
Universidade do Minho
Escola de Engenharia
Departamento de Informática

João Miguel Afonso

Towards an Efficient OLAP Engine
based on Linear Algebra

November 2018

Universidade do Minho
Escola de Engenharia
Departamento de Informática

João Miguel Afonso

Towards an Efficient OLAP Engine
based on Linear Algebra

Master Dissertation
Master Degree in Computer Science

Dissertation supervised by
Alberto José Proença
José Nuno Oliveira

November 2018

A C K N O W L E D G E M E N T S

This work was financed by the ERDF – European Regional Development Fund through
the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020

Programme within project «POCI-01-0145-FEDER-006961», and by National Funds through
the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia as part of
project «UID/EEA/50014/2013».

I would like to express my deep gratitude to Professor Alberto Proença and Professor José
Oliveira, my research supervisors, for their patient guidance, enthusiastic encouragement
and useful critiques of this work.

To Bruno Ribeiro, João Fernandes, Gabriel Fernandes, Fernanda Alves, Filipe Oliveira,
and Rogério Pontes, for their previous contributions in the project. More specially to João,
with whom I worked together in (Afonso and Fernandes, 2017), and to Bruno, for always
contributing with new ideas to implement the vision we all worked for.

Finally, to my family, whose continuous support has been essential to overcome the mul-
tiple obstacles I found during the way.

i

A B S T R A C T

Relational database engines associated to the widely used Structured Query Language
(SQL) are suffering unsatisfactory performance results in complex business queries, due
to ever increasing volumes of stored data. To retrieve and process data in a more efficient
way, Online Analytical Processing (OLAP) models have been proposed with an increased
focus on attributes (measures and dimensions) over records.

OLAP is based on a row-oriented theory, while a columnar-oriented theory could con-
siderably improve the performance of analytical systems. The Typed Linear Algebra (TLA)
approach is an example of such theory: it encodes each database attribute in a distinct ma-
trix. These matrices are combined in a single Linear Algebra (LA) expression to obtain the
result of a query.

This dissertation combines concepts of relational databases, OLAP, TLA and performance
engineering to design, implement and validate an efficient TLA-DB engine: SQL queries are
converted into its equivalent LA expression, using Type Diagrams (TDs), which represent
each matrix as an arrow pointing from the number of columns to the number of rows, TDs
are converted to a LA expression encoded in Linear Algebra Query language (LAQ) and
the LAQ script of a query is automatically coded in C Plus Plus (C++).

An efficient TLA-DB engine required the encoding of the sparse matrices in an adequate
format, namely Compressed Sparse Column (CSC), while the operations specified in LAQ
expressions had their performance improved by optimised algorithms and an optimised
query processor.

The functionality of the resulting LAQ engine was validated with several TPC Benchmark
H (TPC-H) queries for various dataset sizes. A comparative evaluation of the TLA-DB with
two popular Database Management Systems (DBMSs), PostgreSQL and MySQL, showed
that the developed framework outperforms both DBMSs in most TPC-H queries.

ii

R E S U M O

As melhorias de desempenho dos sistemas de gestão de bases de dados relacionais não
têm sido suficientes para acompanhar o crescimento do volume de dados com que são
utilizados. Para colmatar a consequente necessidade de soluções mais eficientes, a teoria
OLAP foi proposta. Esta introduz as noções de medidas e dimensões, guardando pré-
agregações das medidas baseadas nas últimas, de forma a acelerar o processo de análise de
dados.

Contudo, ainda que com regras mais restritas, o OLAP está assente em álgebra relacional.
A proposição de uma teoria orientada à coluna pode abrir portas a grandes melhorias de
desempenho em consultas analíticas. A álgebra linear tipada é um bom exemplo. Segundo
esta teoria, cada um dos atributos é convertido numa matriz independente, as quais são pos-
teriormente combinadas através de uma expressão de álgebra linear que define o resultado
da consulta.

Esta dissertação combina conceitos de bases de dados relacionais, OLAP, álgebra lin-
ear, teoria de tipos, e computação eficiente para projetar, implementar e validar um motor
OLAP robusto e eficiente. Para tal, consultas em SQL são convertidas para a expressão de
álgebra linear equivalente, usando diagramas de tipo que representam cada matriz como
uma seta a apontar do número de colunas para o número de linhas da matriz. A expressão
que deles resulta é então codificada em LAQ e automaticamente implementada em C++.

Para garantir a eficiencia da ferramenta desenvolvida, todas as matrizes foram guardadas
num formato adequado, nomeadamente o CSC. Por sua vez, as operações especificadas na
LAQ foram implementadas recorrendo a algoritmos optimizados.

A correção do sistema implementado foi garantida através da validação dos resultados de
um grupo de consultas extraidas do TPC-H, executadas sobre bases de dados de multiplos
tamanhos. Finalmente, a comparação com dois sistemas de bases de dados convencionais
(o PostgreSQL e o MySQL) nas métricas de tempo de execução e memória utilizada, demon-
strou a maior eficiencia da ferramenta desenvolvida na maioria das consultas.

iii

C O N T E N T S

1 introduction 1

1.1 The Relational Model 2

1.1.1 Relational Algebra 3

1.1.2 SQL 3

1.2 Database System Implementation 6

1.2.1 Query Compilation 6

1.2.2 Query Execution 9

1.3 Data Warehousing 10

1.3.1 Data Modeling 11

1.4 Challenges & Goals 12

1.5 Contribution 13

1.6 Dissertation Outline 13

2 typed linear algebra for olap 14

2.1 Linear Algebraic Encoding of Data 14

2.1.1 Dense Vectors 14

2.1.2 Sparse Matrices 15

2.2 Type Diagrams 15

2.3 Linear Algebra Query language 16

2.3.1 Dot Product 17

2.3.2 Khatri-Rao Product 18

2.3.3 Hadamard-Schur Product 18

2.3.4 Filter 19

2.3.5 Fold 20

2.3.6 Lift 20

2.4 Conversion algorithm 21

2.4.1 The approach 21

2.5 Conversion Example 27

2.6 Summary 32

3 a tla-db engine for relational sql 33

3.1 Matrix Representation 33

3.1.1 LIL 34

3.1.2 COO 35

3.1.3 CSC/CSR 35

3.1.4 Matrix labels 38

iv

Contents v

3.2 LA Operators 38

3.2.1 Hadamard-Schur Product 39

3.2.2 Khatri-Rao Product 39

3.2.3 Dot Product 43

3.2.4 Filter 44

3.2.5 Fold 45

3.2.6 Lift 46

3.3 “Streaming” approach 46

3.3.1 Dependencies in query processing 46

3.3.2 Execution order 47

3.4 SQL Driver 48

3.4.1 SQL Parser 48

3.4.2 Query Rewriter 49

3.4.3 SQL Converter 49

3.4.4 toString 50

3.5 LAQ Engine 50

3.5.1 LAQ Parser 50

3.5.2 Query Optimiser 51

3.5.3 Query Processor 51

3.5.4 Run-time Compiler 54

3.5.5 Query Execution 54

3.6 The framework manager 55

3.7 Summary 55

4 validation and performance results 56

4.1 TPC Benchmark H 56

4.1.1 Benchmark modifications 57

4.2 Testbed environment 58

4.3 Results and discussion 59

4.4 Summary 63

5 conclusions 64

5.1 Future work 66

5.1.1 Framework extensions 66

5.1.2 Horizontal scalability 70

5.1.3 Incremental querying 72

a tpc-h queries - sql and laq versions 76

a.1 Query 3 76

a.2 Query 4 77

Contents vi

a.3 Query 6 78

a.4 Query 11 78

a.5 Query 12 79

a.6 Query 14 80

L I S T O F F I G U R E S

Figure 1 TPC-H Query 3 – Relational Algebra representation 7

Figure 2 TPC-H Query 3 – RA optimized representation 8

Figure 3 System architecture 33

Figure 4 Detailed system architecture 34

Figure 5 A sparse matrix in CSC format 36

Figure 6 TPC-H query 6 - execution plan 48

Figure 7 TPC-H database schema 57

Figure 8 TPC-H queries 3 and 6 – preliminary performance results 59

Figure 9 TPC-H queries 3 and 4 performance results 60

Figure 10 Execution times (scale factor: 25) 61

Figure 11 Sequential and Parallel Query 6 62

Figure 12 Memory usage (scale factor: 25) 62

Figure 13 TPC-H queries 3 and 4 performance results (MonetDB) 69

Figure 14 Execution times (scale factor: 25) 69

Figure 15 Memory usage (scale factor: 25) 69

Figure 16 Distributed dot product - replicate A 70

Figure 17 Distributed dot product - rotate A 71

vii

L I S T O F TA B L E S

Table 1 Relational Model terminology 2

Table 2 TPC-H relation Lineitem 2

Table 3 TPC-H relation Orders 2

Table 4 Relational Algebra operators 4

Table 5 OLTP vs Data Warehousing systems 11

Table 6 Properties of CSC block types 37

Table 7 Testbed environment 59

viii

A C R O N Y M S

A

AL Aggregations List. 4

API Application Programming Interface. 52, 55

B

BI Business Intelligence. 1

C

C++ C Plus Plus. ii, iii, 13, 51, 54, 55, 65

CBLAS C language Basic Linear Algebra Subprograms. 38, 45, 64

CFG Context-Free Grammar. 21, 50, 68

COO Coordinate List. 34–36, 64, 67

CRUD Create Read Update Delete. 10

CSC Compressed Sparse Column. ii, iii, 34–36, 40, 42, 43, 46, 64, 67

CSR Compressed Sparse Row. 34, 35, 64

CSV comma-separated values. 34

D

DBMS Database Management System. ii, 1, 6, 12, 13, 38, 48, 54, 56, 58, 60, 62, 65–67

DCL Data Control Language. 3

DDL Data Definition Language. 3

DML Data Manipulation Language. 3

DQL Data Query Language. 3

DSL Domain Specific Language. 14, 16, 32, 64

DTL Data Transaction Language. 3

DW Data Warehouse. 11

G

GA Grouping Attributes. 4

GMP GNU Multi Precision. 65

I

ix

Acronyms x

IDC International Data Corporation. 1

Intel MKL Intel Math Kernel Library. 38, 45, 64

L

LA Linear Algebra. ii, 12–14, 16, 21, 27, 31–33, 38, 51, 55, 57, 58, 60–67, 69, 70

LAQ Linear Algebra Query language. ii, iii, 13, 16, 21, 27, 31, 33, 37, 38, 45–47, 49–53, 55,
58, 60, 64–66, 68, 70, 72

LIL List of Lists. 34, 35, 64

O

OLAP Online Analytical Processing. ii, iii, 11, 12, 16, 21, 32, 45, 56, 65, 68

OLTP Online Transaction Processing. 10, 11

OS Operating System. 67

P

PU Processing Unit. 59, 61

R

RA Relational Algebra. 3, 5, 6, 12, 21, 22

RAM Random Access Memory. 58, 59, 62, 63

RC Relational Calculus. 3

RDBMS Relational Database Management System. 2, 33, 49, 69

RM Relational Model. 1, 2

S

SQL Structured Query Language. ii, iii, 1, 3, 5, 6, 9, 12–14, 16, 20, 21, 23, 26–28, 32, 33, 37,
45, 48–50, 53, 55, 56, 58, 65, 66, 68

T

TD Type Diagram. ii, 15–17, 19, 20, 23, 28, 32, 49, 65, 68

TLA Typed Linear Algebra. ii, 13, 14, 32, 49

TPC Transaction Processing Performance Council. 56

TPC-DS TPC Benchmark DS. 56

TPC-H TPC Benchmark H. ii, iii, 2, 21, 47, 50, 56, 57, 59, 60, 63, 65, 68, 72

TSV tab-separated values. 34

1

I N T R O D U C T I O N

“From paper-based files to the electronic era, there is not one aspect of modern business that has
avoided the need to collect, collate, organise and report upon data” Lake and Crowther (2013).

The importance of data in the business context is unquestionable, and the amount of
electronic data that companies have in hand is growing exponentially, developing the ideal
environment for high profits.

However, a study developed by the International Data Corporation (IDC) (Gantz and
Reinsel, 2012) revealed that only 0.5% of this data is actually analysed. This slight percent-
age reveals that the improvements in data processing systems and methodologies are not
enough to compete with the data growing rate.

In fact, the development of a DBMS is certainly among the most complex projects in
computer science. Not only all the theoretical basis must be carefully and extensively
researched, but all the system components must be efficiently implemented and tested
under a wide range of queries and datasets.

It is true that many recent systems have been built for more special purpose tasks, slightly
bypassing the establishment of a formal basis. But is also true that most of these systems
have failed to compete with the standard solutions.

The best example is probably Map-Reduce. Purposely built in 2005 to support Google’s
crawl database, it was replaced a few years later by Big Table, and only now the world is
realising that even a software built by Google can have no practical applicability (Stone-
breaker et al., 2015, p. 4).

Still in the same mindset, the basis of all major system is, or is prone to become, relational
SQL (Stonebreaker et al., 2015, p. 5). Considering that the relational theory has been on the
market for almost fifty years, and is still the standard approach to databases is the proof
that formal theories tend to support the development of better software.

The next sections introduce the reader the key issues in the evolution of database systems,
from Codd’s Relational Model (RM) to modern implementations considering Business In-
telligence (BI) methodologies. This context is relevant to better comprehend the core topics
addressed by this work.

1

1.1. The Relational Model 2

1.1 the relational model

In his paper “A Relational Model of Data for Large Shared Data Banks” (Codd, 1970), Edgar
Codd proposed the database model which would become the theoretical foundation of all
Relational Database Management Systems (RDBMSs) (Connolly and Begg, 2014, p. 149).

As a result of the successive adjustments in these systems and the subsequent deviations
from the original model, the terminology of the RM is quite confusing. Some concepts have
multiple designations, so a short summary is presented in Table 1.

Formal Terms Alternative 1 Alternative 2

Relation Table File
Tuple Row Record
Attribute Column Field

Table 1.: Relational Model terminology. Based on Connolly and Begg (2014, p.154)

As the name suggests, the RM is based on the mathematical concept of relation. Re-
lations serve to keep all the information stored in the database. They are represented as
bi-dimensional tables in which the rows of the table correspond to individual records (tu-
ples) and the table columns correspond to attributes (Connolly and Begg, 2014, p. 152).

For example, the Tables 2 and 3 respectively depict the relations Lineitem and Orders. An-
alyzing the tables, one can identify that the relation Lineitem is composed by the attributes
Quantity and OrderKey, while the relation Orders incorporates the attributes OrderKey, Or-
derDate and ShipPriority. Furthermore, the cardinality (number of records) of both relations
is the same.

Lineitem

Quantity OrderKey

28 32

44 32

13 34

Table 2.: TPC-H relation lineitem 1

Orders

OrderKey OrderDate ShipPriority

32 1995-07-16 1-URGENT
33 1993-10-27 2-HIGH
34 1998-07-21 1-URGENT

Table 3.: TPC-H relation orders 1

The RM states that there can be no duplicate tuples within a relation. To ensure this
property, it is necessary to properly identify each tuple of the relation with a primary key.
This key is an attribute (or set of attributes) from the relation where all the records are
distinct.

1 To maintain the document consistency, all the database examples used in this dissertation are based on TPC-H.
This benchmark will be described in section 4.1.

1.1. The Relational Model 3

When an attribute exists in more than one relation, it usually represents a relationship
between tuples of the two relations (Connolly and Begg, 2014, p. 159). For example, the
inclusion of OrderKey in both Orders and Lineitem relations connects each order to the items
that compose it. In the Orders relation, OrderKey is the primary key. However, in the
Lineitem relation, the OrderKey attribute is a foreign key.

These keys are extremely important because they are the only way of relating information
spread across multiple tables. The law of referential integrity specifies that every non-null
value in a foreign key must match a primary key value of some tuple in its home relation
(Connolly and Begg, 2014, p. 162).

1.1.1 Relational Algebra

More than the definition of a structure for the database and its data, any database model
must specify a set of operations on the information stored in the database (Connolly and
Begg, 2014, p. 93). To fulfill this purpose, Codd (1971) introduced Relational Algebra (RA)
and the Relational Calculus (RC).

As defined by Connolly and Begg (2014, p. 168), “The relational algebra is a theoretical lan-
guage with operations that work on one or more relations to define another relation without changing
the original relation(s)”. This type similarity between the input and output of relational ex-
pressions allows their composition in an analogous way to arithmetic operations.

There are five key operations in RA: selection, projection, Cartesian product, union and
set difference. Based on them, other operations have been defined, for example the join and
intersection, Connolly and Begg (2014, p. 168).

Both RA and RC are too broad to be exhaustively described in this document. Table
4 contains a summary of the enumerated operations, based on Connolly and Begg (2014,
pp. 169–180). Please consult Connolly and Begg (2014) and Molina et al. (2008) for further
information.

1.1.2 SQL

RA is a mathematical language, difficult to use in database manipulation tasks. To achieve
a higher level of abstraction and facilitate this tasks, other RA based languages have been
proposed, being SQL one of them.

The SQL language can be divided in five major groups: Data Definition Language (DDL),
Data Manipulation Language (DML), Data Query Language (DQL), Data Control Language
(DCL), and Data Transaction Language (DTL). The present analysis will be summarised and
restricted to the DQL, more specifically to the SELECT statement.

1.1. The Relational Model 4

Selection (σpredicate (R)) - an unary operation with a single relation (R) that produces
a relation containing only those tuples of R that satisfy the specified condition (predi-
cate).

Projection (πa1,...,an (R)) - an unary operation that produces a relation containing a
vertical subset of R with the specified attributes and eliminating duplicate tuples.

Union (R ∪ S) - a binary operation that produces a relation containing all tuples of R
and S, without duplicate tuples. R and S must be union-compatible.

