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Abstract – We present a semi-analytical model that predicts the excitation of surface-plasmon
polaritons (SPP) on a graphene sheet located in front of a sub-wavelength slit drilled in thick
metal screen. We identify the signature of the SPP in the transmission, reflection, and absorption
curves. Following previous literature on noble-metal plasmonics, we characterize the efficiency of
excitation of SPP’s in graphene computing a spatial probability density. This quantity shows the
presence of plasmonics resonances dispersing with the Fermi energy, EF , as

√
EF an unambiguous

signature of graphene plasmons.

Introduction. – Surface-plasmon polaritons (SPPs)
are localized in space electromagnetic fields oscillating at
the interface between a metal and a dielectric. Photon
confinement and its application to nano-optics is only one
example where SPPs have been explored to the creation
of new sub-wavelength technologies. This has caused an
increasing interest in studying this type of electromagnetic
fields (see [1] and references therein).

However, due to the mismatch between photon momen-
tum in the free space and the SPP momentum, shinning
light directly on a metallic-dielectric interface will not gen-
erate SPPs [2]. Therefore, a large number of structures
have been investigated in order to understand how SPPs
are produced. The central question is about the most ef-
fective way to achieve their excitation. Traditional forms
of exciting SPPs encompasses the total attenuate reflec-
tion scheme, the use of gratings, and shinning electromag-
netic radiation at wedges and slits. Among these struc-
tures, metal slits [3–5], gratings [6, 7], and indentations
allow the excitation of localized surface-plasmons [8].

Theoretically, the excitation of SPPs requires that the
metallic structures are treated beyond the perfect metal
approximation. This can be done in different ways, either
modeling the metal by sophisticated Drude and Lorentz
models, or assuming the surface impedance boundary con-
dition (SIBC) [7, 8], the latter having the advantage that
does not require solving Maxwell’s equations in the metal
to obtain the fields in the space surrounding the metallic

nano-structure.

The scattering problem of such structures has been
studied long before SPPs became an active field in both
nano-optics and surface science [9–12]. In this context,
Kang, Eom, and Park [13,14] were, to our best knowledge,
the first to describe, in a closed theoretical form, the be-
havior of light propagation through a slit aperture on a
thick metallic screen. On the other hand, most of the for-
mer works have developed either semi-analytical methods
or powerful computational tools [15–18] in order to make
quantitative predictions of how light propagates through
apertures. However, they did not consider the SPP gen-
eration at the input or output sides of the slit [19].

The interest in SPPs received a strong boost after the
pioneering work of Ebbesen et al. [20], since the excita-
tion of SPPs in the slits of the metallic screen was at
the root of the interpretation of the so called extraordi-
nary optical transmission (EOT). This unexpected phe-
nomenon is characterized by sharp peaks on the transmis-
sion spectrum when light passes through sub-wavelength
indentations on a thin metal film. However, Gay et al. [21]
have put forward an alternative explanation of EOT. In
their interpretation, EOT exists due to a new type of sur-
face wave, called by those authors "composite diffracted
evanescent waves” (CDEW). Their interpretation, was ar-
gued, should have a better agreement with their experi-
mental results than the SPP model.

An important contribution to decide whether or not
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SPPs are decisive to describe EOTs has been given in a
paper by Lallane et al. [22]. In this work, the authors
concluded that Gay et al. results are due to some possi-
ble experimental error, such as impurities on the film they
have used.

Considering one-dimensional lamellar metallic gratings
with sub-wavelength slit apertures, Lallane et al. [23] have
developed a simple semi-analytical model for determining
the transmission through a grating, relying on the fact
that metallic films behave as monomode waveguides.

In two other papers [19,24], Lallane et al. built a semi-
analytical model that predicts the creation of SPPs due
to a sub-wavelength slit in a thick metal screen. Their
results were shown to be in excellent agreement with com-
putational and experimental results, even for noble metals
with low conductivity. The work is based on a two stage
scattering mechanism where they considered the diffrac-
tion problem in the vicinity of the aperture, followed by
the launching of SPPs on the metallic-dielectric interface.

