CHAPTER 8

OTHER PRODUCT MANUFACTURE AND USE

NOTE: subject to final copy-edit and layout prior to its final publication
Authors

Section 8.3

Michael Roger Czerniak (UK), Sébastien Raoux (France/USA) and Andrea Zille (Italy/Portugal)

Appendix 1 to Volume 3

Sébastien Raoux (France/USA) and Andrea Zille (Italy/Portugal)
Contents

8 Other product manufacture and use ... 8.5
 8.1 Introduction .. 8.5
 8.2 Emissions of SF6 and PFCs from electrical equipment 8.5
 8.3 Use of SF6 and PFCs in other products ... 8.5
 8.3.1 Introduction ... 8.5
 8.3.2 Methodological issues .. 8.5
 8.3.2.1 Choice of method .. 8.5
 8.3.2.2 Choice of emission factors ... 8.16
 8.3.2.3 Choice of activity data .. 8.16
 8.3.2.4 Completeness .. 8.16
 8.3.2.5 Developing a consistent time series .. 8.16
 8.3.3 Uncertainty assessment ... 8.16
 8.3.4 Quality assurance / quality control (QA/QC), reporting and documentation .. 8.17
 8.4 N2O from Product uses ... 8.18
References ... 8.19

Equations

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation 8.12</td>
<td>Emissions from AWACS (default emission actor) .. 8.7</td>
</tr>
<tr>
<td>Equation 8.13</td>
<td>Emissions from AWACS (user mass-balance) ... 8.7</td>
</tr>
<tr>
<td>Equation 8.14</td>
<td>University and research particle accelerator emissions (country-level) 8.9</td>
</tr>
<tr>
<td>Equation 8.15</td>
<td>University and research particle accelerator emissions (accelerator-level emission factor) .. 8.10</td>
</tr>
<tr>
<td>Equation 8.16</td>
<td>Total research accelerator emissions ... 8.10</td>
</tr>
<tr>
<td>Equation 8.17</td>
<td>Research accelerator emissions (accelerator-level mass-balance) 8.10</td>
</tr>
<tr>
<td>Equation 8.18</td>
<td>Industrial/medical accelerator emissions (country-level) 8.12</td>
</tr>
<tr>
<td>Equation 8.19</td>
<td>Adiabatic property applications 8.13</td>
</tr>
<tr>
<td>Equation 8.20</td>
<td>Double-glazed windows: assembly ... 8.13</td>
</tr>
<tr>
<td>Equation 8.21</td>
<td>Double-glazed windows: use ... 8.13</td>
</tr>
<tr>
<td>Equation 8.22</td>
<td>Double-glazed windows: disposal ... 8.13</td>
</tr>
<tr>
<td>Equation 8.22a (new)</td>
<td>Waterproofing of electronic circuits.. 8.14</td>
</tr>
<tr>
<td>Equation 8.23</td>
<td>Prompt emissions... 8.16</td>
</tr>
</tbody>
</table>
Figures

Figure 8.2 Decision tree for SF₆ from AWACS ... 8.6
Figure 8.3 Decision tree for SF6 from research accelerators ... 8.9
Figure 8.4 Decision tree for industrial and medical particle accelerators 8.11

Tables

Table 8.7 SF₆ emissions per plane per year ... 8.7
Table 8.8 National AWACS fleets .. 8.7
Table 8.9 Average SF₆ charge in a particle accelerator by process description 8.12
Table 8.10 Emission factor for each process description, (SF₆ emissions from industrial and medical particle accelerators) ... 8.12
Table 8.11 (new) Emission factor for waterproofing of electronic circuits 8.14
8 OTHER PRODUCT MANUFACTURE AND USE

Users are expected to go to Mapping Tables in Annex 5, before reading this chapter. This is required to correctly understand both the refinements made and how the elements in this chapter relate to the corresponding chapter in the 2006 IPCC Guidelines.

8.1 INTRODUCTION

No refinement

8.2 EMISSIONS OF SF₆ AND PFCs FROM ELECTRICAL EQUIPMENT

No refinement

8.3 USE OF SF6 AND PFCs IN OTHER PRODUCTS

8.3.1 Introduction

This source category excludes the following source categories that are addressed elsewhere in the 2006 Guidelines:

- Production of SF₆ and PFCs (Section 3.10);
- Production and use of electrical equipment (Section 8.2);
- Primary and secondary production of magnesium and aluminium (Chapter 4); and
- Semiconductor and flat panel display manufacturing (Chapter 6).