R∪ S
R

S

Set difference (R− F) - produces a relation with all tuples in R that do not exist in S. R
and S must be union-compatible.

R− S

R

S

Intersection (R∩ S) - produces a relation containing all tuples present in both R and S.
R and S must be union-compatible.

R∩ S

R

S

Cartesian product (Cross Join) (R× S) - produces a relation that is the concatenation
of every tuple of relation R with every tuple of relation S.

A

a
b
×

B

1

2

3

=

A B

a 1

a 2

a 3

b 1

b 2

b 3

Theta join (R ./F S) - produces a relation that contains tuples satisfying the predicate F from the Cartesian
product of R and S, that is, R ./F S = σF (R× S). The resultant predicate is of the type Rattribute θ Sattribute,
where θ must be a comparison operator: <,>,≤,≥,=, 6=
Equijoin (R ./F S) - similar to theta join, produces a relation that contains tuples satisfying predicate F,
while restricting the comparison operators to equality, Rattribute = Sattribute.

Natural join (R ./ S) - equivalent to an equijoin of two relations over all common
attributes. Only a single occurrence of each attribute is kept. As illustrated, the natural
join of the Tables 2 and 3 with abbreviated attribute names.

Lineitem ./ Orders

Q OK OD SP

28 32 1995-07-16 1-URGENT
44 32 1995-07-16 1-URGENT
13 34 1998-07-21 1-URGENT

(Right) Outer join (R |><|d S) - a natural join where tuples from S that do not match
any values in the common attributes of R are also included in the output relation.
The presented table contains the right outer join of the Tables 2 and 3 (Lineitem and
Orders).

Lineitem d|><| Orders

Q OK OD SP

28 32 1995-07-16 1-URGENT
44 32 1995-07-16 1-URGENT

33 1993-10-27 1-URGENT
13 34 1998-07-21 1-URGENT

Semijoin (R .F S) - operates on the relations R and S, producing a relation that includes
only attributes from R. The obtained tuples are the ones in R that participate in the join
of R with S, satisfying predicate F. This way, R .F S = πA (R ./F S)

Lineitem . Orders

Quantity OrderKey

28 32

44 32

13 34

Aggregate (AL(R)) - applies an Aggregations List (AL) to the relation R, defining a new relation with the
results of the aggregations. AL contains one or more pairs of attributes and aggregate functions, e.g.,
SUM, COUNT, AVG, MIN and MAX.
Grouping (γGA AL (R), as in Molina et al. (2008, p. 778)) - groups the tuples of R by the Grouping
Attributes (GA). The values in each created group are then combined with the aggregation operators
specified in AL. The output relation contains the GA, along with the results of all the aggregate functions.

Table 4.: Relational Algebra operators

1.1. The Relational Model 5

The SELECT statement aims to retrieve data from the database, being the most used SQL
command. As explained by Connolly and Begg (2014, p. 197), the basic structure of this
instruction is the following:

SELECT [DISTINCT | ALL] {* | [columnExpression [AS newName]] [,...]}
FROM TableName [alias] [,...]
[WHERE condition]
[GROUP BY columnList] [HAVING condition]
[ORDER BY columnList]

It has two mandatory clauses: SELECT and FROM and three optional ones: WHERE, GROUP
BY and ORDER BY.

The SELECT statement is similar to the relational projection, although the selected at-
tributes are kept intact, that is, the repeated tuples are not removed. The attributes con-
tained in this clause can be involved by an aggregation function.

The FROM clause is the simplest one, because it just enumerates the tables that will be
used in the query. Using the presented syntax the table joins are always implicit, avoiding
the inclusion of multiple statements : [INNER | [LEFT | RIGHT | FULL] [OUTER]] JOIN.
All of them can be recreated by combining implicit joins and WHERE clauses.

The WHERE statement corresponds to the RA selection operation, being used to restrict the
rows to be retrieved. It must be followed by a condition (or predicate), used to filter the
desired records. Connolly and Begg (2014, p. 201) specifies five basic conditions:

1. The direct comparison of two expressions, e.g. a ≥ b;

2. The value of an expression is within a defined range, e.g. a BETWEEN(x, y);

3. The value of an expression equals an element in a set, e.g. a IN(x, y, ...), where x, y, ...
can be tuples with one or more elements;

4. The value of an expression matches a predefined pattern, e.g. a LIKE “pattern”

5. The value is null.

Corresponding to the relational grouping operator, the GROUP BY clause can be used to
calculate sub-aggregations of data, based on the similarity of records extracted from a spec-
ified set of columns.

However, for the SQL query to be valid, the GROUP BY and the SELECT clauses must be
integrated under some rules. For example, all attributes in the SELECT statement must either
be present in the GROUP BY clause or be involved by an aggregation function (Connolly and
Begg, 2014, p. 210).

The ORDER BY clause is self explanatory, simply sorting the records based on the specified
attributes.

1.2. Database System Implementation 6

Although the presented structure of the SELECT only represents a narrow view of the
command, it can be used to describe most of the SQL queries.

1.2 database system implementation

One of the main goals when designing user-friendly applications is to guarantee short
response times. In the database environment, this translates to a demand for real-time
query processing of always increasing volumes of data.

To pursue this objective, DBMS developers had to consider performance in high priority,
optimizing all critical components of a system. However, considering that the algorithms
to be executed are strongly tied to each SQL query, a less efficient implementation can lead
to hours or even days to complete a query. To overcome this limitation, a new module was
added to the SQL compiler: a query optimiser.

1.2.1 Query Compilation

The process of compiling a query encompasses three major phases: the query parsing, the
optimising phase and the code generation. While the code generation is a simple translation
of an execution plan to machine code, the other two phases are more complex, deserving a
more in-depth analysis.

Query parsing

Like the parser of many other programming languages, the only role of the SQL parser is
to receive queries in a textual format and convert them to a parsing tree. Although it seems
a trivial task, the complexity inherent to the language raises some obstacles, and thus leads
to some deviations from the standards in the majority of the implemented systems.

Still in the parsing context, the generated parsing tree will then be scanned by the pre-
processor, which compares it to the data dictionary of the database. This way, it ensures
that all the tables and attributes used in the query are valid and used correctly, and that the
user has enough permissions to consult them.

Considering the similarity between SQL and RA, the conversion between both notations
is quite straightforward. For instance, Listing 1 represents an example SQL query and
Figure 1 its translation to RA.

1.2. Database System Implementation 7

1 SELECT
2 l_orderkey,
3 sum(l_extendedprice * (1 - l_discount)) as revenue,
4 o_orderdate,
5 o_shippriority
6 FROM
7 customer,
8 orders,
9 lineitem

10 WHERE
11 c_mktsegment = 'MACHINERY'
12 AND c_custkey = o_custkey
13 AND l_orderkey = o_orderkey
14 AND o_orderdate < '1995-03-10'
15 AND l_shipdate > '1995-03-10'
16 GROUP BY
17 l_orderkey,
18 o_orderdate,
19 o_shippriority;

Listing 1: TPC-H Query 3 [Adapted]

The FROM clause specifies three tables: Customer, Orders, and Lineitem. Since the query
has no explicit join statement, the tables have to be combined using the Cartesian product.
After that, the necessary selections and groupings are applied, to finally do the projection
as stated in the SELECT clause.

πlorderkey, revenue, oorderdate, oshippriority

γlorderkey, oorderdate, oshippriority; SUM(lextendedprice∗(1−ldiscount))→revenue

σcmktsegment=′MACHINERY′ ∧ ccustkey=ocustkey ∧ lorderkey=oorderkey ∧ oorderdate<′1995−03−10′ ∧ lshipdate>′1995−03−10′

×

×

Customer Orders

Lineitem

Figure 1.: TPC-H Query 3 – Relational Algebra representation 3

3 Note the usage of tattr notation to represent the attribute Attr from the table Table, where “t” is the first letter
of the table name

1.2. Database System Implementation 8

Query optimization

As shown in Figure 1, two Cartesian products must be calculated before any relation has
been filtered, either by selection or grouping. Thus, it is necessary to calculate a massive
intermediate table, certainly incomputable even for medium-sized databases.

It is the role of the query optimizer to overcome situations like this. To do so, it counts
with a rule-based system for query rewriting, complemented with a cost-based estimator
to choose the most efficient execution path.

πlorderkey, revenue, oorderdate, oshippriority

γlorderkey, oorderdate, oshippriority,

SUM(lextendedprice∗(1−ldiscount))→revenue

σlorderkey=oorderkey

×

σccustkey=ocustkey

×

σcmktsegment=
′MACHINERY′

Customer

σoorderdate<
′1995−03−10′

Orders

σlshipdate>
′1995−03−10′

Lineitem

(a)

πlorderkey, revenue, oorderdate, oshippriority

γlorderkey, oorderdate, oshippriority,

SUM(lextendedprice∗(1−ldiscount))→revenue

./lorderkey=oorderkey

./ccustkey=ocustkey

σcmktsegment=
′MACHINERY′

Customer

σoorderdate<
′1995−03−10′

Orders

σlshipdate>
′1995−03−10′

Lineitem

(b)

Figure 2.: TPC-H Query 3 – RA optimized representation

Figure 2 shows two possible optimizations over the parsing tree in Figure 1. Considering
the diagram (a), the selection operator have been spread across the diagram by applying
the commutative property on the selection and the Cartesian product: σpredicate (R× S) =

(σpredicate (R)) × S. This change to the query is in conformity with the idea that every
table should be filtered as soon as possible, thus reducing the data to be processed in later
operations.

As explained in Table 4, whenever a selection is applied to the Cartesian product of two
relations, it can be replaced by a theta-join, σpredicate (R× S) = R ./predicate S. By employing
this property the diagram in (a) can be converted to the one in (b). This optimization
removed the need to compute the Cartesian product.

These two optimizations demonstrate how the volume of data should be reduced as early
as possible and the relevance of calculating only the unavoidable operations.

After these and other optimizations rules being applied, the query reaches its logical plan
state. However, it can still be optimized in many cases. To reach this level of optimization,
the properties of each relation and the data they contain should be analyzed.

1.2. Database System Implementation 9

For instance, consider the parsing tree in Figure 2 (b). It is predictable that the selection
applied to the table Customer is more restrictive than the ones in the tables Orders and
Lineitem. Also, as it will be explained in Section 4.1, the table Lineitem is the one with the
highest number of records, while the Customer is the shortest among the three. This way
it is predictable that if the order of the two joins were changed, for example (Customer ./

Orders) ./ Lineitem ⇒ Customer ./ (Orders ./ Lineitem), the query would take much
longer to complete, since a join between the two largest tables had to be computed.

Additionally, several algorithms can complete the join operations and it is up to the query
optimiser to select the most efficient one.

1.2.2 Query Execution

SQL operations may have multiple implementations on a single system. For instance, con-
sider the equijoin and natural join operations, the most common join operations. They can
be completed using one of three distinct algorithms: the nested loop join; the merge join,
and the hash join.

Nested loop join

The simplest version of the nested loop join iterates through all the combinations of tuples
from the relations to be joined. Whenever the records of both tables have matching keys,
they are combined in a new tuple, which is added to the result table.

As explained in Molina et al. (2008, p. 719), the join R(X, Y) ./ S(Y, Z) is processed
according tho the pseudocode in Listing 2.

1 for each tuple s in S:
2 for each tuple r in R:
3 if r and s join to make a tuple t:
4 output t

Listing 2: Nested loop join - pseudo-code

Considering that the tables R and S respectively contain N and M records, the complexity
of the algorithm can be defined as O(N × M), fitting in the category of the quadratic
algorithms.

If none of the relations R and S fits in the main memory, the data access patterns of
the algorithm will imply that nearly N ×M records must be loaded from disk, completely
annihilating the algorithm performance. One possible solution is to take advantage from
the memory hierarchy by using a blocked version of the algorithm, denoted block nested
loop join (Connolly and Begg, 2014, p. 752).

1.3. Data Warehousing 10

Merge join

If it is ensured that the relations to be joined are sorted by the attributes they have in
common, for instance, “Y” in the previous example, the process of joining the tables can
be completed in linear time. This is achieved by employing the merge algorithm from the
merge sort, hence the name of this algorithm.

However, if required sorting property is not guaranteed, a sorting phase must be com-
puted before the merge. These two phases of data processing are the reason why this
algorithm belongs to the two-pass category.

Considering the relations R and S from the previous example, as both of them must be
sorted and then merged, the total cost of this algorithm can be estimated as O(N× log N +

M× log M + N + M).

Hash join

The hash join is also a two-pass algorithm. In its first phase, it groups the tuples of both
relations in distinct subsets, according to a predefined hash function (“h”).

If two relations R and S are respectively scattered among the R1, R2, ..., Rn and S1, S2, ..., Sn

groups, the hash property ensures that a tuple in the group Rx can only be joined with
tuples in Sx, that is, if h(Rattr) 6= h(Sattr), then Rattr 6= Sattr. Note that the opposite is not
necessarily true, if h(Rattr) = h(Sattr), there is no guarantee that Rattr = Sattr, as the hash
function can have the same result for distinct inputs (Connolly and Begg, 2014, p. 754).

The second phase is to iterate over the pairs of R and S partitions, joining them, for ex-
ample, with a nested loop join. Despite the low efficiency of the nested loop algorithms,
since in most of the tuples the join condition will be true, the final relation will have ap-
proximately Rx × Sx tuples, making the algorithm’s complexity linear in the output size.

This way, the complexity of the algorithm is O(α× (N + M)), where α = 2 for the two
phases of the algorithm or α = 3 if the step of writing data back to disk between the two
phases is considered.

1.3 data warehousing

Relational systems are well suited to process large volumes of short and simple Create Read
Update Delete (CRUD) transactions. Their performance in this so-called Online Transaction
Processing (OLTP) is powered by how they store and operate over data. For example, the
insertion of a new entry in a database is processed with the construction of a single record
and its attachment at the end of the correspondent relation, having little to none interference
with the remainder of the database.

An organization will normally have multiple OLTP databases, each one oriented to a
distinct branch of the company, for instance storing inventory data or sales data per point-

1.3. Data Warehousing 11

of-sale (Connolly and Begg, 2014, p. 1227). The operational data in these databases is highly
volatile, requiring frequent updates and deletes, which are responsible to keep the database
short.

Contrasting with OLTP, typical business queries tend to operate over multiple relations,
performing complex data manipulation tasks. These are called OLAP queries.

In the enterprise environment it is interesting to analyze and compare both recent and
historical data to obtaining better insights on the business process. This way, data is usu-
ally moved from the transactional systems to a central analytical database known as Data
Warehouse (DW). This system typically encapsulates all the data of the organization. Since
the only common operation in addiction to the data consulting is the refreshment of the
database with data coming from the OLTP databases, they are considered non-volatile sys-
tems. The distinction between the two presented branches of data storage is summarized
in Table 5.

CHARACTERISTIC OLTP SYSTEMS DATA WAREHOUSING SYSTEMS

Main purpose Support operational process-
ing

Support analytical processing

Data age Current Historic (but trend is toward also in-
cluding current data)

Data latency Real-time Depends on length of cycle for
data supplements to warehouse
(but trend is toward real-time sup-
plements)

Data granularity Detailed data Detailed data, lightly and highly
summarized data

Data processing Predictable pattern of data
manipulation. High level of
transaction throughput.

Less predictable pattern of data
queries; medium to low level of
transaction throughput

Reporting Predictable, one-
dimensional, relatively
static fixed reporting

Unpredictable, multidimensional,
dynamic reporting

Users Serves large number of oper-
ational users

Serves lower number of managerial
users (but trend is also toward sup-
porting analytical requirements of
operational users)

Table 5.: OLTP vs Data Warehousing systems. Based on Connolly and Begg (2014, p. 1227)

1.3.1 Data Modeling

The complete analysis of DW design and implementation methodologies is out of the scope
of this dissertation. However, the interested reader can consult Kimball and Ross (2011) and

1.4. Challenges & Goals 12

Inmon et al. (2002) to understand the two main distinct approaches. This document is based
on Kimball’s method.

Kimball’s business dimensional life-cycle defines a dimensional modeling phase aiming
to convert data into a standard and intuitive format, where data can be more efficiently
accessed (Connolly and Begg, 2014, p. 1261).

Kimball defines two distinct sets of attributes: measures and dimensions. Measures
should be contained in a central table (the fact table); they correspond to aggregable data,
like monetary values or number of sales. Dimensions are the context that help to under-
stand the meaning of those measures.

As stated, the fact table should be the central part of the database, surrounded by dimen-
sion tables to form a star schema (Connolly and Begg, 2014, p. 1261). If dimension tables
are linked to other dimension tables, the schema is denoted snowflake.

The concepts presented in this section are the base of OLAP theories. However, the
simple differentiation of transactional and analytical queries is enough to support the com-
prehension of the conducted work. Multidimensional analysis techniques can also be used
with the approach presented in Section 2, but its implementation is out of the scope of this
dissertation.

1.4 challenges & goals

Macedo and Oliveira (2015) proposed a way to replace RA by LA to encode and resolve
OLAP queries. Pontes (2015) tested the efficiency of such theories in a distributed environ-
ment built with the Hadoop framework (Shvachko et al., 2010). Considering the unsatis-
factory, but promising results, Oliveira and Caldas (2016) implemented a simple query in
shared memory, already outperforming PostgreSQL.

To extend the test suite from a single query to a larger, and then more solid group of
queries, Ribeiro et al. (2017) worked on the implementation of multiple and more complex
queries. Meanwhile, Afonso and Fernandes (2017) provided them the LA scripts of the
tested queries, obtained when searching for a generic algorithm to convert a SQL query to
LA equivalent.

This dissertation aims the consolidation of all previous work in a single piece of software.
The main goals are the development of a DBMS based on the LA approach, as well as
its validation with an industry standard benchmark suite and its performance evaluation
through a comparison with standard market solutions.

