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ABSTRACT 

The brain functional connectivity extracted from rs-fMRI has been used as a powerful tool to study 

the different networks in the brain.  This neuronal network, found in normal condition, can be associated 

to different cognitive processes. The applicability of these networks in the future is promising, since is a 

greater technique to study the effects of several diseases or even treatments on normal brain functional 

connectivity. Firstly, this question should be addressed: are these networks possible to be described and 

to be used as features to classify a group or a particular subject?. 

In order to answer this question, it was settled the use of a Machine Learning method, which has 

been developed great advances in the recent years, due the good performances in the Deep Learning 

(DL) method. Therefore, it was created a workflow since the beginning, started with data acquisition until 

the application of DL methods and the process of creation and fine-tune of these models. In the end, 

several studies using the functional connectivity were done, namely the assessment of the brain functional 

connectivity to be used as a “fingerprint”. Additionally, it were performed some tests regarding the groups’ 

classification. 

After settled the correct approach and validate the DL framework, the “fingerprint” study showed a 

great improvement on impairment classification, even for simple models. We proved that rs-fMRI can be 

use in research field to identify singular brain patterns as well as the differences between the subjects, 

which could be applied as group differentiator in a population.  
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RESUMO 

A conectividade funcional cerebral extraída de imagens de rs-fMRI demonstrou um potencial 

adquirido no estudo das diferentes redes existentes no cérebro. Relativamente a estas redes, estas são 

associadas a diferentes processos cognitivos e sensoriais, ou até simplesmente ao funcionamento normal 

do cérebro. O uso promissor destas redes é acrescido quando aplicado ao estudo de efeitos de diversas 

doenças, ou até tratamentos que afetam a normal conectividade funcional cerebral. Mas, primeiramente, 

surge a questão: são estas redes possíveis de serem descritas e usadas como características para 

classificar um determinado grupo ou um indivíduo em particular?. 

Assim, para responder à questão proposta foi definido o uso de um método de Machine Learning 

com grandes avanços nos últimos anos devido ao bom desempenho – o método de Deep Learning (DL). 

Foi então criado um fluxo de trabalho desde a aquisição de dados à aplicação de métodos de DL, seguido 

de uma framework que lida com o processo de criação e ajuste dos parâmetros dos modelos DL. 

Posteriormente foram feitos diversos estudos usando a conectividade funcional, estática e dinâmica, para 

nomeadamente estudar se a conectividade funcional cerebral pode ser usada como “impressão digital” 

e se tem melhor desempenho que outros métodos já aplicados neste tipo de estudo. Adicionalmente, 

foram realizados alguns testes relativamente à classificação e regressão de grupos. 

Em conclusão, foi constatado e validado que esta abordagem e esta framework de DL são boas 

escolhas. No estudo da “impressão digital”, os resultados melhoraram imenso, mesmo usando modelos 

simples. Consequentemente, foi provado que a rs-fMRI pode ser usada para estudos de padrões 

singulares do cérebro e nas diferenças entre sujeitos, o mesmo aplicado à classificação em grupo na 

distinção dos mesmos. 

 

PALAVRAS-CHAVE: Informática Médica – Neuroimagem – fMRI – Conectividade Funcional – Deep Learning.  
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GLOSSARY 

Artificial Neural Networks (ANN) are computational models inspired by the central nervous system, 

represented as a system of interconnected neurons that compute outputs from inputs when information 

is fed through the network.  

Brain Atlas is a volumetric or surface based description of the geometry of the brain, where each 

anatomical coordinate is labelled according to some scheme.  

Backpropagation is the procedure used in artificial neural networks to obtain error contribution of each 

network wherein the algorithm propagates the error since the output layer until the input layer. 

Blood Oxygenation Level-Dependent (BOLD) is an imaging biomarker, measured by MRI that 

correlates the signals among different brain regions through the time.  

Classification Model is a model that predict categorical class labels.  

Cluster is a collection of data objects that are similar to one another within the same cluster and are 

dissimilar to the objects in other clusters. 

Connectology Functional is the integration of a set of biological concepts. 

Connectome is a network representation of whole brain connectivity, comprising grey matter and axonal 

connections, which can be mapped by diffusion weighted MRI.  

Convolution is the action of extract the features from the input image, such as the spatial relationship 

in pixels.  

Convolutional Neural Networks (CNN) is a 2-dimensional spatial structure of neural network, one 

of the deep learning technologies. 

Correlation Method is a statistical tool to evaluate how close two variables are.   

CPU, or Central Processing Unit, is the electronic circuitry within a computer that handles all instructions 

that it receives from hardware and software running on the computer. 

Cross-validation is a technique for estimating the performance of a predictive model.  

Dataset is a collection of data. 

Deep Learning is a subset of Machine Learning based in ANN that performs representations from the 

learning data. 

Effective Connectivity is the union of structural and functional connectivity. 

Feedforward Neural Network is an ANN whose information moves in only one direction - forward, - 

from the input to the output; there are no cycles or loops. 

Fine-tune is a continuous search procedure for the best hyperparameters of a model. 



 

xxvi 

fMRI is a technique that measures brain activity by detecting changes of blood flow among the different 

areas using the BOLD contrast, which relies on the fact that cerebral flood flow and neuronal activation 

are coupled, on other words, when an area of the brain is in use the blood flow to that region also 

increases.  

Framework is a set of functions inside a system and how they interrelate.  

Functional Connectivity is a statistical measure association among two or more anatomically distinct 

time-series.   

GPU, or Graphical Processing Unit, is a programmable logic chip specialized for display functions.  

Grey matter are unmyelinated neurons and other cells of the nervous central system.  

Hyperparameter is a model parameter whose value is given to the model before the learning process.  

Invasive Procedure is a technique that requires a skin incision or an insertion of an instrument into 

the body.  

Machine Learning is an area of Artificial Intelligence that enables computers to learn without explicit 

programming. 

Model Layer is the second basic element of a Deep Learning model that contains a set of neurons and 

a specific function.  

Model Weights are the parameters that control the connection strengths between the layers.  

Neuron Fire occurs when an action potential occurs, generated by voltage-gated ion channels in neural 

membrane, which allows the propagation of electric signal along the neuronal axon to another neuron 

through the synapse.  

Neuronal Activity/Activation requires energy, which is provided almost exclusively by oxidation of 

glucose supplied via the blood circulation regulated by energetic demand bold.  

Nipype Pipeline is a neuroimaging Python package, used to analyse data using different algorithms.  

Parcellation is a subdivision of the brain structures into well-define parcels or regions of meaningful 

anatomical or functional significance.  

Pooling Layer is used to reduce the spatial dimensions but not depth, in order to decrease the spatial 

information.  

Pre-processing are the all the steps made required to raw data in order to get more reliable and cleaned 
data.   

Python Module allows to logically organize the Python code by grouping related code into a module 

Python Package. 
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Regression Model is a statistical model used to estimate the relationship between dependent and 

independent (or predictors) variables, more specifically helps to understand how the typical value of the 

dependent variable changes when any one of the independent variable is varied. 

Resting State Networks (RSN) is the brain activity when a subject is not performing an explicit task, 

observed though changes in BOLD signal measured by fMRI. 

Time-series is a series of data points listed in time order. 

UNIX is a family of computer operating system that start in 1970s at the Bell Labs research centre.  

Unsupervised Learning is a deep learning method of inferring a function to describe hidden structure 

from “unlabelled” data. 

Voxel, or a volumetric pixel, is a volume element, representing a value on a regular grid in 3-dimensional 

space. 

White Matter are the matter areas of the central nervous system that are mainly made up of myelinated 

axons, also called tracts. 
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1. INTRODUCTION 

Medical Imaging Informatics is a specific field of Medical Informatics (MI). As it is implied, it is 

responsible to deal with imaging data that has to be correctly and efficiently processed [1]. Later, the 

physicians started to use the processed data towards a best practice of medical care. Not only are these 

data extremely important for the understanding of the human being, but also in the search for new 

treatments and new ways of diagnostic. This type of research has evolved continually and that is why it 

has been the major booster in this area [2]. Medical imaging informatics is a simple collection of 

methodologies and techniques used in order to represent visually and spatially parts of the human body 

for diagnostic or research’s purposes. The Medical Imaging is also a multidisciplinary area, specialty 

dedicated to the brain, known as neuroimaging. This area comprises several modalities such as Magnetic 

Resonance Imaging (MRI), Positron Emission Tomography (PET) and Computed Tomography (CT) [3]. 

Neuroimaging has a major clinical application as medical support in neurology, more properly in 

the diagnosis. But, recently, other areas have been recurring to neuroimaging, such as psychiatry, as a 

mean of a better understanding of psychiatric disorders. Also, a new dimension called the brain-body 

medicine merged, focusing in the study and understanding of the interactions between the brain, 

peripheral pathways and bodily organs. These new advances gives to neuroimaging research a new three 

new medical research topics: the mind-body connections, the behavioural psychosomatic and the 

integrative medicine [4]. Besides, the research and knowledge in neuroimaging is continuously changing 

over the time,  we had the highest improvement in the last 20 years, [5].  

In neuroimaging, the study of brain structure is not enough, since it doesn’t give relevant 

information for the diagnosis of pathologies where structural alterations are not anatomically detected. 

Therefore, a method to assess brain function is necessary. This led to the development of functional 

Magnetic Resonance Imaging (fMRI), which is a technique that monitors hemodynamic events related to 

changes in neuronal activation in the brain, relying on the Blood Oxygenation Level-Dependent (BOLD) 

contrast [6];[7]. This modality has countless advantageous that boosts even more its growth, such as 

non-invasiveness, relative easiness of implementation and high spatial resolution. Moreover, the resulting 

signal is robust, it is easily reproducible and highly consistent. [5]. fMRI is typically used in the context of 

a given task, performed within the MRI equipment, in order to identify brain regions associated with the 

neuronal processes involved in the performance of that task. However, this precludes the interactions 

between different brain regions (i.e. brain connectivity). 
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Nowadays the neuroimaging community is changing emphasis from functional specialization 

towards functional integration [8]. Functional Connectivity (FC) is based on the temporal correlation 

between spatially remote neurophysiological events in the brain [9];[10]. FC can be measured using a 

variety of different techniques, but the most commonly used is the resting-state fMRI (rs-fMRI). Using this 

technique, several spatially distributed patterns were observed across subjects and presented a strong 

similarity between them [9];[10]. These patterns were denominated as the Resting State Networks (RSNs) 

[10]. FC can also be exploited from task-based fMRI. More recently, fMRI was also used to determine, 

what was named by Friston as, the effective connectivity [9]. This term defines the final objective, wherein 

the fMRI data is used to attempt to identify firstly the brain regions of interest that are mainly active during 

action, perception and cognition, and secondly the causal relations among activity in these regions.  

There are three main methods used by the neuroimaging community to analyse and evaluate FC: 

Seed-Based Analysis (SBA), Independent Component Analysis (ICA) and connectomic analysis. All of 

these methods have the same final goal which is the analysis and attainment of brain connectivity 

networks, although having different approaches. 

In the SBA method, the user identifies a Region-of-Interest (ROI) - or “seed”, - and gets the resulting 

networks from the correlation of time-series of the seed and of all the remaining voxels of the brain. 

By contrast, in the ICA method it is not needed any reference region or seed in its application. This 

data-driven method decomposes the complete fMRI four dimensional dataset into time and associated 

spatial maps from components presented in the data [13]. The resulting components have the 

characteristic of being statistically independent. Additionally, ICA is also often used to support the decision 

of choosing the number of nodes to apply in the parcellation process for connectomic analysis. 

Lastly, the connectomic analysis approaches the interactions between every possible pair of brain 

regions. This method uses the fMRI time-series extracted for each region belonging to a given atlas or for 

every voxel in the dataset. Then, the correlations between the time-series of all pair of regions are 

calculated. Thus, this results in a correlation for each pair, quantifying the FC between pairs of regions. 

The set of all regions and their connections can be visualized as a network or as a graph composed by 

nodes (brain regions) and the connections between them (FC). Additionally, connectomic data is typically 

represented as a connectivity matrix. The connectivity matrix is the schematization in matrix of all the 

values from the correlation between all pairs of regions. So, its size is N x N, where N is the number of 

regions or nodes resulting from the brain parcellation.  

The information obtained in the connectivity matrices has shown a lot of applications. One of its 

use it is for the study of changings in the (brain functionality) due to a particular disease, such as 
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Alzheimer’s Disease (AD) [14] or autism [15]. Another is for the study of the main networks in the 

connectome responsible for a specific psychological trait [16] or some mental capacity. Moreover, these 

matrices are used for classification recurring to Machine Learning (ML) or statistical methods. In Machine-

Learning To Characterise Neonatal functional connectivity in the Preterm Brain [17], they have been able 

to discriminate preterm infants at term - equivalent age and healthy term – with born controls with 80% 

accuracy using a ML method. Plus, it was used to distinguish between healthy and depressed controls 

with accuracy values of 85.85% and 70,75% in classification between patients with treatment resistant 

depression, non-treatment resistant depression, and healthy controls [18]. Furthermore, this connectivity 

matrices have shown to be reliable fingerprints, making possible to identify accurately a specific subject 

from a large group. The research made in Functional Connectome Fingerprinting: Identifying Individuals 

Using Patterns Of Brain Connectivity [19] demonstrated that applying correlation methods can predict 

and identify an individual with 92,5% and 94,4% accuracy in resting states. For fMRI acquisition in task 

conditions, they also got results that presented a great accuracy, rates about 87,3%. Relatively to 

classifications using train and test data with different fMRI conditions (resting or task) for each one, the 

final accuracy values achieved were lower, in maximum rates of 50,4%.  

The approach to FC in this dissertation is based in techniques of ML, a recent subfield of computer 

science related to neuroimaging. The main advantage of this technique is the capacity of the models 

“learning” from data.  So, there is always a learning process in order to obtain accurate representation 

of data and prior knowledge [20]. In neuroimaging, as supporting tools to studies with FC, these 

techniques come firstly to solve the need for classification models, as referred previously in some 

examples. But the development and implementation are yet little and insufficient, when exists so much 

to explore and discover about brain functionality. Besides that, the methods applied are simple and 

applied in a similar way as has been used in the last years. Nevertheless, a new area recently emerged 

in ML - the Deep Learning (DL). 

DL is nothing more than an improvement of Artificial Neural Networks (ANN), which allows to 

modulate higher level of data structure abstraction and improve predictions (provides a better 

classification) [21]. It is only possible due to its characteristics, larger number of layers and more accurate 

algorithms, which makes easier to find similarities in data and improving the process of “learning”.  That 

allows to work with high dimensional datasets. These are the reasons that give an enormous potential to 

the use of Deep Learning in this work. Since the connectivity values are saved in large dimensions 

connectivity matrices completed with a lot of features, they allow these features’ granularity to be 



CHAPTER1. INTRODUCTION 

4 

diversified, where the unit in study can be a voxel or a brain region (resulting from brain parcellation) 

[22];[23].  

In addition, DL is a technique that, although being little used in neuroimaging in general, in image 

processing has expanded quickly and granted the creation of a lot of applications such as object 

recognition. Even some prodigious technologies companies, like Facebook and Google, are applying DL 

and have made a great effort towards its development. So, it is a good opportunity to use this information 

and algorithms, and adapt them to work with FC to create good classification models.   

1.1. Motivation 

The brain is a complex system and there is a lot to discover and understand about it yet. The 

brain structure is already well documented, since it has been a trend area of research and there is an 

enormous quantity of knowledge associated to it, in contrast to brain function. To fix this gap, the field of 

neuroimaging has been in a continuous searching for classification models using FC. This classification 

can be, e.g., to classify and distinguish a subject as healthy or non-healthy. Additionally, recent researches 

have also demonstrated that FC can be used as a “fingerprint” classifier. So, it can be quickly evidenced 

an increasing demand regarding FC data due to its conceivable applications. 

Although in the present it is verified that there are already some ML techniques applied in this 

field, they are insufficient, and, at the same point, they are simple comparatively to the evolution occurred 

in the field. Thus, besides of the potential knowledge that FC can give is tremendous, the use of data is 

very far from what can be achieved. To resolute these opportunities and problems, it is proposed a new 

approach with a DL framework. This ML method has already achieved good results in fields like image 

processing, and it is viewed as an incoming and promising “learning” technique. This method has the 

advantage of working with high dimensional and big data and how much bigger it is, better will be the 

results. It also presents a great capacity of “learning” and no theoretical limitations. These are the 

characteristics that make this technique a right tool to work with FC data.  

1.2. Objectives  

The work begins by identifying the main goal, or more accurately, the research problem, traduced 

in a question – “Can the functional connectivity from rs-fMRI be used as feature in subject’s classification 

tasks using a Deep Learning approach?”. In other words, the artefact presented is a DL approach in order 

to get knowledge using functional connectivity matrices processed from resting-state fMRI (rs-fMRI), to 
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create prediction models to classification tasks. These models are based in individual features for 

classification of subjects or group features in sex and age classification. As result and to answer the 

research problem, emerged two secondary objectives: one linked to the MRI and rs-fMRI pre-processing 

processes to get the FC and another that involved the creation and development of Deep Learning models. 

During the model development there were continuous adjustment and fine-tune of DL parameters models, 

finishing with evaluation of the results. To specify each of these objectives, it were created others more 

specific and a set of research questions (RQ) that emerged during the work elaboration and should be 

answered. Thus, it was elaborated the next work plan:  

1. Development of a framework that allows the application of DL algorithms to FC data   

 Study and implementation of the best fMRI processing in order to extract FC  

RQ 1 - Can an implementation of a Nipype pipeline improve several points of a processing 

workflow? 

1.1.  And with differences in the time and data organization? 

1.2. What about the data management? 

1.3.  And using multi-processing? 

1.4. How to stop failures from affecting the working pipeline?  

1.5.  And with integration of several image software? 

RQ 2 – What approach should be used to extract the different types of functional 

connectivity? 

RQ 3 – Which is the best way and which data to save using a Python environment?  

2.1. How much processing is needed to FC data? 

2.2.  And which data will be saved? 

 

 Development and application of a framework to deal with DL algorithms using FC data 

already treated before, as intended 

RQ 4 – What is the best architecture to implement in order of fine-tunnelling the DL models 

and its posterior creation?  

3.1 Which Deep Learning Python libraries are more appropriate to use? 

3.2 Which metrics to use and to compare the models? 

3.3 Which metrics are extracted in the final analysis of the models? 
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3.4 Was there any limitation in the validation approach used? 

 

2. Test the framework with real data and evaluate the results 

 Test and analyse if the FC static and dynamic acquired in different sessions can be used as 

individual “fingerprint” or group classification by gender. 

RQ 4 - Can the results of the article “Functional connectome fingerprinting: identifying 

individuals using patterns of brain connectivity” [19] be reproducible? 

4.1.  Can be the data acquired in the same research project or other data ‘with no such good’ 

quality of resolution acquired in machines with magnetic fields less than 3T reproducible? 

4.2.  Using the same atlas or another atlas? 

4.2.1. Comparison of the results and analyse how the number of nodes influences the 

performance. 

RQ 5 - Is it possible to get better results using the DL approach by the framework created 

and static FC?  

5.1. Can DL increase the performance results? 

5.2.  Are there any significant differences using different atlas? And how that happens? 

5.2.1. Comparison of the results with the ones obtained in 4.2.1. 

5.3.  Can convolutional networks improve the models? 

5.4.  Does the data normalization change the results?  

5.5.  Are there some subjects classified more correctly than others? 

5.5.1. Are there any differences in the data? 

RQ 6 – Can the previous approach and dynamic FC improve the last results? 

6.1.  Can DL increase the performance results? 

6.2.  Are there any significant differences using different atlas? And how that happens? 

6.2.1. Comparison of the results with the ones obtained in 4.2.1. 

6.3. Can convolutional networks improve the models? 

6.4. Does the data normalization change the results?  

6.5.  Are there some subjects classified more correctly than others? 

6.5.1. Are there any differences in the data? 

6.6.  Can the type of FC change the results? If so, how and why it happens? 

RQ 7 – Can the DL approach give good results in the age classification task? 
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1.3. Research Methodology  

Firstly, it is necessary to define correctly the term “research”, often mistaken with a simple 

information gathering from documents or facts, or a merely rummaging for information [24]. Research 

can be defined as a systematic process of collecting, analysing, and interpreting data in order to give 

more knowledge in a particular phenomenon [24]. Before anything in the research process, it is necessary 

to define the research problem. This can be described as the main and comprehensive difficulty that the 

researcher wants to answer with the proposed work [25]. Then comes the construction of the design’s 

research. This fundamental process where is defined the conceptual structure within will guide the 

research and wherein is understood the way that the gathering, measurement and analysis are made 

[25]. In this context appears other term, the “methodology”, and summarized it means the mode to 

systematically answer the research problem using research techniques. This is a general approach, but 

since the appearance of informatics, it was needed to adapt the existing research methodologies more 

appropriately for the Information Technology (IT) areas. One of them was the Design Science Research 

(DSR), methodology that will be followed in the dissertation, once this work covered areas, such as 

computer science and medical informatics that belong to Information Systems (IS).  

DSR is a recent methodology in IT area and, since its appearance, it is continuously gaining 

attention in the scientific community. Mostly because of its characteristics to resolve some lacks and 

problems generated by the new technologies that others before couldn’t solve [26]. The DSR methodology 

is built around the artefact term. Object which will be constructed and designed, effectively and efficiently 

during the methodology with utility in an application environment [27]. The artefact can be constructions, 

models, frameworks, architectures, methods and instantiations [26]. For the research to be in accordance 

with this methodology, it should follow the guidelines of the same, known as DSR Process (DSRP), and it 

resulted from work and investigation of several researchers. Furthermore, it can be traduced in six main 

activities [28]:  

i. Problem identification and motivation – The research problem is defined, and the 

practical and scientific values of the solution presented are justified.  

ii. Objectives – The qualitative and quantitative objectives inferred from the problem are 

deduced. In this section it is required a construction of the state of art wherein is defined the 

state of the problems and of the existing solutions.  

iii. Design and development – The functionality and architecture of the artefact are defined, 

ending in its creation.  
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iv. Demonstration – The confirmation that the artefact solves the problem efficiently.  

v. Evaluation – The results are registered, measured and analysed to conclude if the artefact 

is really a solution for the problem.  

vi. Communication – It is the final process, where are communicated the problem, the 

solution represented by artefact and its results.  

 

Figure 1.1. Schema summarized with the task, resources for each phase of the Design Science Research Process (DSRP) 
(from [28]). 

A key point is that the different DSRP parts are not fixed and, so they do not have to follow a 

restricted sequential order. Subsequently, the start point can be in almost any step forward or backward. 

In the Figure 1.1 are schematized the different phases, its description, the resources used in each one 

and possible movements of continuous research to find the best artefact for the defined problem.  

1.4. Structure of The Document  

The present work comprises, besides this introductory chapter, more six different chapters 

structured as follows:  

Functional Connectivity in fMRI - This chapter resumes and introduces all the important 

concepts related to Functional Connectivity extracted from fMRI, from the methods, the techniques, the 

technologies involved and applications.  

Deep Learning – Structured as the first chapter about the technique applied in this work, it 

introduces some essential concepts to understand more its operation, its limitations and how fine-tune 

the possible parameters. 
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Materials – In this third chapter it is resumed all the important information about the datasets, 

the technology, the software and other data applied and used in the next chapter, and the methods to 

get the intended results.  

Methods – The chapter four has all the information about the work done in this dissertation to 

get the results. So, it is explained all the study’s architecture, wherein it is presented the pre-processing 

to fMRI and MRI to get the data used by Deep Learning models and, then all the search methods for the 

best models with the statistics analysis and models’ management resulting from it.  

Results and discussion – Over this chapter are exemplified the different results obtained 

during the research for the best models and the replication of results of other articles. During the process 

of continuous search for the best model are argued the results obtained and proposed new actions in 

order to improve the model performance.  

Conclusion – In this last chapter it is synthetize all the results accomplish with implications for 

the main research problem and the conclusions that could be extracted. Also, the research questions 

done in the elaboration of this dissertation are answered and potential future work to be done is described. 
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2. FUNCTIONAL CONNECTIVITY IN FMRI 

The Functional Connectivity (FC) is a consequence of the continuous search to understand the 

human brain. This is a complex organ, responsible for our conscience, personality, sensations and 

cognitive process and, yet much unknown, reason conjecture that fascinates us as humans. So, it was 

needed tools and technologies to study the brain connectivity. Thus, it was created a group of techniques, 

anatomical and functional (Figure 2.1). To study with less risks for human health and in an easier way, it 

were created techniques less invasive. The more invasive and with more spatial and temporal sensitivity 

are only applied in animals’ models (see Figure 2.1).  

 

Figure 2.1. The different brain imaging techniques with the relative spatial and temporal sensitivities, and the level of 

invasiveness of each one (from [29]).  The techniques only used in the animals are outlined with a dash line. 

The anatomical techniques appear in general first and their use revealed to be insufficient to a 

deeper analysis. But they were important since they proceed more neurological sophisticated methods. 

Besides, they maintain to be consequential for research, such as: Magnetic Resonance Imaging (MRI) to 

give detailed structural information to distinguish the white matter from the grey matter and, Diffusion 

Tensor Imaging (DTI) to visualize myelinated tracts. Although, the dominant are the functional methods 

as well as the study of the brain connectivity - the study of the neural activity when a subject performs a 

specific cognitive task or only the study the normal activity in a subject in a rest state. Moreover, the 
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functional techniques can be categorized by the measuring type, direct or indirect. Inside the direct 

methods are the Electroencephalography (EEG) and Magnetoencephalography (MEG), and they measure 

directly the electrical activation associated to neuronal activity. Then, the indirect methods that measure 

the neuronal activity by the metabolic activity and the blood flow, include the Near-Infrared Spectroscopy 

(NIRS), the Positron Emission Tomography (PET) and the functional Magnetic Resonance Imaging (fMRI).  

The fMRI, used in this work, is the main modality used in clinical neuroimaging since its introduction 

in the clinical environment and, nowadays, has been become a major tool to research the structure and 

function of the human brain.  

The MRI is based in the physical property nuclear magnetic resonance, which measures the 

protons of hydrogen and atoms of the water molecule. Water is the most abundant element in the human 

body, and even more in the soft tissues as the brain. During the procedure is created a strong external 

magnetic field and the proton aligns according to it. Then, it is used radiofrequency pulse to excite the 

protons and alter the magnetization alignment comparatively to the magnetic field. These changes are 

quantized by sensors, being possible to create a patient’s image [30];[31]. 

The MRI technology continues in advance. The magnetic field strength used for research has 

increased over the last years due the improvements in the magnet design and technology. Also, the 

radiofrequency electronics and magnetic field gradients have improved supporting the use of systems 

with higher field strength. Nowadays, the 3T fields are already plenty used in the neuroimaging research 

centres, and institutions are taking improvements to machines with 7T or even higher fields, such as 

9.4T, 10.5T, 11.7T and 14T [32]. The consequences are only positive for research in neuroimaging due 

to a better resolution, sensitivity and contrast in the acquired volumes. But low fields at or below 1.5T 

continues to be the main fraction worldwide, once the application purpose is merely clinic and it is not 

necessary a high resolution with more costs.   

In 2016, OECD in the United States, was the first company in the worldwide to collect about  121 

MRI scans per 1000 of population [33]. They showed that this data has an enormous potential to be 

study without negative biological effects reported. Recently, even the cardiac pacemakers, cerebral 

aneurysm and cardio-ventricular-defibrillators have been developed to be MRI-safe following strict 

protocols. But they are only allowed to submit magnetic fields inferior to 1.5T and it is always needed 

some care about the implant heating or the ferromagnetic forces. Although this widespread sense of 

security, there are some researcher concerned about the possible direct and indirect effects over the DNA 

resulting in genetic damage and in turning carcinogenesis as consequence of the Static Magnetic Field 
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(SMF). A shared concern due to the continued increase of SMF. Some studies already detected DNA 

damage as consequence of MRI, however more studies are needed [34].  

The fMRI appears to fill the lack of non-invasive methods to study the brain activity and, due to 

some positive reasons, it became a widely technique in brain connectivity study. First of all, because it 

has the best spatial and temporal resolutions compared with the others indirect methods. In addition, 

MRI scanners are widely used, the costs are relatively low per scan comparatively to another methods, 

and has not scientifically recognized risk for patients.  Ogawa was the first to describe Blood Oxygenation 

Level-Dependent (BOLD) parameter as result of the hemodynamic changes in the brain caused by 

neuronal activity [7].   

The discovery of the possibility of using the fMRI for the study of the functional connectivity, more 

specifically in how the different regions are related and the identification of the different networks formed 

by these relations, associated to brain senses, cognitive processes or simple to resting state, opened new 

fields to explore. What led to a “boom” of the connectivity studies in the last decades, consequence of 

the large search of it to clinical use and neurologic research, being the neuropsychological research with 

the major application in this area.  

2.1. Functional Magnetic Resonance Imaging 

The fMRI is a variation of Resonance Magnetic Imaging (RMI) that appeared to fill the lack of a 

method to study the brain activity, becoming the most important technique to serve that purpose. This 

non-invasive technique measures the hemodynamic change in the blood as consequence of neuronal 

activity known as vascular hemodynamic response. So, the neuronal activity is related to an increase in 

the Cerebral Blood Volume (CBV), in the Cerebral Blood Flow (CBF) and in the Cerebral Metabolic Rate 

of Oxygen (CMRO2). The increase of CBV and CBF explains the vascular response which is positively 

correlated. Moreover, the increasing of the oxygen rate consumption (CMRO2) in the tissue around the 

fired neuronal cells leads to decrease the venous oxygenation level. In order to revert this effect, the CBF 

has to increase but quickly occurs an overcompensation due to CBF exceeds the CMRO2. In another 

words, it is provided more oxygen than it is needed, and this is demonstrated as a peak in the 

hemodynamic response function (Figure 2.2). Ogawa in the 90’s discover that the BOLD, as contrast 

technique, can measure indirectly this phenomena: the CBV, the CBF and CMRO2, as results of the 

neuronal activity [7]. The haemoglobin (Hb) presented in the blood carries the oxygen molecule, and 

when the oxygen molecule is out of Hb is it called desoxyHaemoglobin (dHb). Due to the vascular 
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response during the neuronal activity in a tissue there is an oversupply of blood and, consequently, the 

decrease of quantity of dHB. As dHB presents magnetic properties (is paramagnetic), it changes the static 

magnetic field in T2-weighted images. It can be used as contrast agent and, thus, be detected and 

measured by MRI. The BOLD signal is characterized by the same behaviour of the estimated 

Hemodynamic Response Function (HRF), consequence of its vascular nature. So, after the neuronal 

activity has a rise of the signal until the maximum value, a peak of ≈ 5 to 6 seconds after the stimulus. 

Then it returns to the baseline after ≈ 12 seconds, where the stimulus is followed by a negative overshoot 

before the final signal stabilization about 25 to 30 seconds after the stimulus (Figure 2.2). The delay 

occurred between the stimulus and the neuronal activity is caused by the slow nature of the hemodynamic 

response as seen in a HRF, explicating the low sampling rate around 1 Hz [29];[35];[36];[37];[38].  

 

Figure 2.2. Model of Hemodynamic Response Function (HRF) (from [39]). 

In the acquisition process are obtained, in a fast sequence, several images with low resolution of 

the ROI. Each of these images has a volume of the brain in study and are extracted within 2 to 3 seconds, 

because there is a need to acquire the data in reduced amount of time, leading the Echo Planar Imaging 

(EPI) to be more used in this type of exams. 

 The EPI is the fastest practical imaging method and it was proposed in 1977 by Mansfield [40] 

applied to nuclear MRI. The difference between MRI method and the EPI method resides in the 

conventional method of creating data for an image from a series of discrete signal samples rather than 

form a complete volume from a single data sample/shot. This volume is extracted in the interval of time 

between two Radio-Frequency (RF) excitation pulses, interval known as repetition time (TR). During the 

signal extraction the TR is used as window and centred in the echo time (TE) in order to maximize the 

signal to extract.  The TE is an acquisition parameter and depends on the target tissue, the target imaging 

parameter and the magnetic field strength of the MRI machine. In the case of fMRI as the T2* weighted 
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image it is used to measure the BOLD fluctuations, the TE is approximated as possible to the T2* 

relaxation time of Grey Matter (GM). As the major advantage, the EPI method is way faster than the MRI 

method: for a normal acquisition with TR=3 second, the first one can collect all the image data in about 

40 to 150 milliseconds, while the second, for an image of the same resolution, needs 384 seconds. After 

the acquisition of the volume’s set in a specific interval of time, it is built a time series for each voxel 

using those volumes, resulting in the final fMRI’s signal. 