Identified remaining applications in this source category include:

- SF₆ and PFCs used in military applications, particularly SF₆ used in airborne radar systems, e.g., AWACS (Airborne Warning and Control System), and PFCs used as heat transfer fluids in high-powered electronic applications;
- SF₆ used in equipment in university and research particle accelerators;
- SF₆ used in equipment in industrial and medical particle accelerators;
- ‘Adiabatic’ applications utilising the low permeability through rubber of SF₆ and some PFCs, e.g., car tires and sport shoe soles;
- SF₆ used in sound-proof windows;
- PFCs used as heat transfer fluids in commercial and consumer applications;
- PFCs used in cosmetics and in medical applications;
- Other uses e.g. gas-air tracer in research and leak detectors.
- PFCs and other fluorinated compounds in the manufacturing of textiles and waterproofing of electronic circuits

8.3.2 Methodological issues

8.3.2.1 Choice of method

The good practice method is to use either consumption data from users of SF₆ or PFCs or top-down import, export and consumption data from national SF₆ producers and distributors, disaggregated by major type of SF₆ or PFC application. Acquiring this data will entail a survey of all producers and distributors of SF₆ and PFCs to identify
total net SF₆ and PFC consumption. Once the data are obtained, the amount of SF₆ and PFC consumed by application in this source category should be estimated.

MILITARY APPLICATIONS

SF₆ EMISSIONS FROM OPERATION OF AWACS

SF₆ is used as an insulating medium in the radar systems of military reconnaissance planes of the Boeing E-3A type, commonly known as AWACS. The purpose of the SF₆ is to prevent electric flashovers in the hollow conductors of the antenna, in which high voltages of more than 135 kV prevail. When the plane ascends, SF₆ is automatically released from the system and into the atmosphere to maintain the appropriate pressure difference between the system and the outside air. When the plane descends, SF₆ is automatically charged into the system from an SF₆ container on board. Most emissions occur during the pressure-balancing process on ascent, but emissions from system leakage can also occur during other phases of flight or during time on the ground. Annual emissions per plane have been estimated to be 740 kg, while the charge of each system is approximately 13 kg.

Figure 8.2 Decision tree for SF₆ from AWACS

Note:
1. See Volume 1 Chapter 4, Methodological Choice and Identification of Key Categories (noting Section 4.1.2 on limited resources), for discussion of key categories and use of decision trees.

Tier 1 method – SF₆ emissions per plane

If a country does not have data on SF₆ consumption by its AWACS, it may use a per-plane emission factor to estimate emissions. An emission factor of 740 kg per plane per year is presented in Table 8.7 below; this figure is based on estimates of SF₆ emissions from NATO Boeing E-3As. Note that actual emissions per plane are strongly influenced by the average number of sorties (take-offs) per plane per year. More frequent sorties will raise the emission rate above 740 kg/plane; less frequent sorties will lower it. Leakage rates during flight or during time on the ground will also affect the emission rate.
EQUATION 8.12

Emissions from AWACS (Default Emission Actor)

User Emissions = 740 kg • Number of planes in AWACS fleet

TABLE 8.7

SF₆ Emissions per Plane per Year

<table>
<thead>
<tr>
<th>Emissions per Plane per Year (kg SF₆)</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>740 kg</td>
<td>±100 kg</td>
</tr>
</tbody>
</table>

Source: Schwarz (2005)

Table 8.8 includes information on national AWACS fleets worldwide (Boeing, 2005); like other activity data, it may quickly go out of date. Countries are in the best position to know the numbers of planes in their AWACS fleets.

TABLE 8.8

National AWACS Fleets

<table>
<thead>
<tr>
<th>Country/Organisation</th>
<th>USA</th>
<th>Japan</th>
<th>France</th>
<th>UK</th>
<th>Other NATO</th>
<th>Saudi Arabia</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. AWACS</td>
<td>33</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>17</td>
<td>5</td>
<td>70</td>
</tr>
</tbody>
</table>

Source: Boeing (2005)

Tier 2 method – user mass-balance method

The most accurate method for estimating SF₆ emissions from AWACS is to track SF₆ consumption by the systems. To do so, the following equations, which are similar to the utility-level variant of the Tier 3 method for electrical equipment, may be used. Note that for AWACS, acquisitions and disbursements of SF₆ containers are likely to be considerably more important to the result than acquisitions and retirements of operating systems.