The key challenges the author had to face included:

• the choice of an adequate format to represent and process very large sparse matrices;

• the performance evaluation of the alternative algorithms and implementations to exe-
cute the LA operations;

1.5. Contribution 13

• the selection of a set of representative queries to validate the LA engine;

• the setup of a testbed environment with the competitive DBMS and the consequent
reliable performance measurements.

1.5 contribution

This dissertation is a follow-up of the stated projects to build a new integrated framework to
aid the efficient use of a LA DBMS. To identify the key contributions is not straightforward
task: the major one was certainly the proposal of a modular architecture to address queries
encoded in SQL, while the other ones are mostly related to an efficient implementation of
these modules. The following contributions should be outlined:

• the complete re-design of the previous kernel of LA operations;

• the development of a code generator that takes LAQ scripts as input and produces
the equivalent C++ versions;

• the validation of the code generator with several inputs from a standard benchmark
suite;

• the performance tuning of the LAQ approach and a performance evaluation with
standard DBMSs.

One of the key outcomes of this work is the paper ‘‘Typed Linear Algebra for Efficient Ana-
lytical Querying” (Afonso et al., 2018) submitted to VLDB. The received reviews gave very
relevant clues for a further improvement of the work, which are included and discussed in
the Future Work section in the last Chapter of this dissertation.

1.6 dissertation outline

Chapter 2 presents TLA and how it can be used to power a database systems and encode
relational queries. Chapter 3 presents the architecture and implementation details of the de-
veloped framework. Chapter 4 specifies how the system was validated and benchmarked,
also comparing its performance with other systems. Finally, Chapter 5 contains some con-
siderations on the developed work, as well as relevant information on how the system can
be extended.

It is also noteworthy that some parts of the document were extracted from previous
publications for which the author has contributed. More specifically, Chapter 2 contains
parts of a previous report by Afonso and Fernandes (2017), and Chapter 4 reproduces the
analysis made for Afonso et al. (2018), which was carried in parallel with the work being
described in this dissertation.

2

T Y P E D L I N E A R A L G E B R A F O R O L A P

As stated by Stonebreaker et al. (2015), the “SQL Standard is both ambiguous and underspeci-
fied”. Despite all its drawbacks, SQL is undoubtedly the most used query language in the
market, and the recommended interface for any new implemented system. This way, a LA
solution will be introduced as an alternative encoding for relational SQL.

Afonso and Fernandes (2017) developed a novel attempt to define a Domain Specific
Language (DSL) to describe the LA operators, derived from SQL queries. Although the
proposed solution is not full SQL compliant, it contains an objective introduction to the
TLA concepts, forming the basis of the current analysis.

2.1 linear algebraic encoding of data

Since LA works mainly with matrices, it is crucial to understand how information, initially
encapsulated in relations, gets converted into matrices.

The LA encoding must be done separately for each attribute in the database, taking
advantage of the columnar data access and making it possible to ignore useless attributes
for each computed query.

2.1.1 Dense Vectors

The first data representation model is a straightforward extraction of an attribute from the
data table. Its representation is a dense vector, as shown in (1). The ShipPriority attribute
from the Orders table will be used and, from now on, named oshippriority.

oshippriority =
1 2 3 4[]
1 2 1 3 (1)

14

2.2. Type Diagrams 15

2.1.2 Sparse Matrices

With the attribute represented in a dense vector format, it is now necessary to convert it into
a matrix. As seen in (2), the matrix contains the same information as the vector (1), being
a direct conversion from it. The row labels are the set of distinct values that constitute the
previous vector. Obviously, repeated values only need to be represented once. The number
of columns of the defined matrix matches the length of the dense vector.

oshippriority =

1 2 3 4
1 − 1 − 1-URGENT

− 1 − − 2-HIGH

− − − 1 3-MEDIUM

(2)

Each value (“1”) in the matrix means that the record defined by the respective column
number contains the value specified by the matrix row. For instance, a “1” in column “4” at
the row labelled “3-MEDIUM” means that the 4th element of the array is a “3-MEDIUM”.

This conversion process creates functional matrices composed by, at most, a single value
per column, that can be efficiently represented in a sparse format, as accomplished by
Ribeiro et al. (2017).

2.2 type diagrams

The concept of TD is also crucial in this approach. In (3), a diagram representing a single
matrix of width #o and height SP can be seen. It shows the type of matrix (2) that represents
the attribute oshippriority.

SP #o
oshippriority (3)

Afonso and Fernandes (2017) also used a standard notation for naming the dimensions
of the matrix. The number of records in the table is represented by the character # followed
by the first letter of the tables name (in this case, the table is named Orders, hence #o).

The number of rows in the matrix is the cardinality of type SP, totalising the distinct
values in the attribute oshippriority. This abbreviation comes from the combination of the first
letter of each word in the attribute’s name.

It is also relevant to mention that this arrow notation is typically used to represent func-
tions. In this case, it receives an argument of type #o and returns a value of type SP.

The created matrix does just that. For a given row of the data table (#o) its corresponding
column in the matrix identifies its attribute value (SP), by checking the row in which the

2.3. Linear Algebra Query language 16

"1" is contained in the bitmap. This creates this notion that a matrix can be thought of as a
function.

This notation can be scaled and composed to represent a full database schema. In (4) the
attributes in Tables 2 and 3 are placed in the equivalent TD.

#l OK #o OD

Q SP

lorderkey

lquantity

oorderkey

oshippriority

oorderdate

(4)

The first thing to notice are the two tables. These are characterised in the diagram by
all the attributes that compose them. Obviously, attributes of the same table have the same
number of registers, hence deriving from the same point in the TD.

Another aspect introduced with this diagram are the joins between tables. In this case,
the table Lineitem has an attribute (lorderkey) that is a foreign key pointing to the primary key
of the table Orders.

Since null values are not allowed in OLAP databases, every single value of the foreign
key attribute (lorderkey) must be present in the primary key (oorderkey).

This validates the invariant that the cardinality of the foreign key is lower or equal to the
one of the primary key.

As this representation abstracts the table’s data, the bitmaps containing the foreign keys
will have as many rows as the primary key, culminating in the same dimension in the
diagram (OK).

Finally, note how in lquantity the attribute name was intentionally positioned over the
matrix first letter. This notation was extracted from Oliveira and Macedo (2017), allowing
the differentiation between OLAP measures and dimensions.

2.3 linear algebra query language

The LA approach presented by (Afonso and Fernandes, 2017) not only introduced a distinct
way of encoding data, but also specified a set of operations capable of reproducing typical
database queries. To formalise this set of operations in such a way that makes it suitable
to be used by any developer, and capable of supporting an automatic conversion from SQL
queries, a new DSL was defined and named LAQ.

This new language includes three key algebraic operators, from which all the LAQ op-
erations are implemented: Dot, Khatri-Rao and Hadamard-Schur products. Three other
derived operations are introduced to cover the complex syntax of SQL: the Filter, Fold, and
Lift operators.

2.3. Linear Algebra Query language 17

2.3.1 Dot Product

Mathematically, this product corresponds to the matrix multiplication, where A× B = C,
being only applicable if the number of columns of the matrix A matches the number of
rows of the matrix B.

It can be defined as follows: for any entry v of C in the position [x, y] (where x ≤ i ∧ y ≤
k), v is calculated by summing the product of all j values in the x row of A by the j values
in the column y column of B. In (5) a sample product is displayed.


1 2

3 4
5 6

.

[]
1 2 3
4 5 6 =


1× 1 + 2× 4 1× 2 + 2× 5 1× 3 + 2× 6

3× 1 + 4× 4 3× 2 + 4× 5 3× 3 + 4× 6
5× 1 + 6× 4 5× 2 + 6× 5 5× 3 + 6× 6

=


9 12 15

11 26 33
29 40 51

(5)

Again, thinking of a matrix as a function, leads to the use of its specific properties. One
of the most useful is the function composition. As seen in (6), the requirements for function
composition and matrix multiplication are the same, which allows a similar representation.

j k

i

M

N

M.N (6)

This property can be visualised in the TD notation. Considering the multiplication of
two matrices (N and M), their composition can be represented by (M.N), thus the “dot” in
the product’s name.

Another interesting aspect of this property is that the dimensions have to align, just like
types in function composition. It is also very perceptible to see the result matrix dimensions
in the diagram. In this case, they are (i× k).

2.3. Linear Algebra Query language 18

2.3.2 Khatri-Rao Product

The Khatri-Rao product of two matrices is represented by A O B = C. In this product, each
row of the matrix A is multiplied by the whole matrix B (row by row), and the result is
stored in the final matrix C.

If the initial matrices have dimension of (i× k) and (j× k) respectively, the result matrix
will have ((i ∗ j)× k) dimension. In (7) its application is displayed.

[]
1 2
3 4

O


1 2

3 4
5 6

=





1× 1 2× 2
1× 3 2× 4
1× 5 2× 6
3× 1 4× 2
3× 3 4× 4
3× 5 4× 6

=





1 4
3 8
5 12
3 8
9 16
15 24

(7)

In (8) it is possible to establish a parallelism between this operator and a function split,
defined by (f O g)x = 〈 f (x), g(x)〉. One of the important properties of this operator (also
depicted in the diagram) is that no information is lost. From the result of a Khatri-Rao, one
or both of the initial matrices can always be retrieved.

i i× j j

k

π1 π2

M NMON (8)

2.3.3 Hadamard-Schur Product

The Hadamard-Schur product is defined only for matrices of the same type, i.e. matching
dimensions. A× B is implemented by multiplying every element in A by the corresponding
element in B and storing it in the same position on matrix C. This way, the resulting matrix
matches the dimensions of the original matrices, as seen in (9).[]

1 2
3 4 ×

[]
5 6
7 8 =

[]
1× 5 2× 6
3× 7 4× 8 =

[]
5 12

21 32 (9)

2.3. Linear Algebra Query language 19

2.3.4 Filter

The attribute filter is the equivalent operator to the relational selection, which filters the
columns of a matrix based on the labels of its corresponding rows. Specifically, this operator
has, as input, both a predicate and a matrix. The predicate is directly applied to the labels of
the matrix, generating a boolean vector that states which labels comply with the predicate.
After this, a dot product between the result vector and the initial matrix is made. This
generates another boolean vector, which identifies the columns that have a row satisfying
the predicate. The TD (10) represents this clearly.

i j

1

f

M

f .M =σ(M f)
(10)

To understand this, an example is given. The matrix in (11) shows the representation of
the attribute oshippriority in a matrix format. The applied filter (12) is a predicate that selects
non-urgent shipments.

oshippriority =

1 2 3 4
1 − 1 − 1-URGENT

− 1 − − 2-HIGH

− − − 1 3-MEDIUM

(11)

6= ’1-URGENT’ =
1-URGENT 2-HIGH 3-MEDIUM[]
− 1 1 (12)

The matrix in (13) is the result of the dot product of (12) by (11). It is a sparse boolean
vector that specifies whether each column in the original matrix has a row that corresponds
or not to a valid predicate.

σ(oshippriority 6= ’1-URGENT’) =
1 2 3 4[]
− 1 − 1 (13)

2.3. Linear Algebra Query language 20

2.3.5 Fold

A “!” is a vector of arbitrary length filled with "1"s. It is typically used to condense informa-
tion, by reducing one of the matrix dimensions to the unit when both are multiplied. The
TD in (14) exemplifies this process.

i j

1

f old(M)=M.!o

M

!o
(14)

This way, a new vector is obtained, having as many rows as the initial matrix. Each value
equals the fold of all of the elements of the corresponding row in the original matrix using
the aggregation function of the SQL language, for instance: sum, count, avg, min, and max.

By directly applying the composition in (14), the sum and count aggregation functions
can be implemented. Furthermore, the average operator can be theoretically defined by the
division sum/count. A practical implementation can be optimised to do this division in
a single operation, encapsulated in the fold operator. The example in (15) illustrates the
explained operator. It is applied to obtain the sum of lquantity.

sum(lquantity) =

[]
28 44 13 35 .




1
1
1
1

= 120 (15)

2.3.6 Lift

The lift operator applies a mathematical expression, defined by a lambda function, to a set
of vectors, corresponding to the function arguments. This is done for each element in the
provided vector(s), creating a new one with the obtained results, as exemplified in (16).

li f t(2× lquantity) = 2×
[]
28 44 13 35 =

[]
56 88 26 70 (16)

2.4. Conversion algorithm 21

2.4 conversion algorithm

The current system is oriented towards analytical querying. Considering the complexity
of such queries, translating a SQL query into a series of LA operations has a negligible
performance overhead in the complete query run-time. Yet, there are several paths that
can be taken to reach the same query output. This way, certain decisions can be made to
produce the most efficient one.

Although a possible approach would be to produce a range of viable alternatives and
then pick the best one based on a predicted cost, Afonso and Fernandes (2017) developed
a theoretically sustained algorithm, capable of providing an efficient LA expression for any
supported OLAP query.

This way, as performance is a priority, it is crucial to have a precise idea of the cost of each
operation to prioritise the most efficient ones during the conversion phase. A brief study
conduced by Afonso and Fernandes (2017) revealed the dot product as the most costly
operator1, so the full development process was oriented to avoid its usage. Also, filtering
an attribute results in a reduction of the number of non-zero elements in the filtered matrix.
Computing these operations in the initial stages of the query processing results in a more
efficient solution, thus making it another priority.

2.4.1 The approach

Afonso and Fernandes (2017) found the implementation of a generic algorithm to convert
any given SQL query to its LAQ counterpart a complex task.

This complexity raises from two major obstacles. The first is the high complexity of SQL
syntax and the variety of possible queries it can describe. Another great obstacle is that
RA and LA are completely different paradigms, leading to a conversion process that does
not have a direct “one to one” translation, achievable using only a Context-Free Grammar
(CFG).

Like with any other complex problem, its solution is not immediately discoverable, but
reached progressively. Afonso and Fernandes (2017) constantly used the queries from the
TPC-H benchmark to extend the algorithm’s capabilities. As more and more queries were
considered, the algorithm gradually evolved to support them. The benchmark is also used
in this dissertation to validate, and measure the efficiency, of the query processing.

The methodology proposed by Afonso and Fernandes (2017) is as follows:

1 Although this statement is not valid for every query, the dot product still has a negative impact in the streaming
approach presented in Section 3.3

2.4. Conversion algorithm 22

1) Combine independent predicates filtering the same attribute

2) Replicate the type diagram if there are disjunctions between different tables

3) Filter the attributes using the dot product

4) Combine all the filters from the same table

5) Join the tables respecting referential integrity

6) While there are more than one functional bitmap:
6.1) Compose matrices whenever possible
6.2) Khatri-Rao between all bitmaps (or Hadamard if both are vectors)

7) Merge the replicated diagrams respecting the logical tree

8) Perform the necessary operations depending on the aggregation functions

9) Sort the data as stated in the ORDER BY clause

Listing 3: SQL to LAQ convertion algorithm

1) Combine independent predicates filtering the same attribute

In RA, after the Cartesian product between all the tables involved in the query is made, the
conditional expression in the WHERE clause is evaluated row by row, filtering the records.

In a columnar approach, each attribute must be evaluated separately. If the conditional
expression can be divided into a set of conjunctive sub-expressions, each one only applied
to a single attribute, the predicates in each set can be immediately combined, creating a
new boolean vector. Otherwise, it is necessary to build the logical tree that represents the
conditional expression.

2) Replicate the type diagram if there are disjunctions between different tables

If the logical tree can be fully simplified, 1) will reduce it to a single root node and this step
will not change the type diagram. When this is not possible, it is necessary to replicate the
type diagram.

1 WHERE l_orderkey = o_orderkey
2 AND l_orderdate = 'yesterday'
3 OR (l_orderdate = 'today' AND o_shippriority = '1-URGENT')

Listing 4: Example of a SQL WHERE clause

2.4. Conversion algorithm 23

The SQL statement in Listing 4 exemplifies a situation where this problem arises. The
predicates over lorderdate cannot be conjugated as stated in step 4), since it does not respect
the logical expression

#l OK #o

OD SP

1 1 1

lorderkey

lorderdate

=today =yesterday

oorderkey

oshippriority

=URGENT

(17)

The type diagram (17) represents the presented SQL code. Since this notation cannot
illustrate the difference between conjunctions and disjunctions, the logical tree in (18) was
also built.

OR

AND lorderdate = yesterday

lorderdate = today oshippriority = URGENT

(18)

The necessary conditions are now met to proceed with the replication process, creating
as many new TDs as the number of ORs in the logical tree, each one of them capable of
being independently solved.

#l OK #o #l

OD SP OD

1 1 1

lorderkey

lorderdate

=today

oorderkey

oshippriority

=URGENT

lorderdate

=yesterday

(19)

In this particular case, since there is only one OR conditional operator, only a new type
diagram is formed, splitting the conditions among the two, as shown in (19).

2.4. Conversion algorithm 24

3) Filter the attributes using the dot product

The goal is to obtain the vector that selects which columns of the bitmap will be kept,
removing the others from the sparse representation. This reduces the amount of data in
memory, which further improves the efficiency of the succeeding operations. Achieving
this is done by composing the matrices of the filter and the attribute, as seen in (20).

#l OK #o #l

1 1 1

lorderkey

ftd= f ilter(lorderdate=today)

oorderkey

f1= f ilter(oshippriority=1) fyd= f ilter(lorderdate=yesterday) (20)

4) Combine all the filters from the same table

As explained in 2), the conditions in each type diagram are independent from each other,
so the diagrams can be further simplified.

At this stage, only the conditions relative to the same table can be resolved. Effectively,
they can be “glued” by respecting the logical operators in the initial condition. For instance,
if the initial expression was composed by an AND between two conditions, the logical
conjunction would have to be performed, element by element, between the two condition
vectors.