SPP’s in graphene have recently created a new field
of research in nanophotonics, generating an intense in-
teraction between experimental results, technological ap-
plications, and analytical and numerical modeling [25].
Graphene surface-plasmon polaritons provide some advan-
tages over noble metal plasmonics (in the infrared range),
such as strong spatial confinement and long propagation
lengths, with the additional benefit of being electrically
and chemically tunable [26–29].

In this context, there is the need for discussing the exci-
tation of surface-plasmons on a graphene sheet covering a
slit on a thick metal screen. In the present work, we shall
consider a TM polarized field propagating in a waveguide
and emerging from an aperture covered by graphene. We
assume that the field propagating in the wave-guide is the
fundamental mode, an approximation also considered in
Refs. [19, 24]. Quantitatively, we compute how efficiently
will the power be transmitted from the outgoing mode to
the graphene plasmons. In other words, we must obtain
the transmission, reflection, and absorption of the electro-
magnetic radiation impinging on the graphene sheet, as
well as the spatial probability density of exciting surface-
plasmons.

Modes in the cavity and field amplitudes: emis-
sion of a wave at the aperture of a slit. – The
geometry of the problem we are dealing with in this paper
is represented in Fig. 1. In region 2 (z < 0, −w < x < w),
an incident TM polarized radiation propagates through a
slit aperture on a semi-infinite perfect metal screen, thus
producing a reflected and a transmitted component. The
dielectric constant of the wave-guide is ε2, the dielectric
constant between graphene the metallic screen is εs, and,
finally, the dielectric constant bellow graphene is ε1. Af-
ter the radiation emerges from the slit, it propagates until
reaching the graphene sheet, where reflected and trans-
mitted waves are created. Finally, in region 1 the fields
propagate freely. In what follows, we assume a time depen-

dence of the fields of the form e−iωt, which is suppressed
in all the equations below.
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Fig. 1: The geometry studied in this work. A TM polarized
radiation, emerging for an aperture (of width 2w) on a perfect
metal screen, passes through an intermediary media and im-
pinges on graphene, thus creating a SPP at the graphene sheet,
which is located at a distance d from the metal slit.

Waveguide modes. As already mentioned, the slit acts
as a waveguide and the impinging radiation is propagat-
ing along it. Assuming that the metallic screen is a perfect
electric conductor, the tangential component of the elec-
tric field must vanish at the slit walls, and, since we are
considering a TM polarization, the electric field will have
only the x and z components. On the other hand, the
magnetic field has only a finite y component. The modes
propagating on a semi-infinite slit have already been cal-
culated by Park et al. [30]. We can separate the magnetic
field into its fundamental part plus the remaining modes,
thus obtaining

H(2)
y = b0e

iζ0zΨ0(x) +

∞∑
m=1

bme
iζmzΨm(x), (1)

where ζ0 =
√
ε2ω/c, Ψ0(x) = θ(w − |x|), w is half the

slit size, ζm =
√
ε2ω2/c2 − a2m, am = mπ/(2w), and

bm is the mode amplitude. The electric field compo-
nents follow from Maxwell’s equations and read Ψm(x) =
cos[am(x − w)]. We will consider only the fundamental
mode as the impinging one, which is the core approxima-
tion of the method proposed here and also considered in
the past [19,24]. The constant b0 is fixed by the power per
unit length of the incoming mode:

P(2)
z =

1

2

ˆ w

−w
dx<[E×H∗] · ez = w|b0|2

µ0c√
ε2
, (2)

where, from here on, we consider |b0| = 1. Within the
introduced approximation, and considering the reflected
part of the wave, the magnetic field at region 2 turns out
to be