EQUATION 8.13

Emissions from AWACS (User Mass-Balance)

User Emissions = Decrease in SF₆ Inventory + Acquisitions of SF₆ – Disbursements of SF₆ – Net Increase in AWACS Fleet Charge

Where:

- **Decrease in SF₆ Inventory** = SF₆ stored in containers at the beginning of the year – SF₆ stored in containers at the end of the year
- **Acquisitions of SF₆** = SF₆ purchased from chemical producers or distributors in bulk + SF₆ purchased from AWACS manufacturers or distributors with or inside of new planes + SF₆ returned to site after off-site recycling
- **Disbursements of SF₆** = SF₆ contained in AWACS that are transferred to other entities + SF₆ returned to suppliers + SF₆ sent off-site for recycling + SF₆ destroyed
- **Net Increase in AWACS Fleet Charge** = 13 kg • (New AWACS – Retiring AWACS)

SF₆ and PFC Emissions from Other Military Applications

There is a wide range of military applications using PFCs or SF₆.¹ Military electronics are believed to be an important and growing application of PFC heat transfer fluids, which are valued for their stability and dielectric properties. The fluids are used in ground and airborne radar (klystrons), avionics, missile guidance systems, ECM

(Electronic Counter Measures), sonar, amphibious assault vehicles, other surveillance aircraft, lasers, SDI (Strategic Defense Initiative), and stealth aircraft. PFCs may also be used to cool electric motors, particularly in applications where noise reduction is valued, e.g., in ships and submarines. The specific PFCs used in these applications are believed to be similar to those identified as heat transfer fluids in electronics manufacturing in Chapter 6. Spray cooling, jet impingement cooling, and pool boiling appear to be the favoured systems for heat removal. In all of these cooling applications, the PFC is contained in a closed system, and neither replacement nor replenishment of the PFC liquid appears to be required. Thus, the greatest opportunities for emissions are the manufacture, maintenance, and, especially, the disposal of the equipment.

SF₆ is used in high-performance ground and airborne radar systems in their hollow conductors for transmission of high-frequency energy pulses at high voltages from the klystron. Another application of SF₆ is as an oxidant of lithium in Stored Chemical Energy Propulsion System (SCEPS), e.g., in naval torpedoes and in infrared decoys (Koch, 2004). Apparently, these applications of SF₆, like those of the PFC heat transfer fluids enumerated above, are generally more or less enclosed, but servicing and testing procedures may lead to emission. The use of SF₆ for the quieting of torpedo propellers has also been reported (NIST, 1997).

In addition, SF₆ may be emitted as a by-product of the processing of nuclear material for the production of fuel and nuclear warheads. SF₆ is known to be emitted from neutralising excess fluorine during the production of nuclear fuel for civilian applications (AREVA, 2005).

Although it is believed that the total amounts of SF₆ and PFCs consumed and emitted in this sector may be significant, no data on quantities are publicly available so far. Therefore, inventory compilers should try to collect further information from the relevant authorities and, if possible, their suppliers. As noted above, the greatest opportunities for emissions from many of these applications appear to be the manufacture, maintenance, and disposal of the equipment. Thus, if inventory compilers can acquire information on emission rates during the manufacture, maintenance, and disposal of the equipment, along with the quantities of equipment manufactured, in use, and disposed, they can use the Tier 2 or Tier 3 method for electrical equipment to estimate emissions. For applications with different emissions profiles (e.g., prompt emissions), the appropriate equation from Section 8.2 may be used.

SF₆ EMISSIONS FROM UNIVERSITY AND RESEARCH PARTICLE ACCELERATORS

SF₆ is used in university and research operated particle accelerators as an insulating gas. Typically, high voltage equipment is contained and operated within a vessel filled with SF₆ at a pressure exceeding atmospheric pressure. Charges range from five kilograms to over ten thousand kilograms, with typical charges falling between 500 and 3,000 kg. When the equipment requires maintenance, the SF₆ is transferred into storage tanks. SF₆ losses occur primarily during gas recovery and transfer, when pressure relief valves are actuated, and through slow leaks.

Based on two recent studies annual SF₆ losses range between 5 and 7 percent of vessel capacity per year and generally depend on the vessel opening frequency plus the efficiency of the recovery and transfer equipment. World banked capacity is roughly estimated to be 500 tonnes with annual SF₆ emissions of 35 tonnes.