5) Join the tables respecting referential integrity

Referential integrity is a very common constraint in a relational database. This guarantees
that, when a table has data that points to another table, all the made references are valid.
For instance, if a given table has a foreign key that is relative to another table’s primary key,
this foreign key always takes a valid value that exists in the second table’s primary key.

To guarantee this integrity, the proposed approach has to make sure that the cardinality
of both attributes is the same. This may not be true if the foreign key attribute does not
reference all the primary keys. Padding the foreign key’s bitmap with rows full of zeros, in
all the elements that originally do not occur in it makes them both have the same cardinality,
solving this problem.

2.4. Conversion algorithm 25

In theory, joining the tables can be achieved by calculating the dot product between the
transpose of the primary key and the foreign key matrices, as illustrated in (21).

OK #o

#l

oorderkey
o

lorderkey join=oorderkey
o.lorderkey=ido.lorderkey=lorderkey

(21)

Although this seems like a straightforward matrix composition, if the process of loading
the data into the bitmaps is made correctly, the primary key of each table will always be an
identity matrix, rendering the matrix multiplication redundant.

oorderkey =

1 2 3 4 5


1 − − − − 21

− 1 − − − 22

− − 1 − − 23

− − − 1 − 24

− − − − 1 25

= oorderkey
o = id (22)

The matrix in (22) contains the loaded data for the primary key of the table orders: oorderkey.
If two rows from the matrix and its respective labels were swapped, it would represent the
exact same information, but it would not be the identity. Thus, this property can only be
applied if the loading process is done correctly.

By employing this method, the type diagram in (23) is achieved.

#l #o #l

1 1 1

lorderkey

ftd f1 fyd (23)

6) While there are more than one functional bitmap:

The next step to complete any query is to obtain a single functional bitmap. This bitmap
specifies which values of the measure(s) should be considered, ignored or aggregated. The
cardinality of this bitmap matches the number of rows of the query result, which is the
same as the product of the cardinalities of all attributes involved in the GROUP BY clause. Its
number of columns is equivalent to the number of records in the fact table.

2.4. Conversion algorithm 26

Over this bitmap, from now on named function, all the aggregation operations can be
applied. In this specific case, the translation process is being made over a simple SQL
snippet, without a GROUP BY statement, thus the obtained function is a vector.

Since the practical meaning of the data stored in intermediate matrices starts to be quite
ambiguous, the final steps to achieve the query solution are less intuitive than the previous
ones. In summary, the Khatri-Rao product is used to merge the attributes in the GROUP BY

clause, and the dot product to filter attributes using specified predicates, as well as join
tables.

6.1) Compose matrices whenever possible

By applying the dot product, the composition in (23) is simplified and the type diagram in
(24) is obtained.

#l #l

1 1 1

f1.lorderkeyftd fyd (24)

6.2) Khatri-Rao between all bitmaps (or Hadamard if both are vectors)

Like mentioned, the Hadamard product can be used instead of the Khatri-Rao. In this case,
after applying the dot product, a bifurcation was established, creating an opportunity for
the usage of this rule. The type diagram (25) demonstrates the end result.

#l #l

1 1

ftd×(f1.lorderkey) fyd (25)

7) Merge the replicated diagrams respecting the logical tree

Using the logical tree calculated in 2), it is possible to join the functions of all type diagrams
in a single one, using the logical disjunction element by element.

2.5. Conversion Example 27

The functional bitmap in (26), represents the full LA translation of the initial WHERE state-
ment.

1 #l
f unction= fyd∨(ftd×(f1.lorderkey))

(26)

8) Perform the necessary operations depending on the aggregation functions

An aggregation function will produce a dense vector, with as many rows as the SELECT

statement cardinality. The value of each element depends on the applied aggregation func-
tion. These functions reduce every row of the matrix to a single value and, as explained in
section 2.3.5, are globally defined as the fold LAQ operator.

Knowing that both a measure vector and a functional bitmap are available, the necessary
conditions are met to determine the last set of LA operations that translate the query. The
five major aggregation functions are supported (count, sum, average, min and max).

The count operation can be calculated using only the functional bitmap. This makes it
so that the measure vector does not have to be loaded into memory, making it the most
efficient of the aggregation functions.

Note that the count of the desired records is made by “summing” all the “1”s in the
bitmap. Thus, to implement the sum operation, it is only necessary to put the measure
values in the place of the “1”s before they are aggregated, using the Khatri-Rao product (or
the Hadamard if the function is a vector).

Although the average is the more complex of the three operators, it can be easily obtained
by dividing the result of the other ones, using the formula: average = sum/count. If the
sum and/or count are not needed, it can also be incrementally calculated, storing the actual
average and count.

The min and max functions follow a similar strategy, searching all the elements of an
attribute for the min and max values.

9) Sort the data as stated in the ORDER BY clause

Without going through the contents of the matrices, it is impossible to perform a sort. For
this reason, the content of the ORDER BY clause is directly transcribed to the LAQ script.

2.5 conversion example

To consolidate all previous concepts and to better understand the utility of the introduced
operators, a SQL query will be translated to a LAQ script. The first step to solve any query

2.5. Conversion Example 28

is to build the correspondent TD. Using the query in Listing 1 as example, the TD that
represents it is depicted in (27).

This diagram stands as a visual representation to support the query conversion process.
It does not demand any construction rules that have not been introduced in Section ??.
However, the following conventions have been adopted:

• all attributes are represented as many times as they appears in the SQL script;

• each operation to be performed removes all the input matrices from the diagram, and
adds the resultant one;

• revenue represents a vector containing the result of the provided arithmetic expression
applied element-wise revenue = li f t(lextendedprice ∗ (1− ldiscount)), and not the filtered
and aggregated values

SP

OK #o CK

SD #l 1 OD OD #c

1 OK 1 1 MS

oshippriority

oorderkey ocustkey

oorderdate oorderdatelorderkey

lshipdate

lorderkey

revenue

ccustkey

cmktsegment

=’MACHINERY’

>’1995-03-10’ <’1995-03-10’

(27)

The first step in the query translation will be the composition of the filters. The Type
Diagram in (28) illustrates the practical application of (10) to filter urgent priority records
out of the cmktsegment attribute.

MS #c

1

=’MACHINERY’

cmktsegment

σ(cmktsegment=’MACHINERY’) (28)

2.5. Conversion Example 29

Applying this formula to all the filters in the query Type Diagram (27), results in (29),
where σsd = σ(lshipdate > ’1995-03-10’), σod = σ(oorderdate < ’1995-03-10’), and σms =

σ(cmarketsegment = ’MACHINERY’).

SP

OK #o CK

1 #l 1 1 OD #c

OK 1

oshippriority

oorderkey ocustkey

σod oorderdatelorderkey

σsd

lorderkey

revenue

ccustkey

σms

(29)

The joins between the tables involved in the query (Lineitem, Orders, and Customers),
although partially hidden, are also solvable matrix compositions.

As explained in (21), if the oorderkey attribute is transposed, it can be multiplied by lorderkey,
obtaining a single matrix as presented in (30). This matrix makes the correspondence be-
tween the records in Lineitem, as foreign keys, and the ones in Orders, as primary keys.

Also, this composition is taken for free on behalf of the id property.

1 SP 1

1 #l #o #c

OK 1 OD

oshippriority

ocustkey

σod oorderdatelorderkey

σsd

revenue

lorderkey

σms

(30)

2.5. Conversion Example 30

As shown in (30), there is still a composition to be made, after which the diagram (31)
can be obtained.

1 SP

1 #l #o 1

OK 1 OD

oshippriority

fms

σod oorderdatelorderkey

σsd

revenue

lorderkey

fms ← σms.ocustkey

(31)

The matrices σod and fms have the same dimensions, thus being combined using the
Hadamard product. Many other matrices share a single dimension, for instance #l and #o,
being merged with the Khatri-Rao product. The diagram containing these modifications is
depicted in (32).

1

#l #o

OK OD× SP

(σod× fms)OoorderdateOoshippriorityσsdOlorderkey

revenue

lorderkey
(32)

Once the GROUP BY of the attributes in Orders is calculated, it can be combined with the join
of the relations Orders and Lineitem, producing the diagram in (33).

1

#l OD× SP

OK

σsdOlorderkey

revenue

((σod× fms)OoorderdateOoshippriority).lorderkey
(33)

2.5. Conversion Example 31

Now, the final element of the GROUP BY clause, that is, the filtered matrix representing the
attribute lorderkey, can be merged with the rest of the GROUP BY elements.

1 #l OK×OD× SP
f unctionrevenue

f unction← σsd O lorderkey O (((σod × fms) O oorderdate O oshippriority).lorderkey)

(34)

As shown in (34), the diagram at this stage is composed by a single functional matrix,
and a set of measures: in this case revenue (derived from lextendedprice e ldiscount).

One possible way to combine all the information in a single vector, named query, is to cal-
culate the Khatri-Rao between the measure and the function derived from the dimensions,
then applying the needed fold operation: sum, to perform the row-wise aggregation of the
matrix.

Compiling all the defined variables together with the final LA expression in a single
equation results in the expression (35).

query = sum(revenue O f unction)

revenue = li f t(lextendedprice ∗ (1− ldiscount))

f unction = σsd O lorderkey O (((σod × fms) O oorderdate O oshippriority).lorderkey)

σsd = σ(lshipdate > ’1995-03-10’)

σod = σ(oorderdate < ’1995-03-10’)

fms = σms.ocustkey

σms = σ(cmarketsegment = ’MACHINERY’)

(35)

Encoding this expression in the LAQ syntax, the code snippet in Listing 5 is obtained,
this way completing the translation process.

1 A = filter(o_orderdate < "1995-03-10")
2 B = krao(A, o_orderdate)
3 C = filter(c_mktsegment = "MACHINERY")
4 D = filter(l_shipdate > "1995-03-10")
5 E = dot(C, o_custkey)
6 F = krao(l_orderkey, D)
7 G = krao(B, E)
8 H = krao(G, o_shippriority)
9 I = dot(H, l_orderkey)

10 J = krao(F, I)
11 K = lift(l_extendedprice * (1 - l_discount))
12 L = krao(J, K)
13 M = sum(L)
14 return(M)

Listing 5: TPC-H Query 3 - LAQ version

2.6. Summary 32

2.6 summary

This chapter extensively described the TLA approach to data querying. It started with the
analysis of the matrices used to encode OLAP measures and dimensions. Then, the concept
of TD was introduced as a visual way of representing queries. Finally, a DSL designed to
encode LA queries was specified, as well as a methodology to produce it from its SQL
counterpart.

The following chapters contain the full details of the implementation of these ideas in a
single framework, followed by its validation and performance evaluation.

3

A T L A - D B E N G I N E F O R R E L AT I O N A L S Q L

The developed framework in this work is based on LA and in the type theory placed above
it. Time has shown how mathematical interfaces tend to lose out for simpler and easier-to-
use implementations, while the success of RDBMSs is strongly linked to the higher level
of abstraction and robustness they provide, comparatively to the previously implemented
network and hierarchical systems.

As stated by Stonebreaker et al. (2015, p. 6), “SQL will be the COBOL of 2020, a language
we are stuck with that everybody will complain about”. SQL is here to stay, and even the non-
relational approach proposed in this dissertation should provide a SQL interface.

The key goal of the developed framework is to perform analytic querying on databases.
Once identified the two main requirements of the database system, the correspondent soft-
ware components can be defined: a SQL driver that reads SQL queries and translates them
to their LAQ equivalent, and a database engine that executes the LAQ queries (Figure 3).

Figure 3.: System architecture

This chapter addresses the detailed analysis of the two framework components (Figure
4), starting with the key issues, namely an efficient data representation, the required LA op-
erations and a streaming approach, followed by the description of the software components
in the overall architecture.

3.1 matrix representation

Typical OLAP implementations tend to be supported for at least one transactional database,
and data is loaded into the data warehouse at specific periods of time (the so-called win-
dows of opportunity). Fast updates and single record insertions are not essential; for now,
the only implemented method for data loading is the SQL’s COPY FROM.

33

3.1. Matrix Representation 34

Figure 4.: Detailed system architecture

The implemented COPY FROM operation takes any text file with delimited columns (such
as comma-separated values (CSV), tab-separated values (TSV), ...), its delimiter, and a map
with the desired column indexes and the corresponding attribute names, loading their data
into the specified attributes.

Having a way of loading data, it is necessary to define an efficient way of encoding it.
Since attributes are matrices, efficient matrix representation formats were required.

A matrix in memory can be represented in multiple ways. Since dimensions are stored
in bitmaps (matrices containing either zeros or ones), and the number of zeros is orders
of magnitude higher than the number of ones, dense representations can be immediately
excluded. Three formats for sparse matrix encoding have been analysed, namely List of
Lists (LIL), Coordinate List (COO) and Compressed Sparse Row (CSR)/CSC.

3.1.1 LIL

Similar to a pointer based representation of a matrix, the LIL format is composed by an
array with as much elements as the number of rows in the matrix, where each element is a
list of pairs (column, value).

3.1. Matrix Representation 35

Considering that the Khatri-Rao operation, for example, can easily produce matrices
with billions of rows, the representation of the main array can easily scale to gigabytes of
unnecessary data, making this format inadequate to encode this kind of matrices.

3.1.2 COO

This matrix encoding format simply stores tuples (value, row, column). Since no metadata
is attached to this representation, it is the most memory efficient of the presented ones
when applied to functional matrices.

This format ensures that all matrix elements can be iteratively accessed, thus powering
algorithms with O(NNZ) complexity. Considering that some of the algorithms presented
in Section 3.2 require column-wise accesses to the matrix, the tuples should be ordered by
their column indexes.

It is also noteworthy that the matrix transposition corresponds to a simple sort of the
matrix records based on its row indexes, having an estimated cost of O(NNZ× log NNZ).

However, this format has a huge drawback. In query processing data tends to be filtered,
producing matrices with few columns of data. When performing operations like the GROUP

BY, by combining these matrices with database attributes that have a value in each column,
both COO matrices must be iterated.

3.1.3 CSC/CSR

Both CSC and CSR formats are very similar. The only difference is if the compressed vector
keeps the row or column indexes. Since CSR has the same memory problem than LIL, and
considering that most of the algorithms of this approach require column indexing, the CSC
format seems more adequate and it was the selected for this work.

This format consists in three basic 1D-arrays.

• values, with the values of each non-zero element to be represented;

• row_indices, with the row indices of each non-zero value;

• column_pointers, with size n_columns+1, that specifies the position of the non-zero
elements of a given column in the other arrays, together with the number of non-zero
values of each column; the 1st value is 0 and the column_pointer[column] is given by
adding the number of non-zero values in [column-1] to the column_pointer[column-1].

Figure 5 illustrates how a matrix is compressed in CSC.

3.1. Matrix Representation 36

Sample matrix Same matrix in CSC format
1 0 3 0
0 0 0 7
0 0 5 0
0 0 0 0


values

[
1 3 5 7

]
row_indices

[
0 0 2 1

]
column_pointers

[
0 1 1 3 4

]
Figure 5.: A sparse matrix in CSC format

The compression achieved by this representation comes from the establishment of a fixed
size array for the column indexes, having as many elements as columns in the matrix. Each
element of this vector contains the cumulative counting of the elements per column.

The compression is achieved because only one value per column is stored in the column
pointer array. However, since functional matrices have at most one value per column, this
is not an optimization over COO, but its worst case scenario.

Despite its higher memory usage, this encoding format has an advantage in operations
with random accesses to the matrix columns. This happens because the column pointer
array serves as an hash from the element in a given column to the position in the arrays
containing its value and row. This way, an otherwise quadratic algorithm can be run in
linear time. That is the main reason why CSC was adopted.

Having chosen CSC as the encoding format, its use can be further optimised regarding
data properties:

1. Dimensions are Bitmaps, so every value in the matrix is a "1", thus they are not stored.

2. Measures are uni-dimensional (horizontal) Decimal Vectors, thus the row array is not
needed.

3. Both measures and dimensions have a single element per column, thus the column
pointer array will be a subset of N0; since it can be easily derived, it is not necessary
to represent it.

4. To benefit from CSC properties, all vectors will be represented horizontally, despite
their original orientation.

During query processing, intermediate matrix representations are neither measures or
dimensions. In fact, every combination of the columns, rows and values arrays has its
utility, which is summarised in Table 6.

With these seven types of matrices, disk and memory usages are highly optimised. The
next natural step is to find the best format to power parallel data processing.

Considering a set of random operations, a simple way to explore parallelism would be
to use a distinct processing unit for each operation in the query script, creating a data flow
from disk to the query result.

However, this strategy is strongly tied to the query topology, raising two major issues:

3.1. Matrix Representation 37

Block type Application example Values Rows Columns

Bit-vector (bang) No actual usage − − −
Decimal Vector Stored measures X − −
Bitmap Stored dimensions − X −
Filtered Bit-vector Result of filter operations − − X
Decimal Map Query with a GROUP BY clauses be-

fore aggregations, and after doing the
measure O f unction operation

X X −

Filtered Decimal
Vector

Query with a WHERE clause before ag-
gregations
Result of a query containing WHERE
and GROUP BY clauses

X − X

Filtered Bitmap Function containing (part of) the
WHERE and GROUP BY clauses

− X X

Filtered Decimal
Map

Query with WHERE and GROUP BY
clauses before aggregations

X X X

Table 6.: Properties of CSC block types

• if the processing units are spread across multiple servers, data will need to be trans-
ferred after most operations; to minimise communication overheads, task attribution
would be a complex process;

• the number of tasks is the same as the number of operations in the LAQ script, leaving
very few opportunities to optimise load balances; for instance, computing a query in
a many-core, GPU, or even a recent multi-core device, would result in fewer tasks
than the available processing units in the chip, most of them doing no work.

To overcome this situation matrices were divided into multiple blocks of fixed size, and
each processing unit computes all the operations in the LAQ script for a group of blocks.

