 1) is a real. The solution of the equation is given by the Mittag{Le�er funtion:

N(t) = N

0

E

�

(�( (t) �  (0))

�

): (16)

Observe that, when � = 1, we reover the lassial solution (15). We analyze growth rates in Lithuania and Qatar, ountries

with one of the lowest and the highest growth rates, respetively. The initial onditions are given by the initial population in eah

ountry: N

0

= 2 778 550, for Lithuania, and N

0

= 47 309, for Qatar. In Figure 3, we present the obtained kernels for Lithuania

and for Qatar that optimally �t with data. Figure 4 shows the two models (lassial and frational) for the two ountries,

ompared with the population size. In Tables 1-2, we present relative errors obtained in the proedure and the values of the

estimated parameters � and �.
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(a) Lithuania. (b) Qatar.

Figure 3. The optimal kernel for Lithuania and for Qatar.

(a) Lithuania. (b) Qatar.

Figure 4. Population size: lassial vs frational models.

Even years Odd years � �

Classial 0:0104 0:6769 0:0049 {

Frational 0:0040 0:0045 0:1251 0:1111

Table 1. Errors and the parameters with respet to Lithuania.

Even years Odd years � �

Classial 0:0217 0:0191 0:0702 {

Frational 6:5984 � 10

�10

0:0065 0:1503 0:9270

Table 2. Errors and the parameters with respet to Qatar.

4.2. GDP growth rate in USA

The GDP per apita is equal to the GDP of a ountry divided by the midyear population of the ountry. This is the average

per-person output of the eonomy. Kitov purposed in 2005 [16℄ a model to desribe the GDP growth rate variations in the USA.

He assumed that annual inrement is onstant in time and expressed the dynamis by a linear di�erential equation G

0

(t) = A,

where G is the real GDP per apita and A is a onstant. The solution is given by

G(t) = At + G

0

; (17)

Math. Meth. Appl. Si. 2009, 00 1{15 Copyright
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where G

0

is the starting GDP in the studied period. If we onsider now the situation modeled by

C

D

�; 

0+

G(t) = A, its solution is

given by the funtion

G(t) = I

�; 

0+

A+ G

0

; (18)

when � 2 (0; 1). Later, when we apply the least squares method to determine the optimal �, we do not impose any onstraint

over � in order to obtain a better auray for the model. We also remark that, onsidering (t) := t, and �! 1

�

, the frational

solution (18) onverges to the lassial solution (17). As initial ondition we use G

0

= $3007, orresponding to the GDP per

apita in USA in the year 1960. In Figure 5, we present the kernel obtained by the proedure, and ompare both models to the

given data.

(a) Kernel. (b) GDP.

Figure 5. The optimal kernel and the GDP for USA.

In Table 3, we present the errors obtained, for the even and for the odd years, and the values of the parameters A and �.

Even years Odd years A �

Classial 0:0299 0:0289 0:8172 {

Frational 3:0109 � 10

�7

0:0014 0:3287 1:6846

Table 3. Errors and the parameters with respet to USA.

5. Conlusions

In reent years, many new types of frational derivatives have been proposed, investigated and applied to real world models.

Therefore, it is natural to try to ombine those onepts into a single one. As we have mentioned, the important issue is

to develop the fundamentals of a theory for frational di�erential equations with a general derivative. In this paper, we have

disussed the lassial questions onerning di�erential equations, suh as existene and uniqueness of solutions, the Piard

iteration method and the long-term behaviour of solutions. Moreover, using the real data, we have shown, that mathematial

models with the  -Caputo frational derivative are more exible. Apparently, the  -Caputo derivative has the potential to extrat

hidden aspets of real world phenomena.
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