H(2)
y (x, z) = (eiζ0z + r0e

−iζ0z)Ψ0(x), (3)

where r0 is the reflection coefficient. The electric field,
then, becomes

E(2)
x (x, z) =

µ0c
2

ε2ω
ζ0(eiζ0z − r0e−iζ0z)Ψ0(x), (4)
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E(2)
z (x, z) = 0. (5)

Now that we have defined the waveguide modes, lets de-
termine the scattered modes, which propagate on regions
S and 1.
Scattered modes. Differently to the waveguide modes,

which are finite and have a discrete representation, the
scattered modes are continuous and represented by a
Fourier transform. In region S, the one between the metal
and the graphene sheet, we write the fields as

HS,y =

ˆ ∞
−∞

dk eikx(Ake
iζS,kz +Bke

−iζS,kz), (6)

ES,x =
µ0c

2

εSω

ˆ ∞
−∞

dk eikxζS,k(Ake
iζS,kz−Bke−iζS,kz), (7)

ES,z = −µ0c
2

εSω

ˆ ∞
−∞

dk keikx(Ake
iζS,kz +Bke

−iζS,kz), (8)

where ζS,k =
√
εSω2/c2 − k2, and Ak and Bk are the in-

cident and reflected amplitudes, respectively. For region
1, below the graphene sheet, we have

H1,y(x, z) =

ˆ ∞
−∞

dk tke
ikxeiζ1,kz, (9)

E1,x(x, z) =
µ0c

2

ωε1

ˆ ∞
−∞

dk tkζ1,ke
ikxeiζ1,kz, (10)

E1,z(x, z) = −µ0c
2

ωε1

ˆ ∞
−∞

dk ktke
ikxeiζ1,kz, (11)

where ζ1,k =
√
ε1ω2/c2 − k2 and tk is the transmission

amplitude. A straightforward result is the propagating
power along the z−direction, which is given by

P(1)
z = π

µ0c
2

ε1ω

ˆ √ε1ω/c
−√ε1ω/c

dk ζk|tk|2. (12)

As we can see from the above equations, in order to fully
determine the waveguide and scattered modes is necessary
to obtain the explicit expressions for the amplitudes r0,
Ak, Bk, and tk. In the next section, we use the boundary
conditions for determining the previous scattering coeffi-
cients.
The boundary conditions. Since the screen is com-

posed by perfect metal, the fields are zero for z < 0 and
x < −w or x > w. The boundary conditions

H(2)
y (x, 0) = H(S)

y (x, 0), (13)

and
E(2)
x (x, 0) = E(S)

x (x, 0), (14)

apply in the aperture at z = 0. Assuming that graphene is
a perfect two-dimensional material, the other two bound-
ary conditions that hold at z = d are: [31]:

ES,x(x, d) = E1,x(x, d), (15)

HS,y(x, d)−H1,y(x, d) = σE1,x(x, d), (16)

which implies the continuity of the tangential component
of the electric field and the discontinuity of the tangential
component of the magnetic field through the graphene in-
terface, due to the finite conductivity σ(ω) of graphene.
For modeling the conductivity, and for simplicity, we rep-
resent it by the Drude conductivity, σ(ω) [31]:

σ(ω,EF ) =
4ε0cαEF
Γ− i~ω

, (17)

where α is the fine structure constant α = e2/(4πε0~c),
EF is the Fermi energy of graphene, and, hereafter, we will
take Γ = 10−3 eV. Note that this is a good approximation
if we work in the infrared part of the electromagnetic spec-
trum and have graphene not too close to the metal slit,
since, otherwise, nonlocal effects woud become important.