This division works perfectly for operations that can be divided by column, that is,
[A|B] ⊗ [C|D] = [A ⊗ C|B ⊗ D], where ⊗ represents any operation. This way, if a given
matrix is stored in multiple servers, the operations can be computed in those servers, avoid-
ing costly data transfers.

However, some operations have random accesses to the columns of the matrices, creating
the necessity of having the full matrix loaded in the main memory. Making a connection
with SQL, these operations are either part of an aggregation after a GROUP BY or part of a
JOIN, thus suffering from the same problems of their relational counterparts.

3.2. LA Operators 38

3.1.4 Matrix labels

Recall that each row of the projection matrix of an attribute corresponds to a data label. The
number of rows is the number of distinct labels that the attribute has. One of the challenges
of the LA approach to data representation is how to represent such data labels, that is, how
to map attribute values to unique matrix indices.

To ensure that every label maps to a distinct matrix row, they are dynamically inserted in
an hash table, incrementally taking the first available integer value, in an AUTO INCREMENT

fashion, as in other DBMSs.
This hash table has O(1) complexity when retrieving the row of a given record, as needed

during data insertion. A double hashing approach could be used to improve performance
of consulting queries, since it leads to a complexity of O(1) on both directions of the asso-
ciation.

However, the computation of an hash function for every row of the matrix is an unde-
sired overhead. As the keys of the second hash are the row numbers, it is encoded as an
array where the position represents the row number. Both structures are filled during data
insertion, but only the array is loaded during consulting queries. To further optimise the
memory usage, this array was also divided in multiple blocks.

This strategy is applied independently for each attribute. However, for referential in-
tegrity to hold among all database tables, such structures are shared by both primary and
foreign key attributes. Primary key attribute values are always mapped first. Since these
keys must be DISTINCT and NOT NULL, there is a bijection between row numbers and key
values.

3.2 la operators

Improved versions of the algorithms behind the results presented by Ribeiro et al. (2017)
have been implemented. The major improvements are in memory management, using the
explained block approach, and in complexity reduction.

Not only the adoption of multiple block types saves memory, but it also allows the im-
plementation of distinct algorithms, optimised for the blocks and matrices being processed.
This way, each LAQ operator will have multiple implementations, corresponding to all the
combinations of the possible types for the two input matrices.

These multiple implementations tend to be quite repetitive, but by considering the data
constrains of the matrices they receive as input, they easily outperform state of the art linear
algebra kernels such as the Intel Math Kernel Library (Intel MKL) and the C language Basic
Linear Algebra Subprograms (CBLAS).

3.2. LA Operators 39

3.2.1 Hadamard-Schur Product

As described in Section 2.4.1, the conversion process only applies this product to combine
vectors. It was used by Ribeiro et al. (2017) as an optimisation of the generic Khatri-Rao
product applied to vectors, since both produce the same results in this case.

However, as stated, every possible combination among all the block types will have a
dedicated operation, thus the Khatri-Rao of two vectors will have the same performance of
the Hadamard-Schur product, if not better. This way, the latter will not be implemented,
and the Khatri-Rao will be used in its place.

3.2.2 Khatri-Rao Product

As explained, there are seven types of blocks. Considering that the Khatri-Rao product
takes two matrices as input, it has 49 distinct implementations.

The output matrix is not counted here, because its type is derived from the input ones.
This derivation is achieved by checking which arrays are in at least one of the input matrices,
and then selecting the block type that contains all of them.

In the 49 distinct algorithms of the Khatri-Rao product, most just change the arguments
order, and other simply combine two or more simpler variations. This way, the 49 imple-
mentations can be explained using only 6 distinct actions.

To merge values

[ht]Decimal vector O Decimal vector = Decimal vector

Although a valid operation, a Khatri-Rao where both input matrices are decimal (have
the values array) leads to is non-fully optimised query. The natural path to solve a given
query would be to simplify it to the point where it is composed by a single functional
matrix and a couple of measures, that is, the known pairing wheel (Afonso et al., 2018).

Consider two matrices: A and B. The Khatri-Rao product can only be used to multiply
them (A × B); but if the desired operation is another one, for instance A + B, or even
A × B + 1, the Khatri-Rao is useless, and the lift operator should be used instead (see
Section 3.2.6).

To merge rows

Bitmap O Bitmap = Bitmap

As stated in Table 6, Bitmaps are used to encode dimensions. A Khatri-Rao of two
Bitmaps condenses in a single matrix the information contained in both input matrices.

3.2. LA Operators 40

Considering the Khatri-Rao product: C = A O B, it is known that the row index of
the “1” in C is based on its original position in both A and B, being row_C = row_A ×
B_total_rows + row_B.

The application of this formula is illustrated in (36), both in dense and CSC representa-
tions, having 0 = 0× 2 + 0, 2 = 1× 2 + 0, 3 = 1× 2 + 1, and 4 = 2× 2 + 0.

1 0 0 0
0 1 1 0
0 0 0 1

 O

[
1 1 0 1
0 0 1 0

]
=



1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


values −

rows
[
0 1 1 2

]
columns −

O

−[
0 0 1 0

]
−

=

−[
0 2 3 4

]
−

(36)

To combine values and rows

Decimal vector O Bitmap = Decimal map

If a query has no filter (WHERE clause), its functional part will only encode the GROUP BY

statement, thus being a Bitmap (see Table 6). To solve a query at this state, a Khatri-Rao of
the mentioned function and the needed measures (decimal vectors) should be performed.

Since neither the Decimal vector nor the Bitmap have the column pointer array, both
matrices contain the same number of elements.

The Khatri-Rao is performed by simply copying the values array from the Decimal vector
and the rows array from the Bitmap to the resultant Decimal map, making this a perfect
example of the optimisation achieved by using only the necessary arrays. Also note that if
one or both input matrices are not used again in the query, the arrays can be moved instead
of copied, reducing the algorithm’s complexity from linear to constant.

To select values

Decimal vector O Filtered bit-vector = Filtered decimal vector

Every algorithm multiplying filtered matrices iterates the column pointer array, com-
paring every pair of subsequent elements. If the two elements in the pair are distinct, that
means that the current matrix column has an element, thus some action must be performed.
In this case, this action is the insertion of the correspondent value in the output matrix.

3.2. LA Operators 41

As shown in (37), the only value that was not passed to the output was the “3”, cor-
responding to the (2,2) pair in the column pointer array, and to the third position in the
original Filtered bit-vector.[

1 2 3 4
]

O

[
1 1 0 1

]
=

[
1 2 0 4

]

values
[
1 2 3 4

]
rows −

columns −

O

−
−[
0 1 2 2 3

] =

[
1 2 4

]
−[
0 1 2 2 3

]
(37)

To select rows

Bitmap O Filtered bit-vector = Filtered bitmap

This operation is similar to the previous one, but instead of copying the values from the
Decimal vector, the row indexes in the Bitmap are passed to the output matrix.

To merge columns

Filtered bit-vector O Filtered bit-vector = Filtered bit-vector

As explained, if there is a column pointer array it must be iterated. However, as both
matrices have this array, it is necessary to look to the number of elements in each matrix.
The one with fewer elements should be iterated, because the comparison of the columns
array elements will be false more often, avoiding unnecessary calculations.

So, the columns pointer array of the matrix with fewer elements is iterated and the
action that should be performed is a look-up at the exact same position in the other matrix
columns array: the element is only inserted in the final matrix if both comparisons are true.

The application of this algorithm is shown in (38). Note that by inserting an element in
the matrix, the number of elements in the column pointer array does not change, but its
value is incremented by one.[

0 1 1 1
]

O

[
1 1 0 1

]
=

[
0 1 0 1

]
values −

rows −
columns

[
0 0 1 2 3

] O

−
−[
0 1 2 2 3

] =

−
−[
0 0 1 1 2

]
(38)

Generic product

Filtered decimal map O Filtered decimal map = Filtered decimal map

3.2. LA Operators 42

By combining some of previous versions of the Khatri-Rao product, the other 43 can be
easily defined. However, there is another version that is noteworthy, the Khatri-Rao of two
CSC matrices containing all the three arrays. This operation can handle the product of two
generic CSC matrices, applying all the previously explained actions.

1 krao (A, B, C):
2 assert A.nCols = B.nCols
3 nnz = 0
4 // Pick the matrix with fewer elements
5 if A.nnz < B.nnz:
6 // Iterate the column pointer array
7 for i = 0 to A.nCols:
8 // Store the current number of elements
9 C.cols[i] = nnz

10 // Check if an element is present in both matrices
11 if A.cols[i+1] > A.cols[i] and B.cols[i+1] > B.cols[i]:
12 // Get the current indexes of the values and rows arrays
13 Apos = A.cols[i]
14 Bpos = B.cols[i]
15 // Merge the values
16 C.values[nnz] = A.values[Apos] * B.values[Bpos]
17 // Merge the rows
18 C.rows[nnz] = (A.rows[Apos] * B.nRows) + B.rows[Bpos]
19 // Increment the number of elements
20 nnz += 1
21 else:
22 // Same algorithm, just swap the predicates of the if condition
23 C.nnz = nnz
24 C.nRows = A.nRows * B.nRows
25 C.nCols = A.nCols

Listing 6: Generic Khatri-Rao of CSC matrices - detailed pseudo-code

As explained in Listing 6, the columns of the matrix with fewer elements should be
iterated. After checking that a given element is present in both matrices (merge columns), it
is necessary to get the values and row indexes of that element in both input matrices (select
values/rows). Finally, these numbers must be multiplied and inserted in the resultant
matrix (merge and combine values and rows).

3.2. LA Operators 43

An example of the application of the described algorithm, with both dense and CSC
representations, is shown in (39).

1 0 0 0
0 2 0 0
0 0 0 3

 O

[
0 2 0 3
0 0 1 0

]
=



0 0 0 0
0 0 0 0
0 4 0 0
0 0 0 0
0 0 0 9
0 0 0 0


values

[
1 2 3

]
rows

[
0 1 2

]
columns

[
0 1 2 2 3

] O

[
2 1 3

][
0 1 0

][
0 0 1 2 3

] =

[
4 9

][
2 4

][
0 0 1 1 2

]

(39)

3.2.3 Dot Product

As explained in section 2.3.1, the result of the dot product has as many rows as the leftmost
argument. Therefore, the method used to deduce the block type is slightly different from
the one used in the Khatri-Rao product. The values and column pointer arrays of both
input matrices are combined in a similar way. However, the resulting matrix will only have
the row index array if the leftmost argument also has it.

This product is one of the exceptions to the inherent parallelism of the block based ap-
proach. The adoption of the CSC format implies that this blocking strategy can only be
applied column-wise. This way, the parallelization of the dot product results in:

A · B =
[

A1 A2

]
·
[

B1 B2

]
=
[[

A1 A2

]
· B1

[
A1 A2

]
· B2

]
=
[

A · B1 A · B2

]
This means that the matrix B can be divided in multiple blocks. However, the partition

of the matrix A is useless in this context, since all its blocks must be in memory during the
multiplication with each block of B.

For this reason, the implementation of the dot product receives a matrix and a block,
producing a single block of the output matrix. To complete the product of two matrices, it
should simply receive a reference to the same matrix A, together with the multiple blocks
of B, one at a time.

Typically, the dot product is used to join tables or filter dimensions. In both cases, the
second argument is mostly a Bitmap and the first is often a Filtered Bit-vector or a Filtered

3.2. LA Operators 44

Bitmap. Anyway, the generic version is detailed in Listing 7, complying with the description
of the Khatri-Rao product.

1 dot (A, B, C):
2 assert A.nCols = B.nRows
3 nnz = 0
4 // Iterate the column pointer array of B
5 for i = 0 to B.nCols:
6 // Store the current number of elements
7 C.cols[i] = nnz
8 // Check if there is an element in B
9 if B.cols[i+1] > B.cols[i]:

10 // The column to look in A is the element's row in B
11 Bpos = B.cols[i+1]
12 Brow = B.rows[Bpos]
13 Acol = Brow
14 // Check if there is an element in A
15 if A.cols[Acol+1] > A.cols[Acol]:
16 Apos = A.cols[Acol+1]
17 // Merge the values
18 C.values[nnz] = A.values[Apos] * B.values[Bpos]
19 // Save the row
20 C.rows[nnz] = A.rows[Apos]
21 // Increment the number of elements
22 nnz += 1
23 C.nnz = nnz
24 C.nRows = A.nRows
25 C.nCols = B.nCols

Listing 7: Generic dot product of CSC matrices - detailed pseudo-code

3.2.4 Filter

Considering the five distinct types of WHERE conditions presented in Section 1.1.2, the filter
operator has an important role on solving most of them:

1. The direct comparison of two expressions, e.g. a ≥ b, can be solved with a simple
filter(a >= b);

2. The boolean value that indicates if an expression is within a defined range, e.g.
a BETWEEN(x, y), can be converted to a more complex filter with two predicates:
filter(a >= x AND a <= y);

3. The boolean value that indicates if an expression equals an element in a set, e.g.
a IN(x, y, ...), can be divided in multiple simple predicates: filter(a == x OR a ==

y OR ...); note that if the set is another SELECT statement, its elements are unknown,
thus other operations must be used to solve the IN clause;

3.2. LA Operators 45

4. The boolean value that indicates if an expression matches a predefined pattern, e.g.
a LIKE “pattern”, can be implemented similar to the SQL’s LIKE, but receiving regular
expressions instead of wildcards; too highlight this difference, it was named MATCH,
and its application is as follows: filter(match(a, “pattern”));

5. If the value is NULL: NULL values are not allowed in the presented system, in con-
formity with OLAP rules.

As this operator receives an arbitrary boolean expression, there is no way it can be com-
piled for any possible input, so it was implemented as a precompiled wrapper that receives
a group of values and a boolean function to merge them. This function is defined in con-
formity with the LAQ query that is being processed and then linked against the wrapper.

Measures

To filter a measure, one only has to go through the elements of its values array, calling the
boolean function with its content, which is a straightforward process.

Dimensions

In Section 2.3.4 this version of the operation is depicted in a slightly abstract way. Matrices
(11) to (13) denote the multiple steps used to obtain its solution, but previous versions of
the operator (Ribeiro et al., 2017) required any attribute to be loaded as a measure (array of
values), thus needing two representations of each attribute to perform either filters or other
operations.

In (12) is represented the result of the predicate’s calculus over the matrix labels. By
multiplying the obtained predicate with the Bitmap in (11) using the Dot product, the
Filtered Bit-vector (13) is obtained.

So, the path for computing this operation would be to iteratively load the blocks of labels,
calculating the predicate Filtered Bit-vector. Then do a dot product of the fully calculated
predicate with each block of the Bitmap, that should be also loaded iteratively.

The operation per se only filters the blocks of labels, thus expecting a special block, where
values are not numbers but strings.

3.2.5 Fold

The fold operator is quite distinct from its theoretical definition. Defining a bang vector
and multiplying it with any matrix as explained in Section 2.3.6 would be a highly unop-
timised process, specially since the bang is transposed, thus it is a columnar vector, and
the algebraic optimizations only outperform libraries like Intel MKL and CBLAS since they
take as granted that there is at most a single element per column in every matrix.

3.3. “Streaming” approach 46

Even though some algorithms can simulate this multiplication in linear time, the storage
of the results in CSC format would enforce random insertions in the output vector, making
it a O(N2) worst case algorithm.

To improve the worst case cost to O(N × log N), a C++ map from the standard lib was
used. Each key in the map identifies a distinct row in the matrix to be aggregated, and the
correspondent value its sum, count, min, and/or max.

The operator is divided in two distinct stages, the accumulation of elements inside the
map, and a final conversion from the ordered map to a CSC vector or a Decimal element if
the matrix being folded is already a vector.

It is imperative to use this operation as late as possible in query processing, since it is the
only one that cannot be performed in linear time.

3.2.6 Lift

The lift operator was already partially explained in Section 3.2.2, and the algorithm used in
its implementation is similar to the one used to filter measures (see Section 3.2.4). Instead
of receiving a boolean function and producing a Filtered Bit-vector, the used function must
return a Decimal, thus the produced result is a Decimal vector.

3.3 “streaming” approach

The results presented by Ribeiro et al. (2017) need all data used in a given query to be
loaded into memory before starting to compute the query result. This initial load phase
powers the high performance of the processing phase, as in other in-memory database
systems. However, if the necessary attributes do not fit in the main memory, the query will
not run.

To enable querying on huge databases, a streaming approach has been designed. As ex-
plained, it consists in splitting the sparse matrices in sparse blocks of fixed size, processing
them iteratively whenever possible.

Although it is not in the scope of this dissertation, it is extremely important to explore the
inherent parallelism of the LAQ, and the commutative and associative algebraic properties
when processing each block of the stream. The ultimate goal is to ensure that any given set
of query operations is executed in optimal order (see Section 5.1.1).

3.3.1 Dependencies in query processing

Even though the referred scheduler would be able to dynamically reorder the query oper-
ations, an optimised version of the query should be used from the beginning. Since both

3.3. “Streaming” approach 47

processing time and used memory are strongly tied to the data flow through the multiple
operations, their data access requirements must be considered.

Weak dependencies

No matter what kind of input a LAQ operation is expecting, it will only work when data is
provided. For instance, consider the Khatri-Rao product: to produce a block of the output
matrix, this operator needs another two blocks; one for each argument.

This necessity of data inherent to any operation defines the weak dependencies. Al-
though it seems elementary, the LAQ itself does not specify any load operations, which are
abstracted from the end user; but these are of extreme importance for scheduling purposes,
mainly due to the impact of disk accesses in the overall performance of any query.

Figure 6 contains an execution plan for the query 6 of the TPC-H. The white boxes
represent the tree of operations, including the hidden load operation as the leafs of the tree,
and the query result as its root. Also note the replacement of the filter on lshipdate by a filter
on its labels, and a dot product with its Bitmap.