 Besides the fMRI technology (e.g. multichannel receiver) and hardware (e.g., higher magnetic 

strength fields), there is a continuous search for a greater Signal-to-Noise Ratio (SNR). This rate measures 

the quality of the acquisition being directly proportional. This because the fMRI time-series contains not 

only the signal of interest, but also other signals as noise (e.g., cardiac function and respiration, subject 

head motion, thermal noise or hardware interferences) [41]. This is the reason of the need for 

pre-processing pipelines before any analysis and use. Also, it was created the Multi-Echo (ME) acquisition 

of fMRI signal to improve the sensibility to BOLD signal and increase the SNR. This method will improve 

the single echo techniques as EPI, with some alterations. Besides the methods of EPI, the ME measures 

the time-series for each voxel using different TE, and so the signal differs between each voxel in terms of 

T2*weighting and thermal noise [42];[43];[44].  

A normal study of fMRI has as objective the identification of regions that are activated when a 

subject receives a stimulus or does a specific task. In these conditions, it is said that is a task-based fMRI. 

But the study of functional connectivity is gaining importance in the neuroimaging community, extracted 

specially from fMRI done in resting state, without any stimulus or task. But it is also possible to use 

task-based for functional connectivity and, in the future, this could be a very promisor approach, moved 

by the continuous investigations and advances in understanding the different patterns in rs-fMRI, 

increasing more the knowledge about FC.  

2.2. Brain Functional Connectivity 

The FC can be defined as “temporal correlations between spatially remote neurophysiological 

events” [9];[45]. So, it can be simple described as the manner how occurs the communication between 

brain regions that are anatomically distant.  

This is a recent applicability for fMRI discovered in a resting state condition when was concluded 

that some spontaneous and intrinsic fluctuations occur in the BOLD signal [10];[46]. So, the brain is 

never idle, and even in rest, there are anatomic separated brain areas that besides the presence of 
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spontaneous neuronal activity, they are linked to others. In addition, the regions where the signal had a 

high correlation with other region, they had functional similarities already described and known 

[10];[11];[47]. Moreover, functional studies using rs-fMRI demonstrated the existence of temporally 

coherent patterns known as the Resting State Networks (RSNs), associated to low frequencies. But other 

networks with coherent BOLD fluctuations were found associated to cognitive processes, emotions or 

senses. Although the functional connectivity can also be studied in a task-based fMRI, the large number 

of variables in this type of acquisition make this too uncertain to use, besides being more complex to 

design the task conditions, the imaging acquisition and the analysis process [46];[48]. 

In the present there are some statistical models to analyse rs-fMRI in order to extract FC 

information. The Independent Component Analysis (ICA), the Principal Component Analysis (PCA), the 

clustering, and the Seed-Based Analysis (SBA) are the four most popular applied to fMRI, being the first 

three data-driven models1. 

Beginning with SBA, as the name enunciate, is a statistical model where the first step is the 

identification by the user of a specific ROI. Then it is created a map of the networks as a result of the 

computation of the correlation of the signal of this region and the other voxels that remain outside the 

seed [46]. Regarding the PCA technique, it relies on discovering a group of orthogonal axes that can 

maximize the interpreted variance of the data and divide the pertinent data from the noise. On the other 

hand, the ICA technique is an extension of the PCA technique, in which there is a separation of the 

individual elements into their components. It also models the obtained dataset as a constant amount of 

spatially/temporally independent components. Finally, the clustering method is based on mathematical 

algorithms that associates data into clusters, in which the specifications within a cluster are like one 

another than to different clusters [13];[38].  

There is yet the ROI analysis, option used in Machine Learning studies, that is performed based 

on the SBA. In this method there is a priori the selection of ROIs in the brain, and then, for each region, 

it is determined a value that is correlated with all the other regions. Thus, the result is an association 

matrix that has the values of the correlation of all ROIs’ pairs. The ROIs’ structure information and 

parameters are normally extracted from atlases, other functional studies or statistical models 

applications, such as ICA [49] or clustering [50]. The fact that in this analysis is usually used the same 

ROIs for all the acquisitions of different subjects, does not take into account the subjects’ functional brain 

variability. Consequently, it can happen that specific ROIs don’t represent correctly the signal of a brain 

                                                 

1 Data-driven models are models that do not require previous information nor a predefined model. 
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region, adding some error or loss of information to future use. Thus, it is important to create ROIs that 

are reproducibly and the number of regions chosen maximize the regions time-series extracted [50]. 

Afterwards, this type of analysis can also be used by graph theory analysis, where the brain is modelled 

as a network composed by nodes (ROIs or voxels) and edges (values of time-series correlations). This 

representation of the brain, as networks that can also be modelled as a graph, can be used in 

mathematical calculations and graph properties to perform the FC analysis and discover significant 

patterns [38]. Regarding the FC calculated by the ROI approach, there is a new variant called High-Order 

Functional Connectivity (HOFC), where the correlation of each region with all other regions is called 

topographical profile. And using the correlation matrix calculated to the ROI analysis, it does a second 

correlation between a topographical profile with each of the remaining profiles, resulting in a matrix with 

the same size. But the difference in this method is dealing with spatial properties presented in BOLD 

signal, instead of focusing in the temporal correlations, like other methods [51].  

 However, more recently, emerged a new approach to study the FC. Once a resting state analysis 

is obtained, the correlations measure over a lengthy periods the fluctuations related to complex, and 

dynamic interactions patterns that happen in finer time intervals are lost [51];[52];[53];[54];[55]. So, 

dynamic FC could be a good approach to study and understand the different spontaneous changes in the 

patterns presented in the rs-fMRI time-series. There are nowadays several papers with different 

approaches to measure the different variations in the spatiotemporal structure of the fMRI time-series. 

One of the most common is the sliding window strategy where there is a partition of the whole BOLD 

signals into different intersecting segments, for a specific window size [51];[54];[56];[57];[58]. But this 

technique has some issues due to the analysis being done using a temporal window and its limited size, 

consequently affecting the temporal results and statistical validation of the results [55]. Nevertheless, 

there is another techniques already applied in dynamic functional connectivity’s studies such as: 

time-frequency analysis [59], single-volume co-activation patterns [60], repeating sequences of BOLD 

activity [61], multiplication of temporal derivates [62], and phase coherence connectivity also named 

phase synchronization [63];[64];[65]. There is also another approach where the dynamic functional 

connectivity is evaluated among subsets named domains. The method was named as dynamic Functional 

Domain Connectivity (dFDC) and uses the RSNs domains. Thus, the dynamic changes are only 

considerate for a subset specifically to study, instead of using whole-brain [66].  

2.3. From fMRI to Functional Connectivity 
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2.3.1. Acquisition  

MRI is a masterpiece of engineering, physics and informatics that since its creations - in the 

1970’s - had a great expansion as an imaging method. Until now it comes as one of the most important 

radiological examinations. The fMRI acquisition is a variation of the MRI, and so the fMRI time-series are 

also extracted in the same machine. Although existing some variation according to the subject state 

analysis, task or resting state, the procedures used in the acquisition are very similar to different functional 

studies. But, in both, the acquisition is acquired in an interval time that will define the number of volumes 

extracted per acquisition.   

The rs-fMRI is recommended to be made with the minimum stimulus possible for the subject. 

Even though is not consensual, the best approach to take the acquisition is in the resting state, where 

normally it is required to the subject to stand relaxed, to remain wake and try not to think in anything. 

But even so, some fluctuations are registered caused by the subjects’ behaviour, such as the visual 

processing, and that is why it is also required to the subjects to close their eyes or to fix them in a 

crosshair.  

On the other hand, there is stimulus in the task-related fMRI during the acquisition in order to 

acquire the respective BOLD responses. The temporal allocation of these stimulus is called paradigm, 

and the design of the different paradigms will bear on the study’s precision and effectiveness. The 

task-related fMRI uses two different paradigm designs: the block design and the event-related design. The 

block design uses blocks with equal temporal range, repeated activity and rest to excel the neuronal 

activation. In the event-related design, the stimulus is presented with different temporal ranges, and with 

one or more specific cognitive events in test. Therefore, the block design is used to discover the response 

to a stimulus as patterns activations, and event-related discovers the characteristics and properties of the 

response to a stimulus [67].  

Additionally, during the acquisition procedure, in both cases, the patient should be informed to 

be as still as possible. The motion, or more properly the head motion, adds a lot of noise and artefacts 

in the acquisition, decreasing the data quality. So, it is important during the acquisition to prevent from 

happening head or body motion, taking some measures as head fixation or using a comfortable padding 

for head and body.  

2.3.2. Pre-processing 
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The pre-processing is a fundamental step in any area that work with signals or images to improve 

the data quality, as well as remove possible noise to later be conceivable to extract valid information.  

The fMRI acquisition it is not perfect and there are a lot of interferences due to a substantial 

number of variables to control. Thus, to the normal fMRI signal are added some unwanted fluctuations, 

consequence of hardware-related artefacts or physiological events from the participants. The ones caused 

by the hardware are specially interferences in sensors, thermal noise normal of electronic components 

and hardware instabilities [41]. Although in the acquisition configuration are taken some precautions to 

diminish these problems, they continue to have a great impact in the quality of the final time-series. The 

artefacts related to participants are above all resulting of the head motion, but also from the motion 

caused by the cardiac function and respiration and consequent vascular effects. They also have a negative 

outcome in the acquired signal [41];[68];[69]. This is also proves that low-frequency drifts (artefact) are 

responsible for 8,4% of the signal variation, being the visual cortex the area most affected when compared 

to whole-brain Grey Matter (GM) [70]. Therefore, if nothing is done, the artefacts will definitely reduce the 

sensibility in catching the true neuronal activity. Therefore, it causes low reproducibly of the results in 

re-tests, increases the difficulty, and adds errors in data interpretability what impair the scientific or clinic 

value of the studies. And that is why the data needs to be pre-processed, to eliminate or diminish the 

effect of noise and increase the rate between the signal and the noise – SNR -, growing the quality of the 

data. Nonetheless, before the pre-processing itself, there are some processes that should be done.  

The verification of the quality of the data before the pre-processing is crucial. The verification, if 

exists corrupted data or if the protocol was respected for all the subjects in a group analysis (e.g., 

acquisition time, number of slices, repetition time, and others), is a good start. Then, it confers if the 

brain volumes don’t have any artefact or a brain lesion, using available Digital Imaging and 

Communications in Medicine (DICOM) viewers like Osirix, RadiAnt, MRIcon or ImageJ. The viewers have 

to be compatible with the format DICOM because this is the format of the data resulting from the machine 

acquisition; DICOM is a format used to manage and view medical images [71]. Nevertheless, the 

pre-processing tools work mainly with the NIfTI (Neuroimaging Informatics Technology Initiative) format, 

an adaptation of Analyze 7.5 (uses the header to save metadata) [72]. So, the conversion is a must-have 

step before the pre-processing. Most of the pre-processing packages already have converters tools but 

there are also others upright dedicated converters. The most used are the dcm2nii and the MRIconvert 

(see more in Appendix A).    

A normal pre-processing fMRI pipeline follows the next steps (see more detailed description, with 

a rs-fMRI pre-processing example, in Appendix A):  
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1. Initial stabilization – Removal of the first volumes of the acquisition in order to allow the signal 

stabilization;  

2. Slice-timing correction – Once the volumes are acquired with a set of slices (2D images) and, 

although the repetition time is small, there is a minor delay between the real and the expected 

acquisition times. So, this step has in account all the slices of the volume, interpolating each 

voxel time-course of each slice with a reference slice, normally the first or the most near with the 

half of the TR;  

3. Motion correction – As already mentioned, the head motion is a significant artefact to remove. 

There are different approaches, but the most popular is realign each volume using the rigid body 

alignment transformation using a reference, e.g., first volume, last volume or the mean volume;  

4. Skull stripping – Removal of the skull maintaining only the ROI, the brain;  

5. Spatial transformations – The volumes of different subjects are spatially different (variability 

of size, shapes and orientation), so this method aligns the different images originated from a 

subject with others from a different modality or subject (registration), or from common standard 

space (normalization). In the application of these methods are used templates of standard space, 

in which the most applied is the Montreal Neurological Institute (MNI) template (preferably the 

MNI152);  

6. Spatial smoothing – In this step each voxel in the volume is averaged with the neighbours, 

working like a band-pass filter where the low frequencies are inhibited, and high frequencies 

maximized. The normal procedure is the convolution of the time-series with a Gaussian function 

with a specific width according to the data application;  

7. Temporal filtering – Removal of cofounding signals with specific frequencies caused by the 

several artefacts, and normally belonging to low frequencies or to high frequencies ranges when 

compared to frequencies of a normal signal of fMRI. Thus, in rs-fMRI is common the use of a 

band-pass filter for the interval 0.01 to 0.08 Hz. Although, in task-based it is only used a high 

band-pass to eliminate noise of low frequency due to the signals of interest belonging to more 

frequency ranges. 

2.3.3. Functional Connectivity as Static and Dynamic Connectivity Matrix 

This approach of analysis and extraction of functional connectivity from the time-series signal is 

common used for applications of Machine Learning or statistics applications, and, as was already 

mentioned, the regions of interest analysis. As time-series are for each voxel, and normally the ROIs are 
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regions of the brain, it’s made the brain parcellation. Although, if the approach is directed to voxel 

analysis, there is no needed to perform this step. 

The brain parcellation is the division of spatial domain into a set of non-overlapping nodes or 

regions. These regions are constituted by a set of voxels that show somehow a homogenous behaviour 

or properties in one or various modalities (e.g., functional connectivity, anatomical connectivity, 

task-related activation). Thus, the different voxel time-series signals in the same region are average, and 

so, the resulting data becomes in a set of time-series values wherein the set size is equal to the number 

of regions chosen. The most common approaches of brain parcellation to study the functional connectivity 

are: the use of specific anatomical or functional regions (ROIs), the use of brain atlas of recognized 

studies, and the use data-driven statistical methods. The analysis of functional connectivity based in 

specific ROIs aims to focus the analysis in these areas [73], and usually the regions’ selection is based 

on previous studies and tests [74]. The brain atlases have a well-defined set of ROIs of whole-brain volume 

and their spatial structure is based on the anatomy, functionality or connectivity of the brain. These atlases 

are available online to use, such as AAL atlas [75], the Harvard-Oxford atlas [76] or, more recently, a 268 

nodes atlas [50]. This approach is good to compare and reproduce studies, once the study is based on 

the same structures, though the labels could not maximize the resulting signals and lost some valuable 

information. That is the reason it is better to use the data-driven techniques to find the best model that 

adjusts to the data in study. The number of methods to use are larger and they could be mixed. It also 

includes variants of k-means algorithms [77];[78], variants of clustering [79];[80] (e.g., hierarchical 

clustering, spectral clustering and dense clustering), Independent Component Analysis (ICA) [81];[82], 

and variants of Principal Components Analysis (PCA) [83].  

After the parcellation process, it is possible to construct the connectivity matrix. It can be of two 

different types of connectivity matrix: the static and the dynamic. Both are a mathematical/statistical 

measure between the different regions pair-wise of the data, resulting in a symmetric matrix with the 

number of columns and lines equal to number of regions. The differences are in the measurement and 

in the number of final matrices. The static uses correlation measurement between the different regions 

and results in a correlation matrix. On the other hand, the dynamic compares the temporal variations and 

properties of each pair wise regions time-courses signals, in an instant or interval of time, as already 

described in the brain functional connectivity section. Thus, it results in several dynamic connectivity 

matrices, where the number depends on the temporal analysis chosen. If the measurement is done for 

each repetition time, e.g. each volume, the number of matrices is equal to the number of TRs of the 

acquisition.  
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2.4.  Neuroimaging Software   

In the Medical Imaging informatics, more precisely in neuroimaging, it is available some software 

for analysis and processing of fMRI images, and other types of images, such as images from MRI and 

PET, to whom exist three software that are more known: SPM, Freesurfer and FSL.  

The Statistical Parametric Mapping (SPM) software is an open source software designed to 

functional and structural analysis of images of neuroimaging. This program is based in spatially statistical 

methods in order to test possible hypothesis about regionally specific effects. So, all the process proceeds 

by analysing each voxel using any statistical parametric mapping. SPM was originally conceived by Karl 

Friston, but it has been suffering updates over the years, wherein it were added new tools and features, 

and all the versions are implemented in Matlab [84];[85];[86]. 

 The second software, the Freesurfer, is also open source and it was foremost developed by 

Anders Dale and Marty Sereno, who were studying applications to the construction of cortical surface 

models, turning it in the main motivation to the development of this software [87];[88].  Since then, much 

more features have being added with contributions of several people. And, in sum, Freesurfer is a package 

of powerful tools that provide a vast, full and automated analysis of key features in images of neuroimaging 

[89].  

 Lastly, the FSL software, also named FMRIB Software Library, was created by FMRIB (Oxford 

centre for Functional MRI of the Brain), although since then it has received a lot of contributions by 

members of other neuroimaging investigation sites. Hence, this software happens to be a library of 

different and independent tools that can be used separately or joint with others. These tools are for 

analysis of functional, structural and diffusion of brain imaging data, likewise the other programs. The 

implementation of this software occurs in C++ and scripts within Unix environment [90]. 

A brief analysis of these software it’s enough to conclude that all are addressed for image 

processing. Nevertheless, FSL is implemented in the UNIX environment and allows to modify the different 

variables in the processing, being possible to create automated scripts with different commands. In 

addition, this software is the one that has the best results to study brain connectivity, which is what is 

intended in this dissertation. 

2.5. Applications  

Brain functional connectivity is in the present used in two major fields. One related to understanding 

the neural connections networks and brain’s organization that exists across a group of subjects in a set 
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of acquisitions - also denominated as connectome. And a clinical application that has the objective of 

investigate the effects of a pathology in the functional networks that distinguish a sick subject from a 

healthy subject, or as tool to study a disease’s evolution or a response to treatments. The diseases of 

these cases are mostly of the psychological forum.   

In this work it is given a particular attention to studies wherein the functional connectivity is used 

as a fingerprint in order to identify a specific subject or even a group. This approach can demonstrate 

that there are intrinsic features presented in the rs-fMRI that help to classify a subject, if the models 

achieve good classifications results. Then, there are some debriefings, like what are these distinctive 

features presented in the functional connectivity, and what they mean, that will have to be answered. In 

addition, the perspective of a clinician can lead a creation of methods that take into account more of the 

patient connectivity characteristics to a better treatment or analysis. Also, it is possible to use these 

models to classify a subject as healthy or unhealthy, using a group classification approach.  

2.5.1. Human Fingerprint  

There are investigations that demonstrate the brain connectivity can be applied as a fingerprint 

because identifies accurately a specific subject from a large group. Furthermore, they demonstrate this 

can be used to predict a cognitive behaviour or, more appropriately, the fluid intelligence [19]. 

 In this work we used functional data from 126 subjects. Each subject did two rest sessions (one 

per day) and four task sessions (two per day). The task sessions approached the following areas: working 

memory, emotion, motor and language. The identification of subject, made after the construction of the 

connectivity matrices, was performed through an iterative process, in each one matrix was compared 

with all other matrices in the database, in order to find the one more similar. In this process there was 

one requirement: the matrices in comparison had to be scanned in different days. To the application of 

similarity was defined the Pearson correlation between vectors edge values of the two matrix in each 

process [19]. 

 The results, applied to the whole-brain using 268 nodes Atlas, showed a success rate of 92,5% 

and 94,4% when used as target-database the pair Rest1-Rest2 or the inverse, respectively. Using the task 

sessions, when compared to resting states, one of the best rates was 54%, and between task-to-task the 

one of the rate was of 87,3%. And, finally, it was studied the combination of networks to see whether they 

increase the identification accuracy. Two networks emerged successfully resulting in the 

frontoparietal-based identification that between resting state 1 and resting state 2 had an accuracy of 98 

to 99% [19]. 
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2.5.2. Monitoring A Disease Evolution or A Treatment Progress  

There are studies where it was used the Bayesian Hierarchical Model (BHM) to predict a future 

rs-fMRI. The approach was made individually for each subject or group. To create a model, it was used a 

baseline for rs-fMRI of a subject, or a group, and significant clinical information, or even demographic 

characteristics. The application objective is a tool to predict the changes in the functional networks over 

time, caused by a disease or a normal aging. Thus, it could be used to predict the final result of a 

treatment regimen and so adjust the best treatment for the patient in an individualized way. Besides, it 

is very important to study when is more appropriate an intervention analysing the predicted disease 

progression avoiding worst outcomes. The proposed approach used two datasets, rs-fMRI from 

Alzheimer's Disease Neuroimaging Initiative 2 (ADNI2) study and fMRI from kirby21 study [91]. The 

achieved results indicated that this approach has a better performance than other methods and, in a 

scientific way, that are differences in the functional connectivity of Alzheimer Disease (AD), Mild Cognitive 

Impairment (MCI) and normal control subjects’ baselines, wherein the two first are more similar. Also, 

they demonstrated that the changes in functional connectivity over time are much more pronounced in 

AD subjects [92]. 

2.5.3. Study Psychiatric or Other Diseases  

Currently it is the main use of brain connectivity in the neuroimaging community. The approach 

can be done by studying rs-fMRI, where is researched if a pathology creates distinctive patterns of 

functional connectivity in relation to a normal group. Examples to study  are the schizophrenia and others 

brain diseases [93], addictive substance users [94], or patients with bipolar and a major depressive 

disorders [95].  
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3. DEEP LEARNING  

Artificial Intelligence (AI) is the parent field of Deep Learning (DL), once the last one is a research 

field of Machine Learning (ML). Since the appearance of AI, there was a need for the systems to acquire 

their knowledge in order to take some action or task. This lack led to the development of ML, which 

brought the capability of extracting knowledge from data analysis and patterns’ identification. So, the 

performance of these methods is intrinsic related to the representation of the data and the generalization 

of the knowledge learnt for future use in new or real data. Thus, a simpler machine can perform better 

than a complex one, due to better representation and so, there is none correlation with the methods’ 

complexity. For this, the solution of many AI tasks it’s the classical approach, wherein the problem is 

solved by a simple feature selection before providing the chosen features to the ML algorithm. Approach 

that continues to evolve in order to improve or create new pipelines of pre-processing data 

transformations, to move towards more effective algorithms. This role is taken by feature engineering, 

fundamental in many applications of ML, which is associated to a difficult and expensive practise. This 

process is also very dependent of human input and low automated characteristics that deviate the system 

from the concept of AI. Therefore, it was important to create learning algorithms less dependent of feature 

engineering, which could easier the applicability of ML and increase the range of applications, moving 

towards the AI. And it was in this line that appeared another approach in ML, the Representation Learning. 

Once, it is very difficult to make an optimal representation of the features underlying the data, 

the Representation Learning not only discovers the representation that explains the output but also 

construct the map representation. This mapping is done by capturing factors of variation that explain the 

input data. Although this approach could seem recent, the first data representation learning methods 

have been developed for more than 100 years. More specifically, the Principal Component Analysis (PCA) 

by K. Pearson in 1901 [96], a unsupervised method, and then in 1936 by R. Fisher [97] a supervised 

method, the Linear Discriminant Analysis (LDA).  

The AI tasks have a tendency to be used more in the real-world data, associated to many factors 

of deviation with high-level of abstraction, therefore new methods are needed such as the Deep Learning 

[98];[99];[100];[101];[102].  

Deep Learning is a type of representation learning method that can automatically extract complex 

representations from raw data with any feature selection a priori. The model is built on a set of layers that 

respect a hierarchical learning architecture that allows the representation of higher-level features using 
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simpler representations, such as non-linear transformations. This is a resulting method of continuous 

development and conjugation described firstly by the Gartner Hype [103].  The first area of DL 

development appeared in the 1940-1960s, named as cybernetics, created the first models inspired in 

the biological neurons, as the Adaline and the Perceptron models [104];[105];[106]. Then appeared the 

concept of Connectionism in the 1980s-1990s, very related to the creation of backpropagation algorithm 

to train one or true hidden layers [107], an algorithm that continues to be today the main one to train 

and optimize Deep Neural Networks. Lastly, and more recently, the wave of research that began in 2006 

known as Deep Learning with the development of more complex architectures related to the depth of the 

model. Since then, Deep Learning Networks have shown a great performance in different Machine 

Learning tasks, such as image classification [108];[109], speech recognition [110] and natural language 

processing [111]. The medical field was not an exception, specially in the medical image analysis 

research with several applications on the detection of structures as organs, tissues or even cells. Thus, 

other applications are possible such segmentation of organs like the brain, and then more abstract as 

tool for computer-aided detection and prognosis [112].  

The characteristic more differentiating that was already mentioned is the greater depth of the 

model. As this characteristic is pointed as consequence of DNN success, several researchers are trying 

to understand more its role. A first hypothesis that appeared is that the depth is intrinsic correlated with 

the generalization bound [102]. But this hypothesis can only be used to explain shallow fully connected 

networks and cases of binary classification. So, more recently, appeared a more supported explanation, 

mentioned during this introduction, that depth models are able to represent more complex functions 

[113]. Increasing continually the depth did not means that the model performance will continue to 

improve. Although deeper networks have larger representation power that decreases the margin error of 

the model, the use of Rademacher Average (RA) to measure the margin bound showed that the margin 

bound increases with the increasing of model depth, affecting the final test error. So, there is a trade-off 

between this two points that explains the normal behaviour with increase of models depth, wherein first 

happens a decreasing and then increasing of test error [102].  

The appearance of the term Big Data in the companies caused by the needed of collect useful 

information from a large amount of data, it was also a recent booster to DL. The quantity, the complexity 

of structures and the diverse types of data makes the DL a good approach. The Big Data can provide 

large amount of examples that to training this models is not a problem; on the opposite, it makes possible 

to find more reliable patterns and hence get models with better performance [114]. Moreover, due to the 

recent advances in the hardware with the appearance of computing resources of high performance, such 
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as GPU supported by friendly software of easy applicability, the use of bigger and deeper models was 

possible. As consequence these models with billions of parameters with great representation improves 

even more the accuracy of state of art in multiple tasks. Besides, the successive improvements in learning 

algorithms with new methods to optimized deep models helped the application of the models 

[115];[116];[117].  

3.1. The Basic Concept – The Neuron  

The first concept that precedes all the models related the Deep Learning is the neuron, which in 

Deep Learning is also frequently denominated as node. This structure was developed based on the basic 

computational unit of the brain, the neuron (see Figure 3.1 (a)). The human nervous system has about 

86 million neurons that are connected to approximately 1014 to 1015 synapses. So, each neuron receives 

several input signals in its multiples dendrites and produces the respective output along the single axon. 

This axon then suffers the division in several branches that connect other neurons’ dendrites through 

synapses. Looking this from a computational point of view, the synapse controls the signal that pass to 

another neuron dendrites, depending on an intended inhibitory or excitatory response. Thus, there is a 

control of signal strength that in DL are known as weights, and once they are adjustable made feasible 

the capability of learning. Therefore, the signal passes to the cell body depends of the weight (x0w0). 

Then this resulting signal, like all other, results from the different dendrites that are received in the cell 

body. The approach in this basic model is summed of the different signals, resulted of neuronal fire if the 

final value is over a threshold. For the computational model it is important to know the firing rate of this 

neuron, by the frequency of its spikes Based on this, the firing rate is modelled using an activation 

function, as illustrated as is in the Figure 3.1 (b). 

 

Figure 3.1 - Illustration of a biological neuron (a) (from [118]) and its corresponding basic computational model (b) (from 
[119]). 

So, the mathematical model summarized for a set of inputs as a vector with size 𝐼, it’s the sum 

of the multiplication of each input (𝑋𝑗) with the weights (𝑊) added to bias (𝑏) of each neuron (𝑖) in the 

a) b) 
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layer, to which is applied an activation function (𝑓), also known as a non-linearity function (represented 

in Equation (1).  

𝑦 = 𝑓 (∑(𝑊𝑖,𝑗 × 𝑋𝑗) + 𝑏𝑖

𝐼

𝑗=1

) (1) 

3.2. Deep Learning Models  

The brain, the well-organized system known, can process information from different senses as 

hearing, sigh, touch, smell and taste. And the key to process such high-level of information is the 

collaboration of a large number of single neurons and its connections. Once the first models were 

construct based in this idea, they were called as Artificial Neural Networks (ANN). The ANN are the base 

concept of DL models wherein the neurons are organized layer by layer with a specific function and are 

stacked in several layers, in order to increase the complexity of the model and be possible to learn more 

high-level features. Besides, these models can be of two types according how the information passes 

thought the model. If the information passes only forward all along the model, where the cycles do not 

exist, the model is a feedforward network; if not, the model is a Recurrent Neural Network (RNN). In this 

work it will be used the feedforward approach, since the RNN are in the present very difficult to train and 

more difficult to implement, further as the objective is modelling relationships between a set of input 

variables and a set of output variables. So, the feedforward approach is the more appropriate, even 

though the Deep Learning can be implemented using the two types of networks.  

Among the feedforward networks there are diverse types of models. The first network to appear 

known as Perceptron is constituted by a single feedforward layer and it was capable of classify patterns 

linearly separable [120]. Once this model was very limited, because could only describe data with linearity 

properties, the models grow in the number of layers, emerging the term Multi-Layer Neural Network 

(MLNN). MLNN is characterized by a model with more than two layers - the input and output layer, leading 

to appear the term hidden layer to define layers between the last two mentioned. This also can be named 

as Multilayer Perceptron since the hidden layers are non-linearity layers. Besides, this type of layers is in 

Deep Learning called as fully connected layers since all pairs of nodes in two consecutive layers are 

connected, as shown in Figure 3.2. More in detail, the model architecture has always an input layer where 

the input is the vector (𝑋) with the values {𝑥1, 𝑥2, 𝑥3} of each example input, and an output layer where 

the size depends on the number of classification classes used in case the classification task, or on the 
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number of values to predict in the regression task, vector (𝑌). Moreover, inside the model there are 

hidden layers responsible for making the different representation learning, where each layer has the 

respective resulting: an activation vector (𝑍, 𝑈). It is also important to emphasize that in the layer; the 

neurons are not connected between each other. The number of hidden layers is what define the depth of 

the model. Normally, a model with more than two hidden layers (so four in total) can be labelled as a 

Deep Learning model, because only this way the layers can learn more complex representations. In 

addition, these neural networks can be used together with other type of architectures as the Convolutional 

Neural Networks (CNN), to get models with better performance.   

 

Figure 3.2 - A feedforward and multi-layer neural network with 4 layers (2 hidden layers). 

The learning of the fully connected layers is preferential done using the supervised learning to 

solve classification and regression problems. Therefore, there is the knowledge of the input variables and 

the respective output for the learning algorithm learn iteratively, making predictions on a training data 

and adjusting its parameters. But there are also others Deep models used in applications for unsupervised 

feature representation learning. Particularly, in this kind of learning, the data has no output and the 

algorithm must properly adjust to the structure of the data in the end, it will be possible to extract a set 

of features that better represent without the necessity of a feature extractor (computer program or hand 

designed). The most used for this end is the stacked auto-encoder [121];[122], the deep belief network 

[123];[124], and the deep Boltzmann machine [125]. 
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 In all the types of models already mentioned, the input must have a vector form. The location of 

the pixels (2D) or voxels (3D) and its relationship with the structures neighbours in the image files, has 

important structural information that is loosed if it is vectorised. Therefore, Convolutional Neural Networks 

(CNN’s) were created in the Deep Learning to use this spatial and configured information receiving as 

input 2D or 3D images. The CNN’s are characterized structurally by convolutional layers combined with 

pooling layers followed by a multilayer neural network [126]. The CNN’s are used with both supervised 

[109] and unsupervised learning [127].  

3.3. Layers 

The Deep Learning models are characterized by a set of connected and hierarchical layers. 

Layers that could have distinct functions in the learning process. They are, after the neuron, the second 

basic unity of the model, and its adjustment and finding its best location in the network affects completely 

the model performance. They also characterize the model in two different aspects: the depth and the 

thickness. The depth is related to the number of layers and the thickness is the number of nodes by layer.  