Inserting the electric and magnetic fields for the three
regions in the boundary conditions (13) to (16), we obtain

(1 + r0) =

ˆ ∞
−∞

dk (Ak +Bk) sinc(kw), (18)

ζ2,0
εS
ε2

(1− r0) sinc(kw) = ζS,k (Ak −Bk)
π

w
, (19)

ε1
εS
ζS,k

(
Ake

iζS,kd −Bke−iζS,kd
)

= tkζ1,ke
iζ1,kd, (20)

Ake
iζS,kd +Bke

−iζS,kd =

(
σ
µ0c

2

ωε1
ζ1,k + 1

)
eiζ1,kdtk, (21)

which is a system of four equations whose solution can be
easily obtained. Since we cannot perform the integral in
Eq. (18), we first find the solutions for Ak, Bk, and tk in
terms of r0:

Ak =
1

∆
(1− r0)wεSsinc(kw)ζ2,0

×
[
ε1ζS,k + ζ1,k

(
εS +

σ

ε0ω
ζS,k

)]
, (22)

Bk =
1

∆
e2iζS,kd(1− r0)wεSsinc(kw)ζ2,0

×
[
ε1ζS,k + ζ1,k

(
−εS +

σ

ε0ω
ζS,k

)]
, (23)

tk =
2

∆
ei(ζS,k−ζ1,k)d(1− r0)wε1εSsinc(kw)ζ2,0ζS,k, (24)

where

∆ = πε2ζS,k
{(

1− e2iζS,kd
)
ε1ζS,k

+ζ1,k

[(
1 + e2iζS,kd

)
εS +

(
1− e2iζS,kd

) σ

ε0ω
ζS,k

]}
.

(25)
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Now, replacing Eqs. (22) and (23) into Eq. (18), we obtain

r0 =
J − 1

1 + J
, (26)

where

J =

ˆ ∞
−∞

dk
sinc2(kw)

∆
wεSζ2,0

{
(1 + e2iζS,kd)ε1ζS,k

+ζ1,k

[
(1− e2iζS,kd)εS + (1 + e2iζS,kd)

σ

ε0ω
ζS,k

]}
.

(27)

The above integral cannot be solved analytically. Thus,
the method of analysis of the scattering problem is analyt-
ically up to the calculation of the J . Since we have found
Ak, Bk, r0, and tk, the electric and magnetic fields became
completely determined. The next step is to evaluate how
efficiently the power per unit area is transmitted from the
aperture to graphene plasmons. One method of evaluat-
ing this coupling is computing the transmission, reflection,
and absorption.

Finally, we note that although we have approximated
the field in the slit by a single propagating mode, this
approximation is valid since all the other modes of the slit
are located at a much larger frequency and therefore they
are all evanescent in nature. It would not be very difficult
to include some of the low lying evanescent modes in the
calculation. But this would imply a cumbersome (and
unnecessary) expression for R and T .
Reflection, transmission and absorption. The reflec-

tion and transmission are, respectively, defined as: R =

|r0|2 and T = P(1)
z /P(2)

z , which, from Eqs. (2), (12), and
(26), gives R = |(1− J)/(1 + J)|2 ,

T =
2πc
√
ε2

wε1ω

ˆ √ε1ω/c
0

dk ζ1,k|tk|2. (28)

In Fig. 2, we plot the curves for R and T in terms of
~ω/EF , considering two different Fermi energies. That is,
we are computing R and T for different values of the con-
ductivity, σ(ω,EF /2) and σ(ω,EF ). As an example, we
have calculated the reflection and transmission (see Fig.
2), and absorption (see Fig. 3) curves for Fermi energy
EF = 1 eV, d = 0.3µm, and half of the slit aperture
w = 2µm. We can see that there are peaks in the re-
flection at ~ω/EF ≈ 0.028 for R(EF /2) (orange dashed
line), and ~ω/EF ≈ 0.04 for R(EF ) (orange solid line).
These peaks are identified with the excitation of SPPs in
graphene. It is well known that ωSPP ∝

√
EF , therefore,

we must have

ωSPP (EF1)

ωSPP (EF2)
=

√
EF1

EF2
. (29)

This result implies that for peaks associated with EF1 =
2EF2, Eq. (29) predicts a ratio of

√
2 ≈ 1.4. For the

case of Fig. 2, we find from inspection of the curves

spp

Fig. 2: Reflection and transmission, for two values of Fermi
energy, in terms of the frequency per Fermi energy, with
EF = 1 eV, ε1 = 1, εS = 1.5, ε2 = 1, w = 2µm, Γ = 10−3 eV
and d = 0.3µm. The peaks at the reflection curves correspond
to the excitation of SPPs at those frequencies, which are ap-
proximately ω/EF ≈ 0.028 for R(EF /2) and ~ω/EF ≈ 0.04
for R(EF ). Note that the peak of the reflection disperses with
EF . This is a plasmonic effect, where the reflection is enhanced
by plasmonic assistance.