Strong dependencies

Sections 3.2.3 and 3.2.5 respectively provide useful information on the dot product and fold
operators implementation. From there, and having in mind that these are the only two
operations that create strong data dependencies, it is easy to infer that strong dependencies
represent the necessity of having a given matrix totally loaded in main memory.

As expected, if a matrix has to be fully loaded before proceeding to the next operation, all
the blocks of the previous ones have to be processed in advance, interrupting the stream of
data. Also, the dot product and the fold operators produce slightly different interruptions:
while the dot product needs its left input matrix previously computed to run, the fold can
be executed anytime, just breaking the data-flow after its execution.

In Figure 6, these strong dependencies are shown as blue boxes and double arrows.

3.3.2 Execution order

There are multiple possibilities to go through the elements of a binary tree, which are
closely related to the priority given to the processing of its left child, right child, or actual
(parent) nodes.

The strategy used to go though the operations of any query is dictated by the explained
data dependencies. Weak dependencies of data dictate that a parent node can never be
processed before its child nodes, so queries must follow a bottom-up approach.

With strong dependencies things get a bit more complex. The dot product needs its left
argument calculated, thus priority should be given to the left side of the tree. Folds can be

3.4. SQL Driver 48

Figure 6.: TPC-H query 6 - execution plan

anywhere in a query but, unless there are subqueries, they are only used at the very end.
Also, they only produce this dependency if their result is used as an argument for another
operation, thus not having an important role in this initial task scheduling.

Finally, to minimise the used memory, depth-first search will be used. Otherwise, all the
load operations that make the leafs of the tree would be performed at the beginning of the
query, and all the matrices that have a strong dependency and are positioned at a certain
level in the tree would also have to be loaded simultaneously.

3.4 sql driver

In parallel with the development of this dissertation, another project (Albuquerque and
Fernandes, 2018) was run to implement this module. Their foundation was the algorithm
presented by Afonso and Fernandes (2017), also described in Section 2.4 and tested against
a standard analytical query in Section 2.5.

3.4.1 SQL Parser

SQL is a highly complex language at the syntax level. Typical commercial DBMSs take
several releases to fully comply with its standards, and many others give up on it, simply
picking a subset of the language or using another interface.

3.4. SQL Driver 49

This way, the two main concerns with this piece of software were to make it modular,
thus easily replaceable in case it does not cover any future requirement, and to define the
smallest subset of the language capable of encoding typical analytical queries.

Since the LAQ language has some limitations, for instance only supporting SELECT state-
ments, the used subset of SQL matches this limitations. It is fully depicted in Listing 8.

1 SELECT [DISTINCT] select_exp [, select_expr ...]
2 [FROM table_references]
3 [WHERE where_condition]
4 [GROUP BY col_name [, col_name, ...]]
5 [HAVING where_condition]

Listing 8: SELECT statement syntax coverage

An important step in the development of the parser was the specification and imple-
mentation of a data structure capable of encoding both SQL and LAQ syntaxes, as well
as support the conversion process. The structure created by Albuquerque and Fernandes
(2018) has two distinct parts, representing both the TD and the logical tree.

Having defined the context-free grammar for the selected subset of SQL, and imple-
mented a structure to store queries, a simple parser was made with Flex and Yacc to make
everything work.

3.4.2 Query Rewriter

Typical RDBMSs have a query rewriting phase in their optimiser. Its function is to imple-
ment rule-based modifications to the input queries, similar to the ones explained in Section
1.2.1, making them run with higher performance.

However, the goal of query rewriting in the TLA approach is not to optimise the query in
such a way that it will translate in more efficient machine code, but to simplify the parsed
queries, making them more suitable to be encoded in LAQ. Examples of such transforma-
tions are, among others, the elimination of some subqueries, solving of operations over
constants, and the INTERVAL and BETWEEN statements.

Although shown in the system design architecture, the development of this component
is beyond the scope of this dissertation (see Section 5.1.1).

3.4.3 SQL Converter

Once the modifications to the SQL parsing tree are complete, it can be converted to LAQ.
As stated before, this conversion module was implemented by Albuquerque and Fernandes

3.5. LAQ Engine 50

(2018), following the algorithm described in Sections 2.4 and 2.5. This algorithm does
not cover all the queries in the TPC-H benchmark, thus a further study of the conversion
theories is still needed (see section 5.1.1).

Also, due to some implementation issues by Albuquerque and Fernandes (2018), the
framework does not cover all the queries supported by the conversion algorithm. However,
these queries can be easily translated by hand.

3.4.4 toString

This component is a simple piece of software that receives a structure encompassing the
LAQ format of a given query, and converts it to a textual format, according to the LAQ
specified standards.

There are three ideas supporting the existence of this component instead of proceeding
to a direct injection of the LAQ structure in the execution module: (i) to provide the ad-
vanced user the possibility of directly writing LAQ queries, eventually more efficient than
the ones translated from their SQL counterparts; (ii) the inherent modularity of this archi-
tecture, as shown in Figure 3; and (iii) deriving from the easy isolation of components, the
establishment of debugging points.

3.5 laq engine

The query executor, or LAQ processing engine, is the core of this framework; it receives
LAQ queries, efficiently executes them and provides to the user the query results. A de-
tailed description of its main modules follows.

3.5.1 LAQ Parser

The actual specification of the LAQ only includes consult queries (SQL SELECTs). This
narrow usability leads to a simple syntax (Listing 9), ruled by a short CFG.

1 identifier = product (identifier, identifier)
2 identifier = fold (identifier)
3 identifier = lift (expression)
4 identifier = filter (expression)

Listing 9: Summarised LAQ syntax (possible statements)

As depicted, a LAQ query consists of a set of operations. When parsed, this set is stored
as a graph that has the return statement as the root node.

3.5. LAQ Engine 51

The query graph is recursively processed from the root to the leafs, powering an efficient
out of order execution of the expressions in the query, particularly if they are poorly ordered.
However, it is imperative that when an operation is called, all the used variables are already
defined (similarly to the C language), otherwise an error may occur.

Finally, it is important to mention that the extension of the language to include, at least,
data insertion queries, is fairly simple (see Section 5.1.1).

3.5.2 Query Optimiser

Conventional queries encoded in the LAQ format (or in a LA expression) have tree-like
dependency graphs, in which the root node of the tree, or any of its sub-trees, needs that
all child nodes have completed to start its execution.

Moreover, the commutative and associative properties of LA operations allow the redef-
inition of the order in the which the operations will be processed, calling for an efficient
scheduler of the operations.

Although the implementation of this component was not planned for this dissertation,
some efforts have been made to integrate this framework with HEP-frame (Pereira et al.,
2016), which includes a scheduler with similar requirements (see Section 5.1.1).

3.5.3 Query Processor

The purpose of this module is to convert the structure with the LAQ query into the cor-
respondent C++ code. This code only includes query specific functions, namely the main
function and some filters. This way, the LAQ operators and data management functions
can be previously compiled, accelerating the query processing phase.

As happens with the LAQ, this intermediate representation creates the opportunity to
validate and reuse queries, facilitating the identification of potential problems.

It is also known that compiled languages tend to have better performance results than
interpreted ones. As in analytic queries, the time consumed in the initial stages of query
processing tends to be negligible when compared to the time used to process the stored
data, any small improvements in the latter will compensate the compilation time.

The process of converting the graph with the query to C++ code was divided into six
steps of increasing complexity.

1. Load precompiled libraries

3.5. LAQ Engine 52

Since all the used functions were
compiled in advance, their definition
should be included at the start of each
query.
Listing 10 contains three distinct
groups of header files, respectively
corresponding to the standard library
headers, data manipulation Applica-
tion Programming Interface (API), and
LAQ operators.
Only the first two groups are essential
to every query, the functions in the lat-
ter should be included as needed.

1 # include <chrono>
2 # include <iostream>
3 # include <string>
4 # include <vector>
5

6 # include "include/types.hpp"
7 # include "include/block.hpp"
8 # include "include/matrix.hpp"
9 # include "include/database.hpp"

10

11 # include "include/functions.hpp"
12 # include "include/dot.hpp"
13 # include "include/filter.hpp"
14 # include "include/fold.hpp"
15 # include "include/krao.hpp"
16 # include "include/lift.hpp"

Listing 10: Headers included in C++ queries

2. Define the necessary expressions

These expressions may include conditional expressions, used on filters, or decimal
expressions, used on lifts.

As depicted in Listing 11, the key here is to replace the variable name with the po-
sition it will assume in the array of arguments. This way every conditional/decimal
expression has the same definition, which is known by the filter/lift operator.

For instance, in line 2 the same argument is used in the two predicates of the condi-
tional expression, since it represents a BETWEEN clause.

1 inline bool filter_var_a(std::vector<engine::Literal> args) {
2 return args[0] >= "1994-01-01" && args[0] < "1995-01-01";
3 }
4 inline engine::Decimal lift_var_f(std::vector<engine::Decimal> args) {
5 return args[0] * args[1];
6 }

Listing 11: Example of expressions used in TPC-H query 6

3. Select the database

After including or defining the necessary auxiliary functions, the implementation of
the main function starts. The first line is just to start the timer from the chrono library,
and its the same in every query, thus it has not been included in the conversion steps.

3.5. LAQ Engine 53

Then, the database metadata should be loaded, as depicted in Listing 12. The job
of specifying the database that should be used is responsibility from the framework
manager, to mimic the USING DATABASE SQL statement.

1 engine::Database db("data/la", "TPCH_1", false);

Listing 12: Loading of the database “TPCH_1” in read only mode

4. Load the attributes metadata

Having selected the database that should be queried, the next step is to go through
the query graph, and find all the leaf nodes. These are the attributes that will be
loaded from the database. For each of them, an empty matrix with its metadata is
defined.

Listing 13 describes the application of such process for the attribute lshipdate. Note how
the variable from the LAQ is purposely prefixed with “var_” to avoid any possible
conflict with other variables used by the framework.

1 engine::Bitmap *var_lineitem_shipdate =
2 new engine::Bitmap(db.data_path, db.database_name, "lineitem", "shipdate");

Listing 13: Loading of the attribute lshipdate metadata

5. Declare temporary matrices

In a similar way, the variables defined in the LAQ script must be declared. Here the
process is not straightforward, since the type of the variable depends on the opera-
tion that produces it, as well as on the types of its arguments. Also, the number of
blocks of these variables is inherited from these arguments, thus the order of variable
declaration is not random as it is on the leaf nodes.

The solution is to go through the query graph in a bottom up approach, filling the
information for each child node before processing their parent node.

Listing 14 contains the declaration of the variable “a”. Note how the matrix type:
FilteredBitvector can only be inferred by looking at the operation that produces
“a”: a filter. Also, since the number of blocks is being extracted from the attribute
lshipdate, it is known that this is the matrix being filtered.

3.5. LAQ Engine 54

1 engine::FilteredBitVector *var_a =
2 new engine::FilteredBitVector(var_lineitem_shipdate->nBlocks);

Listing 14: Declaration of the temporary matrix “a”

6. Build the streaming loops

This piece of code is responsible for loading, processing, and freeing blocks of data,
as well as destroying the defined matrices when they are not needed anymore.

Section 3.3 describes how the operations are ordered in the C++ code. Specifically,
Figure 6 is important for the comprehension of this process. For example, the number
of blue boxes in the diagram dictates the number of for loops in the C++ query.

To temporarily encode these loops, a new structure was defined. It is constituted by
an array of loops, each of these containing an header, a body, a footer, and two lists
with the blocks/variables that should be deleted during/after its completion.

The header corresponds to the for loops definition, that is, it includes what is between
the parenthesis. The body is the code that is repeated. It can be subdivided in three
subsections: data loading, executions of one or more operations, and memory release
(or data deletion). The footer includes the closing bracket and the code that deletes
the variables specified in the two lists.

After this structure being completely filled, it is iterated and all the code pieces it
contains are merged together to form the query result.

3.5.4 Run-time Compiler

Many DBMSs perform a run-time compilation of the query source code to achieve better
performance results in its execution.

The implemented system will follow the trend, but using the GNU compiler to maintain
the simplicity of the component.

3.5.5 Query Execution

The presence of this module in the diagram is merely illustrative, since it is restricted to the
execution of the previously compiled query program.

3.6. The framework manager 55

3.6 the framework manager

The purpose of the manager is to provide a simple API to operate the database system. The
idea here is that the modularity of the designed architecture implies that a query can be in
multiple states, namely SQL, LAQ, C++, binary executable, and textual (its result).

The manager receives as input a query in any non-final state, and produces the desired
output. To specify these parameters, the flags -i and -o should be used. Note that the
framework produces all the intermediate representations between the specified ones

So, a simple way of creating, populating and querying a database would be:

1. Write simple C++ scripts to create the database and load the data; it must be in C++,
as LAQ does not support yet other SQL statements than the SELECT; example: ladb

-i load.cpp -o check_ok.txt.

2. Write a SQL or LAQ select query; for this example SQL was used and it was consid-
ered that the user wanted to check the C++ code before using it; example: ladb -i

query.sql -o query.cpp.

3. Make the desired adjustments, and then compile the query against the framework
libraries, or simply use: ladb -i query.cpp -o query.

4. Save the query executable anywhere, and reuse it when desired

This module could also include a cache mechanism to avoid repeating the same queries
over the same data.

3.7 summary

This chapter presented an architecture for a framework that encapsulates and complements
previous research on analytic data processing in LA. It detailed all framework modules,
including the key libraries for matrix manipulation, the description of the SQL driver and
the LAQ engine.

4

VA L I D AT I O N A N D P E R F O R M A N C E R E S U LT S

SQL is the standard language to operate a DBMS. However, the bulk of database systems is
not full SQL compliant, thus restraining the definition of standard tools or methodologies
for DBMS validation and comparison.

Moreover, considering the multiple data processing necessities and the way each system
was developed to attend specific subsets of them, it is even harder to define generic per-
formance evaluation tools. That is, even when executed under the same conditions, no
benchmark can compare all database solutions, as the simple variation of the processed
dataset may be enough to reverse the obtained performance results.

The main goal of the Transaction Processing Performance Council (TPC) was to define
unbiased database benchmarks to evaluate the system performance. To ensure that this
industry standard benchmarks are unbiased and adequate for their systems, several multi-
national tech companies joined the organisation.

The organisation provides two benchmarks for decision support consult queries, namely
TPC-H and TPC Benchmark DS (TPC-DS). Since TPC-H is more OLAP oriented it is used
to guide and validate the implemented framework, following the previous approach by
Afonso and Fernandes (2017) and Ribeiro et al. (2017).

4.1 tpc benchmark h

The TPC-H benchmark contains the specification of twenty two queries and the database on
which they operate. Additionally, it provides the necessary tools to populate the database
and metrics to measure the system performance.

Figure 7 represents the used database schema. Although it is not a typical star or
snowflake schema, its relations can be divided into measures (Lineitem) and dimensions
(the other tables).

More than specifying the table names and attributes, this figure provides valuable infor-
mation about the database size. As one can see, above each table there is a formula to
obtain the number of records in each table based on the used scale factor. For example, the

56

4.1. TPC Benchmark H 57

tables Region and Nation have fixed sizes of 5 and 25, respectively, while the table Lineitem
has 6 million rows for a unitary scale factor, being the biggest table in the database.

Figure 7.: TPC-H database schema

4.1.1 Benchmark modifications

Although TPC-H Composite Query-per-Hour is the standard TPC-H performance metric, this
is not adequate for a fair comparative evaluation of the LA solution. Since the goal of this

4.2. Testbed environment 58

evaluation is to assess the efficiency of the LA approach to process SQL queries on several
dataset sizes and only after the datasets are loaded into Random Access Memory (RAM),
the execution of multiple concurrent queries is not a suitable metric here.

Instead, we measured, for each query, the execution times for different dataset sizes (from
1 GiB to 64 GiB) and compare the measured figures of the LA approach with those of two
open-source competitor database management systems: PostgreSQL and MySQL.

To guide and validate the LA implementation and to compare its performance with com-
petitor solutions, several queries of this benchmark suite were selected:

• to validate the implementation of the most basic filter operations, namely equality,
relational, and between - query 6;

• to explore joins and group-by clauses - query 3;

• to test more filters and logical operations, such as CASE, LIKE, IN and NOT statements -
queries 12 and 14;

• to test sub-queries and filters after group-by (HAVING) - query 11;

• to explore semi-joins (EXISTS) - query 4.

The SQL and LAQ definition of these queries are in Appendix A.

4.2 testbed environment

Trustworthy experimental results must be reproducible. When these results are code ex-
ecution times, several runs give a clue on the execution stability. To minimise external
unwanted interference, relevance is given to the faster times. The measurements are based
on the 3-best runs out of 10, within a 5% max error interval; the best of these 3 is the
recorded time.

Table 7 shows the key features of the testbed environment.
To ensure fairness, each competitor DBMS was properly configured with support from

their technical staff.
MySQL has three available storage engines: MyISAM and InnoDB - the most common

ones, and MEMORY (HEAP). Since the goal in this comparative evaluation is to measure
in-memory performance, the MEMORY (HEAP) alternative was chosen.

PostgreSQL has no storage engine equivalent to MEMORY (HEAP) in MySQL; a fair
measure of execution times requires two runs to warm up the cache (DB-cache in RAM)
before the 10 runs.

The recommended size for the shared buffers is 1/4 of the RAM size, but this value was
set to 3/4 to ensure that all queries data could fit in these buffers.

4.3. Results and discussion 59

#Processing Unit (PU)-chips 2

Model Intel Xeon E5-2683v4

Base clock freq 2.10 GHz (up to 3.00 GHz)
#PU cores 2 x 16 (2-way SMT support)
L1 cache 2 x 16 x 32 KiB
L2 cache 2 x 16 x 256 KiB
L3 cache 2 x 40 MiB
RAM 2 x 128 GiB (NUMA)
OS CentOS 6.3
PostgreSQL V. 10.2
MySQL V. 5.7

Table 7.: Testbed environment

4.3 results and discussion

Ribeiro et al. (2017) have already implemented and tested hard coded versions of TPC-H
queries 3 and 6. Since their report contains a full coverage of the used test environment, this
chapter is mainly addressed to the relevant issues, namely how this new approach managed
to reach even better performance outcomes than the PostgreSQL engine (the preliminary
results from the previous version are in Figure 8).