Switzerland has developed a voluntary program to reduce SF₆ emissions from particle accelerators. Suggestions and techniques for reducing SF₆ emissions from these sources exist.
Figure 8.3 Decision tree for SF6 from research accelerators

Tier 1 method – country-level method
In cases where individual user accelerator charge data is unavailable, one extremely rough method involves determining the total number of university and research particle accelerators in the country and using several factors to determine the country-level annual emission rate as noted in Equation 8.14. For this Tier 1 method, the only data that requires collection is the total number of university and research particle accelerators in the given country.

Equation 8.14

University and research particle accelerator emissions (country-level)

\[
\text{Emissions} = \left(\text{Number of university and research particle accelerators in the country} \right) \times \left(\text{SF}_6 \text{ Use Factor} \right) \times \left(\text{SF}_6 \text{ Charge Factor, kg} \right) \times \left(\text{SF}_6 \text{ university and research particle accelerator Emission Factor} \right)
\]

Where:

\text{Number of university and research particle accelerators in the country} = \text{The total number of university and research particle accelerators in the country. This rough method does not require countries to determine the number of accelerators that use SF}_6. \text{To determine if a country has a particle accelerator, go to http://www-elsa.physik.uni-bonn.de/Informationen/accelerator_list.html}
SF_6 Use Factor $= 0.33$ Approximately one third of university and research particle accelerators use SF_6 as an insulator.

SF_6 Charge Factor $= 2400$ kg, SF_6, the average SF_6 charge in a university and research particle accelerator.

SF_6 university and research particle accelerator Emission Factor $= 0.07$, the average annual university and research particle accelerator emission rate as a fraction of the total charge.

Tier 2 method – accelerator-level emission-factor approach

If data on the quantity of SF_6 contained within each university and research accelerator are available, a default emission factor of 7 percent may be multiplied by the total SF_6 charge contained in university and research accelerators in the country. The total country SF_6 emission rate from university and research accelerators is therefore calculated from Equation 8.15.

Equation 8.15

UNIVERSITY AND RESEARCH PARTICLE ACCELERATOR EMISSIONS (ACCELERATOR-LEVEL EMISSION FACTOR)

\[
\text{Total Emissions} = SF_6 \text{ university and research particle accelerator Emission Factor} \times \sum \text{Individual Accelerator Charges}
\]

Where:

SF_6 university and research particle accelerator Emission Factor $= 0.07$, the average annual university and research particle accelerator emission rate as a fraction of the total charge.

Individual User Accelerator Charges $= SF_6$ contained within each university and research accelerator.

Tier 3 method – accelerator-level mass-balance method

SF_6 emissions from university and research facilities operating particle accelerators may be most accurately determined at the user level on an accelerator-by-accelerator basis. Emission calculations are estimated by tracking accelerator charge as well as SF_6 consumption and disposal. As detailed in Equation 8.16, the total emissions are equal to the sum of the individual users’ emissions. Note, under this method, as the overall SF_6 emission rate from particle accelerators is small compared to other SF_6 uses, the associated SF_6 lost in manufacturing is considered negligible and is not included in the calculation.

Equation 8.16

TOTAL RESEARCH ACCELERATOR EMISSIONS

\[\text{Total Emissions} = \sum \text{Individual Accelerator Emissions}\]

Each particle accelerator’s emissions can be calculated as follows:

Equation 8.17

RESEARCH ACCELERATOR EMISSIONS (ACCELERATOR-LEVEL MASS-BALANCE)

\[
\text{Accelerator Emissions} = \text{Decrease in SF}_6 \text{ Inventory} + \text{Acquisitions of SF}_6 - \text{Disbursements of SF}_6 - \text{Net Increase in Accelerator Charge}
\]

Where:

Decrease in SF_6 Inventory $= SF_6$ stored in containers at the beginning of the year – SF_6 stored in containers at the end of the year

Acquisitions of $SF_6 = SF_6$ purchased from chemical producers or distributors in bulk + SF_6 purchased from accelerator manufacturers or distributors with or inside of new accelerator components + SF_6 returned to site after off-site recycling

Disbursements of $SF_6 = SF_6$ contained in components transferred to other entities + SF_6 returned to suppliers + SF_6 sent off-site for recycling + SF_6 destroyed

Net Increase in Accelerator Charge $= SF_6$ Charge of New Components – SF_6 Charge of Retiring Components
SF₆ EMISSIONS FROM INDUSTRIAL AND MEDICAL PARTICLE ACCELERATORS

SF₆ is used as an insulating gas in two types of industrial particle accelerators (low and high voltage) and also in medical (cancer therapy) particle accelerators, as is the case for university and research particle accelerators. However, the emission and charge factors for industrial and medical particle accelerators are different from those of university and research accelerators, as discussed below.