ωSPP (EF )/ωSPP (EF /2) ≈ 1.4, which is in excellent
agreement with the predicted value. The same result is
retrieved from the absorption curves depicted in Fig. 3.
For making explicit the dependence of the frequency of
excitation of SPPs on the Fermi energy, we depict in Fig.
3 (bottom panel) the frequency corresponding to the max-
imum of absorption (in the SPP region) as function of the
Fermi energy and we fit the data points with a function of
the form C

√
EF and found an excellent agreement. The

large bump seen in the absorption curve at low frequen-
cies is due to the excitation of waveguide modes between
graphene and the metal (see discussion ahead) and not to
the excitation of SPPs: its intensity increases with EF but
does not disperses as EF varies. This is confirmed making
a density plot of the fields in that frequency range: the
intensity of the fields is (almost) zero everywhere, except
in the gap region between graphene and the metal.

SPP exciation efficiency at the graphene sheet. –
In this section, we determine the spatial probability den-
sity, |α±(x)|2, for exciting SPP’s. The quantities |α+(x)|2
and |α−(x)|2 are the spatial probability density of a SPP
propagating to the right and to the left of the slit, respec-
tively. In order to compute it, we must define the magnetic
and electric fields on the graphene sheet. Graphene acts as
an open waveguide, therefore, supporting both SPP and
radiative modes, allowing us to write the composite fields
as a superposition of the two types of modes [24]

Hy(x, z) = [α+(x) + α−(x)]Hy,spp +

ˆ
dρ a(x, ρ)Hy,rad,

(30)
and

Ez(x, z) = [α+(x)− α−(x)]Ez,spp +

ˆ
dρ a(x, ρ)Ez,rad,

(31)
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SPP

waveguide
mode region

maximum of the absorption peak

Fig. 3: Top panel: Logarithmic plot of the absorption for two
values of Fermi energy (same as in Fig. 2), with EF = 1 eV,
ε1 = 1, εS = 1.5, ε2 = 1, w = 2µm, Γ = 10−3 eV and d =
0.3µm. The figure can be roughly divided into two regions:
a low energy one, where the excitation of waveguide modes
between graphene and the metal dominate, and a high energy
region, where we identify the excitation of surface plasmons
in graphene. Bottom panel: dispersion of the frequency at
the maximum of the absorption curves, associated with the
excitation of SPPs, as function of the Fermi energy (for w =
1µm): there is a clear square-root dependence on the Fermi
energy.

where Hy,spp and Ez,spp represent the SPP modes and
Hy,rad and Ez,rad the radiative modes. The modes are
orthogonal [32] as long as we neglect dissipation:

ˆ
dzHy,sppEz,rad =

ˆ
dzHy,radEz,spp = 0. (32)

Therefore, in order to compute the probability density,
we must obtain the SPP fields. In addition, it will be
only necessary to calculate α+(x), since, by symmetry,
α+(x) = α−(−x).
The probability density |α+(x)|2 of exciting a SPP.