Figure 8.: TPC-H queries 3 (left) and 6 (right) – preliminary performance results for scale factors
from 1 to 32 (Ribeiro et al., 2017)

The scale factors have a close relationship with the dataset size (in GiB): the highest
scale factor in the preliminary tests was 32, corresponding to 192 million rows in the table
Lineitem.

4.3. Results and discussion 60

The plots in Figure 9 show the measured execution times with the upgraded sequential
versions for two queries, 3 and 4, where the scale factors were extended to 64. In these
larger datasets, the LA solution produces the expected results: 2 and 4 times the resources
used by the scale factor 32 version. No error metric is displayed in each data-point since it
is too small, staying hidden in most cases.

20 21 22 23 24 25 262−2

20

22

24

26

28

0.94

6.17

13.53

28.72

58.95

111.38

241.39

0.41

0.84

1.74

3.66

8.63

17.37

45.82

0.26

0.53

1.17

2.32

4.65

9.51

19.30

TPC-H scale factor

Ex
ec

ut
io

n
ti

m
e

(s
ec

on
ds

)

PostgreSQL
MySQL
LA

20 21 22 23 24 25 262−2

20

22

24

26

28

0.54

1.06

1.98

3.93

8.14

15.78

31.77

0.30

0.59

1.19

2.50

5.03

10.04

20.29

0.60

1.21

2.48

5.05

10.20

20.48

41.03

TPC-H scale factor

PostgreSQL
MySQL
LA

Figure 9.: TPC-H queries 3 (left) and 4 (right) performance results, sequential versions

Comparing these results with the ones obtained by Ribeiro et al. (2017) a slightly perfor-
mance increase can be observed. Despite the changes in the implementation of some LAQ
operators, this difference can be justified with the utilisation of distinct hardware to run the
benchmarks. Also, in the previous tests, the PostgreSQL took some poor decisions in the
selection of the query plans for the parallel tests. As shown in Figure 9, for the scale factors
8 and 32, the parallel execution time is almost the same as the sequential. This issue was
solved by updating to the latest version of the DBMS.

The LA approach is clearly the fastest in query 3 for all dataset sizes, while the redundant
filtering operations in query 4 take over 60% of the overall execution time, considerably
degrading its performance (the same happens in query 12).

Figure 10 plots the execution times and memory usage for the sequential version (single-
threaded) of six selected queries from the TPC-H benchmark suite, with scale factor 32, and
for each of the three competing environments, PostgreSQL, MySQL and the LA approach.
Since the 6 tested queries display almost the same linear behaviour across all scale factor
values, there is no need to display their plots.

4.3. Results and discussion 61

Q3 Q4 Q6 Q11 Q12 Q14

20

21

22

23

24

25

26

27

TPC-H Query

Ex
ec

ut
io

n
ti

m
e

(s
ec

on
ds

)

PostgreSQL MySQL LA

Figure 10.: Execution times (scale factor: 25)

The LA approach has proved to be faster than its competitors, in its current prototype
version; it only has a lower performance in queries 4 and 12 due to redundant filtering (this
can be solved, see Section 5.1.1).

The use of column-oriented tables in the LA approach (attribute oriented) gives advan-
tages over the competitors, namely because:

• the columnar approach loads less data;

• it avoids operations that implicitly require a row orientation (namely, converse and
matrix composition); thus the overall emphasis on the Khatri-Rao product;

• measurements are incorporated as late as possible, taking advantage of using boolean
matrices as long as possible;

• it saves one matrix composition by equi-join, due to the smart encoding of primary
keys.

Performance can be further improved if the available cores in the PU-chips are adequately
used: while MySQL explores parallelism by concurrently processing multiple queries, Post-
greSQL can use in parallel up to all available cores to process any query, and each kernel
operation in LA approach can also use up to all available cores.

Figure 11 compares the single and multi-threaded versions of query 6 in the LA approach
with the PostgreSQL versions, using up to all available cores in the server. MySQL was
excluded from this comparison since it has no parallel version of a single query.

As expected, both parallel versions run consistently faster than the corresponding sequen-
tial ones, and the gain is lower when the dataset size is small.

4.3. Results and discussion 62

20 21 22 23 24 25 26
2−4

2−2

20

22

24

26

1.11

2.10

4.09

8.28

17.74

32.72

63.42

0.33

0.60
0.96

1.62

3.22

6.31
10.21

0.20

0.40

0.79

1.56

3.11

6.21

12.43

0.09

0.16 0.18
0.31

0.61

1.09

2.17

TPC-H scale factor

Ex
ec

ut
io

n
ti

m
e

(s
ec

on
ds

)

PSQL Seq
PSQL Par
LA Seq
LA Par

Figure 11.: Sequential and Parallel Query 6

However, the parallel efficiency in both systems is quite low: using 32 cores, only the
larger scale factor managed to reach 6x speedup.

In some queries the parallel version of PostgreSQL has unstable behaviour for larger
dataset sizes; for instance, in query 3 its query planner fails in such a way that the parallel
execution times in datasets larger than 16 are longer than the sequential version.

Overall, the LA approach shows again its parallel superiority against PostgreSQL and
both versions (sequential and parallel) have a consistent behaviour through all queries.

Figure 12 shows the maximum RAM space required for each of the sequential versions
of the six queries in each DBMS (using the 3-worst case out of 10), for the scale factor 32,
and measured using dstat.

Q3 Q4 Q6 Q11 Q12 Q14

20

21

22

23

24

25

26

27

TPC-H Query

M
em

or
y

us
ag

e
(G

iB
)

PostgreSQL MySQL LA

Figure 12.: Memory usage (scale factor: 25)

4.4. Summary 63

Code efficiency is also related to the required memory to run each query. The three sys-
tems follow different approaches: while PostgreSQL loads blocks of data in RAM, keeping
those that it may need (disk cache), all data in MySQL is directly inserted in RAM (in these
tests). The LA approach only places in RAM the attributes it will need.

This plot clearly shows that the LA approach is very efficient in managing the used RAM
and these figures can be further improved.

4.4 summary

This chapter described the process conducted to measure the performance of the framework.
Starting with the selection of processing time and used memory in TPC-H queries as the
standard measure, it then moved to a complete description of the computing environment
in which the tests were run. Finally, the results of the comparison with PostgreSQL and
MySQL were presented and discussed.

5

C O N C L U S I O N S

The promising results of recent attempts (Afonso and Fernandes, 2017; Ribeiro et al., 2017)
to prove the better efficiency of LA queries in comparison to its relational counterparts have
opened an interesting possibility for the development of a consolidated database system.
This dissertation was set up to complete the first steps on the development of such system.

After working in Afonso and Fernandes (2017), the author was already up-to-date with
the state of the art on LA querying, only requiring a brief research on the architecture of
some database systems (MySQL, PostgreSQL, Apache Drill, Apache Kylin, ...), essential to
sketch the framework described in this document.

The first step to implement this architecture was the definition of an efficient format for
data encoding. Since the database dimensions are stored in bitmaps (matrices containing
either zeros or ones), and the number of zeros is orders of magnitude higher than the num-
ber of ones, dense representations were immediately excluded. Three formats for sparse
matrix encoding have been analysed: LIL, COO, and CSR/CSC.

LIL needs an array with so many elements as the number of rows in the matrix it encodes.
Considering that in some cases the number of rows is larger than the range of a long integer,
this format wastes too much memory after some Khatri-Rao operations. COO is the most
memory efficient of the studied formats. However, it does not support direct accesses
to the data it encodes, increasing the complexity of some operations from O(NNZ) to
O(NNZ2). The difference between CSR and CSC is the presence of an array with the
cumulative number of elements in each row/column. This way, CSR suffers from the same
problems as LIL, thus CSC was the chosen format for data encoding.

A new DSL was defined, LAQ, to operate these matrices towards the query result. It
contains three LA operators: the Hadamard, Khatri-Rao, and dot products, as well as three
derived ones, filter, fold, and lift operators.

To implement the first ones, the data properties were analysed: the used matrices are
always functional, that is, they have at most one element per column. By implementing
the algorithms with this property in consideration, these operations perform much faster
than the generic implementations of general purpose LA libraries, such as CBLAS and Intel
MKL.

64

65

The second group of operators derive from the need to express the complex logical expres-
sions from the SQL WHERE clauses, as well as the arithmetic expressions and aggregations in
the SELECT statement. Although most efforts were on the optimisation of these operators,
they still are the ones with more room for performance improvements.

While developing the LAQ engine, more specifically the LAQ to C++ converter, the au-
thor worked as an advisor for the SQL to LAQ converter project (Albuquerque and Fer-
nandes, 2018) and also in the writing of the paper “Typed Linear Algebra for Efficient
Analytical Querying” (Afonso et al., 2018).

Regarding the LAQ engine, a simple parser for the language was implemented, together
with a module that converts the parsed queries in C++ scripts. This generated pieces of
code are then linked to the developed kernel, and executed to produce the query results.

To validate the results of the developed framework, some research was done in the iden-
tification of a widely accepted OLAP benchmark. As a result, TPC-H was chosen. This
benchmark is composed by twenty two queries with distinct complexities. Among them,
some are not yet supported due to exceptions in the multiple modules of the framework.
The supported queries are 1, 3, 6, 12, 14, and 19; the unsupported ones are:

• query 2: the query does not follow the OLAP rules - any attribute in the SELECT

statement must be in the GROUP BY or under an aggregation function;

• queries 4, 7, 8, 9, 11, 13, 15, 16, 17, 20, 21, and 22: the subqueries are not yet supported
by the SQL to LAQ conversion algorithm; however, it is possible to write scripts in
LAQ to evaluate the query result and performance, as happened in queries 4 and 11;

• query 5: the TD produced by the query has a circular pattern unsolvable by the
conversion algorithm;

• queries 10 and 18: the number of subsequent Khatri-Rao products creates matrices
with so many rows that its indexes cannot be represented within the range of a long
integer; the use of multi-precision libraries as GNU Multi Precision (GMP) (Granlund
and Team, 2015) was considered, but not explored.

After ensuring the correct results in the executed queries, the performance of the LAQ en-
gine was compared with two conventional row-oriented DBMSs: PostgreSQL and MySQL.
The LA solution outperformed both systems in most queries. The causes for the lower
performance in the other ones can be overcome, as explained in Section 5.1.1.

Beyond the original planned work was a comparative performance evaluation with a
column-oriented systems. MonetDB (Idreos et al., 2012) was selected as a representative
column-oriented DBMSs. The obtained performance results are presented and discussed in
Section 5.1.1.

5.1. Future work 66

Being the first prototype, current version of the LAQ engine is still far from a robust
solution to be deployed. Even though, the proposed modular architecture allows an easy
isolation of the framework components, making it easier to solve its main issues. More-
over, detailed suggestions to improve most modules, and the framework as a whole, are
presented in the following section.

5.1 future work

As stated in the title of this dissertation, its main goal is to make considerable advances in
the functionality and efficiency of a LA based DBMS. This section includes an analysis of
some required steps to further improve and complete the framework, as well as a discussion
of other relevant features the framework may include.

5.1.1 Framework extensions

Query Rewriter

The high complexity of the SQL language and the lack of similarities with the LAQ, result
in the difficult conversion between both languages. However, some parts of a SQL query
can be simplified before the conversion, thus creating a new SQL query that produces the
same result.

A further study on what can be simplified is definitely required, but some aspects can
already be pointed. They are:

• The computation of constant arithmetic expressions

Consider the conditional statement WHERE var < 3+5. The simple identification of the
sum of the two constants and its resolution (3+ 5 = 8) means that the conversion algo-
rithm is not required to have an arithmetic calculator. Also, if the sum was kept until
the execution phase, it would have been redundantly calculated for each comparison.

• The interval statement

The interval is a special case of a constant expression, as it is used to operate on
dates. It can be solved in a similar way, having ’1995-03-15’ + interval ’1’ year

= ’1996-03-15’.

• The between statement

Mostly used to shorten the spelling of two logical expressions defining an interval, the
between can be converted to those expressions: var between 5 and 6 is equivalent to
var >= 5 and var <= 6.

5.1. Future work 67

• Sub-queries

A more extensive study of these queries is still required. Sub-queries that match the
typology SELECT FROM SELECT can usually be independently calculated and then used
as any normal table. However, sub-queries with the typology SELECT WHERE SELECT

usually cannot be isolated from the main SELECT.

Query Optimiser - Operation Scheduler

It is known that some operations reduce more data than others, speeding up the subsequent
ones, since fewer elements have to be processed.

DBMSs like PostgreSQL take into consideration the impact of the data in the final query
plan, taking a sample of that data, and optimising the plan accordingly to the statistical
analysis of the sample. This initial analysis is condemned to be in an eternal threshold
between its quality and the time it consumes.

Here is where a dynamic query plan can be beneficial. A powerful scheduler like the one
in HEP-Frame (Pereira et al., 2016) can be used to reorder operations in real-time, ensuring
that the ones that filter more data are executed first.

Moreover, data loads may or not be performed in parallel with data processing. The HEP-
Frame scheduler can dynamically give some control to these decisions that are currently left
to the Operating System (OS).

Query Optimiser - Filter Redundancy

Currently, filters are one of the most time consuming operations in the LA approach, and
that can be easily explained. When in the relational approach a tuple does not satisfy a
predicate filtering any of its attributes, the entire tuple is removed and is not processed
by the subsequent filtering operations. However, using the standard LA methodology, all
the filters would be independently calculated and then merged: all table records would be
iterated as many times as the number of filters in a given query.

There is a simple way to overcome this design problem: iterate any previously calculated
filter, and for each element it has, validate the specified condition in the unfiltered attribute
at the position dictated by that element.

This optimisation would have perfect results if matrices were encoded in COO. However,
as CSC was chosen, the column pointer array still has to be iterated and compared. The
overall complexity remains, except the time to process a single unit, which is reduced,
since function calls are avoided. Regarding dimensions, numbers are compared instead of
strings.

A key point in this issue is the extensive study of columnar DBMSs like MonetDB. As
they also separate the attributes of each table, the algorithms they use to avoid making
redundant filtering can be extrapolated to the presented framework.

5.1. Future work 68

LAQ specification

Currently the LAQ only covers consult queries. The inclusion of already implemented
methods like the SQL COPY FROM and INSERT INTO is not complex. New data structures
can be designed with the specific purpose of covering these new types of queries, without
interfering with the already implemented ones.

Also, some new operations have been added in the most recent benchmarks. One exam-
ple is the unvec used to improve the performance of query 4 (see Appendix A.2)

Regarding the CFG, it is necessary to add the new projections in the root node, leading to
these types of queries instead of the consulting ones, and then include as many projections
as needed below them.

SQL converter

The implemented algorithm was the one proposed by Afonso and Fernandes (2017), but
since it does not cover all the queries in the TPC-H benchmark, it needs to be upgraded.

As mentioned by the authors in their future work section, the two major obstacles to be
overtaken are the specification of a format for the output matrix, and the conversion of
queries with multiple SELECT statements (sub-queries) to the equivalent LAQ scripts.

Starting with the results matrix, some progress has been done as the numerical aggrega-
tions can already be shown. However, it is still necessary to implement the reconstruction of
the dimension attributes, which needs the inclusion, in each matrix, of a variable containing
its type.

Consider the queries that match the SELECT ... WHERE ... SELECT format. In these,
the sub-query cannot be replaced by a single value for a given state of the database. They
instead must be calculated for each element in the other argument of the conditional predi-
cate it belongs to.

Although the description of this process calls for a row-wise approach, it can be achieved
by calculating a new vector with the results for all the possible calls. The complexity
inherent to its implementation is the retrieval of data from the inner SELECT statement
and its usage as an argument of a predicate in the specific conditional clause.

Moreover, query 2 does not comply with the OLAP rules, since it has attributes in the
SELECT statement that are not specified in the GROUP BY, neither involved by an aggregation
function. Since this is one algorithm requirement, this query was not translated yet.

Finally, the TD of query 5 has an unusual cyclical pattern in the TD, due to the way the
joins are organised when building the TD. This cycle created an infinite loop in the used
algorithm, making the query nonconvertible.

5.1. Future work 69

Overall performance

For a comparative evaluation of the performance of the implemented framework we se-
lected the two most popular open-source RDBMSs: PostgreSQL and MySQL. However,
columnar database engines tend to perform at least an order of magnitude faster. For a
fairer comparative evaluation of the selected benchmarks we also included the MonetDB,
following the methodology used with PostgreSQL, going beyond the goals defined for this
dissertation.

Figures 13 and 14 show execution times and memory usage of the LA framework and
MonetDB, which shows that our framework is currently outperformed by MonetDB.

20 21 22 23 24 252−5

2−3

2−1

21

23

25

0.26

0.53

1.17

2.32

4.65

9.51

0.14
0.23

0.39
0.59

0.95

1.72

TPC-H scale factor

Ex
ec

ut
io

n
ti

m
e

(s
ec

on
ds

)

LA
MonetDB

20 21 22 23 24 252−5

2−3

2−1

21

23

25

0.60

1.21

2.48

5.05

10.20

20.48

0.06
0.08

0.12

0.21
0.33

0.60

TPC-H scale factor

LA
MonetDB

Figure 13.: TPC-H queries 3 (left) and 4 (right) performance results, sequential versions

Q3 Q4 Q6 Q11 Q12 Q14

2−2

20

22

24

26

TPC-H Query

Ex
ec

ut
io

n
ti

m
e

(s
ec

on
ds

)

LA MonetDB

Figure 14.: Execution times (scale factor: 25)

Q4 Q6 Q11 Q12 Q14

20

21

22

23

24

25

26

TPC-H Query

M
em

or
y

us
ag

e
(G

iB
)

LA MonetDB

Figure 15.: Memory usage (scale factor: 25)

5.1. Future work 70

We are aware that MonetDB had several years of performance tuning and optimisation
and we expect that with further performance enhancements the LAQ operations can per-
form faster. However, the better than linear scalability of MonetDB raises some concerns on
the validity of the obtained times. For instance, in query 4, an increase 32x on the dataset
size represents only an increase of 10x in the computation time.