3.3.1. Linear 

The linear layer is the simple model that applies a linear transformation for an input vector 𝑥 

resulting in an output vector 𝑦, as showed in the Equation (2). 

𝑦 = 𝐴 ∗ 𝑥 + 𝑏 (2) 

 In these cases, the activation function is the identity resulting in the output of the real values.  

3.3.2. Activation or Non-Linearity  

The non-linearity existing in the layers is the reason to neural networks having the capability to 

create models that approximate to any possible function. For that reason, the application of non-linear 

functions between the principles are the sigmoid, the hyperbolic function and Softsign. More recently the 

ReLU functions and some extensions have been imposing in the Deep Learning application since they 

have better performance in deeper models comparatively to others, like sigmoid that has the problem of 

have lower learning velocities in the deeper hidden layers. The main functions are in the Table 3.1 with 

the equation function and the respective plot.  

The sigmoid non-linearity function, as can see in the Equation (3) of Table 3.1, is the function 

that transforms the real values in a range between 0 and 1. Due to the sigmoid behaviour, large values 
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tends to become 1 and low values 0, leading the sigmoid to enter in a phenomenal called saturating 

state. And consequently, the resulting gradients are almost null, reducing heavily the learning process. 

Also, there is special attention to the initialization, once great neurons weights can easily saturate the 

function preclude of happening any learning. The hyperbolic tangent is a function that derivate from the 

sigmoid function, but in this case the values are squashed between -1 and 1. Once it has the same 

behaviour as the sigmoid, it suffers from the same problem of saturating for high and low values but, in 

this case, the output is not zero-centred resulting in less instable gradients. The Softsign function is 

nonlinear and is an alternative to hyperbolic tangent since it is not so easily saturated as can be seen in 

the plot of the corresponding function. 

Table 3.1 - The principal activations functions used in Deep Learning models, with respective equation and plot. 

Activation 

function 
Equation function Function plot 

Sigmoid 

 

𝜎(𝑦) = 1/(1 + 𝑒−𝑦) 

(3) 

 

Hyperbolic 

Tangent (tanh) 

 

tanh(𝑦) = 2𝜎(2𝑦) − 1 

(4) 
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Softsign 

𝑠𝑜𝑓𝑡𝑠𝑖𝑔𝑛(𝑥) =
𝑦

1 + |𝑦|
 

(5) 

 

ReLU 

 

𝑓(𝑦) = max⁡(𝑦, 0) 

(6) 

 

Leaky ReLU 

 

𝑓(𝑦) = max(𝑦, 𝑦 × 𝑘), 

𝑤ℎ𝑒𝑟𝑒⁡0 < 𝑘 < 1 

(7) 

 

 

The ReLU (Rectified Linear Unit) function has become very popular in computer vision applied to 

deeper networks since it is not saturated for larger values. The negative values are put aside from the 

learning process, so it depends in the data and in the application if the negative data has not importance 

and some weight in the learning. As mentioned before, the tradicional ReLU does not use non-positive 

values, so Leaky Relu is a modification that allows to control the error that propagates backwards when 

the value 𝑦 is negative.  
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The softmax activation is typical used in classification tasks in the output layer ensuring that the 

outputs are probabilities, and all summed up are one. So, the softmax function squashes a vector of 

real-values scores in a vector of values between zero and one whose sum is one. When this activation 

function is the output, the final output is the neuron where the probability is higher. 

3.3.3. Spatial Convolution 

The spatial convolution layers come in the application of Deep Learning in images classification. 

Once this method is intended to not have any feature selection or data transformation, the use of images 

in regular neural networks in linear or nonlinearity layers was impossible. The term image appears here 

not it the broad sense of something visual but in the form. An image normally consists in three channels 

(red, green, blue, e.g., RGB) with a matrix associated to each channel where the number of rows and 

columns correspond to the width and height in number of pixels of the image. So, an image with 3 

channels and square with width and height equals to 64 pixels provides 3 x 64 x 64 = 1228 inputs, giving 

12289 final parameters (with bias) for each single node. Consequently, the model will be too much big 

with too much parameters, affecting the velocity of training and increasing the probability of lack of 

generalization, e.g. overfitting problem. The spatial convolution comes to reduce the number of 

parameters taking the advantage that input has spatial relationships, once neighbour pixels carry normally 

similar information. Further, it finds a pattern in the images or other type of data. In this work, 

convolutional layers are used to find patterns in the correlation matrices. In order to find these spatial 

relationships, the convolution layer learns an intended number of filters for each channel that, when 

convoluted spatially with the input image, produces 2D features maps equal to number of filters. The 

feature maps size depends in the size of the filter, and the number of convolutions that happens between 

each filter and each region, results in all the possible displacements of the filter over the matrix. The 

advantage of this layer comparatively to a conventional layer is that the weights are shared over the full 

image decreasing the number of parameters. 

3.3.4. Spatial Pooling  

The spatial pooling layer is a layer normally presented in the convolutional models to reduce the 

size of features maps and, consequently, the number of parameters, as well as the computation of the 

same during the training process. Besides, it gives to the model more invariance in very similar images, 

reducing the dimensionality of intermediate representations improving the generalization model ability. 
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The pooling is done iteratively by a filter with a specific size that moves all long the features maps and, 

for each process, it results in a value. The spatial intended can be controlled by the filter size, as well as 

the dislocation in each iteration, and the intended function applied in the filter to choose the resulting 

value.  

3.4. Training  

3.4.1. Process 

In order to train any DL model, it is necessary a set of methods and algorithms with a specific 

function towards the same objective: the creation of a model with good performance in the required task, 

as for the classification (predict a class) or the regression (predict a value). The main parts presented in 

the training are the initialization, the backpropagation and optimization. 

The initialization is the first part of the training process, and it is only performed one time in the 

beginning to initialize the weights and bias from the model. Normally the weights parameters are initialized 

as Gaussian random variables with mean 0 and standard deviation equal to 1 divided by the number of 

inputs, and bias is initialized to zero. But there are several approaches resulting of the researches in this 

field that will be mentioned in the initialization point.  

After the initialization, begins the training process that iteratively uses one or more examples in 

each training iteration. The training with only one example is usually entitled as online learning, and in 

the case of various inputs, the set is more known as batch. During the training, it is used a loss function 

in order to quantify the capacity of the network to predict the ground truth labels or values for all the 

training inputs. This loss will be the variable of study of the training and consequently in the 

backpropagation and optimization. The training process starts to compute the prediction for the inputs 

given and all the associated losses to obtain the final cost of the model, and then it is applied the 

backpropagation algorithm. The algorithm propagates the error since the output layer until the input layer, 

where for each layer is computed all the partial derivatives, e.g. 
𝜕𝐸

𝜕𝑤
⁡and ⁡

𝜕𝐸

𝜕𝑏
 of the loss function (𝐸) for all 

weights (𝑤) and bias (𝑏). The partial derivative, as it is known in the mathematical field, gives the slope 

of the study variable in the function, which gives the information about how the slightly-scale changes in 

the input affects the output. Thus, with the application of the derivatives applications it is formed a gradient 

and it is known how the bias and weights affects the full error. This gradient is essential for the next step: 

the optimization. This step uses algorithms to optimize the loss of the model searching for the 
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convergence of the value in order to find a minimum that ensures good predictions. Minimum that in the 

best occasions is the global minimum, but in the major of the situations a local minimum that performs 

nearly as well as the global is enough and not easy to achieve. The basic concept of optimization takes 

the gradient as a vector where are used the negative values in order to move in the direction of negative 

gradient – gradient descendent – converging to a minimum. This can be described as Equation (8) to 

calculate new parameters calculated (𝑥′), using the gradient of the function ∇𝑥𝑓(𝑥), the old values (𝑥) 

and the learning rate (µ).   

𝑥′ = 𝑥 − 𝜇∇𝑥𝑓(𝑥) (8) 

As can be seen in the Equation (8), the learning rate has a great role in how the optimization 

process runs and, so it has to be fine-tuned. If the learning rate is too large, the descending steps made 

in the gradient will be overdone. That will increase the probability of the process never reach an optimal 

minimum point, making for example the values oscillating from one side to another in a valley of the loss 

function. But if the learning rate was too small, they could cease the gradient descendent in a local 

minimum that performs poorly and, due to small steps, it is not able to exit from the minimum valley. 

Besides, it increases the training time too much. The optimizers have also improved and have been added 

new approaches besides the gradient descendent to get the function converging to the optimal minimum.  

3.4.2. Initialization  

The initialization is an important step that shall not be discarded. It can differentiate a network 

that easily converges from an optimal minimum from a network that does not go anywhere, even with an 

application of a large amount of training iterations. One of the problems is in the case of the layers weighs 

being too small, once the variance of input value diminishes when passes through each layer in the 

network. So, the weight value drops to a very small value making it no more useful for the learning 

process. Also, it depends on the activation function applied, since its behaviour will determine which 

values variance that are useful or not to network. In the case of the sigmoid function that has a flattened 

comportment in high and low values, if the initialization produces too small or too high initial parameters, 

their gradients will quickly tend to zero stopping the learning process.  

Thus, there are different approaches to initialization. Krizhevsky et al. [109] in his research work 

of ImageNet classification, initialized the weighs parameters in each layer with a zero-mean Gaussian 

distribution with a standard deviation of 0,01. And the bias was initialized as one in the first CNN’s layers 

and fully connected layers, being equal to zero in the remaining. This was the best approach according 

to model architecture and non-linearity function applied. The most popular approach is from Xavier et al., 
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whose weights are initialized following a distribution with zero mean and variance 1 divided by N, where 

N is the average of number of input and output neurons [128]. The objective is to maintain the variance 

through the layer of the network to not impair the learning process. But this initialization does not work 

so well in the non-linearity ReLU layers [129]. The Xavier’s initializer is also known as Glorot’s initializer, 

and there are some adaptations for uniform and normal distributions to the different activations functions. 

Due to the effectiveness of Xavier initialization in the ReLU activation functions, He et al.[130] proposed 

a new approach with better results to this type of functions, whose unique modification was in the 

standard deviation - in this case is √2 by the number of the inputs nodes. In addition, Saxe et al. created 

a new initialization method that instead of using random Gaussian matrices initialization, recommends 

initialization by random orthogonal matrices [131].  

3.4.3. Loss Functions  

The loss functions that measure the performance of the models relatively to error are diverse, 

but it will only be mentioned three of the most used. The cross-entropy and hinge functions are the most 

applied in classification tasks, while others, like mean square error, although could be used in 

classification tasks, are more efficient in regression tasks.  

The cross-entropy function is very popular in the Deep Learning community, consequence of the 

good performances related to posterior probability in diverse problems even in the cases where there are 

problems with limited data [132]. Also, the fact that the function uses logarithmic describes better the 

error, more specifically when the model output is close to the desired output for all training inputs, being 

the error almost zero. The cross-entropy cost function for a total number of n items in the training data, 

for all training inputs (𝑥) and for a desired output (𝑦) and the actual output (𝑎) can be described as seen 

in Equation (9). 

𝐸(𝑎, 𝑦) = −
1

𝑛
∑[𝑦𝑙𝑛(𝑎) + (1 − 𝑦)ln⁡(1 − 𝑎)]

𝑛

𝑛=1

 (9) 

 The Hinge loss function measures the loss separating the positive and negative inputs and so is 

used for the maximum-margin classification, very popular also in Support Vector Machines (SVMs). For n 

items in training data, a desired output 𝑥 ∈ {−1, 1}, e.g. case of binary classification, the predicted 

output (𝑦) and a margin (𝑚) are part of the hinge loss of the prediction, as defined in the Equation (10). 
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𝐸(𝑥, 𝑦) = −
1

𝑛
∑max⁡(0,1.𝑚 − 𝑦. 𝑥)

𝑛

𝑛=1

 (10) 

In the basic Hinge loss function, the margin is one, but it could be customized. As verified by the 

expression, when the desired and the predicted outputs have the same signal, - correctly classified, - the 

loss is 0, but on the opposite the loss increases linearly depending of the predict output. This made the 

loss function convex useful in the optimization process making easier to minimize. Although, it has the 

problem of not being differentiable, but this limitation was solved by computing its gradient locally.  

The Mean Squared Error (MSE), or quadratic, is the loss function usually used in linear regression 

to measure the models’ performance. But it is also applied in classification tasks in DL even for deeper 

architectures with some sophistications [133]. Moreover, the standard form of MSE for n examples and 

for an input (𝑥) and a predicted output (𝑦), is defined as in the Equation (11). The optimization target of 

this loss function is to minimize the residual sum of squares.  

𝐸(𝑥, 𝑦) = −
1

𝑛
∑(𝑥 − 𝑦)2
𝑛

𝑖=1

 (11) 

3.4.4. Optimization Algorithms 

The optimization has the leading role in the final model performance, so there was, since the 

beginning, a search for effective algorithms in discovering the best parameters in the training model 

without affecting too much the efficiency, once the gradients grew tremendous with the application of 

deeper models and made the process of optimization more difficult (more layers interconnected).  

 The main optimizer algorithm used in DL applications is the Stochastic Gradient Descendent 

(SGD), based in the gradient descendent algorithm with a simple simplification in order to speed up the 

learning. The idea is to estimate the gradient by computing it for a small and randomly sample of training 

inputs. Thus, averaging the gradient over this small sample makes the process consume less time. 

Besides, it reduces the variance in the parameter update leading to more stable convergence. The 

fine-tuning of the learning rate used in the SGD is difficult, but with approaches as learning decay can 

help to occur a good convergence to a local optimum. Moreover, in many applications it is used a 

momentum associated to algorithm, which is added to the dislocation vector, increasing the values 

updated all the time. This can help the SGD in situations that do not perform so well, as for example 

areas wherein the surfaces curves much more sharply in one dimension than in another usually presented 

around the local optimum [134]. That makes the SGD oscillating more across the ravine than towards a 
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local optimum. The momentum will increase the parameters updates in case the gradients point in the 

same direction and the opposing if they are contradictory, resulting in less variation and faster 

convergence [135]. Furthermore, Nesterov has created a variant of momentum known as Nesterov’s 

Accelerated Gradient (NAG) that helps the choice of the best gradient associated to the momentum in 

order to best learning [136]. But, besides this, there are other variations applied to SGD that result from 

new approaches in order to improve the optimizer performance for a particular application 

[137];[138];[139].  

 The Adagrad is a gradient-based optimization algorithm that during the training adapts the 

learning rate to the parameters, wherein the updates occur less frequently, suffering larger updates and 

more frequent parameters smaller updates [140]. So, it’s suitable for cases where applications with few 

examples in the data. This optimizer has showed to be a good optimizer option by the google approaches 

for training large networks [141]. From the Adagrad appeared some extensions, as Adadelta and 

RMSProp, mainly to reduce the radical form of decreasing continually the learning rate during the training. 

In opposite of Adagrad that accumulates all the past squared gradients, the Adadelta make the sum value 

continuously increase while  the learning rate shrink more and more causing the learning rate too small, 

[142]. The RMSprop is another approach to Adagrad, yet unpublished, proposed by Geoff Hinton, that 

although has created independently, the concept is similar to the first vector update in Adadelta. The 

learning rate is divided by an exponentially decaying average of squared gradients [143].  

 The Adam algorithm from Adaptive Moment Estimation is another approach that computes the 

learning rates for each parameter, in addition to use the exponentially decaying of the past square 

gradients as Adadelta and RMSprop, also uses the exponentially decaying of the past gradients that 

correspond respectively to uncentered variance (second moment) and mean (first moment) of the 

gradients. Applications using this optimizer confirmed that this is a robust and suited optimizer for 

non-convex optimization problems associated to low-consumption of memory hardware resources [144]. 

There is also an extension of the Adam algorithm that incorporates the Nesterov accelerated gradient 

and, so it is known as Nadam optimizer, in order to improve the speed of convergence and the 

performance of the learned models [145].  

 The different optimizers described above are only a subset of the optimizers available and applied 

in the training DL, but these are the most important. The optimizer performance in a problem depending 

also in other factors. Firstly, it depends in the data, in how distributed the values are and its size; secondly, 

it depends on the task type and loss function used; and lastly, depends on the architecture model, the 

number of layers, the number of nodes by layer and the function of each layer.   



CHAPTER3. DEEP LEARNING 

41 

3.5. Generalization – Objective  

The main objective and the challenge in Deep Learning as in other techniques of Machine 

Learning is that the model learned must perform so well on new and unseen data as was for the training 

data. This ability of the model is called generalization and the unseen data is called the test data.  

 In the training process of any machine learning method the error optimized and computed is the 

training error, but this is only useful for measuring the optimization process. So, it is used the test data 

to get the test error representing the generalization error. This test data is a set of examples that was 

grouped separately from training data. The creation of the training and test data is based in the probability 

distribution over the datasets, so there are some assumptions that should be respected. One assumption 

is that each example in both datasets are independent from the others; the second assumption is that 

both datasets are identically distributed, being characterized by the same probability distribution. Given 

that, if it is used any model, the training and test errors for each dataset should be the same. But, after 

the training process where the model parameters are chosen to reduce the training error, the test error 

will be greater, or in the best situations equal, to the training error. So, there are two aspects that will be 

determined in how a ML model, as DL, will have the ability to perform well. Primary, if during the training 

of the model, the error converges to a small value, and secondary, if, as a measure of the generalization, 

makes the gap between the training and the test data smaller as possible. These two factors will determine 

how the model performs, whether it is appropriated to perform a task application, or whether it is in a 

situation of underfitting or overfitting. The model is in underfitting when it is not able to converge enough 

the test error, and so it is not a good representation in the learning of the inputs. In the case of the 

overfitting, it occurs when the gap between the test and the training error becomes too large, making 

precluding the generalization process. This trade-off between underfit and overfit relies in the model 

capacity as is shown in Figure 3.3. 
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Figure 3.3 – Training and test curve changing the model capacity. 

The capacity of the model is related to the ability of the model to fit in distinct functions of different 

tasks and applications. A higher capacity gives the possibility to the model to learn more complex tasks, 

but this has to be controlled in order for the capacity not being higher than needed, impairing the 

generalization and making the model enter in overfitting. If the capacity is too low, the model is unable to 

solve complex tasks, being characterized as a model in underfitting. The capacity of a model is intrinsically 

related to the model’s architecture as the number of layers (depth) and the number of nodes by layer, 

increasing the number of parameters in the model and, consequently, its representational power.  

Nevertheless, the capacity is not only dependent on the chosen model topology, but it is also related to 

the optimizer used in the learning process and its parameters. The fact of the learning be affected by the 

optimization, which is dependent of the data and the error function to optimize, the term to refer the 

capacity of the model is effective capacity. Besides, there are other variables that can be used to control 

the behaviour of the learning algorithm - the hyperparameters. These values are not adapted by the model 

itself, so they had to be hand tuned or other learning algorithm used to learn and identify which are the 

best parameters. Once these hyperparameters control and directly affect the model capacity, the best 

fine-tuning of these parameters will always result in the overfitting, if it has learnt using the training data. 

And it is why that in Deep Learning and in other techniques a validation data is used, a set of unseen 

examples not used in the training and test data. Thus, it is avoided the overfitting; the best parameters 

are selected by the validation data and then it is made a final test to get the generalization of the model. 

The fact that the validation data is used in the selection of the hyperparameters, this will underestimate 
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the true generalization error. So, the test data should not be used to select the hyperparameters, therefore 

the validation data is constructed using a subset of the training set, typically 80% of training data is used 

for training and 20% is used for validation. These fixed divisions into the different datasets have the 

problem of adding statistical uncertainty around the estimated average test error, specially when the test 

data has not the enough size. Hence, it were created new procedures to overcome this problem, based 

in the fact that this statistical uncertainty decreases if the training and the test are repeated several times 

for different and randomly chosen subsets or random splits of the full dataset. The most widely used 

procedure is the cross-validation, which allows to train and test the model k-times on different subsets of 

the original data giving an estimation of the performance of the model in unseen data. 

As the capacity shows a great importance in the performance of the model, a lot of researchers 

investigated ways to measure it, such as VC dimension [146], uniform stability [147];[148] and 

Rademacher complexity [149]. The different theories were also used to proof the assumption that capacity 

is the variable that explained the good generalization of the Deep Learning models. More specific, they 

showed that the gap between the training and the test error increases as the model capacity grows as 

was explained before and is shown in Figure 3.3, and, on the other hand, the curves tends to approximate 

when the number of examples used is increased. But once the models in Deep Learning continue to 

increase the number of parameters caused by application of more and more deeper models with a 

considerable number of nodes by layer (example the Inception or Alexnet), the different theories showed 

inability to measure the real model capacity. Besides, the understanding of learning algorithms related to 

non-convex algorithms continues to be a mystery and they affect the model capacity. Moreover, recently 

Zhang et. al [150] showed with different and recent Deep Learning models that it is capable of memorize 

random labels with none training error and even with small test error for some natural datasets as 

CIFAR-10 (large image dataset available online [151]). This means that these models are in real 

overfitting, once the different training examples were completely memorised rather than learn predictive 

features from the data. And although during the tests the full model (architecture, size, hyperparameters 

or optimizer) has been maintained, the generalization error was increasing directly with the noise in the 

training data (percentage of data randomize). So, the capacity of the model was maintained but the 

generalization error changed. Thus, the answer to the question “Why the Deep Learning generalizes so 

well?”- continues to be a mystery, and there are new methods to measure the generalization ability, as 

already was began in [152]. Besides, the Zhang et al demonstrated that regularization on the norm of the 

weights is not necessary to obtain small test errors [150].  
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3.6. Reduce overfitting problem 

The overfitting that was already mentioned is the contrary of the intended - the generalization of 

the model. This is the major problem in neural networks, especially in the modern networks associated 

to more parameters, and so more representation power. Therefore, it is important to detect when 

overfitting happens to not over train the model and have some techniques that reduce the effects of 

overfitting.  

 To detect the over train of the model it is used a validation data formed by examples not used in 

the training that for each training will show how the model performs in unseen data, giving a feedback of 

the training process. There is also a popular resampling technique to estimate the model generalization, 

the cross validation. Additionally, there are some techniques to reduce the overfitting problem that will be 

explored, such as early stopping, regularization, dropout, batch normalization and data augmentation. A 

simple and good approach will be increasing the size of the training datasets, in order to increase the 

differences through the dataset, but in the research areas this data is normally expensive to obtain.  

3.6.1. Early Stopping  

The early stopping is a basic and logic way to reduce the overfitting problem, wherein the method 

stops the training process when the validation accuracy is saturated. Moment that is characterized by the 

increase continuous of the validation error and not as a result of some fluctuations.  

3.6.2. Regularization  

The regularization is another method to reduce the overfitting problem in the model in which the 

idea is modify the learning algorithm of a model in order to reduce the generalization error without 

affecting too much the training error. The weight decay and, L1 and L2 regularization are examples of 

different techniques available. But all of them use the same idea that the regularization of the model is 

done by adding a penalty (regularizer). As example it is shown in the Equation (12) the final error function 

(𝐸) using the cross-entropy loss function and the L2 regularization for a layer (𝐿) with 𝑗 neurons, with the 

respective activation (𝑎) and the desired output (𝑦).  

𝐸(𝑎, 𝑦) = −
1

𝑛
∑[𝑦𝑗𝑙𝑛(𝑎𝑗

𝐿) + (1 − 𝑦𝑗) ln(1 − 𝑎𝑗
𝐿)] +

𝜆

2𝑛
𝑛𝑗

∑𝑤2

𝑤

⁡, 

𝑤ℎ𝑒𝑟𝑒⁡𝜆 > 0 

(12) 
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As we can see in the Equation (12), the regularization term can be controlled by 𝜆, the 

regularization parameter that is scaled by the size of the training size 𝑛. The addition of this regularization 

penalty over the weighs shows that the model will be prefer, during training, to learn from small weights. 

So, the large weights only be important in the learning if they achieve improvement from the first part of 

the resulting function cost, in this case the cross-entropy cost function. Thus, during the training will not 

be given so much weight in the features that are easier to learn to put also the weight in fewer features, 

improving the generalization [98].    

3.6.3. Dropout  

The dropout [116] is a recent technique (2012) that showed to be very effective to prevent the 

overfitting problem. As the name denotes, during the training there are nodes that are dropped from the 

network, so they are not used in the training process. This dropping is only temporary and for each 

training iteration the nodes dropped are chosen randomly. And the rate of the nodes dropped is chosen 

as intended as if it were other training hyperparameter. The final intention is during the training the 

neurons learn better representations that explain the all data and not representations based in some 

informative complex features of the data, and so not good for generalization.  

3.6.4. Batch Normalization Layer  

In this method it is added the batch normalization inside the network by a layer, making the 

normalization as a part of the model architecture and performing the normalization for each training 

mini-batch independently of the batch size used. The layer is normally applied before the non-linearity 

layer and do not affect the representation ability of the network. It adds a normalization step, so there is 

a shifting of the inputs to zero mean and unit variance, removing possible internal covariate shift. Problem 

related to the fact that the distributions are continuously changing during the training in the inputs of each 

layer that affects the learning. So, this makes the optimization process easier to converge and gives the 

possibility of using higher learning rates, less careful with the initialization and, in some cases, eliminate 

the need for dropout. The fact that this helps the overfitting is that the model improves its performance 

in the test set, so the generalization error decreases. Besides with this layer it is possible to get the same 

performance with a model with less capacity as other with more, - it is used a model with less probability 

to enter in overfitting [153].  



CHAPTER3. DEEP LEARNING 

46 

3.6.5. Data Augmentation  

This technique is used to increase the training set, which was already mentioned as the preferable 

way to eliminate the overfitting problem. There are some data there is difficult to collect, more particularly, 

to relate to the medical field, where there is access to specialized data, such as images or videos that is 

expensive and has always privacy concerns. And this happens in other AI areas. So, there was a search 

for different approaches to create effective augmentation techniques, approaches that were already 

shown to be very effective in image classification [154];[155].  
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4. MATERIALS 

The materials of this work are related to the research problem “Can the functional connectivity 

from rs-fMRI be used as feature in subject’s classification tasks using a Deep Learning approach?”. As is 

mentioned in the question, the material in study and used as features for the model was functional 

connectivity, which values was extracted from resting-state fMRI from different subjects. Once the learning 

process of the models is based in the supervised learning, was used some information as the subject as 

identity, sex or age. There was also the necessity of atlases, resources essential for get the functional 

connectivity by the pretended and defined brain regions. 

Part of the developed worked and research questions are related to the results and work 

performed by Shen et al. [19], wherein the functional connectivity provided from rs-fMRI is used as 

subjects’ fingerprint. Therefore, the approach follow in this work was based in the article, which was used 

two different sessions of rs-fMRI acquired in different days for a subjects’ set, wherein each correlation 

matrix with functional connectivity for each session was correlated by Pearson’s correlation with all the 

other correlation matrices in the other session. And for each correlation matrix (subject), if the better 

correlation value of the pair-wise belongs to same subject the classification was made successfully.  

4.1. Atlases  

In this work the brain parcellation was done using atlas with nodes well defined and applied in 

other studies. Thus, was selected 6 brain atlases. The AAL [75] atlas is the anatomical atlas the most 

widely used in functional brain networks studies that divides the subcortical structures and cortex using 

the gyrus and sulcus boundaries. The full atlas comprehends 116 brains regions, but in the majority of 

the researches the cerebellum is omitted resulting in 90 ROIs. The Freesurfer atlas, is a combination of 

two atlas based in different segmentations, available by Freesurfer software. This atlas is formed by 146 

regions form the 'Desikan-Killiany' cortical atlas [156] and 14 regions from the 'Destrieux' cortical atlas 

[157], creating a final atlas with 160 nodes. As is based in structural segmentation of brain structures 

this atlas is also anatomical, and it was applied to get more knowledge about it. Since was already used 

in studies in the Neuroimaging lab of the ICVS [158]. The other 4 atlases was provided from the same 

study with different number of nodes [50]. These are recent atlas but already has a great importance in 

studies with particular importance in functional connectivity studies. Besides this was the atlas used in 

the “fingerprint” that was reproduce and compared in this work. But despite their use only the 268 nodes 
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atlases, in this work are test other atlas from the same study. The reason is to test the different 

parcellations and see how they influence the results. In the study of they conclude that 268 nodes are 

the best atlas to use once the reproducibility cross-subjects was good without compromising the 

acquisition resolution and the anatomic variance of the subjects. They also conclude that the time-series 

of resting state resulted from your atlas was more coherent that the obtained by AAL atlas.  

The different atlas has different number of ROIs and in the atlas process creation the approach 

based the study was different (Table 4.1). The name of Shen Et al. atlas don’t coincide with the number 

of total of nodes, because the name is associated to number of “seeds” used in each cerebral hemisphere 

in the creation process. Besides some nodes was eliminated due not represent correctly the brain region 

functionality.   

Table 4.1 - Table of atlases used in this work with the number of total nodes, descending order, and the brain approach 
used to creation of the atlas. 

Parcellation Name Total regions 
Brain Based 

approach 

150 nodes 278 Functional 

268 nodes 268 Functional 

100 nodes 184 Functional 

Freesurfer 160 Anatomical 

Aal 116 Anatomical 

50 nodes 93 Functional 

4.2. Data  

The resting state fMRI data used in this work was obtained from two different sources and named 

according to it. The named In-House data was got from a study for the SWITCHBOX Consortium project 

(http://www.switchbox-online.eu/) realized in the ICVS institution and given amicably. The other named 

HCP comes from a global initiative called WU-Minn Human Connectome Project (HCP) consortium [159]; 

[160]. Their aim is characterizing the human brain and function of 1200 healthy adults and analyse their 

characteristics at individual and level group. So, in this initiative it was collected a very large of samples 

of imaging data such as MRI, rs-fMRI, task fMRI or diffusion data. The project has an open data policy 

and the public disclosure data format provided is since a raw until a data with a specific pre-processing 

pipeline implemented in the project to a particular goal. As this initiative there are others like: the UK 
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biobank [161]; [162], Japan’s Brain Mapping [163], China Brain Project [164] and Human Brain Project 

[165].   

The data used in this work are volumes with the temporal data saved from rs-fMRI. Initial, the data 

is a set of DICOM slices brain images of different temporal points of the acquisition that are converted in 

a single volume file. Then they suffer an own pre-processing pipeline to get the value of functional 

connectivity to a few brain regions chosen a priori in the parcellation step in processing. The resulting file 

of processing is only one file with the values of correlation of intensities of two brain regions.  

In this work the data used was obtained of two independent rs-fMRI datasets, a HCP dataset 

publicly available online and an In-House dataset from an old study done in ICVS. Both datasets are 

composed by two rest sessions acquired in different days. The interval time between the two sessions 

was different for each situation. For HCP that time was only about one day; however, for In-House data 

that was about one year. Another difference was the number of subjects in each study: HCP dataset has 

data from 100 subjects and in In-House data from 76 subjects.  

4.2.1. In-House Dataset 

This dataset is set of rs-fMRI data of 76 different subjects, of two different sessions. It is sample 

of the subjects recruited for the SWITCHBOX Consortium project (www.switchbox-online.eu/). The study 

respected and was done according the principles expressed in the Declaration of Helsinki and as approved 

by the Ethics Committee of Hospital de Braga (Portugal). Besides all the subjects gave an informed written 

consent.  

Relatively to image data, the session 1 had more subjects with rs-fMRI, about 107, however the 

number was reduced to the subjects that was present in both sessions. Once the classification uses one 

session to train and the other to test, there is no needed add data to the model not applied in the test, or 

otherwise, train a model and test the model with data unknown. The data quality is poor than the HCP 

data, once the significant differences between the strength of the magnetic fields used in the acquisitions, 

1.5T comparatively to 7T.  

Finally, the dataset has 76 subjects, 39 male and 37 female. The mean age is 64,86 ± 7,96 

years, wherein the max age is 82 years and minimum age is 51 years. 