On physical grounds, we can assume that, for x > w, we
have α−(x) ≈ 0 [19], and using the orthogonality relations
the result for α+(x) follows:

α+(x) =

´
dzHyEz,spp +

´
dzEzHy,spp

2
´
dzHy,sppEz,spp

. (33)

The fields Hy and Ez have already been determined
and the SPP fields are obtained in Ref. [33] (see also sup-
plementary material). Hence, the z−dependence of the
magnetic SPP field reads

Hy,spp(x, z) = H̄y,spph(z)eiqx, (34)

while the nonzero components of the electric field are:

Ex,spp(x, z) = −iµ0c
2

ωεα
H̄y,spph

′(z)eiqx, (35)

and

Ez,spp(x, z) = −qµ0c
2

ωεα
H̄y,spph(z)eiqx, (36)

where

h(z) =

{
u cosh(κSz), 0 < z < d,

ve−κ1(z−d), z > d.
(37)

Inserting the definitions of the fields into (33), we get, for
the numerator
ˆ ∞
−∞

dzHy,sppEz +

ˆ ∞
−∞

dzEz,sppHy =

= −µ0c
2

ω
H̄y,spp

ˆ ∞
−∞

dkei(k+q)x(k + q)

×
{

e−iζS,kdu

εS (κ2S + ζ2S)

[
i(A−B)eiζS,kdζS,k

+ i
(
B −Ae2iζS,kd

)
ζS,k cosh(κSd)

+
(
B +Ae2iζS,kd

)
κS sinh(κSd)

]
+
v

ε1

eiζ1,kd

κ1 − iζ1
tk

}
,

(38)

and, for the denominator,

2

ˆ ∞
−∞

dzHy,sppEz,spp = −qµ0c
2|H̄y,spp|2e2iqx

ω

×
[
u2

εS

(
2κSd+ sinh(2κSd)

2κS

)
+

v2

ε1κ1

]
, (39)

where u2 and v2 are given by [33]:

u2 =
8wεSω

q
√
ε2c

×
[
2d+

sinh(2κSd)

κS
+

2εSε1ε
2
0ω

2 cosh2(κSd)

κ1(iκ1σ + ε0ε1ω)2

]−1
,

(40)

v2 =

[
ε1κS
εSκ1

sinh(κSz)

]2
u2. (41)

In Fig. 4, we plot the spatial probability density |α(x)|2
in terms of the frequency in units of the Fermi energy,
taking two different values for this latter quantity. There
are two well visible peaks (for each curve) in the region
0.05 < ~ω/EF < 0.1, with the amplitude of these peaks
being approximately constant for different Fermi energies.
The ratio between the first peak of |α(EF /2)|2 at ω/EF ≈
0.0416 (red curve) and |α(EF )|2 at ω/EF ≈ 0.0583 (blue
curve) is approximately equal to

√
2. This is in agreement

with previous discussion in connection with Eq. (29) and
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SPP

Fig. 4: The probability |α(ω, x)|2 as a function of the frequency
per Fermi energy, with x = 2w, EF = 1 eV, ε1 = 1, εS = 1.5,
ε2 = 1, w = 2µm, Γ = 10−3 eV, and d = 0.3µm. For each
curve we observe two peaks, where the ratio between the first
peaks of the blue and red lines are approximately equal to

√
2.

This also happens for the second peaks of the curves. This
means that the frequencies of such peaks are associated with
the excitation of SPP’s in graphene, as discussed in the text.

shows that these peaks in |α(ω, x)|2 are associated with the
excitation of surface-plasmons in graphene. We obtain the
same result if we take the ratio between the second (less
intense) peaks of the EF and EF /2 curves, which in this
case Eq. (29) also predicts a value of

√
2.

Figure 4 also allows to extract information about the
wave-number of the SPP. For a graphene sheet at large
distance from the metal, the frequency of the SPP is
proportional to the square-root of the wave-number q:
ω ∝ √q, whereas for close distances to the metal we have
ω ∝ q. Let us fix our attention, for example, on the
red curve of Fig. 4. There are two well defined peaks.
Assuming that q ∝ nπ/w, where n is an integer, and
labeling the frequency of the SPP by the number n, it
is clear, for large distances, thatωn+1

ωn
=
√

(n+ 1)/n. If
we now read the frequency of the two maxima we find
~ω1/EF = 0.087 and ~ω2/EF = 0.058. Taking the ratio
we find: ω2/ω1 = 1.5 ≈