Global banked capacity for industrial particle accelerators is roughly estimated to be 500 tonnes with annual SF₆ emissions of 35 tonnes. Global banked capacity for medical (radiotherapy) particle accelerators is roughly estimated to be less than 5 tonnes with annual SF₆ emissions of less than 5 tonnes. (Schwarz, 2005).

Figure 8.4 Decision tree for industrial and medical particle accelerators

Note:
1. See Volume 1 Chapter 4, Methodological Choice and Identification of Key Categories (noting Section 4.1.2 on limited resources), for discussion of key categories and use of decision trees.

Tier 1 method – country-level method

In cases where individual user accelerator charge data is unavailable, one extremely rough method involves determining the total number of particle accelerators by process description in the country and using factors to determine the country level annual emission rate as noted in Equation 8.18. For this Tier 1 method, the only data
that requires collection is the total number of particle accelerators which contain SF₆ by process description in the
given country.

EQUATION 8.18

INDUSTRIAL/MEDICAL ACCELERATOR EMISSIONS (COUNTRY-LEVEL)

\[
\text{Emissions} = (\text{Number of particle accelerators that use SF₆ by process description in the country}) \times (\text{SF₆ Charge Factor, kg}) \times (\text{SF₆ applicable particle accelerator Emission Factor})
\]

Where:

- **Number of particle accelerators by type in the country** = The total number of particle accelerators by type (industrial high voltage, industrial low voltage and radiotherapy) that use SF₆ in the country, 1, 2, etc. (Only count particle accelerators that use SF₆. This differs for the Tier 1 calculation for university and research particle accelerators)
- **SF₆ Charge Factor** = The average SF₆ charge in a particle accelerator by process description as noted below.
- **SF₆ particle accelerator Emission Factor** = The average annual SF₆ particle accelerator emission rate as a fraction of the total charge by process description.

<table>
<thead>
<tr>
<th>Process Description</th>
<th>SF₆ Charge Factor, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Particle Accelerators – high voltage (0.3-23 MV)</td>
<td>1300</td>
</tr>
<tr>
<td>Industrial Particle Accelerators – low voltage (<0.3 MV)</td>
<td>115</td>
</tr>
<tr>
<td>Medical (Radiotherapy)</td>
<td>0.5 (^a)</td>
</tr>
</tbody>
</table>

\(^a\) This is the average of values ranging from 0.05 kg to over 0.8 kg, depending on model and manufacturer.

Source: Schwarz (2005)

Tier 2 method – user-level emission-factor approach

If data on the quantity of SF₆ contained within each industry and medical accelerator are available, use the Tier 2 method for university and research facilities; however, multiply the emission factor for each process description provided below by the total, country-specific SF₆ charge for that process description.

<table>
<thead>
<tr>
<th>Process Description</th>
<th>Emission Factor, kg /kg SF₆ charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Particle Accelerators – high voltage (0.3-23 MV)</td>
<td>0.07</td>
</tr>
<tr>
<td>Industrial Particle Accelerators – low voltage (<0.3 MV)</td>
<td>0.013</td>
</tr>
<tr>
<td>Medical (Radiotherapy)</td>
<td>2.0 (^a)</td>
</tr>
</tbody>
</table>

\(^a\) This emission factor is the average of values ranging from 1 kg to 10 kg per kg charge, depending on model, manufacturer, and service intervals.

Source: Schwarz (2005)

Tier 3 method – user-level mass-balance method

To calculate SF₆ emissions from industrial and medical particle accelerators, use the same Tier 3 method as the university and research facilities. The customer service organisations for manufacturers and distributors of the equipment are likely to have information on equipment stocks, imports, and exports, and on the quantities of SF₆ used to fill and refill the equipment.