4.2.1.1. Magnetic Resonance Imaging Acquisition  

The two imaging sessions were acquired on clinical approved Siemens Magnetom Avanto 1.5 T 

MRI scanner in addition with a 12-channel receive-only head-coil. For each session it was extracted one 
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structural and one rs-fMRI acquisitions. Relatively to the structural acquisition, the T1-weighted 

magnetization prepared rapid gradient echo (MPRAGE) was prepared with the following parameters: 

 176 sagittal slices 

 TR/TE = 2,730s/3,48 ms 

 FA = 7º 

 slice thickness = 1 mm 

 slice gap = 0 mm 

 voxel size = 1 x 3 x 1 mm2 

 FoV = 256 mm 

In the rs-fMRI was used the Blood Oxygen Level Dependent (BOLD) sensitive Echo-Planar Imaging 

(EPI) sequence with the next parameters: 

 30 axial slices 

 TR/TE = 2,000s/30 ms 

 FA = 90º 

 slice thickness = 3,5 

 slice gap = 0,48 mm 

 voxel size = 3,5 x 3 x 3,5 mm2 

 FoV = 1,344 mm 

 180 volumes 

Several resting state acquisition requirements were asked to the subjects, such as, remain still, 

eyes closed and try to think of nothing in particular and awake, condition verified by the subject in final 

of acquisition.  

4.2.1.2. Data Conversion, Pre-Processing and Parcellation  

Before the pre-processing process itself, it was done the conversion of the images DICOM format 

for NIfTI file using the converting tool dcm2nii (https://www.nitrc.org/plugins/ 

mwiki/index.php/dcm2nii:MainPage). In the pre-processing once the structural MRI data was used to 

help the spatial normalization step of the fMRI, was needed apply pre-processing steps to get the final 

volume with spatial coefficients. So, the pre-processing begins for the structural data, and first was done 

the skull stripping using the Brain Extraction Tool (BET) from FSL. In this step is important choice the 

correct fractional intensity threshold, to extract correctly the brain. The default value used in our 

Neuroimaging lab is 0,2, but the different tests with this data showed better results with 0,18. Then was 
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done the linear and non-linear registration from the structural space with a standard space finishing with 

the resampling to 2 mm isotropic voxel size. After it proceeded to the fMRI pre-processing, beginning with 

the signal stabilization, removing the first 10 seconds of the acquisition. As the TR is equal to 2 seconds, 

the number of volumes removed was 5. Then the slice timing correction and the motion correction, using 

the MCFLIRT applying the rigid body alignment of each volume with the mean volume. After this was 

extracted the brain. In this process, first is calculated the again the mean image, obtained a mask to 

extract the brain using a variant of BET tool and then applied this mask was applied to all volumes 

resulting in the acquisition only with the brain. Afterwards was applied to the most recent version of 

functional acquisition a non-linear normalization rigid-body registration using the FLIRT and with the 

structural data as reference. Followed by other non-linear normalization from the native structural 

acquisition for the MNI (152) standard space and a resampling to 2 mm isotropic voxel size. The motion 

scrubbing and removal of the cofounding factors was the next step. In this was used a mask with the WM 

and CSF regions in order to calculate the mean values of this regions. Besides was search time-points 

that was corrupted due to much motion. Then using the General Linear Model (GLM) was did the linear 

regression of motion parameters for removed confounding factors. For last was done the band-pass 

temporal filtering for (0.01-0.08 HZ) of the residuals of the GLM application finishing the pre-processing.  

 The final result is a file with 355 lines, one for each of the volumes of the acquisition with the 

mean BOLD signal for each region of the brain. Note that in the pre-processing are the removal of 5 initial 

volumes to 360 volumes of the initial acquisition. Thus, it is ready for the next process, the construction 

of the correlation matrices.  

4.2.2. HCP Dataset 

The HCP dataset is a functional imaging data available by Human Connectome Project. This data 

is named by the organization as HCP100, because contains data from 100 different subjects. The HCP 

dataset used by Fin et al [19], named Q2 in the present did already not exist. This because, the HCP is 

continually gather more data, and eliminate some old data with worse quality. So, the Q2 and other Q 

datasets was unpacked and was a mixture of the different data (not eliminated) in the main dataset, the 

more recent is named HCP 1200 with 1113 subjects. Although existed yet some subjects from the Q2 

data, they were not equal to number 126, used by Fin et al., and they were present in a reduced number 

for a study. Thus, it was decided to use the HCP100 for this work and possible future work in ICVS. The 

study responsible for the data acquisition was approved by the Institutional Review Board at Washington 

University in St. Louis and all participants provided written informed consent.  
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As mentioned the dataset is constituted by 100 unrelated subjects wherein 54 are female and 

46 are male. The age given by the project was categorized nominal, and so for each category (time 

interval) the dispersion as it is in Table 4.2.  

Table 4.2. - Subjects by age group. 

Age Interval 
Total of 

subjects 

22-25 17 

26-30 40 

31-35 42 

36+ 1 

The available data has two different resting state sessions, mentioned in the work as session 1 

and session 2, acquire in two different and consecutive days.  

 The data download from the online HCP database was provided separately for session and for 

each one there was a folder by subject with MSM-Sulc and MSM-ALL registered versions of Resting State 

fMRI data pre-processed with the functional pipeline v3.1, the fMRIVolume and fMRISurface pipeline 

outputs, and the motion parameters [160]. The size of the session1 data is 594,15 GB and 

session2 594,4GB.   

4.2.2.1. Magnetic Resonance Imaging Acquisition 

All subjects and the two sessions were scanned in a customized Siemens Magnetom Connectome 

Skyra 3T at Washington University in St. Louis (WashU) with a 32-channel Siemens receive head coil. The 

acquisition was made in two days, and for each day it did 2 hour-long sessions that contains resting state 

and task conditions. In each day, first are scanned two resting state of 15 minutes long with the subject 

as relaxed as possible and was asked to maintain the eyes open and fixated in a crosshair. Two different 

acquisitions because they are acquired with opposite phase encoding directions, one left to right and vice 

versa. Then is acquired two sessions of 30 min of task-fMRI where are made the 7 tasks split by the two 

sessions [167];[168]. Each task also run two times because to be acquired in the opposite phase 

encoding. But in this work, it is used only the rs-fMRI acquisitions of the 100 subjects therefore only will 

be mentioned the parameters resting states images.  

The BOLD signal was extracted using the gradient-echo EPI with the following parameters [168]:  

 72 slices 

 TR/TE = 720/33.1 ms 
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 FA = 52º 

 slice thickness = 2 mm 

 voxel size = 2 x 2 x 2 mm2 

 FOV = 208x180 (RO x PE) mm 

 Multiband factor = 8 

 1200 volumes 

 Total acquisition time = 14 minutes and 33 seconds 

4.2.2.2. Data Processing and Parcellation  

The data download has already some of the processing done, more specifically all steps until the 

spatial smoothing. And as the In-House data the HCP data was normalized for the MNI (152) standard 

space. More, there was available the motion parameters from the motion correction and needed for the 

next process, the removal of the confounding factors. So, the pre-processing process began in this step, 

and using a mask with the WM and CSF region was calculated the mean value for each volume of this 

regions, besides, it was searched for motion outliers. In the final, the three files, one with the motion 

parameters, other with the motion outliers and with the mean values of WM and CSF was applied the 

General Linear Model (GLM) to get the BOLD signal without the cofounding factors. Finally, was applied 

a band-pass temporal filtering with the same band applied in the In-House data, so signals with 

frequencies in the range of 0.01 Hz and 0.08 Hz. Then is applied the several atlases applied in this work, 

using the atlas as mask and calculating the mean BOLD signal for each region and volume. 

In the final of the process is obtained a file with 1200 rows and a number of columns equal to 

number of nodes of the parcellation used.  
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5. METHODS 

In this chapter are describe all the different methods used to support and achieve the answer to 

the research problem and the different research questions. So, it comprehends all the technology, tools 

and work implemented to do it.  All the different methods are summarized and schematized in the Figure 

5.1 as well the different materials and resources needed or produced by the methods. Thus, the principal 

parts of the Figure 5.1 can be divided as resources needed or produced by the methods and the methods 

itself. Finishing with the analysis of the final results. In the first part are included the image resources, 

the other resources (module A and B, respectively) – Brain Atlases and MRI and fMRI acquisitions already 

described in the materials chapter. In the case of the methods, it comprehends the development 

environment, the processing, the datasets creation and to conclude the Deep Learning application 

(module D, E and G, respectively). There is also the different datasets with the functional connectivity 

values resulting from the modules datasets creation (module E) that will be used to feed the models in 

the Deep Learning application (module G). 

The development environment is an essential part for computer program and software product 

development and can be described as the set of processes and, programming and technologies applied 

to create the program or a software product. Once this dissertation is about medical informatics based 

specially in computer science, this is a fundamental part, not to create a computer or software product 

but to support other methods in developing of the research work. The development environment as can 

be seen in the work architecture (Figure 5.1) was used since the data processing until the application of 

the Deep Learning module with the production of the best models with respective results. Thus, it was 

possible better automation of processes, easier and efficient data management and creation and a 

construction of a workflow to deal with the functional connectivity information and use it as features for 

Deep Learning in the construction of models for subject’s classification tasks. The processing, as already 

mentioned, it’s an indispensable method for extract reliable functional connectivity from rs-fMRI, in which 

is used a recent library Nipy based in the Python programming language with several advantages for the 

workflow. The datasets creation which includes the analysis of the values by dataset and subject or class 

in the dataset, is when is created all the materials, with or not with some feature design, preparing the 

final data to be ready to use in the training, validation and test of Deep Learning models. Finally, the 

major objective, the Deep Learning application over the functional connectivity to subject’s classification 
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tasks, which includes the fine-tuning of the models, the selection of the best models and the analysis and 

management of the different results.   

 

Figure 5.1 – Schema of the materials and methods used in the dissertation. 
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5.1. Development Environment  

The development and work of this dissertation was developed in two machines running in the 

open source Ubuntu operating system, a Linux distribution based in the Debian architecture. One of the 

machines was provided to pre-processing of data and development of Deep Learning models and other 

is my own machine. They will be named abstractly and respectively as university-PC and Home-PC.  

Some specs of this machines, as CPU, GPU and Memory ram that are important to mention due 

its importance in the work development. In the Table 5.1 are presented some information about this 

specs.  

Table 5.1 - Summary of the hardware specifications of the computers used in this work. 

Specs University-PC Home-PC 

Machine type Desktop Notebook 

Ubuntu version 14.04.5 LTS 16.04.3LTS 

CPU 
Intel(R) Xeon(R) E5-1650 v2 @ 

3.50GHz 

Intel(R) Core(TM) i7-4720HQ @ 

2.60GHZ 

Number of processors 12 8 

Memory Ram 64 GB 8 GB 

GPU GeForce GTX 660 GeForce GTX 950M 

GPU memory 2 GB 2 GB 

GPU capacity 3.0 5.0 

 

In addition, to compare the performance of the two-different pc’s using the CPU and GPU was 

realized a set of five tests for each case and extracted the time of each one and calculated the mean and 

standard deviation values. The test applied the Theano library, and test the velocity in work with tensors. 

The results are shown in Appendix B – Theano GPU/CPU.  

Table 5.2 – Mean times in seconds and the standard deviation values in the Theano Python test using the university-PC and 
the Home-PC 

 
CPU average 

time 

GPU average 

time 

University-PC 2.4300 ±⁡0.0020 0.3970 ± 0.0600 

Home-PC 29.7000 ±⁡0.0870 0.3000 ± 0.0040 
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All development work was based in the Python programming language, an object-oriented, 

high-level and interpreted with dynamics semantics with several dynamic semantics for web and app 

development [169]. Also, it’s a simple and easy to learn and the syntax implemented is very friendly, 

being focuses on the readability. So, it’s easy to read and faster to implement any method or class, 

increasing the productivity. Besides Python supports the use of different modules and packages, so all 

the projects and code developed can be created in a modular style and later be easy reuse across different 

projects. Besides it is easy use modules built-in the Python environment or from external sources created 

for other people, and is always important to emphasize that is free to use. Besides the Python is one of 

the most widely programming language used world wield and the expectation is to continue to increase. 

This year for example, the Python in Github only stay behind JavaScript has in the list of the most used 

programming languages[170]. To download and manage the different packages used in this work was 

used anaconda, a free and open-source distribution of Python specially designed for data processing, 

predictive analysis and scientific computing applications[171]. Besides to support the development of the 

different parts of the work was used the PyDev, a Python Integrated Development Environment (IDE), for 

Eclipse, another IDE developed to support the development of Java. But great part of the work was 

developed and tested only by using the bash console or the interactive console of Python (iPython).  

Moreover, this work used the CUDA, a parallel computing platform and a programming model 

developed by NVIDIA [172] for use graphical processing units (GPUs) in different computation tasks. It 

allows increase the computation velocity, so it’s very useful for more heavy computations as is the case 

of the training Deep Learning models, where are so many parameters to update in each training epoch. 

A practical example can be seen in the Table 5.2, where the velocity increases approximately 6 and 100 

times for the University-Pc and Home-PC respectively. So as can be understood the CUDA is a platform 

that will permit the use of GPU as computation unity in the Deep Learning application. The CUDA is not 

a default platform embedded in the system ready to use, so it is needed to install the required drivers. 

During the install is also provided an optional toolkit, which has different GPU-accelerated libraries, 

debugging and optimization tools that can be deployed in different applications.    

So, until now, it was summarized some parts of the technology support used in the development 

of the different methods. Between them are the Ubuntu operating system that supports all the other 

software and tools to create the methods. In the next level is the Python programming language and 

Anaconda to support the Python packages management. So, two levels were already mentioned as can 

be seen in the Figure 5.2. Below these two levels are the principal packages used to create the different 

Python files in each method part, which includes: Nipype, scikit-learn, NumPy, Keras and Matplotlib 
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(Figure 5.2). Of course, many more packages were used in the development, specially belonging to the 

Python standard library, but this package set was essential to the development work in different ways. 

The five packages are third-party and open-source, downloaded and managed with anaconda that add 

other functionalities that the Python’s extensive standard library not covers. Thus, it reduces the quantity 

of programming and besides offer different tools and applications already created. The packages are a 

form of collecting several modules within a single tree-like hierarchy. Each module is a simple Python file 

as the files created in this work for each method that contains Python definitions, functions and 

statements. These modules are very useful once they are easily imported as functional module to a 

Python script or to an interactive Python console (iPython). So, returning to the packages group they are 

different functions that can be summarized for each in the next points: 

 Matplotlib [173] – It is a Python 2D plotting library that offers various types of plots in several 

formats with good quality. So, this package was very useful in creation of the plots of the data 

and results analysis. 

 Scikit-learn [174] – It is a machine learning library that has different classification, regression 

and clustering algorithms, built with other packages used in this work such as NumPy and 

Matplotlib. But was the different data analysis and data mining tools provided in this package 

that was used to measure some parameters of the classifications results.  

 NumPy [175] – It is a package that permit scientific computing with Python, and it’s crucial for 

the work developed, once all the matrices and values with functional connectivity are saved in 

N-dimensional NumPy array and it made easier the different computations needed to do all long 

to work. 

 ipype [176] – It is a Python package that has functions to help processing workflows with 

different neuroimaging analysis software that belongs to greater project, nipy, which has other 

packages to support neuroimaging processing. This package was essential in the creation of the 

different pipelines once all were created based in this library, so it will be further explored in the 

Processing Method point. 

 Keras [177]– It is an neural network package that can run over other different backends such 

as CNTK, TensorFlow and Theano. This package gives different methods for rapidly construct a 

deep learning model and test. And its focuses on being minimal, modular and extensible. Keras 

also works with different models, with different complexity and can made the computation needed 

in CPU and GPU. This package also was fundamental to create the models, train, validate, test 

and save them in this work, so it will be further explored in the Deep Learning application point.  
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Figure 5.2 – Development environment schema with the support technology used in the development of the different 
methods, the method itself and their respective Python files created. 

The different packages, as was described in each point, have specific functions and they were 

used during the development phase to support each part of the work, as represent in the Figure 5.2. With 

the different supportive packages, a modules set were created for each method with specific functions. 

But when the methods can be reused they are repeated in a method module part, since there is no need 

of repetitive work. So, a total of twelve modules were created with different functions, as is below: 

 ConversionDicomNifti – It is necessary method to make the conversion of files from DICOM to 

Nifti format. It contains the functions to create the conversion configuration files, the methods to 



CHAPTER5. METHODS 

63 

structure raw data and the conversion itself. This package then will be used by the processing 

module to make the conversion of the image data.  

 Processing – This package has all the methods to create the final structures with the 

pre-processed data and the Nipype pipelines with the different workflows. This is also the main 

module responsible for the processing method, once they have the pipelines functions ready to 

use.  

 Data_analysis – It has several methods to compute statistical values, create different types of 

analysis plots such as histograms or confusion matrices and to support the stats values 

management. This modules’ analysis is specially used in analysis of the datasets created 

although one method is used in the analysis of the final modules in the Deep Learning application. 

 Load_data – It has the methods to load the files with functional connectivity information.  

 ToolsProcessing – It has the functions needed to create the static and dynamic functional 

connectivity data in different formats and other methods to get other information intended about 

the one or several functional connectivity values.   

 Dataset_creation – It is the main module of the datasets creation method part and it contains 

the class used to create the static and dynamic functional connectivity datasets as well as several 

methods to support the creation and analysis of datasets. In this module are imported multiple 

functions from the Data_analysis, Load_data and ToolsProcessing modules.  

 Stats_data_module – This module has the function applied to obtain the different analysis 

metrics about the classifications results.  

 Keras_utils – It is a module created to specially to support the final main module DL_Keras. It 

contains different classes to save and manage models and results, methods to create the files 

with performance measures plus the different plots to help the results analysis. Once it need 

some functions to results analysis it imports the offer method offer by the Stats_data_module. 

Besides once this module and the DL_Keras shared different methods, this imports some 

functions created in the DL_Keras.   

 DL_Keras - It is the module that implements the principal methods used in the Deep Learning 

application work and used widely functions from the Keras_utils module. But it also imported a 

function from the Data_analysis module. Summarized, this module contains the class of the final 

object created in the Deep Learning application and the respective functions needed to train the 

DL model and manage the different class attributes. Then it has the different methods to 

implement the different combinations tests and the respective results.  
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These modules will not be analysed in a code level but in each methods part, that includes the 

data processing, the functional connectivity datasets creation and the Deep learning application, some 

methods will be deeper explained due their importance to the application of the method.  

5.2. Data Processing  

The initial data obtained directly from the acquisition project and the Human Connectome Project 

needed some pre-processing steps to eliminate noise, interferences and cofounding values. So, it is 

important to improve the quality of the data and to prevent in the final false conclusions. Although the 

data pre-processing steps applied in the In-House and HCP data has already mentioned in the materials 

chapter, in this method will be described the approach to improve the processing workflow. This workflow 

is the sequential pre-processing steps made since the data in analysis until obtain the final data pre-

processed or a specific analysis.  

The pre-processing of fMRI is in general made with recourse to one or more neuroimaging 

designed software that apply different pre-processing steps to the images in the different stages of a 

workflow. Furthermore, they provide several tools to do statistical data analysis and unsupervised 

techniques. In this research field there are several software available and used in different research 

neuroimaging centres as mention in 2.4, such as FSL [90], Freesurfer [89] and Statistical Parametric 

Mapping [86]. The choice of the software will depend of the data format and quality, as well as of the 

final result intended and the type of the scheduled analysis. We used FSL, one of the most widely used 

in neuroimaging pre-processing. FSL is a comprehensive library of analysis tools for fMRI, MRI and DTI 

brain imaging data, designed for Linux and Mac OS, based in the Unix environment. Since these Operating 

System (OS), Linux and Mac OS, are the most common inside the Neuroimaging research the FSL 

becomes pointed out tool to be used. In 2011,  an internet survey demonstrates where this two  OS are 

used by over 70% in the neuroimaging researchers, being the GNU/Linux the most popular platform 

[178]. Additionally, the FSL also is a light software and offer a great miscellaneous of tools.  

All the tools provided by FSL can be used by a command in the system console mentioning the 

different parameters of the intended process. It is an easy and fast way to work with a case study, but it 

becomes impractical when it’s intended to do a set of pre-processing steps for a set of subjects. In order 

to solve the problem, the commands can be simple stacked in a bash script, doing the processes 

sequential and running one time for each subject. This bash script is a simple plain text file which contains 

a series of commands runnable in systems with Linux and Mac OS. But this is too rudimental taking a 
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long time and a great deal of effort when the datasets are too large. Has been a tendency to use new 

approaches based in Machine Learning methods that increases the necessity of larger datasets. Large 

datasets get more reliable results. The pre-processing pipeline is a complex workflow that need more than 

one Neuroimaging software with different and specific functions. The pre-processing pipeline should be 

the most autonomous as possible to decrease the time consumption and the human work that indirectly 

decrease the human error associated to the normal mistakes or errors in the parametrization of the 

different methods. The parameters and the order in the workflow of the pre-processing steps should be 

standardized since will always be dependent of the research objective and work developed. Actually there 

are already some approaches, created and proposed by Paulo Marques et al.: the BrainCAT, a tool for 

an intuitive multimodal fMRI/DTI analysis using the graphical user interface (GUI) [179]. A more recent 

sophisticated approach is a pipeline for task-based fMRI that evaluate and optimized the different steps 

of the pre-processing, optimizing some data-driven metrics of task prediction and spatial reproducibility 

[180].  

Relatively to this work, our main goal was to create a processing pipeline to support the 

pre-processing of resting-sates fMRI from the two sources. In addition, our last intention is to use it in the 

future in another image datasets, maintaining the reproducibility. Moreover, the design and the 

implementation were thought in order to be possible deal with large amount of data. We used 176 

subjects and in the case of HCP there is two acquisition phases, so the pre-processing workflow was 

needed to perform over 500 times. Also, other important characteristics were considered during the 

construction and implementation of the pipeline, mostly relevant points already mentioned and explained 

previously:  

 Automatization 

 Robustness 

 Possibility of customization of the pre-processing tools parameters 

 Multi-processing  

 Easy management of the data and results 

From the points mentioned there is three yet not discusses. The robustness is the capacity of the 

pipeline deal with failures and the multi-processing is the capacity of the pipeline implement parallel 

computation. Relatively to the last point it is normal that all the data and results management should be 

easy and the most autonomous as possible to decrease the work time consumption and effort.  

Although in this case the study is not multimodal since there is only the objective of study the 

functional connectivity from resting state fMRI. In the future, the pipeline should be adapted to other 
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application, mostly because compatibility problems. Finally, and maybe the most important point, the 

pipeline should be implemented in the Python programming language, because all the development 

environment was created based in it.  

In the search of a solution that checks all requirements pointed to the pipeline was found the 

Nipype (Neuroimaging in Python: Pipelines and Interfaces) software package tools [176]. This 

open-source community developed a Python-based software package  as part of the Nipy project, which 

built an independent Python-based platform for the analysis of functional brain imaging data with different 

software packages for pre-processing, analysis, statistical analysis [181].   

5.2.1. Nipype Package 

The Nipype is Python-based, so all the pre-processing modules as well as their inputs and outputs 

are described in an object-oriented manner, easier to integrate in the development environment and other 

methods in this work. The flexibility in the interface of different software packages, since using the Nipype 

environment is possible integrate methods and algorithms of different packages (e.g., SPM, FSL, 

Freesurfer, AFNI, MRtrix, Slicer, ANTS) in the same workflow, becomes the design and management 

easily to work with.  As the Nipype is an open-source, the different methods can be adapted and even 

optimized for a specific project. For all these reasons mentioned above it was used the Nipype in the 

study to pre-process rs-fMRI with the goal of compute the Functional Connectivity values.  

The neuroimaging processing pipelines are implemented normally in Bash, MATLAB or Python, 

but Nipype implements the pipeline as a graph. Thus, it is easier to follow the pre-processing steps 

executed and the order of modifications done during the development in the pipeline (e.g., insert and 

remove Nodes). To give fine control of each step during the workflow is used an interface that function 

as a “wrapper” of underlying software. They are the core of the Nipype, which allow a uniform mechanism 

for use the tools of the different neuroimaging software and can be used as a Python object. Briefly, the 

creative process can be divided in four parts: first the inputs parameters, their types and dependencies, 

second the outputs and their types, third the way that will be executed the underlying software and last 

the mapping where is defined the outputs that are produced for a particular set of inputs. The Nipype 

package is already available with several interfaces for use tools of different Software packages, but is 

simple create new ones by a Python class. During the construction of the workflow, the interfaces have 

to be connected, therefore they are encapsulated as a Node or a MapNode objects. Only in that point 

they are functionally capable to deal with the different inputs and outputs. After all the interfaces be 

defined, with the inputs and outputs as well as the tools parameters are used by the workflow object. This 



CHAPTER5. METHODS 

67 

workflow engine creates the pipeline by connecting the inputs and outputs of the interfaces, as a Directed 

Acyclic Graph (DAG). It is important to note that a workflow can be a node of another workflow. The fact 

that the workflow provides all information about the processing steps and the movement of data along 

the interfaces, being even possible save the workflow graph in four types of graphs and in a variety of file 

formats, which help to share the workflows between different neuroimaging centres and the reproducibility 

of articles or projects results.  

 Relatively to execution of the workflow it can be locally or on load-balanced grid-computing 

clusters through an extensible plug-in interface, and there is no need of changing the workflow to switch 

between the different executions modes. There is only needed change the argument of the plug-in to the 

mode desired. But in this work that the workflow was executed locally, the Nipype offer a great advantage. 

The fact of be able to execute the workflow in parallel using a local multi-processing plug-in that not 

requires any additional software. This saves a lot of time to the work and an unnecessary computation 

releasing the resources to other pre-processing or computations. It’s even easier manage some hardware 

resources, since there is the option of select the number of processors used in the execution of the 

pipeline.  

After analysis of this package we concluded that has advantages due to the fact be Python-based 

and to be easily integrated in the development environment, which make the Nipype a suitable package 

to use in the construction of the pipelines. These characteristics are summarized in the next points:  

 Easily to integrate different software packages and combine them in the pipeline for 

different endings; 

 Easier to create and reuse older workflows; 

 Make the workflow easy to share and improve the data reproducibility; 

 Faster pre-processing computation with the use of multi-processing using different 

cores/machines; 

 The pre-processing checks the inputs and outputs of the workflow and in case of 

involuntary stoppage the process restart in the last step made.  

 Open-source 

It is important to highlight that the use of this package offer tools that are developer dependent, 

namely in the methods. It is possible to rise some problems with the updates, due the possible changes 

in the methods, in their names or in their variables. However, with Anaconda the downgrade is easy to 

perform in case of being necessary.  
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As conclusion, due to the different benefits found in this package, we used it in the development 

of the pipeline for the pre-processing, with the goal of create an automated and efficient pipeline. In 

addition, it will be obtained reproducible results that can be easier implemented by other user in the 

future, as an application to apply in pre-processing to study FC data.  

5.2.2. Pipeline Design and Functioning  

The principal pipeline was design for a full pre-processing from a raw format until to get the files 

used in the construction of the correlation matrices with functional connectivity values. The pre-processing 

steps contains processes done over MRI and fMRI data as mentioned in the Data conversion of In-House 

data in the Materials Chapter, as summarized in Figure 5.3, and described better in the  

Appendix A – Processing rs-fMRI. The MRI final files resulted from the MRI data pre-processing 

will be necessary to improve the spatial normalization in the fMRI data. In the design of the pipeline all 

the pre-processing steps, management of inputs and outputs, was taken into account in order to have a 

pipeline automated and simple to be used and adjusted to this type of data.  
In order to support and to make easier the management of different folders with the inputs, 

outputs and files produced was planned to create a configuration file for the customizer adjust for itself. 

Once the HCP project was some differences (e.g., two acquisition phases) comparatively to In-house data, 

different configuration files for each situation were created.  

The raw format of an acquisition is the Digital Imaging and Communications in Medicine format 

(DICOM) wherein the acquisition is a set of DICOM images, a standard for distributing and viewing medical 

images in medical institutions.  Because of their format, which are not compatible to computation in the 

pre-processing, the DICOM images are converter to NIFTI, to a single file named by volume. The NIFTI is 

based in the ANALYZE 7.5 format, a single file that contains a header to save meta-information and the 

data. The header has a size of 348 bytes, and contains useful information about the acquisition, such as 

the phase encoding, information such as the dimensions of the voxel – the unity of regular grid in 

3-dimensional space, repetition time (TR) and others. The creation of this format also has the goal of 

increase the interoperability in the file-exchange between analysis software packages. The dcm2nii as 

conversion tool [182], since was the one with more and reliable meta-information in the header that can 

be useful during the processing. It is important to be careful with meta-information about the subject, 

because in case of inserted information being wrong also the DICOM files will be. In our case the 

acquisitions were anonymised, so this was not a problem. The conversion step was not inserted in the 

Nipype pipeline because it can be useful in the future for other applications. Thus, it was created the 
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ConversionDicomNifti module in Python with several functions in order to make the conversion more 

automatized as possible. Once again before initiate the conversion itself is produced a configuration file, 

where is possible to change the input and output folders as well as the name of the first DICOM MRI and 

FMRI image, as can be seen in the Appendix B – Development Environment in the Processing, 

configurations file. Before the execution of the conversion, the configuration file should be adjust as 

intended.  The conversion method was constructed in order to convert FMRI and MRI data before the 

beginning of the major pre-processing pipeline. Additionally, it was created a method to structure the data 

before the conversion and anonymize the subjects during the process using information in a csv.  

 

Figure 5.3- Illustration of all steps made in the processing of raw data, MRI and fMRI, until to obtain the final files of fMRI. 



CHAPTER5. METHODS 

70 

Relatively to pre-processing pipeline itself, the full process that englobes fMRI pre-processing and 

MRI pre-processing was divided in two major parts. The first part includes the format conversion of MRI 

DICOM images and the brain extraction using the “bet” command. And the second part contains all the 

other pre-processing steps until the final files ready to create the functional connectivity matrices. The 

reason why the first part of the extraction brain tool goes until the “bet” step is because it is necessary 

to control the brain extraction for each subject. Since all methods need a parameter (ratio) in the process 

to distinguish the brain tissue from the rest part of the brain that differ between subjects. This parameter 

has to be analyse and adjust in case of being necessary for each acquisition. The default value used in 

our lab is 0.2 but is often changed for lower values. Therefore, the first part is the conversion followed by 

the application of the bet command.  After the extraction were done, using the default value, the results 

will be analysed and if necessary the ratio parameter will be adjusted and the extraction will be repeated. 

This process is repeated until the results are all verified. The adjustments in the ratio parameter are 

computed in a group not in an individual way, otherwise the multiprocessing advantage will not be taken.  

The second part consists on all other steps after brain extraction, from the MRI pre-processing 

until to get the file with spatial information that will be used in the fMRI spatial filtering pre-processing. 

Despite of all these pre-processing steps already being detailed described in the materials chapter, it is 

important refer some resources. One is the mask of white matter and cerebrospinal fluid (CSF) used in 

the motion scrubbing and removal of the cofounding factors. It is crucial, before the pre-processing, to 

check if the file is available in the base directory of the running pipeline. In case of not being, the file 

should be added to the directory. In the future this resource should be online and downloaded 

automatically whenever necessary. The other resource is a file with the order of the slice acquisition that 

is used in the slice-timing step. But this file is created automatically by a method that get the information 

from the NIFTI header file that has the slice acquisition information. This field, has several meta-

information, since   has the information about the start and the end of volume slice and the timing order. 

This information is given by a code in the “slice_code” Nifti header since the “slice_dim” be different 

than zero. The codes variate between 0 and 6, and are interpreted as is below:  

 Code 0 - Slice order unknown; 

 Code 1 - Sequential, increasing; 

 Code 2 - Sequential, decreasing; 

 Code 3 - Interleaved, increasing, starting at the 1st MRI slice; 

 Code 4 - Interleaved, decreasing, starting at the last MRI slice; 

 Code 5 - Interleaved, increasing, starting at the 2nd MRI slice; 
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 Code 6 - Interleaved, decreasing, starting at one before the last MRI slice. 

During the development of the pipeline we verified that the module misc in the algorithms folder 

of the Nipype package has some troubles in the MergeCSVFiles method, a Nipype method for merge files. 

The problem occurs in the application of this method to merge three different files (motion parameters, 

motion outliers and the mean values of GM and CSF regions) in the Motion scrubbing and in the removal 

of confounding factors step, where in the method could not open the files and concatenate the different 

columns to create a file with all the columns. This method was modified to solve the problem, as can be 

seen in the Appendix B – Development Environment in the Processing, misc module. The pipeline 

constructed was formed by a sequential of pre-processing steps described as nodes in the Nipype 

pipeline. The different parameters used in each node was similar to example in the  

Appendix A – Processing rs-fMRI.  
The results were created in a base directory folder that contains the mask of the white and CSF 

brain tissue and where was created the configuration files, the “config_conversion.txt” and 

“Processing_configuration.txt”. This folder contains the “Data” folder with the DICOM and, after the 

conversion, the NIFTI files of MRI and fMRI acquisition for each subject.  
  