Another issue is the similarity in the memory usage of all tested queries when compared
to the LA solution (Figure 15). MonetDB internals must also be studied to ensure that no
intermediate computations are being stored and used in subsequent tests.

5.1.2 Horizontal scalability

The implemented LAQ operations were optimised to minimise the impact of data depen-
dencies. This way, the migration from thread level to process level parallelism is simpler.

Even though, when implementing the streaming approach across multiple computing
nodes, the data dependency problems will be intensified by communication overheads,
calling for specific algorithms. These algorithms have not been implemented yet, although
some possible approaches have already been analysed.

Embarrassingly parallel operators

Operations like the Khatri-Rao, filter or lift can be executed block-wise, and this aspect
remains when following the distributed memory paradigm. Each process is able to load
a block of each argument, producing the respective block of the output matrix, without
communicating with any other process. This is another clear opportunity to improve the
overall performance in OLAP transactions.

Dot product

In Section 3.2.3, the dot product C = A.B needs the full matrix A to compute each C block.
Figure 16 shows a way to overcome this limitation, by replicating matrix A across all nodes:
these nodes could then independently process a group of blocks.

Figure 16.: Distributed dot product - replicate A

5.1. Future work 71

Another alternative is to also divide the matrix A among all computing nodes (as in
Figure 17), rotating it across all nodes in multiple iterations: the used memory is reduced
and each node has access to all data in matrix A.

Figure 17.: Distributed dot product - rotate A

The problem with this approach is that there will be as much data rotations among all
nodes as the number of blocks in the matrix B, possibly causing communication overheads.

An alternative would be to keep matrix A steady and make all nodes compute the same
block of C. This solution follows the map-reduce pattern since after processing the blocks
(map) it requires a reduction (matrix sum) of the block parts obtained in each node.

5.1. Future work 72

Fold

A possible distributed memory implementation of the fold operator has two distinct phases.
First, each node should aggregate its group of blocks, storing the results as done in shared
memory. Then, the information obtained should be condensed in a single structure.

As the fold operator converts the accumulator structure to a matrix, the aggregation
process can be made over any of these formats. The goal should be to break the matrix
(vertical vector) in the same positions across every node, distribute its content accordingly,
and make each node complete the aggregation for a set of rows.

5.1.3 Incremental querying

With the rise of big data, ever-growing, unbounded datasets are more and more common.
The querying of such data can be processed much more efficiently by using intermediate

tables, where only the new data (inserted after the last query) is processed, rather than
processing the whole datasets every time.

During this dissertation work, some research was done to understand the complexity of
implementing such concepts on top of the developed framework.

The research also followed a specific syntax, where [A|δA] represents the matrix A after
some data have been inserted, that is, A + δA. The remaining syntax is extracted from the
LAQ, with the exception that the result of the function may not be assigned to a variable, but
used as an argument to another function. Following these guidelines, Listing 15 represents
the incremental version of the TPC-H query 3.

1 δA = dot(filter([c_mktseg_labels | δc_mktseg_labels]), δc_mktseg)
2 δB = dot([A | δA], δo_custkey)
3 δC = dot(filter([o_orddate_labels | δo_orddate_labels]), δo_orddate)
4 δD = krao(δB, δC)
5 δE = krao(δD, δo_orderdate)
6 δF = krao(δE, δo_shippriority)
7 δG = dot([F | δF], δl_orderkey)
8 δH = dot(filter([l_shipdate_labels | δl_shipdate_labels]), δl_shipdate)
9 δI = krao(δG, δH)

10 δJ = krao(δl_orderkey, δI)
11 δK = lift(δl_extendedprice * (1 - δl_discount))
12 δL = krao(δJ, δK)
13 δM = sum(δL)
14 new_M = add(M, δM)
15 return(new_M)

Listing 15: Incremental TPC-H query 3 - update after data insertion

Comparing this query with the streaming approach used in the framework, it is unequiv-
ocal that the deltas can be seen as blocks, thus ruled by the weak data dependencies. Also,

5.1. Future work 73

the necessity of processing the full matrix occurs in the same conditions as the strong de-
pendencies in normal queries.

Note that if data is only inserted in the fact table, thus avoiding dot products, the query
can be resolved without consulting old data.

This way, it is clean that a future incremental engine can be implemented with few mod-
ifications to the proposed system.

Summing up, from the improvement of the developed framework to its extension to other
fields, it is clear that the possibilities for future work are very broad, some of them being
already on-going.

B I B L I O G R A P H Y

João Afonso and João Fernandes. Towards an efficient Linear Algebra encoding for OLAP.
Project report, DI, University of Minho, July 2017.

João Afonso, Gabriel Fernandes, João Fernandes, Filipe Oliveira, Bruno Ribeiro, Rogério
Pontes, José Oliveira, and Alberto Proença. Typed Linear Algebra for Efficient Analytical
Querying. ArXiv e-prints, September 2018.

Luís Albuquerque and Rafael Fernandes. Converting SQL into a Linear Algebra DSL.
Project report, DI, University of Minho, July 2018.

Edgar Codd. A relational model of data for large shared data banks. Commun. ACM, 13(6):
377–387, June 1970.

Edgar Codd. A database sublanguage founded on the relational calculus. In SIGFIDET
Workshop, pages 35–68, San Diego, California, November 1971. ACM.

Thomas Connolly and Carolyn Begg. Database Systems: A Practical Approach to Design, Imple-
mentation, and Management: Global Edition. Always Learning. Pearson Education Limited,
Harlow, Essex, England, 6th edition, September 2014.

John Gantz and David Reinsel. The digital universe in 2020: Big data, bigger digital shad-
ows, and biggest growth in the far east. IDC iView: IDC Analyze the future, December
2012.

Torbjrn Granlund and Gmp Development Team. GNU MP 6.0 Multiple Precision Arithmetic
Library. Samurai Media Limited, United Kingdom, 2015.

Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd Mullender, and Mar-
tin L. Kersten. Monetdb: Two decades of research in column-oriented database architec-
tures. IEEE Data Eng. Bull., 35(1):40–45, 2012.

William Inmon, Claudia Imhoff, and Ryan Sousa. Corporate information factory. John Wiley
& Sons, 2002.

Ralph Kimball and Margy Ross. The data warehouse toolkit: the complete guide to dimensional
modeling. John Wiley & Sons, 2011.

Peter Lake and Paul Crowther. Concise Guide to Databases: A Practical Introduction. Under-
graduate Topics in Computer Science. Springer, 1st edition, 2013.

74

Bibliography 75

Hugo Macedo and José Oliveira. A linear algebra approach to olap. Formal Aspects of
Computing, 27(2):283–307, Mar 2015.

Hector Molina, Jeffrey Ullman, and Jennifer Widom. Database Systems: The Complete Book.
Pearson, 2nd edition, 2008.

Filipe Oliveira and Sérgio Caldas. Optimisation of a Linear Algebra approach to OLAP.
2016.

José Oliveira and Hugo Macedo. The data cube as a typed linear algebra operator. In
Proceedings of The 16th International Symposium on Database Programming Languages, DBPL
’17, pages 6:1–6:11, New York, NY, USA, 2017. ACM.

André Pereira, António Onofre, and Alberto Proença. Tuning pipelined scientific data
analyses for efficient multicore execution. In Proc. Int. Conf. High Performance Computing
and Simulation, HPCS 2016, pages 751–758, 2016.

Rogério Pontes. Benchmarking a Linear Algebra Approach to OLAP. Master’s thesis,
University of Minho, December 2015.

Bruno Ribeiro, Fernanda Alves, and Gabriel Fernandes. HPC OLAP queries powered by a
linear algebra representation. Project report, DI, University of Minho, July 2017.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The Hadoop
Distributed File System. In Proceedings of the 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), MSST ’10, pages 1–10, Washington, DC, USA, 2010. IEEE
Computer Society.

Michael Stonebreaker, Joseph M. Hellerstein, and Peter Bailis. Readings in Database Systems.
www.redbook.io, 5th edition, 2015.

A
T P C - H Q U E R I E S - S Q L A N D L A Q V E R S I O N S

a.1 query 3

1 select
2 l_orderkey,
3 sum(l_extendedprice * (1 - l_discount)) as revenue,
4 o_orderdate,
5 o_shippriority
6 from
7 customer,
8 orders,
9 lineitem

10 where
11 c_mktsegment = ':1'
12 and c_custkey = o_custkey
13 and l_orderkey = o_orderkey
14 and o_orderdate < date ':2'
15 and l_shipdate > date ':2'
16 group by
17 l_orderkey,
18 o_orderdate,
19 o_shippriority
20 order by
21 revenue desc,
22 o_orderdate;

1 A = filter(customer.mktsegment == "MACHINERY")
2 B = dot(A, orders.custkey)
3 C = filter(orders.orderdate < "1995-03-10")
4 D = hadamard(B, C)
5 E = krao(D, orders.orderdate)
6 F = krao(E, orders.shippriority)
7 G = dot(F, lineitem.orderkey)
8 H = filter(lineitem.shipdate > "1995-03-10")
9 I = krao(G, H)

10 J = krao(lineitem.orderkey, I)
11 K = lift(lineitem.extendedprice * (1 - lineitem.discount))
12 L = krao(J, K)

76

A.2. Query 4 77

13 M = sum(L)
14 return(l_orderkey, M, o_orderdate, o_shippriority)

a.2 query 4

1 select
2 o_orderpriority,
3 count(*) as order_count
4 from
5 orders
6 where
7 o_orderdate >= date ':1'
8 and o_orderdate < date ':1' + interval '3' month
9 and exists (

10 select
11 *
12 from
13 lineitem
14 where
15 l_orderkey = o_orderkey
16 and l_commitdate < l_receiptdate
17)
18 group by
19 o_orderpriority
20 order by
21 o_orderpriority;

1 A = filter(lineitem.commitdate < lineitem.receiptdate)
2 B = krao(lineitem.orderkey, A)
3 C = filter(orders.orderdate < "1993-07-01")
4 D = filter(orders.orderdate >= "1993-07-01")
5 E = hadamard(C, D)
6 F = krao(orders.orderpriority, E)
7 G = dot(F, B)
8 H = krao(B, G)
9 I = avg(H)

10 J = unvec(I)
11 K = count(J)
12 return(orders.orderpriority, K)

A.3. Query 6 78

a.3 query 6

1 select
2 sum(l_extendedprice * l_discount) as revenue
3 from
4 lineitem
5 where
6 l_shipdate >= date ':1'
7 and l_shipdate < date ':1' + interval '1' year
8 and l_discount between :2 - 0.01 and :2 + 0.01
9 and l_quantity < :3;

1 A = filter(lineitem.shipdate >= "1994-01-01" AND lineitem.shipdate < "1995-01-01")
2 B = filter(lineitem.discount >= 0.05 AND lineitem.discount <= 0.07)
3 C = hadamard(A, B)
4 D = filter(lineitem.quantity < 24)
5 E = hadamard(C, D)
6 F = lift(lineitem.extendedprice * lineitem.discount)
7 G = hadamard(E, F)
8 H = sum(G)
9 return (H)

a.4 query 11

1 select
2 ps_partkey,
3 sum(ps_supplycost * ps_availqty) as value
4 from
5 partsupp,
6 supplier,
7 nation
8 where
9 ps_suppkey = s_suppkey

10 and s_nationkey = n_nationkey
11 and n_name = 'GERMANY'
12 group by
13 ps_partkey having
14 sum(ps_supplycost * ps_availqty) > (
15 select
16 sum(ps_supplycost * ps_availqty) * 0.0001
17 from
18 partsupp,
19 supplier,
20 nation
21 where

A.5. Query 12 79

22 ps_suppkey = s_suppkey
23 and s_nationkey = n_nationkey
24 and n_name = 'GERMANY'
25)
26 order by
27 value desc;

1 A = filter(nation.name = "GERMANY")
2 B = dot(A, supplier.nationkey)
3 C = dot (B, partsupp.suppkey)
4 D = lift(partsupp.supplycost * partsupp.availqty)
5 E = hadamard(C, D)
6 F = sum(E)
7 G = map(F * 0.0001)
8 H = krao(partsupp.partkey, C)
9 I = krao(H, D)

10 J = sum(I)
11 K = filter(J > G)
12 L = hadamard(J, K)
13 return(partsupp.partkey, L)

a.5 query 12

1 select
2 l_shipmode,
3 sum(case
4 when o_orderpriority = '1-URGENT'
5 or o_orderpriority = '2-HIGH'
6 then 1
7 else 0
8 end) as high_line_count,
9 sum(case

10 when o_orderpriority <> '1-URGENT'
11 and o_orderpriority <> '2-HIGH'
12 then 1
13 else 0
14 end) as low_line_count
15 from
16 orders,
17 lineitem
18 where
19 o_orderkey = l_orderkey
20 and l_shipmode in (':1', ':2')
21 and l_commitdate < l_receiptdate
22 and l_shipdate < l_commitdate
23 and l_receiptdate >= date ':3'
24 and l_receiptdate < date ':3' + interval '1' year

A.6. Query 14 80

25 group by
26 l_shipmode
27 order by
28 l_shipmode;

1 A = filter(lineitem.shipmode IN ("MAIL", "SHIP"))
2 B = filter(l_commitdate < l_receiptdate)
3 C = filter(l_shipdate < l_commitdate)
4 D = filter(l_receiptdate >= "1994-01-01" AND l_receiptdate < "1995-01-01")
5 E = hadamard(C, D)
6 F = hadamard(B, E)
7 G = hadamard(A, F)
8 H = krao(l_shipmode, G)
9 I = dot(orders.orderpriority, lineitem.orderkey)

10 J = filter(I = "1-URGENT")
11 K = filter(I = "2-HIGH")
12 L = or(J, K)
13 M = lift(NOT L)
14 N = krao(H, L)
15 O = krao(H, M)
16 P = sum(N)
17 Q = sum(O)
18 return(P, Q)

a.6 query 14

1 select
2 100.00 * sum(case
3 when p_type like 'PROMO%'
4 then l_extendedprice * (1 - l_discount)
5 else 0
6 end) / sum(l_extendedprice * (1 - l_discount)) as promo_revenue
7 from
8 lineitem,
9 part

10 where
11 l_partkey = p_partkey
12 and l_shipdate >= date ':1'
13 and l_shipdate < date ':1' + interval '1' month;

1 A = filter(lineitem.shipdate >= "1995-09-01" AND lineitem.shipdate < "1995-10-01")
2 B = lift(lineitem.extendedprice * (1 - lineitem.discount))
3 C = hadamard(A, B)

A.6. Query 14 81

4 D = filter(match(part.type , "PROMO.*"))
5 E = dot(D, lineitem.partkey)
6 F = hadamard(C, E)
7 G = sum(F)
8 H = sum(C)
9 I = lift(100.00 * G / H)

10 return (I)

	1 Introduction
	1.1 The Relational Model
	1.1.1 Relational Algebra
	1.1.2 SQL

	1.2 Database System Implementation
	1.2.1 Query Compilation
	1.2.2 Query Execution

	1.3 Data Warehousing
	1.3.1 Data Modeling

	1.4 Challenges & Goals
	1.5 Contribution
	1.6 Dissertation Outline

	2 Typed Linear Algebra for OLAP
	2.1 Linear Algebraic Encoding of Data
	2.1.1 Dense Vectors
	2.1.2 Sparse Matrices

	2.2 Type Diagrams
	2.3 Linear Algebra Query language
	2.3.1 Dot Product
	2.3.2 Khatri-Rao Product
	2.3.3 Hadamard-Schur Product
	2.3.4 Filter
	2.3.5 Fold
	2.3.6 Lift

	2.4 Conversion algorithm
	2.4.1 The approach

	2.5 Conversion Example
	2.6 Summary

	3 A TLA-DB Engine for Relational SQL
	3.1 Matrix Representation
	3.1.1 LIL
	3.1.2 COO
	3.1.3 CSC/CSR
	3.1.4 Matrix labels

	3.2 LA Operators
	3.2.1 Hadamard-Schur Product
	3.2.2 Khatri-Rao Product
	3.2.3 Dot Product
	3.2.4 Filter
	3.2.5 Fold
	3.2.6 Lift

	3.3 ``Streaming'' approach
	3.3.1 Dependencies in query processing
	3.3.2 Execution order

	3.4 SQL Driver
	3.4.1 SQL Parser
	3.4.2 Query Rewriter
	3.4.3 SQL Converter
	3.4.4 toString

	3.5 LAQ Engine
	3.5.1 LAQ Parser
	3.5.2 Query Optimiser
	3.5.3 Query Processor
	3.5.4 Run-time Compiler
	3.5.5 Query Execution

	3.6 The framework manager
	3.7 Summary

	4 Validation and Performance Results
	4.1 TPC Benchmark H
	4.1.1 Benchmark modifications

	4.2 Testbed environment
	4.3 Results and discussion
	4.4 Summary

	5 Conclusions
	5.1 Future work
	5.1.1 Framework extensions
	5.1.2 Horizontal scalability
	5.1.3 Incremental querying

	A TPC-H queries - SQL and LAQ versions
	A.1 Query 3
	A.2 Query 4
	A.3 Query 6
	A.4 Query 11
	A.5 Query 12
	A.6 Query 14