EMISSIONS FROM OTHER APPLICATIONS OF SF₆ AND PFCs

It is good practice to contact all gas producers/distributors to identify SF₆ and PFC users and to investigate the gas consumption of source categories other than those mentioned above. The key difference among the applications
discussed below is the typical delay between the purchase of the SF₆ or PFC and the release of the chemical. In some cases (e.g., SF₆ used in sound-proof glazing, PFCs used as heat transfer fluids), the chemical is fairly well contained during the life of the equipment or product, and most emissions are associated with the manufacture and disposal of the product. In these cases, the delay between the purchase of the chemical and its final emission depends on the lifetime of the product, ranging from three years for tyres and sport-shoes to 25 years for sound-proof glazing. In other cases (e.g., use of SF₆ and PFCs as tracers or in medical applications), the chemical is fully emitted within a year of its purchase. If, as a result of an initial survey, applications with distinctive delayed emissions appear significant, then good practice is to use a source category-specific emission calculation, taking into account the delay in emissions.

Adiabatic uses

Adiabatic uses of SF₆ and some PFCs exploit the low permeability of these gases through rubber. Historically, SF₆ has been the dominant gas in these applications; however, PFCs with similar molecular weights (such as C₃F₈) have recently been used as well. Applications with a delay period of 3 years include car tyres, sport shoe soles and tennis balls (Schwarz et al., 1996). For applications with emissions that are delayed by three years, the following formula can be used.

EQUATION 8.19

ADIABATIC PROPERTY APPLICATIONS

Emissions in year \(t \) = Sales in year \((t – 3)\)

Sound-proof glazing

Double-glazed sound-proof windows: Approximately one-third of the total amount of SF₆ purchased is released during assembly (i.e., filling of the double glass window) (Schwarz/Leisewitz, 1999). For the stock of gas remaining inside the window (capacity), an annual leakage rate of 1 percent is assumed (including glass breakage). Thus, about 75 percent of initial stock remains at the end of its 25-year lifetime. The application of SF₆ in windows began in 1975, so disposal is only beginning to occur. Emissions from this source sub-category should be calculated using Equations 8.20 to 8.22:

EQUATION 8.20

DOUBLE-GLAZED WINDOWS: ASSEMBLY

Assembly Emissions in year \(t \) = 0.33 \(\times \) SF₆ purchased to fill windows assembled in year \(t \)

EQUATION 8.21

DOUBLE-GLAZED WINDOWS: USE

Leakage Emissions in year \(t \) = 0.01 \(\times \) Capacity of Existing Windows in year \(t \)

EQUATION 8.22

DOUBLE-GLAZED WINDOWS: DISPOSAL

Disposal Emissions in year \(t \) = Amount Left in Window at End of Lifetime in year \(t \) \(\times \) (1 − Recovery Factor)

Unless country-specific data are available, a default recovery factor value of zero should be assumed in Equation 8.22. If no specific information is available for these sub-source categories, good practice is to treat them as prompt emissions.
Fluorinated compounds used to waterproof electronic circuits

There are two basic processes to adding waterproofing layers onto assembled electronic circuits:

1. Liquid-based PFOS or PFOA-containing films, applied by aerosol spray or immersion, or
2. Long-chain perfluorocarbon polymers applied by gas-phase reaction in a plasma.

The second process can result in emissions of fluorinated compounds (FCs) and is therefore the focus of this guidance. The plasma deposition process involves the introduction of a variety of hydrocarbon gases where the hydrogen atoms are replaced by fluorine supplied from an FC gas source that is decomposed in the plasma. Periodically, the process chamber is also cleaned using FC gases in a way similar to the way that TFD chambers are cleaned in the semiconductor industry. (See the 2006 IPCC Guidelines, Volume 3, Chapter 6 and the 2019 Refinement, Volume 3, Chapter 6.)

Table 8.11 below provides default emission factors, expressed in grams of gas per circuit board, for the three FCs understood to account for the vast majority of GWP-weighted emissions from this process. Inventory compilers should apply all three emission factors to the number of circuit boards waterproofed to obtain a complete estimate of emissions from this source category.

<table>
<thead>
<tr>
<th>Gas Emitted</th>
<th>Emissions (g)/Circuit Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF₄</td>
<td>0.006</td>
</tr>
<tr>
<td>C₂F₆</td>
<td>0.004</td>
</tr>
<tr>
<td>CHF₃</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Note:
Figures are expert judgement conducted by authors of Chapter 8 based on confidential data from Edwards Vacuum Ltd., 2017. The emissions used to develop these emission factors were measured by FTIR on a working facility installation, and were originally expressed in terms of gCO₂/week/chamber. The numbers above were calculated based on the assumption that each process chamber processes 60,000 circuit boards per week. The emissions included both higher-GWP gases (CF₄, C₂F₆ and CHF₃) and lower-GWP gases (CH₄, C₃F₆, COF₂, C₂H₄), but emission factors are provided only for higher-GWP gases as their emissions are dominant (8,453,881 vs. 830 gCO₂eq/week/chamber). Because the actual proportions of the emitted gases are sensitive process information for the company that provided the data, the GWP-weighted emissions were divided equally among the three emitted gases on a gCO₂eq basis, and were then converted into grams of gas, to obtain the emission factors in Table 8.11.