 

Figure 5.4 – Schema of the base directory after the application of the processing pipeline.  
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The folder with the processing contains a folder for each part that formed the full pipeline, which 

includes the steps made until the brain extraction (folder “MRI_Pre-processing_bet”), the pre-processing 

made after the bet extraction until the final of MRI data (folder “MRI_Pre-processing”), the final pre-

processing steps applied to the fMRI data (folder “fMRI_Pre-processing”) and then the analysis folder. 

Each of this folder contains a folder for subject with the steps made in each part. Besides that, the Nipype 

creates other files, such as the graph of the pipeline in a json file, and two images with the schema of 

the pipeline wherein one offer more details than the other. The folder “Connectivity_results” contains all 

the files for create the functional connectivity matrices for each parcellation used then for each subject. 

Then if the analysis is activated, there is created the folder “Analysis_results” with the respective results 

for each subject. Thus, it’s created a structure as is summarized in Figure 5.4. 

5.2.3. Pipelines Created  

The principal pipeline created was used in the full processing of MRI and fMRI data, however 

other pipelines were created. These pipelines are similar to the main pipeline, because they share the 

same order.  The main difference between them is in the beginning step, since the data resources are in 

different pre-processing stages. But it was also created some variations in the pipeline in order to analyse 

and test using the Deep Learning.  

Thus, the different pipelines created in the module Processing was the following:  

 The full processing pipeline – Processing  – This method creates a full pipeline as above 

describes, since the raw data MRI and FMRI DICOM images until get the final objective files. The 

inputs are the base directory. There is an optional list where can be specified a subject group in 

case of not being necessary to do the processing to all subjects. Also, an option for spatial filtering 

step, since some acquisitions don’t be needed and an option for the analysis process.  

 HCP processing pipeline – HCP_Processing – This pipeline was created specifically to HCP 

data, which consist in some specific steps. This pipeline also presents a relatively variation to the 

main pipeline, since its possible separate the full acquisition for each subject in two parts where 

the percentage of each part could be chosen. This division is made before the temporal filtering 

since in this step there is a normalization of the signal in all the acquisition. So, if the division 

process was after the temporal filtering the objective was lost, once they were related by an 

average value that appear in the two data parts. This division was applied due the lack of data in 

the Deep Learning application to correctly validate and test the models. The inputs are the base 
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directory where is the folder contains the data images, the option of applying or not the spatial 

filtering, the option of made the melodic analysis, the input to select the number of cores used 

in the computation and then the two inputs responsible for the division of the acquisition. Also, 

there are an option to activate the division as well as to choose the percentage division.  

 Two temporal filtering pipeline – pre_temporal_filtering_pipeline – This pipeline does the 

same steps as the main pipeline but only begins the pre-processing process before the temporal 

filtering. The pipeline was developed also for the In-House data and as before, it can made the 

acquisition division in two parts before the temporal filtering. The reasons are the same as the 

HCP pipeline. The inputs are also similar to the HCP pipeline, but in this there is also possible 

delimited a subject group that the pipeline will use instead of using all the subjects.  

5.3. Datasets Creation  

This method is responsible to create all the datasets, which are constituted by two major parts: 

the data where is the functional connectivity values and the respective labels. The data are the structures 

that save the functional connectivity value of each subjects. And the labels are a class that save some 

information about the subject that can be categorical, ordinal, integer-value or real-value. This can be the 

own identity information of the subject, the gender, the state in a disease, the blood type and others. The 

label is the information that will be used in the supervised learning for training, validation and testing 

Deep Learning models.  

The Functional Connectivity (FC) was analysed through the correlation matrix, or the ROIs FC 

analysis method, as scientifically named. The FC features were produced under matrices form from the 

different files produced after the brain parcellation step. Each file has one line for each volume in the 

acquisition and one column for each region of the atlas used in the parcellation process (e.g. the average 

value for each volume and region). Therefore, the correlation matrices size is correlated to the parcellation 

used, which in turn affects the number of the total values present in the matrix (Table 5.3). In the Table 

5.3 are the values of the upper or lower triangular of the matrix, corresponding the values non-redundant 

and the values not present in the diagonal. Because the matrices are symmetric, and the diagonal values 

are the correlation values of the regions with themselves, they are not useful. In this work was used two 

different approaches to extract two functional connectivity types, the static and the dynamic.  
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Table 5.3. Features of the correlation matrices by each brain parcellation. 

Atlas applied Matrix Size Number of values  Features 

150 nodes 278 x 278 77284 38503 

268 nodes 268 x 268 71284 35778 

100 nodes 184 x 184 33856 16836 

Freesurfer 160 x 160 25600 12720 

Aal 116 x 116 14456 6670 

50 nodes 93 x 93 8649 4278 

 

5.3.1. Static Functional Connectivity  

The static FC was computed through the Pearson’s correlation between the full time-series of 

each pair of brain regions, resulting in the symmetric matrix with the Pearson’s coefficients and one 

adjacency matrix per subject [10];[184]. The Pearson correlation coefficient between two series 𝑋 and 𝑌 

of size 𝑁 is given by the Equation (13): 

𝜌𝑋,𝑌 =
∑ (𝑋𝑛 − 𝑋̅)(𝑋𝑛 − 𝑌̅)𝑁
𝑛=1

√∑ (𝑋𝑛 − 𝑋̅)2𝑁
𝑛=1 √∑ (𝑋𝑛 − 𝑌̅)2𝑁

𝑛=1

 (13) 

This method is widely used in this field, and allow to infer the strength of functional connectivity 

estimating the linear correlation coefficient between two temporal signals. If the regions have the same 

behaviour, they are activated and deactivated at the same time, the Pearson’s value will be high 

demonstrating that it is probable that the regions have a functional connection.  

Then a Fisher’s r-to-Z transformation was applied to each correlation matrix to improve the 

normality of the correlation coefficients. Thus, the result is a correlation matrix by subject. 

5.3.2. Dynamic Functional Connectivity  

The dynamic Functional Connectivity (dFC) was calculated using the BOLD Phase Coherence 

Connectivity approach [63];[64]. But before the measurement of the phase coherence was needed 

estimate the phase of the time-series of each region for each repetition time (TR) corresponding each 

volume. So, it was applied the Hilbert transform to get the phases of the BOLD signal. Then, it was 

computed the phase coherence between each pair of the brain areas. Therefore, the 𝑑𝐹𝐶(𝑟1, 𝑟2, 𝑡) for 

regions 𝑟1 and 𝑟2 at time 𝑡⁡was obtained applying the Equation (14): 
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𝑑𝐹𝐶(𝑟1, 𝑟2, 𝑡) = cos⁡(𝜃(𝑟1, 𝑡) − 𝜃(𝑟2, 𝑡)) (14) 

Using this equation, when the two areas 𝑟1 and⁡𝑟2 have temporally similar phase meaning that 

the bold signals are align, the result is 𝑐𝑜𝑠(0) ⁡= ⁡1⁡as the dynamic Functional Connectivity. In other 

hand if the signals are orthogonal, this is the difference between phases is approximately 90º, the dFC 

will be practically null. In this work the temporal analysis is done for each repetition time, so for each 

volume of the acquisition result matrix with the dynamic FC information.  

5.3.3. Python Modules 

To support the datasets creation as well as their analysis was created a set of Python modules 

with different classes and functions. In all, four modules were created: Load_data, ToolsProcessingFC, 

DataSet_creation and Data_analysis.  

The Load_data module is a little module with some functions related to get the files that will be 

used in the dataset creation.  

The ToolsProcessingFC module has the methods to create the correlation matrices from the 

resulting files of the pre-processing pipelines and several methods to support the datasets creation. 

Wherein the static correlation matrices were created by using the Pearson’s correlation and Fisher’s 

transformation of 𝑟 to 𝑧, and dynamic by the BOLD Phase Coherence Connectivity approach [63];[64]. 

The module also has the methods to extract only the information non-redundant from the matrices.  

The DataSet_creation is the main module once in it are the major methods that create the 

datasets and analyse them using functions from the other modules. It contains the class “Dataset_FC”, 

class used to manage the diverse Datasets as objects with several attributes with meta-information or 

data. The attributes used to save some meta-information about the dataset was: 

 FC_type – Identify the type of functional connectivity of the dataset, dynamic or static; 

 name – The name of the dataset; 

 path_location -  The directory where was created the dataset; 

 size_data – The number of examples present in dataset; each dataset is a correlation matric; 

 size_row_data – The number of inputs for the data in array form with the non-redundant values; 

 size_row_label – The number of data labels examples existent in the dataset, which should be 

equal to the size_row_data. 

 classtype -  The type of the label, if it’s a string, an integer or a float; 

 number_nodes – The number of nodes of the data used in the creation of the data; 
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 dataset_label_disc – An optional description about the label used in the dataset; 

 info_dic_label – A dictionary that contains as key thee real information extracted from the csv 

file and the corresponding final label assigned during the dataset creation. For example, in the 

case of the subject id, the information about the identity extracted from the csv file is transformed 

in a label depending in the number of subjects that already exist saves.  This dictionary besides 

have information useful to know which label corresponds to the real value, it is useful in the 

creation of the datasets to know if the new label added to the dataset already exist;  

 dic_brain_spatial_information – It’s a dictionary used when is introduced information about the 

nodes wherein the keys are the information, and the values are list of the modules that share 

that information; 

 nodes_description – It’s a dictionary that is used when is added information about the nodes of 

the parcellation that had in the origin of the creation of the correlation matrices. So, the key is 

the identity of the node, and the value is the information.  

The attributes with meta-information are important since some the information saved about the 

dataset object is relevant to manage the object, such as the name, the base directory or the functional 

connectivity type used to create the dataset. Besides it contains other information as the spatial 

information essential to the adjustment of the matrices by nodes regions. Relatively to attributes with data 

information was: 

 joint_data – The array with only non-redundant values is saved with the respective labels wherein 

the shape is equal to number of examples and each example is a tuple where first part is the 

data and second the label; 

 data – There is saved the data with only non-redundant values for each subject, so is an array of 

examples; 

 full_matrix_data – The data is saved a full correlation matrix for each subject resulting in an array 

of matrices; 

 full_matrix_data_structured – It has the correlation matrix as “full_matrix data” but now the 

correlation was done respecting a spatial information, the nodes were associated in group with 

similar function or belonging to a same brain region;  

 normal_label – It contains the labels as was extracted from the csv file and it can be a string, an 

integer or a float; 

 bin_label – This is other form to describe the labels very useful for classification where the classes 

are transform in binary arrays. A binary array with the same size of the different number of 
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existent classes, where the each of element corresponds a one class. Thus, for each binary array 

there is an element that is one, corresponding to a class, and all the other elements are zero.  

Besides the different types of data saved in the object, the object also provides methods to get 

the data normalized between 0 and 1, and normalized between -1 and 1, for each data type with the 

exception of course of data related to labels information. Once this object provides so many data 

hypothesis it raises the question “Why are the data saved in so many different ways?”.  

The reason is directly related to the fact of this data will be used in the Deep Learning application 

to test if different approaches can or not change the model performance. The two library packages used 

in the development of the Deep Learning models also have a role in the arrangement of data. For example, 

the data used in the first models developed only with the Theano package was a tuple wherein the first 

element was the data and the second was the label. So, in case of the data has 200 examples, the shape 

will be (200,2).  Consequently, was created a type of data to this end and was saved in the “joint_data” 

attribute. This data is also used to test the consistency of the data created and retrieved, e.g. if the labels 

corresponding correctly to data, since the tuple created never changes.  

Relatively to the other attributes data, they were all designed to be applied in models developed 

with the Keras package. There are two major arrangements of the data: one is the data that will be used 

as input of non-linearity layers under a form of array, and the other type of data will be used as input for 

convolutional layers under a form of matrix. Then, for each situation, was done some processing to the 

FC values, such as the normal normalization and the normalization between -1 and 1. Additionally for the 

convolutional layer data was also created matrices with spatial information and the respective 

normalizations. These matrices are a little different from the normal matrices since they have the nodes 

organized by regions that were put together using functional or structural information. Therefore, the 

values inside these regions have somehow spatial information that could help the convolutional layers to 

find some features in the data. Thus, depending in the package and the approached used, the data can 

be organized as in the Figure 5.5. 

 The different arrangements of the data, with the exception of the normalized, were saved in the 

dataset object attributes to save time and reduce the computation required, due the data dimensions. 

For example, the smaller dataset for the In-House data using the static functional connectivity and the 50 

nodes parcellation (93 nodes) has a total of 325128 values. And after this only gets bigger, when it’s 

used atlas with more nodes in the parcellation or when is used the HCP data or used the dynamic 

functional connectivity, resulting in most of the situation billions of values. Every time it is necessary this 

type of data, it will be required a great computational effort and will take too much time (some minutes, 
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as opposed to the expected seconds). In other hand, the object size saved is very large, and the costs 

associated to storage of the data are higher. The normalization values were not saved since they will 

increase several times the final size of the object.  

To help the data retrieve from the DataSet_creation module has a set of methods where is 

possible to choose the type of the data and the label (in normal or in binary form). And the given data is 

ready to feed the Deep Learning models.  

 

Figure 5.5 – The different types of data saved in the attributes of the object DataSet_FC, organized by package used in the 
DL models development, the first layer in the model, spatial information and if have normalization or not.  

About “DataSet_FC” class still need to be mentioned how is performed the creation process and 

the respective analysis procedures of the produced data. To create a dataset object there is only needed 

mentioned the name of the dataset, the path location where will be created the object and the functional 

connectivity type that will be used in the dataset (e.g. static or dynamic). An example could be seen in 

the Figure 5.6, where the name is “76sub_static_sub”, the location path 

"HCP/100sub/Rest1/50nodes/static", and the FC type “static”.  

 

dataset⁡ = ⁡dataset_FC("76sub_static_sub", "HCP/100sub/Rest1/50nodes/static", "static") 

 
Figure 5.6 – Python example to creation of a dataset object 
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The created object has no data saved, only has some meta-information so it is needed to add 

data. To do it the method that adds the data has to identify where are the files with the mean time-series 

for each acquisition volume and brain region as well as the file with subject’s information used to create 

the labels of dataset. So firstly, it is required identify the base directory where is the pre-processing folder 

with all the subjects time-series files and with the same Nipype pipelines methods used, in order to be 

easy, the data exchange between the different methods parts in the work. Then, there is the hypothesis 

to use the information saved in the configuration files or to use the interactive mode to descend over the 

different folders until arrive to the parcellations folders with the target files. Next it is chosen the wanted 

parcellation and the files from all or a limited number of files. After, the labels will be selected, which are 

in .csv or .xslv files in the base directory, to extract the label information.  Continuing the process, it will 

show a menu giving two hypotheses: one is the extraction of the label, with the conversion for integer or 

float if possible and, in last case, as a string. Secondly, there is the hypothesis of add some processing 

to the information in the csv and only before extract the final labels. In this work was created three possible 

situations, the first is the incremental id, wherein for each subject id is given a number beginning in zero 

and then incremented by one. The second is for the sex, where the “M” and “F” is replace by “0” and 

“1”, and the last situation is to calculate the age that used the birth date in the file to calculate the age. 

This method needs be informed of the date format birth. But regardless of each hypothesis choose since 

the beginning, it is always necessary to identify the subject id to save or to use in the processing process. 

The header information is important but not vital once if it do not exist the columns index can be chosen 

manually. As soon as all the necessary information is selected, the correlation matrices are created using 

the ToolsProcessingFC module. A different type of data is created (normal and binary labels), finishing 

with the save process of all the information in the object file. As soon as the object file is saved, proceeds 

to analysis methods. In the different analysis processes is used the Data_analysis module that contains 

all the methods to do the analysis and visualization of the values. The method that adds data can be used 

as many times as needed, since the files used to create the correlation matrices were created by the 

same parcellation atlas.  

The analysis process is done in two parts, the first is the computation of the different statistics 

values measurements and the other is related to the data visualization, (how the values are distributed 

for label or datatype or both). The method creates a “Stats” folder in the base directory that contains the 

“Matrices” and the “Values” folders. In the first folder there is one folder for each type of data, normal, 

normalized, with spatial information and others, wherein are saved all the plots of the matrices examples 
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present in that data.  An example of a matrix with static functional connectivity is showed in the Figure 

5.7.  

 

Figure 5.7 – A correlation matrix for 50 nodes parcellation (93 in total) with the values of the static functional connectivity of 
the label 1.  

 

Figure 5.8 -– A correlation matrix for 268 nodes parcellation with the values of the static functional connectivity of the label 1 
with spatial information.  

To help to understand the different correlation values they are displayed in a colour map. During 

the matrices creation, the diagonal values in the transformation r to z are converted in an infinite number, 
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in order to be possible plot the matrix. Besides to help the visualization, the plot title and the file name 

has the information about the type of functional connectivity showed as well as the corresponding label 

followed by the matrix number for that label. In the case of the Figure 5.7 is “1.1”, so label 1 and the 

matrix 1 for this label, since can exist more than one matrix for label. The plot of the matrices with spatial 

information has a little different presentation, Figure 5.8. The nodes are grouped and placed in a group, 

where each group (left side of the subtitle) represents a functional network or a brain zone (right side of 

the legend). Each brain region was delimited by lines, in order to identify the pattern.    

 The “Values” folder has the files with statistics measurements, such as mean, standard deviation, 

minimum and maximum, and the plots with the values distribution. The analysis in this case was only 

made over the non-redundant data, since there was not necessity of analysis over repeated and matrix 

diagonal values. The analysis process provides always the file “Values data stats.csv” that contains the 

statistics measurements of each different data type. Despite of being created a file for each data type, 

the statistics measurements is not done in a global but at label level. The name of the file is “Stats values 

by label_” concatenate with data type. Relatively to plots, is created a histogram for each data type where 

is possible to see the frequency distribution of values for 0.01 intervals (but can be changed). 

Furthermore, in the plot it is showed the lines of average values as well as the first and second standard 

deviations intervals, as we can see in the Figure 5.9. The same plot is done for each label of each data 

type, which are disposed in a folder with the name of data type in study inside the “Analyse by label” 

folder. As happened with the matrices plots, in the name is described the type of functional connectivity 

of the data with the respective label number.  

 

 

Figure 5.9 –Plot of the histogram of values for the 50 nodes parcellation and normal data.  
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Figure 5.10 – Plot of the all the values by each label for normal data using the 50 nodes parcellation. 

 

In addition, it is created a plot where is showed all the values by label for a specific data type in 

order to rapidly compare the values and to find the statistical significant differences. Also, it is presented 

the mean, the standard deviation and the overall mean, as showed in Figure 5.10.  

 Briefly, the datasets are represented by the DataSet_FC object where some attributes are saved 

as meta-information and some with different types of data. Different DL models’ approaches were done, 

in order to represent the data in a simple way. The analysis part is essential to visualize the values and 

how they variate, which can be useful to explain the final results obtained by the Deep Learning models 

tests.  

5.4. Created Data - Functional Connectivity 

This module part as represented in the Figure 5.1, it is not properly a method but a group of 

materials that will be used to train, validate and test Deep Learning models. It comprehends all the 

datasets produced using the methods and modules already mentioned in the previous method. It was 

organized as is represented in the Figure 5.11, where the data is divided according to the source (In-

House data or HCP data), the acquisition session (session 1 or session 2), the parcellation used in 

pre-processing and the type of functional connectivity (static or dynamic). Then, for each of these 
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possibilities, the data can be created from the resulting files of the two different approaches used in the 

Nipype pipelines. As the acquisition is divided in two parts, the first produces final files set and the other 

produces two final files set. So, for each possibility it is created three different datasets using the same 

label information: first one has all the information about the acquisition, while the other two have the 

information part of the global acquisition. 

 

Figure 5.11 – Structure of the created datasets.  

The functional connectivity data was deeper analysed for each source, functional connectivity, 

session and parcellation. It is important to note that statistical metrics only was made over the 

non-redundant values and without the values in the matrix diagonal.  

5.4.1. In-House Data  
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5.4.1.1. Static Functional Connectivity 

Once this data is constituted by 76 subjects and in the static functional connectivity is created a 

correlation matrix by subject, it has for each atlas parcellation and session 76 matrices. But once was 

used two different approaches in the Nipype pipelines, the data can be created using the global, the first 

half and the second half of the acquisition.  

 Relatively to using all the acquisition, the statistics of the values present in the correlation 

matrices by atlas are shown in the Table 5.4. In these values can be seen that is an inverse relation 

between the mean z-value and the number of nodes of the atlas, and it is the 268 nodes atlas that achieve 

the lower mean z-value. Besides the values of the session 2 are in lower comparatively to session 1.  

Table 5.4. Mean, standard deviation, maximum and minimum z-value of the static FC matrices using all the acquisition for 
each atlas and session of the In-House data.   

 Session 1  Session 2 

Atlas 

applied 
Mean z-value 

Maximum 

z-value 

Minimum 

z-value 

Mean 

z-value 

Maximum 

z-value 

Minimum 

z-value 

150 nodes 0.2796±0.4637 2.8899 -2.1073 0.2018±0.4632 2.8755 --2.1305 

268 nodes 0.2538±0.46129 2.9204 -2.2490 0.1911±0.4651 3.1195 -2.1083 

100 nodes 0.3114±0.4699 2.9463 -2.0314 0.2246±0.4703 2.7680 -2.2300 

Freesurfer 0.3439±0.4795 3.4451 -1.8653 0.2650±0.4873 2.8192 -2.0470 

Aal 0.3280±0.4886 2.8869 -1.8499 0.2650±0.4873 2.8192 -2.0470 

50 nodes 0.3670±0.4810 2.830 -1.765 0.2721±0.4849 2.7332 --2.0472 

 

 Using the first half of the acquisition the statistical measures of the created data can be 

summarized as in Table 5.5. In the case of the second half the metrics was as in Table 5.6. The standard 

deviation and the maximum values are higher, while the minimum values are lower in the divided parts 

acquisitions, when compared with the total acquisition. This was already expected because the time of 

acquisition is to small, which become the signal oscillations a major influencer in final value. In the other 

hand, when compared the divided parts in each acquisition method, the second half showed higher 

average z-values.  
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Table 5.5. Mean, standard deviation, maximum and minimum z-value of the static FC matrices using the first half of the 
acquisition for each atlas and session of the In-House data.   

 Session 1 Session 2 

Atlas 

applied 

Mean 

z-value 

Maximum 

z-value 

Minimum 

z-value 

Mean 

z-value 

Maximum 

z-value 

Minimum 

z-value 

150 nodes 0.2764±0.6138 4.2972 -2.7941 0.2140±0.6330 3.3690 -3.5542 

268 nodes 0.2555±0.6132 3.4828 -3.0041 0.2009±0.6352 3.6711 -2.9958 

100 nodes 0.3087±0.6193 3.2499 -3.0148 0.2391±0.6398 3.3453 -2.9218 

Freesurfer 0.3305±0.6354 4.1142 -2.7181 0.2725±0.6445 3.4051 -2.9049 

Aal 0.3305±0.6354 4.1142 -2.7181 0.2793±0.6527 3.3157 -3.0219 

50 nodes 0.3700±0.6310 3.6500 -2.3620 0.2901±0.6520 3.1633 -2.5348 

 

Table 5.6. Mean, standard deviation, maximum and minimum z-value of the static FC matrices using the second half of the 
acquisition for each atlas and session of the In-House data.   

 Session 1 Session 2 

Atlas 

applied 

Mean 

z-value 

Maximum 

z-value 

Minimum 

z-value 

Mean 

z-value 

Maximum 

z-value 

Minimum 

z-value 

150 nodes 0.2958±0.6218 3.7783 -2.9929 0.2210±0.6325 3.4543 -3.0774 

268 nodes 0.2555±0.6132 3.4828 -3.0041 0.3115±0.3549 3.2442 -2.1195 

100 nodes 0.3909±0.6283 3.3063 -2.7760 0.2457±0.6381 3.8660 -3.1082 

Freesurfer 0.3669±0.6341 4.0272 -2.8313 0.2861±0.6504 3.7428 -2.9178 

Aal 0.3509±0.6382 3.6952 -2.7990 0.2861±0.6504 3.7428 -2.9178 

50 nodes 0.3909±0.6283 3.3063 -2.7760 0.2955±0.6544 3.8072 -2.6652 

 

5.4.1.2. Dynamic Functional Connectivity 

In this case, once the pre-processed acquisitions are made by 355 volumes, the number of 

dynamic matrices for each subject and parcellation is 355. So, for each parcellation there is a total 

number 355 x 76, so 26980 matrices. In the Table 5.7 are shown some stats about the all matrices 

produced for each parcellation and session using all the acquisition.  
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Table 5.7. Mean, standard deviation, maximum and minimum z-value of the dynamic FC matrices for each atlas and session 
of the In-House data using all the acquisition.   

 Session 1 Session 2 

Atlas 

applied 
Mean z-value 

Maximum 

z-value 

Minimum 

z-value 

Mean 

z-value 

Maximum 

z-value 

Minimum 

z-value 

150 nodes 0.1990±0.7073 1 -1 0.1393±0.7169 1 -1 

268 nodes 0.1817±0.7101 1 -1 0.1325±0.7177 1 -1 

100 nodes 0.2202±0.7041 1 -1 0.1536±0.7158 1 -1 

Freesurfer 0.3439±0.4795 1 -1 0.1774±0.7132 1 -1 

Aal 0.2407±0.7010 1 -1 0.1814±0.7129 1 -1 

50 nodes 0.2571±0.6973 1 -1 0.1841±0.7136 1 -1 

5.4.2. HCP Data 

5.4.2.1. Static Functional Connectivity 

The HCP data was formed by 100 subjects and two sessions, so for each session there are 200 

connectivity matrices. In this case was not created the data with the acquisition divided into two parts, 

since there was no opportunity to create the data, since the datasets associated to HCP are large datasets. 

The reason is that they have 1200 volumes by acquisition the triple in relation to In-House data.   

Table 5.8. Mean, standard deviation, maximum and minimum z-value of the static FC matrices for each atlas and session 
for HCP data using all acquisition.  

 Session 1 Session 2 

Atlas 

applied 

Mean 

z-value 

Maximum 

z-value 

Minimum 

z-value 

Mean 

z-value 

Maximum 

z-value 

Minimum 

z-value 

150 nodes 0.3570±0.3570 3.0790 -2.2650 0.3490±0.3430 2.6890 -1.5630 

268 nodes 0.3110±0.3550 3.2440 -2.1200 0.3050±0.3430 2.5840 -1.4960 

100 nodes 0.3990±0.3640 2.9540 -2.2650 0.3920±0.3500 2.5120 -1.2470 

Freesurfer 0.4200±0.3670 3.0540 -1.8740 0.4120±0.3530 2.6410 -1.3120 

Aal 0.4000±0.3810 3.1800 -2.0520 0.4010±0.3790 2.7840 -1.2440 

50 nodes 0.4820±0.3760 3.0200 -2.0840 0.4740±0.3610 2.5820 -1.1180 

 

Using all the acquisition approach, the stats values about the correlation matrices created in this 

part are described in the Table 5.8. As happened to the In-House data, the mean z-values demonstrated 

that exist an inverse relationship between the mean z-value and the number of nodes in the atlas, and 
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once again it’s the 268 nodes atlas that has the lower mean z-value. Moreover, the mean z-values are 

higher in the case of the HCP data in relation to In-House data. 

5.4.2.2. Static Functional Connectivity 

The rs-fMRI in HCP has 1200 volumes, so the total number of matrices are 1200 for subject. 

But once there is two phases for each session, to each parcellation there is 240000 connectivity matrices 

with dFC information (1200 volumes x 100 subjects x 2 phases). One more time is showed in the Table 

5.9 some stats about the data present in the matrices. In this case only was created the dynamic 

functional connectivity for the Aal parcellation, due the same point mentioned previously, the lack of 

space. The datasets created with this type of information achieved easily the 30 GB.  

Table 5.9. Mean, standard deviation, maximum and minimum z-value of the dynamic FC matrices for each atlas and session 
using HCP data using all acquisition.  

 Session 1 Session 2 

Atlas 

applied 

Mean 

z-value 

Maximum 

z-value 

Minimum 

z-value 

Mean 

z-value 

Maximum 

z-value 

Minimum 

z-value 

Aal 0.2747±0.6926 1 -1 0.2691±0.6936 1 -1 

5.5. Deep Learning Application  

The objective in this method was to find optimal architectures and hyperparameters that, using 

functional connectivity features, could get good performances in subject’s classification tasks. Therefore 

it was tested two different Deep Learning models based in different types of layers the fully connected 

layers and convolutional layers, and in several architectures with diverse depths. Besides it was always a 

continuous search for the hyperparameters that fit better to the models created. The fine-tuning of these 

parameters is fundamental for the learning process to evolve and achieve the main objective, models 

with good generalization. So it was essential to create a way to study, compare and get a feedback from 

the developed models in order to make the right decisions towards the continuous improvement of the 

best performance models. The plan was to design a small framework working alongside of other methods, 

as part of a bigger framework that deals with functional connectivity extracted from rs-fMRI data with the 

final objective of creating “good” DL models with the respective validating measures.  

The Deep Learning framework was divided in two major parts, the models’ fine-tuning part and 

the final models, as is shown in the Deep Learning application represented in the Figure 5.1. As is 

evidenced by the figure and names, the fine-tuning part is responsible to adjustment of the model 
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continuously until it is approved to pass to the final phase. In the final phase the deeper tests are done, 

with increasing number of repetitions and saving the model and the performance values for future uses.  

The validation of each model is made manually, after analysis of the performance measurements 

obtained in the results. 

This part of the development is mostly based in the library package Keras and it was created four 

modules, the DL_keras, Keras_utils, Data_analysis, and Stats_data_module to generate, manage and 

analyse Deep Learning models. The first module comprehends the most important methods used in the 

final application, while the Keras_utils module has more methods to support the other modules. The 

Data_analysis and Stats_data_module are the modules that offer the different analysis functions to study 

the models performance and the classification results.  

5.5.1. Keras Package  

The Keras library[177], a powerful and easy-to-use Python package, was the main tool used in 

this method, once it offers a set of methods to develop and evaluate Deep Learning models. It is a library 

that was designed to be easy implementation, minimal, modular and easy to extend, features that made 

this library useful to fast developments and experimentations. This package used other Deep Learning 

designed libraries, such as the Tensorflow and Theano, and they provide to Keras the great capability to 

work with a diversified group of DL models. Their possibilities of to use the graphics processing unit 

(GPU), which have a great computational power, that decreases multiples times the time consumption in 

relation to the normal computation using central processing unit (CPU).  

The development of a model with this library normally follow the next steps: 

1 Definition – In this first step there is the construction of the model. Once the Keras 

models are defined as a layer sequences, the model has to be created by a set of layers 

added in an intended order. The layers used are Keras objects with different parameters 

that can be changed and be used according to the construction model. In the first layer, 

we must be careful to define the shape of the inputs, as well as, to define the correct 

nodes in the last layer, since they must be equal to the number of labels used.  

2 Compilation – In the compilation process, the model uses an intended backend DL 

library (e.g. Theano or Tensorflow) to create the representation of the define model, to 

prepare the network for training and to make predictions using a hardware (e.g. CPU or 
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GPU). In this step is defined the loss function to evaluate the weights and the optimizer 

algorithm used in the learning process.   

3 Fit/training – After the definition and compilation of the model, we are ready to begin 

the training process. So, in this method the training data is placed into input and if the 

validation is required a proper data has to be given. . In this step the number of training 

epochs and the batch size also has to be mentioned.  

4 Evaluation – In the last step of the process, it is used a dataset to predict and check 

the differences between the prediction and the true labels. It gives the error and the 

accuracy associated to this prediction.  

 In the construction and compilation process the Keras gives different objects, such as different 

types of layers, loss functions, initializers, activation functions, optimizers, regularizers and other. 

Furthermore, Keras provides several functions to configure the developed models, such as the weights 

and the architecture of each model. 