√
2 in approximate agreement

with the previous frequency ratio.
Choosing the frequency in Fig. 4 where there is a peak,

we should be able to extract the wavelength of the SPP
modes from the plots of the electric fields. Therefore, we
have chosen the frequency of the first plasmonic peak of
|α(x)|2 for the EF curve in Fig. 4, that is, the peak located
at ~ω/EF = 0.0669. After extracting this frequency, we
calculated the density plot of the z− and x−components
of the electric field in regions S and 1, given by Eqs. (7),
(8), (10), and (11). In Fig. 5, we clearly see, in the region
between the metal and the graphene sheet, the existence
of maxima and minima associated with the plasmon field.

For highlighting the waveguide modes in the low fre-
quency region, in Fig. 6 we have considered the frequency
~ω/EF = 0.02, which is located in the yellow region of
Fig. 3. It is clear from density plot that the field is very
intense in the region between graphene and metallic screen
and is very weak above the graphene sheet. This behavior

is characteristic of a waveguide mode.
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Fig. 5: Density plot of the electric field, with ~ω/EF = 0.06,
EF = 1 eV, ε1 = 1, εS = 1.5, ε2 = 1, w = 2µm, Γ = 10−3 eV,
and d = 0.3µm. The intense maxima and minima seen between
graphene and the metallic screen is due to the SPPs forming
in that region.The black regions represent the metallic screen.
The horizontal white line represents the graphene sheet.
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Fig. 6: Density plot of a waveguide mode. The largest intensity
of the electric field occurs between graphene and the metallic
screen. The parameters are ~ω/EF = 0.02 (a frequency located
in the yellow region of Fig. 3), EF = 1 eV, ε1 = 1, εS = 1.5,
ε2 = 1, w = 2µm, d = 0.3µm, and Γ = 10−3 eV.

Final Remarks. – In this paper, we have considered
a slit of width w in a semi-infinite perfect metal screen,
which is at a distance d from a graphene sheet. The goal
was to study the excitation of SPP modes on graphene.
We first defined the three regions of interest, one inside
the metal, the other between the graphene sheet and the
metal, and the last one below graphene. Then, we con-
sidered only the fundamental mode of the incident field

p-6



Excitation of SPP’s in graphene by a waveguide mode

as the impinging one, and, after applying the respective
boundary conditions, we completely determined the elec-
tric and magnetic fields for the three regions in a quasi-
analytical manner. From this, we were able determine
the reflection, transmission, and absorption in graphene.
From the knowledge of the fields, we could determine the
spatial probability density of exciting a SPP in graphene.
We have studied its dependence on the frequency of the
incoming field and found peaks that we were able to iden-
tify with the efficient excitation of SPP’s. The methods
developed here can also be extended to gratings, with the
fields represented by a Fourier series instead of a Fourier
integral.

∗ ∗ ∗

D.C.P. was supported by Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior (CAPES/Brazil),
through Programa de Doutorado Sanduíche no Exterior
(PDSE) – Process 88881.187657/2018-01, and also thanks
the hospitality of the Centro de Física, Universidade do
Minho, Braga – Portugal. N.M.R.P. acknowledges sup-
port from the European Commission through the project
“Graphene Driven Revolutions in ICT and Beyond” (Ref.
No. 785219), FEDER, and the Portuguese Foundation for
Science and Technology (FCT) through project POCI-01-
0145-FEDER028114, and in the framework of the Strate-
gic Financing UID/FIS/04650/2.

REFERENCES

[1] Lalanne P., Hugonin J. P., Liu H. T. and Wang B.,
Surface Science Reports, 64 (2009) 453.

[2] Barnes W. L., Dereux A. and Ebbesen T. W., Na-
ture, 424 (2003) 824.

[3] Takakura Y., Physical Review Letters, 86 (2001) 5601.
[4] Popov E., Nevière M., Sentenac A., Bonod N.,

Fehrembach A.-L., Wenger J., Lenne P.-F. and
Rigneault H., Journal of the Optical Society of America
A, 24 (2007) 339.