Equation 8.22a (NEW)

\[E_{\text{emissions}_i} = E\text{F}_i \times n \]

Where:
\(E_{\text{emissions}_i} = \) Emissions of each gas i listed in Table 8.11
\(n = \) Number of circuit boards manufactured
\(E\text{F}_i = \) Emission factor for gas i in Table 8.11
Textile, carpet, leather and paper fluorinated treatment emissions

Fluorine-based treatment processes are used to control the surface properties of textile, carpet, leather, or paper fibres, and – inter alia – to enhance their hydrophobicity, to increase their stain resistance, dyeing ability, or mechanical strength, and to produce wrinkle-free materials (Lacasse & Baumann 2004; Schindler & Hauser 2004; Singh 2012; Gulrajani 2013; Roshan 2014). The main treatment technologies currently in use are based on wet processes, including the pad-dry-cure method among others (Roshan 2014; Heydebreck et al. 2016; Goswani 2017; Williams 2018). Another emerging technology is based on plasma processes used to treat, etch, or deposit polymers on the surface of the substrate (Morent et al. 2008; Jafari et al. 2013; Zille et al. 2015; Gotoh et al. 2017).

Although several international and national reports refer to the possible off-gas emissions of fluorinated compounds (FC) into the atmosphere during wet and plasma treatments of textile, carpet, leather, and paper, no representative emission factors appear to be available to estimate greenhouse gas (GHG) emissions from such processes (EPA 1997; Schönberger & Schäfer 2003; MoEU 2012; DEPA 2013; UNIDO et al. 2017). It is probable that FCs emissions of wet-based processes mainly occur during the pad-dry-cure process or other thermal coating processes, but the amount of unreacted input chemicals that may be emitted through evaporative losses or the type and amount of by-products formed during these processes as well as their relevance as GHG gases do not appear to have been thoroughly characterized (IPPC 2003; OECD 2004). The extent to which plasma-based textile treatment processes have penetrated volume production is unclear, but, by analogy with plasma-based processes used in the electronics industry, and considering that many FC molecules are particularly stable and difficult to disassociate, the utilization efficiency of the input gas is likely to be limited, and FC emissions resulting from the incomplete use of input gases such as CF₄, C₂F₆, CHF₃, SF₆, and other fluorine-containing molecules in plasma processes may be significant. Since the authors were not able, at the time of publication of the 2019 Refinement, to estimate the volume of fluorinated compounds that are used or emitted by the textile, carpet, leather, and paper industries, FC emissions in this sector could represent a significant new source, due to the large volume of substrates treated and the sheer size and global nature of the industry (KEMI 2014).

While it does not appear feasible at the time of publication of the 2019 Refinement to apply a reporting methodology for this new source category based on default emissions factors (e.g. based on representative emission factors to estimate emissions of GHGs per mass or per surface area of substrate treated), a three-tiered methodological framework (Tier 1, Tier 2a, Tier 2b) to report emissions once default emission factors become available is proposed. In addition, a Tier 3 method that can readily be applied, based on measured emission factors is also provided. Countries seeking to report FC emissions from textile, carpet, leather and paper industries should work with equipment manufacturers and users of such equipment to measure equipment-specific, process-specific, or site-specific emission factors, with the aim of developing representative default emission factors that could be used for site-specific, domestic, or industry-wide inventories.² The proposed Tier 1, Tier 2a, Tier 2b, and Tier 3 methods are described in Appendix 1. Possible Approaches for Estimating FC Emissions from Textile, Carpet, Leather and Paper Industries: Basis for Future Methodological Development, and preliminary guidance about how to measure emissions factors and develop defaults is also provided.