 The backend library used in the compilation can be adapted to the user preferences. Although, 

there is some alterations in some methods, the change of backend at any time don’t brings any problem 

in the computation of the process. We especially worked with Theano library, developed to optimize and 

evaluate mathematical expressions involving multi-dimensional arrays in an efficient way, that make this 

package a good tool for development of models[184]. We choose the Theano library: first of all, because 

it was used in the first Deep Learning models; the creator of this package published  recently a book 

about Deep Learning[98] and, finally,  was not find any significant differences in training times. Curiously, 

during the last year, this has been changing, since the TensorFlow had a rapidly growth with important 

improvements in the optimization processes. In other hand the group responsible for Theano package 

announced that theano development will stop. Now, it is advised to use the Tensorflow library as backend 

instead of Theano. The TensorFlow is an open-source library as Theano, developed for Machine Learning 

that can do numerical computation using data flow graphs[185]. To change the backend it is only needed 

to change the keras configuration file “keras.json” or define it in the python module where is the script.  

5.5.2. Models Evaluation 

5.5.2.1. Models Validation and Testing  

The model performance can not be only tested and demonstrated using the training data hoping 

that the model will generalize and perform well on real and unseen data. That is why we validated the 
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data to measure the stability of the machine learning, in order to get some guarantee that the model has 

learned the principal features from the data without extract too much noise, demonstrated by lower bias 

and variances. The values that demonstrate if occur or not the underfitting or overfitting problem inhibits 

the generalization process that emphasize the importance of model validation before the use in the final 

prediction test. The bias and variance are two sources of error that the machine learning application try 

to minimize, demonstrating if the supervised learning algorithms will generalize well beyond the training 

data. The bias are related to the erroneous assumptions in the learning data between the prediction and 

the correct value. In other words, it represents how much relevant features are, its relation in the data 

and if the model fits well or not. The high value corresponds to worst performances related to underfitting 

problem. The variance is the error caused by the normal variability of a model prediction, also used to 

measure the sensibility of the learning process to fluctuations that occur in the training set. In case of the 

variance being too high, means that the model learned to much noise from the data, so it is in overfitting.  

The most rudimental evaluation in the final of the training is the residual values. It estimates the 

final error for the model, also known as the training error. Despite of give us a first feedback of model 

performing on the training process, it does no demonstrate whether this model is in an underfitting or 

overfitting stage. Other methods are needed to validate and test the model performance. New techniques 

have been rising in answer to this need, as the hold-out and the cross-validation.  

The hold-out method was one of the first validation tools to appear and it is the most simple. The 

method divide randomly the primary dataset used to training into two datasets, the training data and the 

testing data, e.g. the validation data. The split is non-overlapping and can variate the percentage of the 

split, but the most important is the size of the training data that should not be too small in order to not 

compromise or inability the learning process. It is recommended a data split around 70% to 80 %. 

Therefore, the classification model uses the training data in the learning process and, only after that, the 

validation data is used to measure the difference between the prediction and the true values or labels. In 

the final it is possible to get the error associated to this model as well as the accuracy in the unseen data. 

So, there is a better approach in relation to the residuals analysis and it does not compromise much 

more the time and resources consumption. However, this approach continues to have some problems, 

especially because the model evaluation can presents high variance, since it depends of the training and 

test data features.  Therefore, was created a different approaches, normally known as cross validation 

techniques.  

The cross-validation is based in the same process of the hold-out, through the split of the data 

set into two datasets. However it can be applied to more subsets allowing the use of all the data in 



CHAPTER5. METHODS 

91 

different moments to train the model. Therefore there is no risk to loose important features. Further, the 

several splits done in the cross-validation process do not compromise the training and validation data, 

since provides enough data for both. Some examples of cross-validation techniques are the K-folds cross 

validation or the Leave-p-out or leave-one-one cross validation. In this particular work we used the K-folds.  

The k-folds cross-validation begins by dividing non-overlapping and randomly data into k subsets. 

The hold-out method is repeated k times and, in each time, one of the k subsets is used as validation set 

to testing the model, and the remaining k-1 are used to training the model. Therefore, in order to get the 

total effectiveness, the final error estimation is the average of all k test performances results. This method 

eliminates the problem associated with the division of the data, since all examples in the data set are 

used at least once to test and to train the model as k-1. The consequences are only positive if the bias 

and the variance are reduced. The majority of the studies preferred the k = 5 or 10, but it can be any 

value bigger than 1.It is important that each fold represents the whole data, so the amount of data  

indirectly  affect the K choose to apply in the cross-validation. Unfortunately, the cross-validation has a 

problem: once the training and test are repeated k times, it needs k-1, which means more computation 

and time consumption.  

The different validation methods are important to evaluate the model in the final of the training, 

so they are used as a tool to select the best model architecture and hyperparameters, what in machine 

learning it is known by fine-tunning of the model. After the validation process, is always made the final 

test using the test set using unseen data. This data should be a good representation of the data used in 

the training and validation process, to get a real performance as well as, should be original in order to 

not create a model that the learning process is already adjusted.  

In this work, the validation and evaluation had some adaptations due some classification 

specifications and data size. The principal classification task in this work was the fingerprint, in which the 

model training and testing data had some rules. The data used in each classification process was divided 

in two datasets corresponding to the different acquisition sessions acquired in different times. One dataset 

was used as training data and the other used as data test. The cross-validation was selected to validate 

the model in the fine-tuning, however this cannot be applied directly for both situation, in the static and 

dynamic functional connectivity for different reasons. 

In the static approach the major limitation resides in the small size of the dataset  by label 

(subject), since that was only one example for each class in the case of the In-House data or two in case 

of the HCP data (two acquisitions phases), which make this method impracticable. Once for any subset 

division, there are always labels that are only present in the training data and others that are only in the 
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validation data. Consequently, the labels present in the test data never enter in the training process that 

made the prediction practically impossible in the testing data. We already tested and the results confirmed 

our hypothesis. In order to solve this problem, we used different approaches. Firstly, a full dataset was 

used for training and the other was used for validation and testing. In the validation, data was split from 

the test dataset using a 25 % of the examples and the whole data was used to the data test that contains 

the validation cases. This limitation of course bring us some problems particularly with the model created, 

since it was adjusted to some features of the test data, which falsely improves the performance of the 

model. In order to improve the evaluation of this approach, the method was repeated 5 or 10 times, and 

the final performance was measured by the average metrics in training, validation and test process. The 

corresponding standard deviation for each situation also was computed to analyse the variance inside the 

results. This first approach was called as validation approach 1 in future uses, to be easier to identify 

it. Because our approach fails in data validation, it was created new approach. In this new approach, we 

maintained the same training data, however we used different datasets for the validation. To do that the 

time-series acquisition with a number of volumes was divided into two equal acquisitions that, after the 

preprocessing steps and the extraction process of the functional connectivity values, results in two 

datasets. One was used as validation data and the other as test data. The process of training, validation 

and testing also was repeated 5 or 10 times, in order to obtain more reliable results. This approach was 

called as validation approach 2. Relatively to the dynamic functional connectivity data, the labels have 

an ample number of examples to use in the cross-validation. As mentioned above (in the point 6.3.1), 

the cross validation for each k validation it was predictable. It is explained by the form that is extracted 

the dynamic FC. If the value extracted for each volume is similar and related to previous and next volumes, 

using the Deep Learning model, it will be easy to predict the testing data.  

 To other classification tasks with small labels, such as the gender classification, the cross-

validation is a good approach, where all the data from the two session can be combined and used to train 

the model.  

5.5.2.2. Performance Measures 

The performance measures are all the metrics used in the evaluation of the model in the learning 

process, with a training and validation data, and then analysed the generalization process when it is 

applied the test set. Once the performances measures are intrinsically related to type learning process 

and since there are two different learning tasks in Machine Learning, the classification and regression, is 

required the application of different measures tools adapted to each situation. In the classification 

problems the objective is to try to predict the discrete number of values, so the labels are normally in 
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categorical form and represents a finite number of classes. The task classification can be one of the two 

types: binary or multi-class classification. The binary classification is when are only two classes two 

predict, as for example if a person is sick or not, while in the multi-class classification there is more than 

two class labels to predict. In our case, we used the multi-class classification in the fingerprint application, 

where the objective is predict the real identity for a subjects group. Relatively to regression problems, the 

objective is to try to predict a continuous value in the output, for example use age to predict. .Thus, for 

each situation there is a set of different measures.  

 The first metrics analysed in the model are related to training. They are capable to show if the 

model has signal of learning. The classification can be checked by analysing the loss and accuracy during 

the training. The learning process is characterized by the decreasing of the training loss, that is associated 

with the simultaneously increase of accuracy. Normally, when the model has the capacity to learn, there 

is no difficult in create a model that learns all the features of the training data resulting in a very low loss 

function and 100 % of the accuracy. This great capacity to learn the training data, often becomes the 

model more prone to the overfitting problem, which is the opposite of our final goal. In order to classify 

the models training was created a set of metrics.  

The model training accuracy was analysed accordingly with the next values:  

 Final accuracy – The last training accuracy; 

 Accuracy in less 20% of the total epochs – The training accuracy for the model in the -20% 

of the total epochs made during the training process;  

 Accuracy difference (final -20 %) – The difference between the final accuracy and the 

accuracy with -20% total training epochs made;  

 Max accuracy – The maximum training accuracy obtained during the training;  

 Epoch first occurrence max training accuracy – The epoch corresponding to the first 

occurrence of the maximum training accuracy.  

 Validation accuracy corresponding to last point – The validation accuracy when happen 

the maximum training accuracy; 

 Accuracy difference – The accuracy difference between the maximum training accuracy and 

the corresponding validation; 

 Cost in the maximum training accuracy moment – The training accuracy when the first 

minimum training occurrence cost happened; 

 Validation cost in the maximum training accuracy moment – The validation cost when 

the first minimum training cost occurrence happened; 
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 Cost difference – The difference between the training cost and the validation cost for the epoch 

of the first maximum training accuracy occurrence.  

It was extracted the next information from the cost:  

 Final cost – The last training cost; 

 Cost in -20 % of the total epochs – The training cost for the model in the -20% of the total 

epochs used during the training process;  

 Cost difference (final -20 %) – The difference between the final cost and the cost in -20% 

total training epochs made;  

 Min cost – The minimum training cost obtained during the training;  

 Epoch first occurrence min training cost – The epoch corresponding to the first occurrence 

of the minimum training cost; 

 Validation cost corresponding to last point – The validation cost when happen for the first 

time the minimum training cost; 

 Cost difference – The cost difference between the minimum training cost and the 

corresponding validation cost; 

 Accuracy in the minimum training cost moment – The training accuracy when the first 

minimum training occurrence cost happened;  

 Validation accuracy in the minimum training cost moment – The validation cost when 

the first minimum training cost occurrence happened;  

 Accuracy difference – The difference between the training accuracy and the validation 

accuracy for the epoch of the first minimum training cost occurrence.  

The validation, is a tool that measure how the model generalize on new data, not used in the 

training and used in the fine-tuning, in order to find the best architecture and hyperparameters model. It 

is important to use a validation data before to extract some information about the results obtained, as it 

was done in this work. . It was created a set of metrics, based in the accuracy and in the cost validation, 

to classify the tasks created. The information extracted is similar with what was done before, which instead 

of to use the training data it was used the data validation.  

Finally, it is evaluated the real and final model performance in new and unseen data, known as 

the test data, in order to conclude whether a model predicts well or not, a particular task. In the 

classifications tasks were used one more time the accuracy and loss tests. The training process is tested 
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only at the end, which results in less information to manage. The information extracted, based in the test 

accuracy, is described as: 

 Final test accuracy  

 Accuracy difference between final training and final test  

 Accuracy difference between the best training and final test 

 Accuracy difference between the final validation and test.  

 Accuracy difference between the best validation and test.  

And in the case of the test cost is described as:  

 Final test cost 

 Cost difference between final training and final test  

 Cost difference between the best training and final test 

 Cost difference between the final validation and test.  

 Cost difference between the best validation and test.  

The final test has the objective to achieve the minimum loss test cost that it is usually associated 

with the best model accuracy. However, sometimes when is evaluated several models, the values are not 

completely correlated (e.g., maximum accuracy and minimum cost), which leads to take a decision under 

the differences and the importance given to each part. The generalization error, characterized by the 

difference between the training and test cost, should be as small as possible. That is why the calculus of 

the differences between the training and the test was done. But, importantly, in most of time the cost do 

not need the use of this difference, since the final training cost is so small (can be rounding to zero). In 

addition, if the values are similar between validation and test loss, we can conclude that the validation 

data is representative of the test data.  

In addition to all information extracted before, it was used a set of metrics to evaluate the test results 

and to get other performance measures. The metrics were described as precision, sensitivity, specificity, 

false positive rate, F1-score and area under the curve (AUC).  

The precision, sensitivity, specificity and the false positive rate are related to the different approaches 

done in the four parts present in a confusion matrix. In the Table 5.10  it is organized in two rows and 

two columns that reports the number of true positives, false positives, false negatives and true negatives,. 

This table allows a deeper and more detailed analysis when compared with a simple measure of the 

correct classification (e.g., accuracy). Since the accuracy do not take in account the cases where the data 

is unbalancing, which can lead to false and misleading results. The true positives and the true negatives 
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are correct predictions, while the false positives and false negatives are wrong predictions. However, 

accordingly with the classification problem the importance given to the wrong predictions, depends on 

what is more important to reduce (e.g., false positives or false negatives). The medical field is a real case, 

which it is more important to reduce the false negatives than the false positives. For example, a prediction 

of a false diagnosis for a disease when a subject is ill it is worse than a false positive, when a true 

diagnosis is done in a healthy subject. Besides the direct measures, using the different parts of the 

confusion matrix, it can be constructed several statistical performance measures. Including the accuracy, 

the precision, the sensibility/recall, the specificity and the false positive rate.  

  

Table 5.10- Correlation matrix in a table layout. 

  Prediction 

  Positive Negative 

True condition 
Positive True positives (TP) False negatives (FN) 

Negative False positives (FP) True negatives (TN) 

  

The accuracy a simpler measure already mentioned sometimes in this work and can be described 

as are in the Equation (15). Relatively to the other measures, there is the precision that quantifies how 

many of the positively predicted are relevant, and can be obtained as in the Equation (16). The sensitivity 

measures in how good a test is in detecting the true positive classes, and it’s calculated based in the 

Equation (17). The specificity is the contrary of sensitivity, wherein the objective is measure in how good 

the test is avoiding the false classes, so the true negative classes, as can be seen in the Equation (18). 

For last, the false positive rate, gives ratio/probability of a model wrongly classify the negative classes in 

a test, and is described by the Equation (20). The different statistical measures present here has the 

problem of lead to deceive the real model performance if they are analysed in separated. Some examples, 

the case of the precision, if the model in test only a few number of positive prediction to the more confident 

cases, it will improve the precision rate. Other example, if a model returns always true predictions, the 

sensibility will be maximum, although the model does not need any learning. Thus, during the analysis 

and evaluation of the final test classification is important take all into account. Besides, there is other 

measures that use the average of the other statistical measures. The f1-score is an example, and is a 

good tool to measure the test accuracy, and it’s nothing more that the harmonic average of the precision 

and recall (Equation (20)). The maximum score that could be achieved is 1, and only happen in the case 

of a perfect precision and recall while in other hand is 0 for the worst scenario.  
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ⁡
∑𝑇𝑃 +⁡∑𝑇𝑁

∑𝑇𝑜𝑡𝑎𝑙
 (15) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ⁡

∑𝑇𝑃

∑𝑇𝑃 +⁡∑𝐹𝑃
 (16) 

𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦/𝑟𝑒𝑐𝑎𝑙𝑙 = ⁡
∑𝑇𝑃

∑𝑇𝑃 +⁡∑𝐹𝑁
 (17) 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = ⁡

∑𝑇𝑁

∑𝑇𝑁 +⁡∑𝐹𝑁
 (18) 

𝐹𝑎𝑙𝑠𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁡𝑅𝑎𝑡𝑒

= ⁡
∑𝐹𝑃

∑𝐹𝑃 +⁡∑𝑇𝑁
 

(19) 
𝐹1⁡𝑠𝑐𝑜𝑟𝑒 = ⁡2⁡ ×

1

1
𝑟𝑒𝑐𝑎𝑙𝑙

+
1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

 
(20) 

For last it was used the area under an ROC curve (AUC) for measure the performance of the 

classification models. The ROC curve exhibited the true positive rate (e.g., sensitivity) against the false 

positive rate (e.g., 1- specificity) for different cut-off points of a parameter. So each point in the ROC 

characterizes a sensitivity/specificity pair corresponding to a particular decision threshold. The threshold 

is applied because is not easy to separate the two different populations: the true and negative classes. 

This creates a distribution of the test results as represented in Figure 5.12, where exist the overlap of 

negative and positives classes. Therefore it is necessary to select a cut-off to discriminate between the 

two populations, maximizing the examples: classified correctly as positive (e.g., true positives), classified 

wrongly as positive (e.g., false negative), classified correctly as negative (e.g., true negatives) and 

classified mistakenly as positive (e.g., false positives). 

 

 

Figure 5.12 –A demonstrative example of use of the threshold to distinguish the distribution of the true positive from the true 
negative cases.  

Besides the ROC curve to be a support tool to select the best cut-off value, also has the property of 

quantify the performance of the classification, and can also be used to compare two different classification 

models. The best classification occur when the classification can perfect discriminate the true and 

negative labels, that corresponds to 100 % sensitivity and 100 % specificity that translates in the plot as 

a ROC Curve that pass through the upper left corner. In other words, how much closer the ROC curve is 

to the upper left corner, better it will be the overall model accuracy. The area under the curve (AUC) is a 

method that measures the area below the ROC curve to get the overall accuracy of the classification 
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model. The AUC value variates between 0 and 1, and the higher values indicate better test performance. 

The different values obtained demonstrate the performance of the classification model behaviour 

interpretation of the model as is show in the Table 5.11.  

Table 5.11- Interpretation of the AUC values relatively to the classification performance[186].  

Values Model classification performance 

0,0 ≤ AUC < 0,5 Bad predictor 

AUC = 0,5 Random predictor 

0,5 < AUC ≤ 0,7 Little predictor 

0,7 < AUC ≤ 0.9 Moderate predictor 

0,9 < AUC < 1,0 High predictor 

AUC = 1,0 Perfect predictor 

 

Table 5.12 – An example of the computation of the micro, macro and weighted average precision for a multi-class 
classification with 2 classes. 

Class 1 

TP1 

FP1 

Precision 1 (P1) 

Number of examples /support (S1) 

Class 2 

TP2 

FP2 

Precision 2 (P2) 

Number of examples /support (S2) 

𝑀𝑖𝑐𝑟𝑜-𝑎𝑣𝑒𝑟𝑎𝑔𝑒⁡𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃1 + 𝑇𝑃2

𝑇𝑃1 + 𝑇𝑃2 + 𝐹𝑃1 + 𝐹𝑃2
 (21) 

𝑀𝑎𝑐𝑟𝑜-𝑎𝑣𝑒𝑟𝑎𝑔𝑒⁡𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡ =
𝑃1 + 𝑃2

2
 (22) 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑⁡𝑎𝑣𝑒𝑟𝑎𝑔𝑒⁡𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡ =
𝑆1 ∗ 𝑃1 + 𝑆2 ∗ 𝑃2

𝑆1 + 𝑆2
 (23) 

 

The different measures mentioned previously are designed and based in the binomial classification wherein the classification 
task has only two labels to classify. As mentioned before, in this work the principal classification task is multi-class once 

there is more than one subject to classify. Thus, it was used some approaches to get the global performance metrics, such 
as the micro, the macro and weighted average. In the micro-average method the values are individually sum up to the true 
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positives, false positives, false negatives and true negative. An example of the micro-average to the precision can be seen in 
the equation (20) inside of the  

Table 5.12. In other hand, the macro-average was only made to the average of the metric in analysis for each class, as can 
be seen in the example for the precision in the equation (22) in the  

Table 5.12. For last, the weighted approach that is an average that take account unbalanced datasets once in this method 
comparatively to micro and macro average the number of examples for each class is used in the method.  As example is the 

equation (23) in the  

Table 5.12. 

5.5.3. Models Fine-tuning Part  

The models fine-tuning begins by the design of the model architecture and the hyperparameters. 

Since this part is intended to compare different models topologies, the inputs not only accept singular 

values but also values in list form. The list inputs will be used to create all the combinations possible, 

creating multiple models associated a set of train hyperparameters. Therefore, all the inputs inserted 

under a list form will be, in practical sense, the variable in study in the test. 

5.5.3.1. Method Inputs  

The method inputs are a set of parameters that can be changed accordingly to the study, which 

can be adapted to the architecture type of the model or hyperparameters used in the training or even 

both. In order to better exemplification of which part, they will be explained in three parts, although in the 

method this division do not happened The first part includes the inputs used to create the convolutional 

layers that will be add to the model. Once the features used (the correlation matrices) are spatial data, it 

was implemented the convolutional module with 2D convolutional layers.  Thus, it was created a set of 

inputs to help the development of this type of layers:  

 convolutional_list_layers – It is the input that identify the number of layers and the number 

of features maps applied. The entry format is a list, wherein their elements are the number 

of features maps used in each layer. Does not have a default value.  

 conv_kernel_sizes – It is used to specify the length and the width of the filters used in the 

construction of the features maps, so the input entry must be tuple shape. Does not have 

default value. 

 conv_activation_function – It is an input that allow to specify the activation functions used in 

the convolutional layers. An entry value can be a single value wherein all the layers of the 

model is applied the same activation function, or a list of values where each activation 

function corresponds to layer of the model. But if the length dimension is smaller than the 
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number of convolutional layers, the layers where activation function is lacking, it is used the 

linear activation, the default activation. Has the linear activation as the default value.   

 conv_strides – It is an integer or a tuple of two integers used to specify the length and width 

stride made between two consecutive convolutional processes during the creation of the 

features maps. If the input is a singular value the stride is made in equal form for the two 

spatial dimensions. Has the tuple (1,1) as the default value.  

 conv_kernel_initializer –Input to specify initializer used to create the kernel weights matrix 

wherein the entry values are keras initializer objects. Has as default value the glorot uniform 

initializer.   

 conv_bias_initializer –Input to specify the initializer used to create the bias vector wherein 

the entry values are keras initializer objects. Has as default value the zeros initialization.  

 conv_kernel_regularizer – Input to specify the regularizer functions applied to the kernel 

weights matrix wherein the entry values are keras initializer objects. Has as default value the 

no utilization of any regularizer.  

 conv_bias_regularizer – Input to specify the regularizer functions applied to the bias vector 

where in the entry values are keras regularizer objects. Has as default value the no utilization 

of any regularizer.  

 conv_activity_regularizer – Input to specify the regularizer functions applied to the 

convolutional layer output, this is the final activation, wherein the entry values are keras 

regularizer objects. Has as default value the no utilization of any regularizer.  

 conv_dropout_rate – Input that permit to choose the use of dropout layers wherein the value 

inserted is a rate between 0 and 1 corresponding to rate pretended for the dropout layer. 

The entry value can be a single value or a list of values, where each element correspond an 

each layer of the model. But if the length of the list is smaller than the size of the model, the 

layers where dropout information is missing, it is assumed that will be not used dropout. Has 

as default value the no application of any dropout.  

 conv_batch_normalization – An input that the entry values are booleans values under list 

form or single values. If they are under list form, each element correspond to a layer in the 

model beginning by the input layer if not the batch normalization is equal for all layers. The 

batch normalization is activated of course if the value is true. It does nothave a default value.  

 Max_pooling_list - The entry value of this input is a list of boolean values where is possible 

specify which layers will implement the max pooling process. Once again, each element in 
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the list correspond to each layer of the model where will be inserted the max pooling layers. 

And if there is lack of information the default is not use the max pooling. It does not have a 

default value.  

 Pooling_size  - Input wherein is entry value is an integer or a tuple of 2 integers representing  

the factors by which each feature map will be downscale in height and width. If the input is 

only one integer, the two spatial dimensions are equal downscale by the same factor. Has 

the tuple (2,2) as default value.  

 Pooling_strides - Input to identify which strides values will be used in the max pooling process 

wherein the entry value is a single integer (the same as tuple of two integers where the value 

is the same) or a tuple of two integers. Has the stride (1,1) as default value. 

The second part are the inputs responsible for the customization of the fully connected layers 

module. In case of not being used the convolutional layers, the final model created is only constituted 

by fully connected layers. The layers are implemented using the class Dense from keras module and 

set of inputs to select the intended parameters for each layer which can be summarized in the 

following parameters:  

 list_layers_nodes – The input that defines the number of layers and the nodes by layer, in 

each element is a layer with the number of nodes equal to the element. This only select the 

hidden layers and the input and output layers depend in the input data and labels, 

respectively. Does not have default value. 

 activation_function – The input where is selected the activation function of the layers. The 

input entry is single or a list of activations functions. In the case of a list, each layer 

corresponds to an element of the list. The default value is the linear activation function.  

 softmax – In this input is possible choose if the output layer is a softmax or not, so the entry 

value is a Boolean value. The default value is not the use of softmax.  

 kernel_initializer – The input where is possible specify the initializer used in the kernel 

weights matrix and the entry values are keras initializer objects. The default value is the glorot 

uniform initialization.  

 bias_initializer - The input where is possible specify the initializer used in the bias vector and 

the entry values are keras initializer objects. The default value is the zeros initialization.  

 kernel_regularizer – The input that permit apply a regularizer function to kernel weights 

matrix and the entry values are keras regularizer objects. The default value is the no use of 

any regularizer.  
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 activity_regularizer - The input that permit to apply a regularizer function to bias vector and 

the entry fault values are keras regularizer objects. The default value is the no use of any 

regularizer. 

 batch_normalization – In this input is specify in which layers will add the batch normalization, 

so the entry format is a list of Boolean values wherein each element correspond to each layer 

of the model and it is added the normalization case the element is true. In case of the list 

length to be smaller than the number of layers in the model, the batch normalization will be 

not applied in the layers without information. It doesn’t have default value.  

 dropout_rate – This input has an entry a float or a list of floats, values that represent the rate 

of the dropout to apply, so they can vary between 0 and 1. In the case of the input be a single 

value, the dropout is made for all layers with the same rate. If it is a list, each element in the 

list corresponds to each layer model where it is going to be added the dropout layer. If the 

list and layers numbers does not coincide, the layers which do not have dropout information 

will not be added the dropout. The default value is no use of dropout in any layer. 

Finally there are the inputs related to the different parameters used in model training that are 

important to model optimization and the learning process, which are the following:  

 epochs – Input for the number of epochs used in the training, where the default value is a 

integer. The default value is equal to 2000 epochs.  

 batch_size – Input to specify the batch size used in the training, the default values is also 

integer. The default value is equal to 1.   

 learning_rate – the input to put the pretended learning rate used in the optimization algorithm 

and the default value is a float. It does not have default value.  

 optimizer – the input to specify the algorithm of optimization used in the training process, 

and the entry values are keras optimizer objects. It has the stochastic gradient descendent 

(SGD) optimization as the default value. 

 loss_function – input to specify the loss function used in the training process and the entry 

values are loss function keras objects. It doesn’t have default value.  

 early_stop – This input permit choose the use or not of the early stopping method, so the 

input values are of boolean type. The default value is no use of early stopping.  

 early_patience – In case of the early stopping be activate this input permit choose the 

number of epochs that the method use to stop if the validation cost not improve in this 

number of epochs. The default value is 1/5 of the number of epochs.  
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There is yet three inputs in the method that do not required to be changed, however it is possible 

if necessary. The three inputs are: 

 metrics_list - This variable represents the list of metrics that want to be evaluated by the 

model during the training and testing. The metric used is the ["accuracy"], the cost is the 

metric by default, so actually there is always two metrics.  

 n_inputs – The number of nodes or features maps in the input layer, this value is obtained 

directly from the object of the used dataset.  

 n_outputs - The number of labels to classify and, the information obtained from the object 

meta-information of the used dataset.  

The default values mentioned all long the inputs description are the values used in the case that 

the input value is null. The resulting model from their combination is simple model but with some capacity 

to deal with functional connectivity values under array or matrix for classification tasks. In other hand 

there is the inputs without default values that have always be mentioned to create a model. The default 

values can be changed in any time, since the method gives the default values. 

5.5.3.2. Models Combinations Test  

After the introduction of the different inputs it was used the 

“normal_validation_select_hyperparameters_final” or “cross_validation_select_hyperparameters_final” 

depending in the validation procedure used, traditional validation or cross-validation respectively. All 

methods use all inputs to create all possible models for them.  

 The methods begin to check each input that are a singular value or list of values right for the 

input and transform or make some adjustments if necessary, finishing with each input inside a list. During 

this process if the input is null and has a default value, it will be replaced. The final result is a dictionary 

that contains all the inputs, whose will be created all the possible combinations, once the main objective 

is compare the performance between different models. But this is not mandatory, there is the hypothesis 

of test only one model each time. The combinatory process is divided into three parts as mentioned in 

the methods input. This because the combinations of the convolutional layers depends in the number of 

convolutional layers implemented and the fully connected layers in the number of non-linearity layers 

used. Each three major inputs parts will firstly combine independently and only after will be combine 

together. In order to help to inform which combinations will be made, it is presented the information of 

the combination relative to each part, such as convolutional layers, fully connected layers and train 

parameters, with the respective total combinations number for each part and total. After this, begins the 
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model creation, training and validation for each combination present in the combinations set. The model 

constructed is based in the Sequential class from keras, where is added the convolutional layers, fully 

connected layers and the train parameters according the information provided in each combination. After 

the model be built and train parameters defined is outputted an information summarized of the model 

where are described the layers and the parameters by layer, and only then the train begins. During the 

training wherein there is the optimization of the model in order to verify the evolution of the process are 

outputted a set of metrics in each training epoch. First, the accuracy and loss for the training data and 

then to the validation data. As soon as the training is over, consequence of the total number of training 

epochs be fulfilled or caused by the activation of early stopping process, all the metrics produced are 

saved in a dictionary for future use. To each model is given a unique id to be easier identify the model 

created during the analysis of the evaluation metrics and plot results. Moreover, it is a saved an image of 

the model architecture (e.g., the model layers) with the id of the model in a default temporary folder that 

in the final of the method will be transferred to the final results folder.  

This was the normal process for the traditional validation implementation but there is some 

modifications relatively to cross-validation. In both traditional and cross validation for each combination 

create, train and test a model, however the cross-validation depends on the number of k folds used. All 

the training results are the average of all values obtained in each training. In order to help to find the 

differences in the results inside the training also is computed the standard deviation.  Also, the metrics 

are used to test the model in the final of each training subset, when the average value of all tests are 

used as metric to validate the model performance. So this values are computed as well as the respective 

standard deviation.  

 After all, the created models are trained and validated, resulting in two lists: one serializable and 

another no serializable.  

 The serializable list contains for each combination: 

 Id; 

 The combination serializable; 

 The dictionary with all the metrics results.  

The list is in a serializable state to be possible save it, once there is some inputs that are keras 

objects that cannot be saved in the normal state. So, it was used a method to serialize any input if 

necessary. To solve the problem with the keras objects, it was was extracted the class and the 

configurations of the default class of the object and saved in a dictionary.  
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To the management of this list of results was created the class combinations_results in the 

Keras_utils module. Therefore, after this method be finished, the first process made is the addition of the 

new serializable list into a combinations_results object that acts like a repository that will be indispensable 

for future combinations analysis.  

The list not serializable for each combination contains: 

 Id; 

 The combination not serializable; 

 The dictionary with all the metrics results;  

 The path for the temp folder with the model architecture plot. 

This list of results is created to be used in next analysis methods. 

5.5.3.3. Combinations Models’ Analysis  

This part has as objective to help to evaluate and to analyse which are the best model 

architectures and hyperparameters, this is names as the fine-tuning process. The method created that 

implement all the analysis processes was the “final_train_combi” from Keras_utils module, and it was 

used both lists produce before. The input needs to know which are the base directory where will be saved 

the different results. Moreover, it is necessary the training, validation and test data in order to proceeds 

if wanted to the final part where there is the creation, training and test of the final model. All the results 

produced during this method are placed in a folder named “combinations”, since there are results of the 

combinations part analysis. Then depending of the types of validation used it can be inserted in the 

“Cross_validation” or “Normal_validation” folder (Figure 5.15).  