[5] Chandran A., Barnard E. S., White J. S. and
Brongersma M. L., Physical Review B, 85 (2012)
085416.

[6] Todorov Y. and Minot C., Journal of the Optical So-
ciety of America A, 24 (2007) 3100.

[7] Lee K. and Park Q.-H., Physical Review Letters, 95
(2005) 103902.

[8] López-Tejeira F., García-Vidal F. and Martín-
Moreno L., Physical Review B, 72 (2005) 161405.

[9] Bethe H. A., Physical Review, 66 (1944) 163.
[10] Bouwkamp C. J., Reports on progress in physics, 17

(1954) 35.
[11] Ritchie R. H., Physical Review, 106 (1957) 874.
[12] Roberts A., Journal of the Optical Society of America

A, 4 (1987) 1970.
[13] Park T. J., Eom H. J. and Yoshitomi K., Journal of

Applied Physics, 73 (1993) 3571.

[14] Kang S. H., Eom H. J. and Park T. J., IEEE trans-
actions on microwave theory and techniques, 41 (1993)
895.

[15] Wannemacher R., Optics communications, 195 (2001)
107.

[16] Chang S.-H., Gray S. K. and Schatz G. C., Optics
Express, 13 (2005) 3150.

[17] Xie Y., Zakharian A. R., Moloney J. V. and
Mansuripur M., Optics express, 12 (2004) 6106.

[18] Lalanne P., Rodier J. and Hugonin J., Journal of
Optics A: Pure and Applied Optics, 7 (2005) 422.

[19] Lalanne P., Hugonin J. P. and Rodier J. C., Journal
of the Optical Society of America A, 23 (2006) 1608.

[20] Ebbesen T. W., Lezec H. J., Ghaemi H. F., Thio T.
and Wolff P. A., Nature, 391 (1998) 667.

[21] Gay G., Alloschery O., de Lesegno B. V.,
ODwyer C., Weiner J. and Lezec H. J., Nature
Physics, 2 (2006) 262.

[22] Lalanne P. and Hugonin J. P., Nature Physics, 2
(2006) 551.

[23] Lalanne P., Hugonin J., Astilean S., Palamaru M.
and Möller K., Journal of Optics A: Pure and Applied
Optics, 2 (2000) 48.

[24] Lalanne P., Hugonin J. P. and Rodier J. C., Physical
Review Letters, 95 (2005) 263902.

[25] Xiao S., Zhu X., Li B.-H. and Mortensen N. A.,
Frontiers in Physics, 11 (2016) 117801.

[26] Liu M., Yin X., Ulin-Avila E., Geng B., Zentgraf
T., Ju L., Wang F. and Zhang X., Nature, 474 (2011)
64.

[27] Ding Y., Zhu X., Xiao S., Hu H., Frandsen L. H.,
Mortensen N. A. and Yvind K., Nano Letters, 15
(2015) 4393.

[28] Phare C. T., Lee Y.-H. D., Cardenas J. and Lipson
M., Nature Photonics, 9 (2015) 511.

[29] Goykhman I., Sassi U., Desiatov B., Mazurski N.,
Milana S., de Fazio D., Eiden A., Khurgin J.,
Shappir J., Levy U. et al., Nano Letters, 16 (2016)
3005.

[30] Park T. J., Kang S. H. and Eom H., IEEE Transac-
tions on Antennas and Propagation, 42 (1994) 112.

[31] Gonçalves P. A. D. and Peres N. M. R., An intro-
duction to graphene plasmonics (World Scientific) 2016.

[32] Chaves A. J. and Peres N. M. R., arXiv preprint
arXiv:1812.04537, (2018) .

[33] Chaves A. J., Amorim B., Bludov Y. V., Gonçalves
P. A. D. and Peres N. M. R., Physical Review B, 97
(2018) 035434.

p-7