PFCs used as heat transfer fluids in consumer and commercial applications

PFCs are used as heat transfer fluids in a number of high-power-density commercial and consumer electronic applications. Commercial applications include cooling for supercomputer, telecommunication, and airport radar systems, as well as drive units (rectifiers) on high-speed trains (Burton, 2006). These applications consume much smaller volumes of liquid PFCs than electronics manufacturing, but are believed to be significant among ‘niche’ applications. Consumer applications include cooling kits for desktop computers that are operated at high voltages to increase their processing speed. The specific PFCs used in these applications are believed to be similar to those identified as heat transfer fluids in electronics manufacturing in Chapter 6. In all of these applications, the liquid PFCs are used in closed modules, indicating that most emissions occur during the manufacture, maintenance, and disposal of the product or equipment. Thus, if inventory compilers can acquire information on emission rates during the manufacture, maintenance, and disposal of the equipment, along with the quantities of equipment manufactured, used, and disposed each year, they can use the Tier 2 or Tier 3 method for electrical equipment to estimate emissions. For applications with different emissions profiles (e.g., prompt emissions), the appropriate equation from Section 8.2 may be used.

PFCs used in cosmetic and medical applications

PFCs with relatively large molecular weights (e.g., C₁₀F₁₈) are used in cosmetic and medical applications, exploiting their ability to carry oxygen to living tissue (May, 2006). Cosmetic applications include anti-wrinkle creams and are estimated to consume fairly small amounts. Current and potential medical applications include

² For the explanation about the role of Appendices please refer to the Overview Chapter
storage of pancreatic tissue for transplants (using the ‘two-layer method’), eye surgery (to repair retinal tears),
pneumonectomy (lung therapy and diagnosis), use as a contrast agent in ultrasonic and MRI examinations, blood
extension, wound healing, and treatment of diseases of the middle ear. All but the first two medical applications
involve only small quantities and/or are at the research stage. Storage of pancreatic tissue is a small but growing
application. Emissions from medical uses are uncertain but are believed to be small.

In all of these applications, the PFC is believed to be emitted into the atmosphere within one year of its purchase.
Thus, emissions from these sources can be estimated using Equation 8.23 for prompt emissions.

Any other uses of SF$_6$ and PFCs

Other applications for SF$_6$ and PFCs that are not specifically addressed above include their use as tracers (in leak
detection, indoor and outdoor tracking of air-masses, and oil recovery3) and use of SF$_6$ in the production of optical
cables (for fluorodoping of glass fibres4). Often the gases or liquids are emitted within one year of purchase. In
this case, *good practice* in calculating SF$_6$ and PFC emissions from these ‘prompt’ emissive applications is to use
the following formula:

\[
\text{Emissions in year } t = (0.5 \times \text{Amount Sold in year } t) + (0.5 \times \text{Amount Sold in year } t - 1)
\]

This equation is similar to the equation for prompt ODS Substitute applications (e.g., aerosols and solvents)
addressed in Chapter 7 of this volume. The equation covers more than one year because both sales and emissions
are assumed to be continuous over the year; that is, chemical sold in the middle of year t-1 is not fully emitted
until the middle of year t.

8.3.2.2 Choice of Emission Factors

For ‘other’ source categories of SF$_6$ and PFCs that contribute substantially to a country’s SF$_6$ and PFCs emissions,
countries are encouraged to develop country-specific emission factors based on occasional surveys of
representative subsets of sources. It is good practice to clearly document such emission factors. Default emission
factors are provided above for AWACS, accelerators, waterproofing of electronic circuits, prompt emissive
applications and adiabatic applications, including windows.

8.3.2.3 Choice of Activity Data

No refinement

8.3.2.4 Completeness

No refinement

8.3.2.5 Developing a Consistent Time Series

No refinement

8.3.3 Uncertainty assessment

No refinement

3 D. Vlachogiannis *et al.* (2005). This paper indicated that some fraction of injected PFCs and SF$_6$ was destroyed during fuel
combustion, but the magnitude of this fraction (compared to the fraction of injected chemical that escaped before combustion)
was unclear.

4 See further information on this application in Schwarz (2005).
8.3.4 **Quality assurance / quality control (QA/QC), reporting and documentation**

No refinement
8.4 N$_2$O FROM PRODUCT USES

No refinement
References

SECTIONS 8.1 - 8.3

References newly cited in the 2019 Refinement

References copied from the 2006 Guidelines

FEPC and JEMA (2004). Federation of Electric Power Companies (FEPC) and the Japan Electrical Manufacturers’ Association (JEMA), “Japanese Emission Factors.” (Personal communication from Mr. Kiyoshi Saitoh of Japan Electrical Manufacturers Association (JEMA) to Mr. Kiyoto Tanabe, IPCC Technical Support Unit, November, 2004.)