The method use two classes to manage the results from the Keras_utils module, one was already 

mentioned before the “combinations_results” and the “plots_results”. The “combinations_results” class 

saves the list of results serializable that works like a results repository. Each results list is save individually 

in a file since can have large dimensions. Also, another file is saved that contains a dictionary with the 

file names, which contains the results, are the key and the combinations id are the value. This 

organization becomes easier the management and the retrieving of results. The class has also the method 

“menu_interactive” that allow  to see the existent combinations results in the repository and even analyse 

any in particular. The data produced in this method is inserted in a folder named “Library_results” which 

is in the combinations directory (Figure 5.15). The other class “plots_results” manages the different 

results and supports the different analysis methods. This class is important to identify which combinations 

group is new or has already been tested. If a set of combinations are not saved in this class, it is given to 
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them a new result name that stays associated to the group combinations. Also it is given a name of 

“test1” to results that comes with combinations, once they are the first results for this combinations set.  

In other hand, if the combinations group already exist in the object class, it is verified how many 

tests were already made and only then created the new name test accordingly with the number of tests 

that already exist. In order to manage it, the object   uses a dictionary as the attribute name of 

“dic_results” where is saved for each key, the results name and as value a list. Which in the first element 

contains the description of the combination set and in the second element the list of the names tests that 

already exist for that combination set.  

Moreover, the object uses another dictionary with the name of “dic_id_combi” that has as key 

the result name and as value a dictionary, which has in the key the tests names, and in the value a list 

with the ids combinations present in that test.  

All object attributes with dictionaries as values have to be updated when is added new results to 

object, so the method that adds new data is fundamental to the object consistency. Therefore, to prevent 

this problem is always tested in the object if the combinations group already exist and only then are taken 

the update actions in the dictionaries. Besides that, the method that adds new data has the function to 

organize the different results folder and to create a materials set in order to support the analysis process. 

The method uses a folder in the combinations directory named “Stat_results”, where for each results 

name is associated to a combination set, and it is created a folder with the same name (Figure 5.15). 

Thus, the analysis resulting files and the results information files produced in this method as well as the 

architectures combinations plots of the test could be put in its own test folder. The method create a file 

about the combinations in the test: 

 csv_information.csv – this file has the training and validation results for each combination 

order by the test accuracy achieved by each one.  

In addition, the method also transfer the plot of each combination model architecture saved in a 

temporary file during the creation and testing of the models to the test directory along with the other 

analysis files. To finish, the method also provides for each combination two plots saved in the respective 

belonging test directory. One of the plots has the accuracy and the other the cost training and validation, 

during the training. The Figure 5.13 is example for the plot cost and the Figure 5.14 for the accuracy 

plot. 

After all the different files are saved, the direct purpose of the “plots_results” class is finished. 

However, the analysis method is not finished yet, there is other method that creates other material to 

analyse the combinations results set, “create_csv_average_tests”.  
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The “create_csv_average_tests” it is a method that computes the average of the performances 

measures done over each test in the results set. These are the final performances that will be used to 

study and to compare the combinations. Besides the average values, also is computed the standard 

deviation associated to each metric, to more correct analysis and evaluations. Besides the results are 

demonstrated in descending order by the validation accuracy and there is the description of each 

combination. Again, it is used the object produced by the “plot_results” class to get the combinations of 

the tests set that belongs to the result in analysis. And then the training and validation is got for each 

combination from the object created using the class “combinations_results” that works like a results 

repository. The file name results of concatenation of “stats_average_” with the result name in analysis 

and “.csv”, in the “Stat_results” directory (Figure 5.15).  

As an example with two result: results_1 and results_2, where each one has 2 tests, the 

organization structure is summarised in the Figure 5.15.  

In the final part there are the option of use an interactive menu that gives some features about 

the combinations made. The method shows the combinations made and give the option to choose one. 

After that, there are several options, such as: see the accuracy and cost plots of the training and validation; 

the model architecture and train parameters; the display of the plots with the accuracy and cost, in 

training and validation for the combination in analysis and any other combination and pass to the next 

part in the construction of the final model. 

 

 

 

 

 

Figure 5.13 – Plot example with the training, validation and 
test cost during a training process. 

Figure 5.14 - Plot example with the training, validation and 
test accuracy during a training process. 
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Figure 5.15  – A demonstrative example of the data organization, files created and classes as well as other methods 
involved in the models fine-tuning part. 

5.5.4. Final Models Part 

This is the final part of global architecture (Figure 5.1) designed to create, analyse and save the 

final models with the best parameters and architectures. The major class in this part is the 
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“sequential_model” present in the DL_keras module. It is responsible for create an object that represents 

a model. This model has a set of attributes important to the definition of the model. The first is the “id” 

to be easy to get the model from a repository or identify it. Then has the “version”, the version begins in 

1 and increases nominally with the number of training processes made over the model. Since a model 

can be trained more than once, the weights and bias parameters are the resulting values from the last 

training. Then it has the “model” attribute where is saved the model object from keras that contains all 

the model: layers, weights and bias parameters. Also has the “best_model_param” attribute that has the 

best weights parameters for the model, wherein it is saved the best model parameters that occur during 

the training. The reason why the best model parameters are saved it is because the final model obtained 

during the training cannot be the best occurred. The initial weights and bias of the model are saved in 

order to be used in the future. Therefore was used the “initial_weights_bias” attribute to save this 

parameters. In addition was used the “type” attribute, which describes the type of the model, for example 

if it has only fully connected layers or if it also has convolutional layers.. The creation process can be 

made in two different ways: one is adding a Keras object layer in each time, in which is possible to identify 

the layer index in the model, and method that uses the same inputs combination structure to define the 

architecture and hyperaparameters.  

After the model be defined could proceeds to the model train, validation and test. Processes that 

can be made in two different ways and so they have different methods to do it. One was already mention 

in the last paragraph of the combinations section. In final process when is showed an interactive menu 

can be chosen the option to proceeds to the final test for a specific combination of the combinations set. 

In this process the last model use the same architecture and all parameters of the combination in 

analysis. But there is other values that can be added such as the learning rate update factor. Besides it 

is also possible to select the number of constructed and tested models, important to get the average 

performance metrics, and a threshold value between 0 and 1, that will be used further in the final analysis. 

Using this way is not need to mention the type of validation used, normal or cross-validation, since it will 

be used the same validation approach applied to the combinations part. The other way is little different 

and it is implemented by the “final_train” method. First of all, it can be done when wanted, not being 

obligated to follow the process. Then the model architecture, model and training hyperparameters could 

be selected according to intended. The inputs are similar with the ones described in the combinations 

inputs section, with exception of the learning rate updating, the analysis threshold (between 0 and 1) 

used in the final analysis and the number of models created using the defined inputs (repetitions of the 
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tests). Once the method is not capable to know if it is to use the normal or the cross validation, this 

should be manually selected.  

It is important to refer that in the both parts of Deep Learning application, the models are not 

created with a seed associated to the initializers. In this way it is possible to obtain a large set of results 

performances, with the variance of the different models with the same architecture and parameters. In 

other words, this approach get a richer miscellaneous performances about the hyperparameters chosen.  

 

5.5.4.1. Final Results And Analysis  

After ending the training, validation and test it is used a set of methods to do three major 

processes. The first one save the models and its results, the second compute the metrics for the new 

results and the third make the final analysis to the new classifications. All the results are saved in a folder 

named “final” that is in the base directory. Then, depending of the validation approach, they can be 

inserted in the folder “Cross_validation” or “Normal_validation”, which will be mentioned during the 

manuscript as validation folder.  

To save the “sequential_model” object was created other class named “LibraryNN_Keras”.  

These class is used to manage the objects, including to do the correct storage, the retrieving and provide 

a different features to select models. The data of creation also is added to the model, in order to be easier 

to identify the interested model during the selection process. This repository object, creates a folder 

“NNS” that contains a file for each object model saved as well as a file that ensures the management of 

the different files.  

Relatively to the results they are saved in different ways and classes. A dictionary with all the 

metrics obtained in the training, validation and test, and meta-information about the “sequential_model” 

and the data used, such as id, version and size of the training, validation and the test data, is saved in a 

“results_repositorium” object. Object that is created in the validation folder with the name of “Results”. 

Using this object a user can rapidly get a result of an intended model by the “sequential_model” id. 

Besides, the class provide other methods to select a model, where are showed the models order by the 

test accuracy and data creation. Then, also was used two results lists as was described in the 

Combinations Models’ Analysis, however the not serializable list adds the output result to test data. One 

of the list has the results serializable to save, and other no because is used especially to results analysis. 

In this part, despite of the all analysis process made in combinations part with the combinations_results” 

and the “plots_results” class as well as the method “create_csv_average_tests”, it was done other 

analysis processes.  .  
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First for each test made was created the next files, placed in the folder “Stat_results”, using the 

name “test1” as example:  

 test1_results_info.txt – it is other file that also has the training, validation and test results, 

but in this case it was only  presented some of the most important metrics in an informative way 

for a faster reading and analysis. 

 test1_classification_stats_info.txt – this file is not to help in the analysis but to support 

other methods, which contains two dictionaries. One contains the value of correct classifications 

achieved for each label, and the second has all number of possible correct classifications. This 

information will be essential for future methods analysis in the construction of the classification 

report.  

Secondly other materials are created by the “create_classification_csv_stats_info”, and 

“create_csv_classification_report_result” methods.  

The “create_classification_csv_stats_info” method produces two “.csv” files to help the analysis 

in how the correct classifications are distributed over the labels. The difference between these two files 

resides in the analysis approach. One analyses the global values for a result number and each test 

included in it, named as the concatenation of the result name in analysis more “-

classification_stats_info.csv”. The other considers the values obtained for all results, showing also the 

values for each result, and it’s saved in the “overall_results_classification_stats_info.csv” file. In each 

file with the approach variants has the absolute frequency, the maximum absolute frequency and the 

relative frequency for each label. In order to help in the analysis process the results are displayed in a 

descending order by absolute frequency. The method use the class plot_results to know the tests existent 

in the results in analysis and the information from the file mentioned previously 

“_classification_stats_info.txt”.  

Finally the method “create_csv_classification_report_result” that creates the classification report 

for all tests set that share the same combinations set, this is a result that contains a series of tests. What 

is done is the computation of the average values of precision, sensitivity, specificity, false positive rate, 

f1-score and AUC for each label and the micro, macro and weighted average of each average metric for 

all the labels, using the metrics of each test in result in analysis. Also standard deviation was computed 

for each metric. To support this method is used the class plots_results to get the combinations id of the 

combinations in the test analysed. Moreover, it is used the dictionary “dic_stats_results” to get the 

performance metrics of each test in the result folder. The classification report method itself also was 

provided by module constructed for the purpose of support analysis, called Stats_data_module. The file 
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is created in the “Stats_results” and the name is the concatenation of the results plus the “_classification 

report.csv”. 

Also the meaning of each result as test is different, since in this case each result is associated 

with a specific model architecture and a set of hyperparameters, and not a combinations set. Per test is 

created a new result named with a numeric value that corresponds to the number of times of repeated 

training, validation and tests procedure done. 

After the threshold be stablished by the user, the analysis are done in three different levels. The 

basic procedure begins with getting the correct predictions and the maximum number possible of correct 

classifications for each label, made by a model. After, the relative frequency is calculated and two sets 

are done, accordingly with the value: if it is above or below to the threshold. . Then for each group are 

calculated a metrics set, such as minimum, maximum, the average and standard deviation over all the 

functional connectivity values of the labels. Besides is saved the plot with both values group in a 

histogram. To get the necessary information is used a file (test + “_classification_stats_info.txt") created 

for each test that contains a two dictionaries, one with the correct predictions for each label and the other 

with the possible maximum number of correct predictions for label. Using this method, the approach can 

be done in different levels. This method is initially applied to each test and afterwards used to compute 

each result as well as all the results of the different tests. The different results are placed inside of a 

“Final” folder that is inserted in the validation folder. All different analysis of tests and results are located 

in folders accordingly with the variable in analysis, the test and the result. These explanation is described 

in the Figure 5.16. 
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Figure 5.16 - A demonstrative example of the data organization, files created and classes as well as other methods involved 
in the models fine-tuning part. 

5.6. Fine-Tuning The DL Models’ Parameters  

The Deep Learning application begins with the creation of Deep Learning models and with the 

fingerprint classification task. It was divided in two parts accordingly to the source data: In-House data 

and Human Connectome Project (HCP).  

 For both, the first approach was to find the simplest models and verify which hyperparameters 

are the best to work with. After this point, we goes through more complex models , by increasing the 

depth model or adding convolutional layers, due the bigger difficulty in the fine-tuning the right 

parameters. Our first research approach was to create a fully connected layers to add convolutional 

networks later. The parcellation used to study the different parameters was the 50 nodes (93 nodes), 

since it achieved the worst performance value in  re-test of the fingerprint article (in [19]). In this way 

there are more space to improve. The parcellation creates smaller correlation matrices with less features 
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to feed the models which make the models lighter in relation to others created with parcellations with 

more nodes.  

The tests were divided in several parts. The first one, and maybe the principal, was the search 

for the best model resulted from the combination of best activation function, loss function and learning 

rate. This because there are an important relation between the activation and the loss function in the 

learning process. Besides that with the addition the learning rate (lr) there is other variable that act upon 

the process learning in the way that happens. If the lr is too high or too low, the learning process will not 

occur and it can wrongly suggest that the problem is on other parameters when it is false, leading to the 

elimination of that possibility. So, it is fundamental to see how the results change with the learning rate. 

Then it was study the optimizer (learning algorithm), batch size, the initializers of weights and bias. When 

the process ended, were made new tests in order to increase the depth of the model. In the last step, we 

used t methods to improve the generalization and reduce the overfitting, where are included the 

regularization, dropout and batch normalization if is used a batch size greater than 1. It was not possible 

to study all the hyperparameters, since it is timing immeasurable.  

Briefly, the steps followed are described:  

A. Joint tests with models’ parameters – activation and loss functions, and learning rate.  

B. Separated tests for models’ parameters – optimizers, batch size and initializers.  

C. Change/Increase the models’ depth. 

D. Use techniques/ methods to reduce overfitting – Regularization, dropout and batch 

normalization. 
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6. RESULTS AND DISCUSSION 

6.1. Classification Based in Pearson’s Correlation Similarity as In the Article 

“Functional Connectome Fingerprint: Identifying Individuals Using 

Patterns of Brain Connectivity”. 

In the article the process applied to compare matrices was the similarity based on Pearson’s 

correlation. During the process is made the Pearson’s correlation for each subject using the subject’s 

connectivity matrix of a session - the target matrix, with each existent connectivity matrix of other session 

- matrices as database. Then it is only chosen the matrix with maximum correlation value. If the subjects 

of this matrices of this maximum value are the same, the classification is correct, so the classification 

score obtained is 1. If not, it is 0. In test was used two different datasets mentioned in this work, the HCP 

and In-House data. The type of FC tested was the static.  

6.1.1. HCP Data 

The results of accuracy by parcellations are presented in Table 6.1. 

Table 6.1. Table of accuracies in descending order for each parcellation and session prediction using the HCP data. 

Predict session 1 Predict session 2 

Parcellation  Value Difference Parcellation  Value Difference 

150 nodes 0.840 0.000 150 nodes 0.835 0.000 

100 nodes 0.800 0.040 268 nodes 0.770 0.065 

268 nodes 0.765 0.075 Freesurfer 0.760 0.075 

Freesurfer 0.745 0.095 100 nodes 0.755 0.080 

50 nodes 0.655 0.185 50 nodes 0.700 0.135 

AAL 0.490 0.350 AAL 0.590 0.245 

 

The maximum accuracies obtained were using the parcellation of 150 nodes for both sessions 

prediction, but was predicting the session one that was obtained the greater value about 0.84 although 

the accuracy in session two was almost the same once the difference was only one real case (see Table 

6.1).  
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Analysing the results by the number of regions present in the atlas, it can be easy verified that 

the accuracy order is pretty much related to the number of regions of atlas. Even more when the analysis 

is one by the atlas type (e.g., structural or functional), wherein the order is completely maintained by 

descending order of the nodes number. In general, the AAL atlas has the worst performance, even in 

relation to the 50 nodes atlas (93 total nodes) with fewer nodes. This could lead to the conclusion that, 

for over the same number of regions, the functional atlas could have better performances. But the 

Freesurfer, the other anatomical atlas, achieved better results than 100 nodes (184 total nodes) atlas 

with more number of brain regions (24 more exactly) (in Table 6.1).   

For a more accurate analysis, it was also analysed the values of correlation obtained during the 

prediction processes. And for all the predictions, it was verified that exists a significant difference between 

the correlations’ average values for the correct and incorrect classifications (see Table 6.2). 

Table 6.2. Mean, Standard Deviation, Max and Min of the correlations values in the correct and incorrect classifications and 

respective difference for HCP data. 

  Correct classification  Incorrect classification Difference 

Average value  0.631 0.583 0.048 

Standard Deviation  0.095 0.09 0.005 

Maximum 0.868 0.765 0.103 

Minimum 0.331 0.297 0.034 

 

So, a correct classification is intrinsically dependent of the correlation value obtained during the 

process, where greater values of correlation have higher probably of be classified correctly.  

Now analysing the difference mean correlation values for each atlas, it is possible to conclude 

that the parcellation has either a relation with the difference correlation value amount. Where atlas with 

more nodes are associated in general to larger values, which means that exist a linear positive behaviour. 

So, once the accuracy has the same behaviour, the amount of difference intrinsically correlated with the 

accuracy (see Table 6.2).  
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Table 6.3. Differences table of correlations mean values between correct and incorrect classification for predict session 1 

and 2, in descending order. 

Predict session 1 Predict session 2 

Parcellation  Value Difference Parcellation  Value Difference 

150 nodes 0.073 0.000 150 nodes 0.089 0.000 

100 nodes 0.070 0.003 100 nodes 0.074 0.015 

Aal 0.070 0.003 268 nodes 0.059 0.030 

268 nodes 0.066 0.007 Freesurfer 0.047 0.042 

Freesurfer 0.062 0.011 50 nodes 0.038 0.051 

50 nodes 0.044 0.029 Aal 0.033 0.056 

6.1.2. In-House Data 

Table 6.4. Table of accuracies in descending order for each parcellation for each session prediction using the other session 

using the In-House data. 

Predict session 1 Predict session 2 

Parcellation  Value Difference Parcellation  Value Difference 

150 nodes 0.342 0.000 150 nodes 0.342 0.0000 

100 nodes 0.316 0.026 268 nodes 0.303 0.0395 

268 nodes 0.316 0.026 100 nodes 0.289 0.0526 

Freesurfer 0.263 0.079 Aal 0.276 0.0658 

Aal 0.250 0.092 Freesurfer 0.250 0.0921 

50 nodes 0.237 0.105 50 nodes 0.237 0.1053 

 

Once again, the best results occurred for the 150 nodes atlas, 0.342 for both predictions, and 

still reasonable to note that the number of nodes continues to have a positive linear relation with accuracy 

values. Although, the AAL atlas stands out in both cases. In predict subjects from session one it had the 

same accuracy as the 268 nodes atlas and in the session two it got better more result than the 100 

nodes atlas, atlas with much more nodes. This can show for now that the rs-FMRI from In-House data 

has better results with anatomical atlas than other functional and more specific atlas. Although the results 

of the Freesurfer, the other anatomical atlas with more number of nodes, didn’t have better results than 

other functional based atlas with a similar number of nodes, and even stayed below AAL performance 

(see Table 6.4).  
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Once more, analysing the average correlations values for correct and incorrect classifications, it 

was verified that the correlation value affects positively the classification result. And again, the difference 

between the two situations was significant, even more than for HCP data. Moreover, comparing the values 

obtained by the two data, HCP and In-House data, it’s easily discernible that the values in In-House data 

was very lower comparatively to HCP data. Therefore, the amount of correlation value also is correlated 

with the average accuracy over the dataset (see Table 6.5).  

Table 6.5. Mean, Standard Deviation, Max and Min of the correlations values in the correct and incorrect classifications and 

respective difference for In-House data. 

 

An analysis of the correlations values for each atlas separately, it demonstrates not very 

noticeable that the number of nodes can induce the difference between the correlation values for the two 

situations. And in turn, it also has relation with the finals accuracy results, wherein the Aal Atlas stands 

out once again, showing that is a relation between the difference and the correct classification (see Table 

6.6).  

Table 6.6. Table of differences correlations mean values between correct and incorrect classification for predict session 1 

and 2, in descending order, using the In-House data. 

Predict session 1 Predict session 2 

Parcellation  Value Difference Parcellation  Value Difference 

268 nodes 0.094 0.0000 268 nodes 0.092 0.0000 

150 nodes 0.089 0.0050 150 nodes 0.075 0.0169 

Aal 0.088 0.0057 Aal 0.073 0.0187 

100 nodes 0.086 0.0080 Freesufer 0.071 0.0208 

50 nodes 0.071 0.0234 100 nodes 0.064 0.0272 

Freesurfer 0.064 0.0299 50 nodes 0.051 0.0407 

 

6.1.3. Compare the Results HCP Data and In-House Data  

  Correct classification  Incorrect classification Difference 

Average value  0.464 0.394 0.070 

Standard Deviation  0.082 0.089 -0.006 

Maximum 0.650 0.625 0.025 

Minimum 0.271 0.190 0.081 
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In overall, the performances results in In-House data were much lower comparatively to the 

results of HCP data. It is only needed a brief analysis to the interval’s values, which to In-House data is 

[0.237; 0.342] and to HCP data is [0.630; 0.840]. This gap between the dataset can be explained simple 

by the different quality of the data caused by the different magnetic field of the acquisition machine, as 

proved in [187]. But, in both, the parcellation exhibits a strong relation with the accuracy results, where 

the increase of the nodes number the classification performance also increases. Other key point is related 

to AAL atlas, with the HCP data it had the worst results, but with the In-House data it was the opposite. 

Their results were above others with parcellations with many more nodes. As referred, this can be 

explained by taking into account the type of atlas: anatomical or functional. Furthermore, the in In-House 

data, which had the worst acquisition parameters and machines, such as the magnetic field, 1.5T instead 

of 3T, and when the brain regions are divided anatomically maybe it could extract better features for 

subjects’ classification. Besides that, the functional atlas was created based in fMRI volumes acquired in 

3T, being one more reason for this gap between the two datasets. Although, this can be a solid conclusion, 

since Freesurfer’s results didn’t have the same behaviour. But again, the brain regions division could not 

the more convenient for in In-House data (see Table 6.1 and Table 6.4). The accuracy results for each 

dataset were a little better for predict subjects of session 2. Moreover, there was no found significant 

differences between the predict session one or session two for each data case although the interval that 

divides the sessions’ acquisition was different: one year and half instead of one day (Table 6.7).  

Table 6.7. Average of accuracy values by session prediction and data used. 

 Predict session 1 Predict session 2 

HCP data 0.740 0.742 

In-House data 0.287 0.283 

 

Then, analysing the correlations values, it is possible to verify that the values of HCP data are 

higher than In-House data’s values, with similar standard deviation. The values are even disjointed; the 

interval of values doesn’t superpose (see Table 6.2 and Table 6.5). Besides that, it was possible to 

observe that smaller difference correlations values between correct and incorrect predictions are 

associated to best accuracy results when it is only compared between the two datasets. However, in spite 

of the average of correlation average difference has a negative relation with the accuracy, analysing the 

value associated to each parcellation and the accuracy results is quickly verified that happens the 

contrary. So, on the overall it is not possible to take a solid conclusion about how the amount of correlation 

average difference has influence in the final accuracy (see Table 6.3, Table 6.6 and Table 6.8).   
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Table 6.8. Average of Pearson’s correlation average differences between correct and incorrect classifications and the 

correspondent standard deviation for HCP and In-House data, prediction the session 1 and session 2.  

HCP data 

 Predict session 1 Predict session 2 

Mean of correlation mean difference 0.064 0.057 

Standard deviation 0.0097 0.0199 

In-House data 

 Predict session 1 Predict session 2 

Mean of correlation mean difference 0.082 0.071 

Standard deviation 0.0108 0.0126 

 

Lastly, it was verified how the subject’s classification occurs inside the correct situations. For that 

was studied for each subject how it is the average of correct classifications taking into analysis all 

predictions or both predictions in each parcellation (predict session 1 and predict session 2). These 

results show interesting fact, that there is group in both situations that are easily to classify. The results 

demonstrated that inside the correctly classified group a subject is more 50% of the times correctly 

classified for both datasets. In the case of HCP, the percentage is 72.71% in all predictions and 69.5% in 

the full parcellation prediction, larger comparatively to In-House data, 52.8% and 65.3% (see Table 6.9).  

Table 6.9.  Average values, standard deviation, max and min, of correct predictions for each subject. 

HCP data 

 All predictions  Predictions by parcellation 

Average value correct classifications 17.45 /24 (72.71%) 8.34 /12 (69.5%) 

standard deviation  5.41 2.95 

MAX 24 (max) 12 (max) 

MIN 2 1 (min) 

In-House data 

 All predictions Predictions by parcellation 

Average value correct classifications 6. 34 /12(52.8%) 3. 86 /6(65.33%) 

standard deviation  4.00 1.87 

MAX 12 (max) 6 (max) 

MIN 1 (min) 1 (min) 
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6.1.4. Comparing with the Results of the Article “Functional Connectome 

Fingerprinting: Identifying Individuals Using Patterns of Brain Connectivity”  

 

Appling the 268 nodes atlas[50] and using all region timeseries to get the functional connectivity, 

the accuracy rate was 117/126 (92,9%) and 119/126 (94,4%) for respectively pair target-database 

session 1-session2 and session2-session1[19]. Our test got worst results: for HCP data was 76,5% and 

77% and for in In-House data was 31.6% and 30.3%, corresponding to pairs target-database session1-

session2 and session2-session1. Just a brief review to conclude that the values are very distant from the 

article results. Although a recent article [187] also tried to replicate the method of classification in a own 

dataset, and the accuracy values range was 42% - 55%. But in other hand they achieved better results 

when using a larger HCP data with 900 subjects. 

In the case of HCP, despite the data belongs to the same online project and to be acquired with 

the same image and RMI machine parameters, the processing done by the researchers in the article 

could not the same as ours. Besides that, the set of subjects is not the same, since the release from the 

article no longer exists. Reasons that are supported with the article [187]. But the more likely reason it’s 

the pre-processing steps and the parameters used, especially the temporal filtering since some tests 

demonstrated that it eliminates some important signals used in the classification. However, these reasons 

cannot be enough to explain the great difference so in the results. 

The performance results of In-House data was very low but there was expected, since the data 

was acquired with RMI machines with smaller magnetic field value, more exactly 1.5T instead of 3T. 

Thereby the fMRI has no so much quality and there is more noise that can make more difficult identify 

the real subject signal. Besides the interval of time between sessions is also very different in each case, 

as before mentioned for the In-House data is one year and half instead of only one day in HCP data. 

Furthermore, for both cases the rs-fMRI processing was done with an own designed processing pipeline 

that could be different of the realized in the article.  

6.1.5. Use Only the Medial Frontal and Frontoparietal Functional Networks Using 

the Atlas 268 Nodes 

These two networks have effect in the both data classifications, but opposites. For the HCP  using 

only the nodes presented in the network medial frontal and frontoparietal increased the accuracy results. 

Otherwise, the classification performance decreased for In-House data. This result can prove one of the 
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ideas discussed previously as for the effect that a functional atlas has created for volumes acquired in 

3T. Because the acquisition of In-House data was made with 1.5T, so the division cannot be so precise 

and happened loss of essential information in the classification during the correlation process. These 

results also support the results presented in the article due the increase of accuracy for only this two 

networks, but continuing far from the final results: 0.99 and 0.98 in the research work.  

Table 6.10. Accuracy and difference between correlations mean values for correct and incorrect classifications, to HCP and 

In-House data test for the 268 nodes parcellation. Using all nodes or only the nodes from network medial frontal (network 1) 

and frontoparietal (network 2). 

 In-House data 

 
Nodes in network 1 and 2 All nodes 

Predict session 1 Predict session 2 Predict session 1 Predict session 2 

Accuracy 0.211 0.237 0.316 0.303 

Difference between 

correlation mean values  
0.061 0.057 0.094 0.092 

HCP data 

 
Nodes in network 1 and 2   All nodes 

Predict session 1 Predict session 2 Predict session 1 Predict session 2 

Accuracy 0.845 0.895 0.765 0.770 

Difference between 

correlation average values  
0.084 0.088 0.066 0.059 
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6.2. Fingerprint Subjects’ Classification - Deep Learning Approach 

6.2.1. Fully Connected Models – In-House Data  

In the Table 6.11 are presented the final results obtained with the article approach and they are 

the objective to be outperformed in this DL approach.  

Table 6.11. Resume of the values obtained by the article approach (from [19]) in In-House dataset to predict session 1 and 

session 2, for the different brain parcellations.  

Predict session 1 Predict session 2 

Parcellation Value Difference Parcellation Value Difference 

150 nodes 0.342 0.000 150 nodes 0.342 0.0000 

100 nodes 0.316 0.026 268 nodes 0.303 0.0395 

268 nodes 0.316 0.026 100 nodes 0.289 0.0526 

Freesurfer 0.263 0.079 Aal 0.276 0.0658 

Aal 0.250 0.092 Freesurfer 0.250 0.0921 

50 nodes 0.237 0.105 50 nodes 0.237 0.1053 

The first approach was study how are the best set of hyperparameters that together with the 

functional connectivity values, amplify the learning process. Thus, the first objective was to create a simple 

model and fully connected layer, choose the best hyperparameters and only then increases its complexity. 

The principal additions towards to more complex systems were the increasing the depth model and 

adding convolutional networks to the models. With the best set of hyperparameters the models can be 

extended for other parcellations, where with are made some adjustments to the architecture to adapt to 

the new number of features and its values. Although the best approach was made a fine-tuning process 

for each parcellation and session prediction, but the time needed will be tremendous.  

Also, it was done some normalizations to data in order to test if it was possible get more 

interesting features to improve the learning process and so the final performance, especially due to the 

different behaviours of the non-linearity functions. A vital information before beginning the process is the 

calculation of a random correct classification in the dataset. As the In-House data has 76 subjects, the 

probability of correct classify one is 1/76, this is 0.01316.  

The parcellation decided to create the best set of hyperparameters was using the 50 nodes atlas, 

once it have the fewer number of features and it has the worst results, so it have a great interval to 
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improve. Besides was used the session 1 to predict the session 2. The fine-tuning of the hyperparameters 

follow the procedure defined in 5.6 and was used the Python modules set created to support the creation, 

testing and validation of the model as well as the analysis of the results. The validation approach use in 

this part was the 1 where 25% of the test dataset was used as validation, and the other parts was always 

the second defined in 5.5.2.1.After the final set of hyperparameters be formed, it is passed to prediction 

of the session 1 using the session 2.  

The next parcellations used was the 268 nodes and the Aal atlas, once 268 nodes atlas is the 

most important atlas in the study of the functional connectivity in the article and the Aal one of the most 

used in Neuroimaging research as it’s the case of Neuroimaging lab in ICVS.  In this case was already 

used the validation approach 2, wherein was the division of the acquisition in two parts, and one was 

used as test and the other as validation.  

6.2.1.1. 50 Nodes Parcellation – Part A 

Part A - Fine-tuning of the best combination between the loss function, activation function and learning 

rate.  

Tested model parameters: 

i. Learning rate: {0.5; 0.3; 0.1; 0.05; 0.01; 0.005; 0.001; 0.0005; 0.0001}  

ii. Loss function set: {Categorical cross-entropy, hinge and squared hinge}   

iii. Activation functions set: {Relu, Leaky Relu, Sigmoid, Prelu and tanh function}  

Other model parameters:  

i. Epochs: 2000 

ii. Optimizer: SGD 

iii. Bias initializer: Truncated Normal class with standard deviation equal to 1.  

iv. Weights initializer: Variance Scalling class, with the average of the inputs and outputs.  

Total number of combinations:  9 * 3 * 5 = 135. 

Number of tests: 10 

 

 The first parameters used had as base the first models developed with Theano module, wherein 

were realized some tests.  

 Initiating the hyperparameters fine-tunning process, firstly it was tested a set of alphas for the 

activation function Leaky relu to discover which has better performance.  

The test contained 10 hypotheses for each alpha in the alpha rates set: 
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{0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9}.  

Table 6.12. Average validation accuracy and cost values of 3 tests with the alpha parameter equal to 0,2, 0,3, 0,4, 0,5 and 

0,6 in the Leaky Relu activation function for 50 nodes parcellation in the test of the part A. 

Alpha Validation accuracy average Validation cost mean 

0,1 0,08553 ± 0,02648  0,99918 ± 0,00015 

0,2 0,08421 ± 0,01785 0,99926 ± 0,00014 

0,3 0,08289 ± 0,02568 0,99919 ± 0,00015 

0,4 0,08816 ± 0,02825 0,99914 ± 0,00016 

0,5 0,08947 ± 0,02186 0,99917 ± 0,00016 

0,6 0,08684 ± 0,03540 0,99913 ± 0,00032 

0,7 0,06711 ± 0,02528 0,99931 ± 0,00014 

0,8 0,09737 ± 0,02510 0,99912 ± 0,00020 

0,9 0,07763 ± 0,02387 0,99918 ± 0,00019 

The results demonstrated that the best alpha is 0.8 which means that the models gives some 

importance (near to 1) to the negatives values in the dataset to get better classifications results. The value 

is 1% then the second best result the alpha 0.4. In the Figure 6.1 it is showed one of the tests with 

alpha=0.8, where accuracy achieved values above 15%. Also, it is possible to identify that these first 

models already present learning demonstrated by the final validation accuracy value when compared to 

the probability of a correct classification by chance, 1.36%. It is important to emphasize that in these 

tests it was only intended to get a comparison between the results for different tests and not already 

getting the best model. The probability of the improvement with the increase of epochs it’s very likely to 

happen as the training accuracy continually increases and so the learning process. 
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Figure 6.1. The best result of one of 3 tests for Leaky Relu with alpha equal to 0.8. 

As mentioned before, the number of combinations in analysis are 135, wherein 15 models with 

different loss and activation function were tested for 9 learning rates. So, the analysis will be based in 

these 15 models and in their behaviour over the different learning rate values.  

  To be easier to manage models’ results, it was assigned a letter to each model according to the 

hyper-parameters activation function and loss function as is in Table 6.13. 

Table 6.13 – Lettering the combinations of activation and loss functions.  

  Activation function 

  Sigmoid Tanh Leaky Relu Relu Prelu 

Loss 

function 

Categorical cross entropy A D G J M 

Hinge B E H K N 

Squared Hinged C F I L O 

 

Now relatively to results, it was verified by the training accuracy values that exist three different 

models’ behaviours. Firstly, the model where the training accuracy achieved 100% or almost but the 

learning process continues to happen demonstrated by the continuous cost reducing. And the model is 

probably entering in the overfitting problem where all data main features were possible already learnt. 

Secondly, the models that due to slower learning still in the main learning process, wherein the training 

accuracy in general not is above of 85%. Lastly, the models that don’t demonstrate learning or negative 

learning (last training accuracy is worse than other before), and for that not are important for more 

analysis. In the Table 6.14 are presented the number of models that are in each category.  
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Table 6.14. Description of the results regarding to learning behaviour obtained in test part a for 50 nodes parcellation. 

  Full learning  Learning No learning  Total  

Number of models 32 39 64 135 

Avg. training accuracy 0.9990 ± 0.0043 0.3800 ± 0.2897 0.0204 ± 0.0110 0.4361 ± 0.4031 

Avg.  training cost 0.1708 ± 0.3810 1.0644 ± 0.5760 7.9883 ± 7.5252 2.5964 ± 4.8948 

Avg. validation accuracy 0.2148 ± 0.0440 0.0698 ± 0.0446 0.0143 ± 0.0035 0.0902 ± 0.0825 

Avg. validation cost 3.5602 ± 1.0588 1.0900 ± 0.7532 8.0055 ± 7.5426 3.4172 ± 4.7469 

With a brief analysis to table is possible to see that the majority of the models don’t have interest 

because their learning curve is frozen. Although some learning had occurred proved by the mean of the 

values, as they are little larger than the probability of a random choice.  

The full learning models group verifies that how should be for all models. The average training 

cost is lower comparatively to other results and training accuracy near or equal to 100%. And the average 

validation accuracy is larger than the other groups. Although the validation cost is very superior that the 

learning group the values can be explained by the majority functions that make up the group. The full 

learning group it’s composed by cross-entropy function associated to higher values due the function 

nature, while for the learning group it was the Hinge function with less cost values associated. Also, it 

might have happened the overfitting problem in the full learning group increasing the costs in the 

validation data.  

The models that characterize the first group had mainly in its parameters the categorical cross-

entropy as loss function. Only four wasn’t the case. So, it’s possible to see that loss cross-entropy did a 

faster and better learning comparatively to others. In the four cases the function involved was Tanh 

activation function associated to other loss functions - models E and F. So, the Tanh loss function 

increases the learning velocity but the final results didn´t perform so well. The best result of this cases 

is a validation mean accuracy of 0.2395, for model E with learning rate equal to 0.3.  

  The first four best results had the same loss and activation function, the model A of the Table 

6.13. And the best result, the maximum accuracy value and minimum cost, was for learning rate 0.1.  

Then the most interesting models, as previously mentioned, comprehend mostly models with the 

tanh activation function - models D, E and F. By descending order, the performance was for each first 

case model, D-0.2763, E-0.2395 and F-0.2158. Additionally, as model A, the model D had the best result 

for learning rate equal 0.01. This two models, A and D was chosen directly for future use due the previous 
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positive points mentioned before. Nevertheless, models in a learning process group won’t cast off and so 

they will analyse deeply.  

During the process it was searched models that had a fair value in the validation accuracy and a 

low accuracy on training data. Because in this combination could be the best models once they have a 

lot potential to improve, due to low learning velocity in addition to a good performance already proved. 

Thus, the models that stands out are the models composed by Hinge loss function - models B, H and K. 

The training accuracy average values are around 0.5 and validation accuracy average values around 0.1. 

These models presented a good characteristic, their costs are lower than models A and D, and so the 

difference between validation and training is small, situation that can be advantage to get models with 

better generalization. However, this could be related to the nature of the loss function, and the cost value 

lower not be traduced so linearly. In order to test and compare the models of the two categories it was 

increased the number of epochs to models training more and to learn more features from training data. 

Once, the models that can classify correctly all subjects in training data mean that all the main features 

are learned by the model. So, the training epochs were amplified for 15000. A larger number due the 

low velocity learning of this models. Also, the learning rates tested were the largest from the first learning 

rate set, once was those that presented learning. Situation caused by the necessity of this models by 

large learning rates and the new results proved that. But even with 15000 epochs the training accuracy 

is in general far from 1 (see Table 6.15). So, the accuracy values could increase once more are used 

more training epochs. The maximum accuracy happens for 0.5 learning rate for model B, where training 

accuracy is near to 1. Emphasising once again, these models verified that the costs are much near 

between training and validation. These tests were repeated three times.  

Table 6.15. Average accuracy and cost values for training and validation data in the In-house dataset for 50 nodes 

parcellation, for model K, H and B in the part A. 

Model 
Learning 

rate 

Average 

training 

accuracy 

Average 

training cost 

Average 

validation 

accuracy 

Average 

validation 

cost 

 

K 

0.5 0.8158 0.9893 0.2105 0.9981 

0.05 0.6974 0.9908 0.1579 0.9986 

0.1 0.7368 0.9903 0.1316 0.9986 

0.3 0.6579 0.9913 0.1316 0.9987 

0.01 0.3684 0.9952 0.0658 0.9994 

 0.1 0.6842 0.6842 0.1579 0.9987 
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H 0.3 0.7763 0.7763 0.1579 0.9987 

0.05 0.5526 0.5526 0.1316 0.9988 

0.5 0.8158 0.8158 0.1319 0.9984 

0.01 0.3421 0.3421 0.0526 0.9995 

 

B 

0.5 0.9956 0.9869 0.2500 0.9981 

0.3 0.9737 0.9872 0.1711 0.9985 

0.1 0.7281 0.9905 0.1404 0.9990 

0.05 0.5044 0.9936 0.1316 0.9993 

0.01 0.1447 0.9984 0.0570 0.9997 

 

Due to the behaviour of models B, H and K it was performed a new set of tests where the learning 

rate was increased. Thus, the new set of learning rates was {1.2;1;0.9;0.7}. As the learning rate had 

increased, the number of epochs had diminished to 3000 epochs to fast training processes. Moreover, 

the model E was also tested, because it was the only activation function missing in the combination with 

hinge loss function. And the tests were repeated four times. The results obtained demonstrate that was 

good adding the model E because it was the model that performed better. The training accuracy achieved 

was 1 for any learning rate, need any less than 1000 epochs and had validation accuracies above 0.23. 

The final cost on training data are the same for all, but in the validation data, the low cost is for the model 

with better performance. Finally, the learning rate equal to 0.9 was the one that achieved the best results: 

0.2796 in validation accuracy (Table 6.16 and . 

Table 6.17).  

Table 6.16. Average accuracy and cost values for training data in the In-house dataset for 50 nodes parcellation and model 

E. 

Learning 

rate 

Average training 

accuracy 

Average epoch occurrence 

(max value) 

Average training 

cost 

0.9 1.0 ± 0.0 926 ± 460,7 0.98684 ± 0.0 

1.0 1.0 ± 0.0 883 ± 585,7 0.98684 ± 0.0 

1.2 1.0 ± 0.0 751 ± 356,9 0.98684 ± 0.0 

1.0 1.0 ± 0.0 904 ± 216,4 0.98685 ± 0.0 

 

Relatively to other models, they were tested again three times but now with more number of 

epochs, 5000 epochs, to exist more training and so had in the final a more accurate conclusion. To the 
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learning rate set was also added three new learning rates {1.5; 1.7; 2}.  So, the set of learning rates 

tested was {2; 1.7; 1.5; 1.2; 1; 0.9; 0.7}. 

Table 6.17. Average accuracy and cost values for validation data in the In-house dataset for 50 nodes parcellation and 
model E. 

Learning rate Validation average accuracy Validation average cost 

0.9 0.2796 ± 0.0235 0.9983 ± 0.0001 

1.0 0.2730 ± 0.0599 0.9984 ± 0.0002 

1.2 0.2632 ± .03355 0.9984 ± 0.0001 

1.0 0.2467 ± 0.0253 0.9984 ± 0.0001 

 

The results demonstrated that the six best results were achieved by model B (Sigmoid and Hinge 

activation functions). The other results were set aside for further tests. So, in the six models B the training 

accuracy was beyond the 0.9 or 90% and these results were achieved after in general 4000 epochs - 

consequence of the slower learning behaviour of these models (Table 6.18). All the training costs obtained 

were similar, but the best was for the second case with best validation accuracy. Validation results were 

quite positive, but once more the model in learning rate 1.5 got the large average accuracy, of course 

that the standard deviation is higher, 6%, which means that the values are very disparate from the average 

and so the values can be much lower but can also be much higher than the average. Confirmed by the 

average max accuracy value of 0.33 (Table 6.20). The costs were similar for all training data results, but 

was the learning rate 1.5 in the validation accuracy that achieved the minimum cost followed by the best 

result in average validation accuracy, learning rate equal to 1.7. Once in general the learning rate equal 

to 1.7 achieved performed better was the hyperparameter chosen for future use (Table 6.21). 

Table 6.18. Average accuracy, average max accuracy and average epoch occurrence max values for training data in the In-

house dataset for 50 nodes parcellation and model B, part A. 

Learning rate Average accuracy Average max accuracy Average epoch occurrence 

1.7 0.9781± 0.0124 0.9781 ± 0.0124 3255.3333 ± 124.9462 

1.5 1.0000 ± 0.0000 1.0000 ± 0.0000 4044.3333 ± 301.0497 

2 0.9868 ± 0.0107 0.9868 ± 0.0107 4224.3333 ± 311.4935 

1 0.9825 ± 0.0062 0.9825 ± 0.0062 4295.3333 ± 380.9500 

1.2 0.9781 ± 0.0224 0.9781 ± 0.0224 4491.6667 ± 30.0624 

0.7 0.9386 ± 0.0124 0.9386 ± 0.0124 264.3836 ± 0.0000 
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Table 6.19. Average cost, average max min cost and average epoch occurrence of the min values for training data in the In-

house dataset for 50 nodes parcellation and model B, part A.  

Learning rate Average cost Average min cost Average epoch occurrence 

1.7 0.9871 ± 0.0002 0.9871 ± 0.0002 5000.0000 ± 0.0000 

1.5 0.9869 ± 0.0000 0.9869 ± 0.0 000 5000.0000 ± 0.0000 

2 0.9870 ± 0.0001 0.9870 ± 0.0001  5000.0000 ± 0.0000 

1 0.9871 ± 0.0001 0.9871 ± 0.0001 5000.0000 ± 0.0000 

1.2 0.9871 ± 0.0003 0.9871 ± 0.0003 5000.0000 ± 0.0000 

0.7 0.9877 ± 0.0002 0.9877 ± 0.0002 5000.0000 ± 0.0000 

 

Table 6.20. Average accuracy, average max accuracy and average epoch occurrence max values for validation data in the In-

house dataset for 50 nodes parcellation and model B, part A. 

Learning rate Average accuracy Average max accuracy Average epoch occurrence 

1.7 0.2533 ± 0.0249 0.2733 ± 0.0000 2661.7000 ± 667.3482 

1.5 0.2933 ± 0.0660 0.3333 ± 0.0680 3196.3000 ± 719.0338 

2 0.2333 ± 0.0525 0.2667 ± 0.0499 3061.0000 ± 1673.2659 

1 0.2667 ± 0.0680 0.3000 ± 0.0432 2928.0000 ± .4725 

1.2 0.2667 ± 0.0249 0.2800 ± 0.0283 3935.0000 ± 253.5521 

0.7 0.2267 ± 0.0340 0.2733 ± 0.0660 3540.0000 ± 253.5521 

 

Table 6.21. Average cost, average max min cost and average epoch occurrence of the min values for validation data in the 

In-house dataset for 50 nodes parcellation and model B, part A. 

 

Learning rate Mean cost Mean min cost Mean epoch occurrence 

1.7 0.9981 ± 0.0002 0.9981 ± 0.0002 5000 ± 0.0000 

1.5 0.9980 ± 0.0003 0.9980 ± 0.0002 4809 ± 270.1000 

2 0.9979 ± 0.0003 0.9979 ± 0.0002 4551 ± 635.4533 

1 0.9982 ± 0.0003 0.9982 ± 0.0003 4934 ± 93.3381 

1.2 0.9981 ± 0.0002 0.9981 ± 0.0002 4877 ± 173.4769 

0.7 0.9983 ± 0.0002 0.9983 ± 0.0002 4754 ± 348.3679 

 

Taking again the question of the other results relatively to model H and K, due the bad 

performances, new tests were done to prove that they are not a good model to use. So, as the models H 

and K performed better for higher learning rates, new tests were made with a new set of larger learning 
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rates. The new learning rate set was {2; 2.5; 3; 3.5; 4}. But did not happened any improvements that 

excelled. The validation accuracy remained above 0.23 and it was not possible to identify any result in 

validation that stood out. Thus, this part was given as finished.  

Consequently, the models chosen for future use were:  

 Model A 

Loss function = Categorical cross-entropy 

Activation function = Sigmoid 

Learning rate = 0.01 

Learning behaviour is quick, so the number of epochs recommended are 1000 or more.  

 Model B 

Loss function = Hinge  

Activation function = Sigmoid 

Learning rate = 1.5  

Learning behaviour is slow, so the number of epochs recommended are 4000 or more.  

 Model D 

Loss function = Categorical cross-entropy 

Activation function = Tanh 

Learning rate = 0.01 

Learning behaviour is quick, so the number of epochs recommended are 1000 or more. 

6.2.1.2. 50 Nodes Parcellation – Part B 

Part B – Fine-tuning of batch size, optimizers and initializers 

Part B – Batch size 

The process continued the process made in the part 1 but now for the batch size. In this part 

was used the last three models, A, B and D to make the batch size tests. Thus, all the parameters were 

maintained for each model with only exception of the batch size. 

Tested model parameters: 

i. Batch size: {1; 2; 5; 10; 20}  

Number of tests: 10 

Results: 
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i. Model A 

Table 6.22 - Average accuracy and average cost for training data in the In-house dataset for 50 nodes parcellation and 

model A, different batch sizes, part B.  

Batch size Average accuracy Average Cost 

1 1.0 ± 0.0 0.0087 ± 0.0001 

5 1.0 ± 0.0 0.0626 ± 0.0009 

2 1.0 ± 0.0 0.0196 ± 0.0002 

10 1.0 ± 0.0 0.2008 ± 0.0067 

20 1.0 ± 0.0 0.7812 ± 0.0244 

 

Table 6.23 - Average accuracy, average max accuracy, average accuracy difference (final -20% training) and average epoch 
occurrence maximum values for validation data in the In-house dataset for 50 nodes parcellation and model A different 

batch sizes, part B.   

Batch 

size 

Average 

accuracy 

Average accuracy 

diff (final -20%) 

Average max 

accuracy 

Average epoch 

occurrence 

1 0.2780 ± 0.0227 0.0020 ± 0.0060 0.2900 ± 0.0241 156.8 ± 165.1 

5 0.2740 ± 0.0237 0.0080 ± 0.0098 0.2980 ± 0.0227 166.2 ± 101.2 

2 0.2480 ± 0.0370 0.0040 ± 0.0080 0.2700 ± 0.0349 67.5 ± 87.2 

10 0.2240 ± 0.0332 0.0040 ± 0.0120 0.2680 ± 0.0402 238.8 ± 97.3 

20 0.2120 ± 0.0285 - 0.0120 ± 0.0240 0.2520 ± 0.0392 345.5 ± 57.9 

 

Table 6.24 - Average cost, average minimum cost, average accuracy difference (final –20% training) and average epoch 
occurrence minimum values for validation data in the In-house dataset for 50 nodes parcellation, different batch sizes, 

model A, part B. 

Batch 

size 
Average cost 

Average cost diff 

(final -20%) 
Average min cost 

Average epoch 

occurrence 

1 3.3758 ± 0.0477 -0.0119⁡±⁡0.0013 3.3758⁡±⁡0.0477 500.0000⁡±⁡0.0000 

5 3.4638⁡±⁡0.0499 -0.0268⁡±⁡0.0035 3.4633⁡±⁡0.0499 498.6000⁡±⁡1.6248 

2 3.4299⁡±⁡0.0679 -0.0164⁡±⁡0.0024 3.4299⁡±⁡0.0619 500.0000⁡±⁡0.0000 

10 3.5768⁡±⁡0.0170 -0.0409⁡±⁡0.0027 3.5768⁡±⁡0.0170 499.9000⁡±⁡0.3000 

20 3.6994⁡±⁡0.0579 -0.0587⁡±⁡0.0047 3.6994⁡±⁡0.0579 500.0000⁡±⁡0.0000 

 

ii. Model B  
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 For model B there was a modification in the number of epochs used in the training for each batch 

size. Once this model has the characteristic of slow learning, therefore the larger the batch size will 

amplify that characteristic, but it could not be a disadvantage, since the model can model generalize 

better and reduce overfitting.  So, to get about the number correct of epochs was done a series of attempts 

for each batch size, always with caution in the number of epochs increased for not make the training 

process too slow. In the next list are the results obtained: 

i. Batch size 1 – 4000 

ii. Batch size 2 – 8000 

iii. Batch size 5 – 10000 

iv. Batch size 10 – 25000 

v. Batch size 20 – 40000  

Thus, with this change in the training parameters for each batch size there was equality in the 

performance between models A, B and D due the different behaviours.  

Table 6.25 - Average accuracy and average cost for training data in the In-house dataset for 50 nodes parcellation and 
model B, different batch sizes, part B. 

Batch size Average accuracy Average Cost 

1 0.9790⁡±⁡0.0065 0.9871⁡±⁡0.0001 

20 0.9158⁡±⁡0.0244 0.9880⁡±⁡0.0003 

10 0.9605⁡±⁡0.0186 0.9874⁡±⁡0.0003 

2 0.9790⁡±⁡0.0105 0.9871⁡±⁡0.0001 

5 0.9395⁡±⁡0.0271 0.9877⁡±⁡0.0003 

 
Table 6.26 - Average accuracy, average max accuracy, average accuracy difference (final – 20% training) and average epoch 

occurrence maximum values for validation data in the In-house dataset for 50 nodes parcellation and model B different 
batch sizes, part B.  

Batch 

size 
Average accuracy 

Average 

accuracy diff 

(final -20%) 

Average max 

accuracy 

Average epoch 

occurrence 

1 0.2800⁡±⁡0.0456 0.0320⁡±⁡0.0299 0.3080⁡±⁡0.0371 3093.8⁡±⁡595.1 

20 0.2120⁡±⁡0.0204 0.0240⁡±⁡0.0408 0.2400⁡±⁡0.0127 31520.2⁡±⁡5343.4 

10 0.2280⁡±⁡0.0588 0.0240⁡±⁡0.0427 0.2920⁡±⁡0.0271 18617.2⁡±⁡4612.8 

2 0.1360⁡±⁡0.0150 0.0000⁡±⁡0.0253 0.2280⁡±⁡0.0271 2860.8⁡± 1474.3 

5 0.1440⁡±⁡0.0265 -0.0320⁡±⁡0.0371 0.2240⁡±⁡0.0150 6327.2⁡±⁡2683.0 



CHAPTER6. RESULTS AND DISCUSSION 

137 

Table 6.27 - Average cost, average minimum cost, average accuracy difference (final – 20% training) and average epoch 
occurrence minimum values for validation data in the In-house dataset for 50 nodes parcellation, different batch sizes, 

model B, part 2. 

Batch 

size 
Average cost 

Average cost diff 

(final -20%) 

Average min 

cost 

Average epoch 

occurrence 

1 0.9980⁡±⁡0.0002 -0.0002⁡±⁡0.0001 0.9980⁡± 0.0002 3859.4000⁡±⁡281.2 

20 0.9986⁡±⁡0.0001 -0.0001⁡±⁡0.0001 0.9986⁡±⁡0.0001 38377.8000⁡±⁡2673.7 

10 0.9984⁡±⁡0.0002 -0.0002⁡±⁡0.0001 0.9983⁡±⁡0.0001 22362.4000⁡±⁡3317.4 

2 0.9988⁡±⁡0.0001 -0.0001⁡±⁡0.0001 0.9988⁡±⁡0.0001 7217.0000⁡±⁡1109.4 

5 0.9988⁡±⁡0.0001 -0.0001⁡±⁡0.0001 0.9987⁡±⁡0.0001 8963.8000⁡±⁡990.90 

 

i. Model D 

Table 6.28 - Average accuracy and average cost for training data in the In-house dataset for 50 nodes parcellation and 
model D, different batch sizes, part B. 

Batch size Average accuracy Average Cost 

1 1.0000⁡± 0.0000 0.0017 ± 0.0000 

5 1.0000⁡± 0.0000 0.0082 ± 0.0002 

2 1.0000⁡± 0.0000 0.0034 ± 0.0001 

20 1.0000⁡± 0.0000 0.0395 ± 0.0017 

10 1.0000⁡± 0.0000 0.0173 ± 0.0005 

 

Table 6.29 - Average accuracy, average max accuracy, average accuracy difference (final – 20% training) and average epoch 
occurrence maximum values for validation data in the In-House dataset for 50 nodes parcellation and model D, different 

batch sizes, part B 

Batch size 
Average 

accuracy 

Average 

accuracy diff 

(final -20%) 

Average max 

accuracy 

Average epoch 

occurrence 

1 0.1980⁡±⁡0.0260 0.0020⁡± 0.0060 0.2020⁡± 0.0244 159.4000⁡± 131.8834 

5 0.1940⁡± 0.0457 0.0060⁡± 0.0128 0.2020⁡± 0.0477 256.7000⁡± 143.2802 

2 0.1800⁡± 0.0200 0.0040⁡± 0.0120 0.1800⁡± 0.0200 164.5000⁡± 117.5272 

20 0.1860⁡± 0.0380 0.0120⁡± 0.0160 0.1900⁡± 0.0431 373.0000⁡± 88.1034 

10 0.1580⁡± 0.0384 0.0020⁡± 0.0060 0.1620⁡± 0.0395 208.2000⁡± 153.0561 
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Table 6.30 - Average cost, average minimum cost, average accuracy difference (final – 20% training) and average epoch 
occurrence minimum values for validation data in the In-house dataset for 50 nodes parcellation, different batch sizes, 

model B, part B. 

Batch size Average cost 
Average cost diff 

(final -20%) 

Average min 

cost 

Average epoch 

occurrence 

1 3.6129⁡± 0.1213 -0.0073⁡⁡±⁡0.0023 3.6129⁡± 0.1213 500.0000⁡± 0.0000 

5 3.6937⁡± 0.1299 -0.0123⁡± 0.0023 3.6936⁡± 0.1298 498.2000⁡± 3.1875 

2 3.6589⁡± 0.1139 -0.0084⁡± 0.0025 3.6589⁡± 0.1139 500.0000⁡± 0.0000 

20 3.7510⁡± 0.1161 -0.0198⁡± 0.0029 3.7510⁡± 0.1161 500.0000⁡± 0.0000 

10 3.7412⁡± 0.1030 -0.0142⁡± 0.0016 3.7412⁡± 0.1030 499.8000⁡± 0.4000 

 

Results’ Discussion 

In this test is exhibited besides the validation results the training results. The intention is to 

demonstrate that all the different models are on equal terms. This is, if the training accuracy is the same 

for all in order to compare if the models finish in a stage that the learning process is a similar for all 

models. Thus, due to exist different velocities in learning the train parameters was adapted.  

 

Model A 

The training results demonstrated that the accuracy on training data was 100 % for all the cases 

with different cost, directly proportional to batch size (Table 6.22). Also, a first look to validation results 

it’s possible to evidence that the best max accuracy epoch occurs not in the last epoch of training, so 

there was already happening overtrain causing overfitting (Table 6.23).   

In the general situation, the batch size 1 and 5 was the performances that more highlighted. But 

was the batch size 1 that had the best results in all domains, accuracy and cost in the validation data. 

Batch size 5 followed the best result but has more cost than batch size 2. However, the model got the 

same final result in the validation accuracy than batch size 1. And even the maximum value achieved 

was also the highest (Table 6.23 and Table 6.24 ).  So, in the next tests will be used the batch size 1 and 

5 for model A. It’s not used only the best result because is important to check in future situations if the 

batch size 5 continues to produce models with less performance.  

 

Model B  

 In contrast to model B, in any training accuracy result was not accomplished 1, but all values 

were superior to 0.9 besides the great divergence in the learning rates. So, the adjustments did to epochs 
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according to batch size was well done. Again, the batch size 1 get the best performance in all domains 

and the batch size 10 was the second-best result. So, the batch sizes chosen for model B was 1 and 10 

(Table 6.25,  

Table 6.26 and Table 6.27).  

 

Model D 

 As the model A, the training accuracy achieved 1 in all training accuracies and the batch size 1 

got once more the best results in all domains. In second place stayed the batch size 5 that also stands 

out with accuracy values near to obtained by batch size 1. Thus, the final batch sizes for model D chosen 

was 1 and 5 (Table 6.28, Table 6.29, Table 6.30).  

Results summarized: 

Model A – batch size 1 and 5 

Model B – batch size 1 and 10 

Model D – batch size 1 and 5 

 

Part B – Optimizers 

The optimizers were tested for the three models (A, B and D) with different batch sizes. The 

optimizer’s tested was: stochastic gradient descendent (SGD), Adadelta, RmsProp, Adam and Nadam. 

The tests were made each time for each model. The process beginning testing the SGD optimizer, 

with momentum and then the best results with the Nesterov accelerated gradient (NAG). Finalized this 

process, followed a final test with the best test of SGD and the other the other four optimizers. For each 

case was made 10 tests.  

i. Model A   

a. SGD optimizer and momentum  

Table 6.31 – Average validation accuracy and average cost for the model A with SGD and different momentums, for batch 
size 1 and 5, part B.  

Batch size Momentum Average Validation accuracy Average Validation Cost 

1 0.5000 0.2395 ⁡± 0.0202 3.4220⁡± 0.0716 

5 0.5000 0.2342⁡±⁡0.0184 3.4470⁡± 0.0619 

1 0.0000 0.2303⁡± 0.0179 3.4558⁡± 0.0671 

1 0.0500 0.2303⁡± 0.0188 3.4383⁡± 0.0398 
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1 0.1000 0.2263⁡± 0.0268 3.4528⁡± 0.0429 

1 0.0100 0.2237⁡± 0.0263 3.4021⁡± 0.0341 

1 0.0050 0.2224⁡± 0.0266 3.4258⁡± 0.0581 

1 0.0010 0.2224⁡± 0.0190 3.4486⁡± 0.0457 

5 0.3000 0.2197⁡± 0.0300 3.4823⁡± 0.0425 

1 0.3000 0.2184⁡± 0.0229 3.4712⁡± 0.0417 

5 0.0000 0.2171⁡± 0.0244 3.5193⁡± 0.0698 

5 0.0100 0.2118⁡± 0.0199 3.4988⁡± 0.0440 

5 0.1000 0.2092⁡± 0.0246 3.5282⁡± 0.0455 

5 0.0500 0.2079⁡± 0.0275 3.5093⁡± 0.0413 

5 0.0010 0.2026⁡± 0.0237 3.4844⁡± 0.0433 

5 0.0050 0.1987⁡± 0.0199 3.5163⁡± 0.0429 

 

The results tests demonstrated that batch size 1 is the best option in using the SGD with 

momentum and no momentum. And in general, that batch size had better performance, since all eight 

models with batch size 1 are in the 10 first results. Looking for the average validation cost its possible 

see that the batch size 5 is in general associated to the higher costs. But this can be only a consequence 

of the model trained with higher batch sizes has a slower learning, causing a higher cost for the same 

number of training epochs. Although it can result in a better generalization as happened in the second 

case for batch size 5. The final choice was done between the two first results for different batch sizes but 

with the same momentum, 0.5.  

b. SGD final test adding NAG.  

Table 6.32 - Average validation accuracy and coverage cost for the model A with SGD and momentum equal to 0.5 for batch 
size 1 and 5, part B. 

Batch size Nesterov Average validation accuracy Average validation cost 

1 False 0.2474 ⁡± 0.0115 3.3954⁡± 0.0559 

1 True 0.2303⁡± 0.0318 3.4466⁡± 0.0407 

5 False 0.2197⁡± 0.0306 3.4992⁡± 0.0360 

5 True 0.2158⁡± 0.0244 3.4817⁡± 0.0381 

 

The results demonstrated that in this relation of the two training parameters, the Nesterov didn’t 

affect positively the result.   
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c. SGD final and the other optimizers  

Table 6.33 - Average validation accuracy and cost for the model A with the different optimizers and batch size 1 and 5, part 
B. 

Optimizer Batch size Average validation accuracy Average validation cost 

RMSprop 1 0.3632⁡± 0.0244 3.9922⁡± 0.1658 

RMSprop 5 0.3342⁡± 0.0244 3.8136⁡± 0.0830 

Adadelta 1 0.3395⁡± 0.0175 3.2641⁡± 0.0666 

Adadelta 5 0.3395⁡± 0.0419 3.1775⁡± 0.0478 

Adam 5 0.3184⁡± 0.0255 3.9299⁡± 0.0645 

Nadam 5 0.3184⁡± 0.0327 4.1089⁡± 0.1826 

Adam 1 0.3105⁡± 0.0105 4.4400⁡± 0.1076 

Nadam 1 0.2605⁡± 0.0305 5.3366⁡± 0.3930 

SGD* 1 0.2474⁡± 0.0115 3.3954⁡± 0.0559 

*momentum = 0.5 

The results showed that the RMSprop and Adadelta are the best optimizers to use once their results 

was distanced from the others in the validation results for both batch sizes, although the Adam optimizer 

have better results in the costs in relation to the first result. The models chosen for future tests was 

RMSprop and Adadelta.  

ii. Model B  

a. SGD optimizer and momentum  

Table 6.34 - Average validation accuracy and average cost for the model B with SGD and different momentums, for batch 
size 1 and 10, part B. 

Batch size Momentum Average validation accuracy Average validation Cost 

1 0.3000 0.2421⁡± 0.0105 0.9980⁡± 0.0001 

10 0.5000 0.2368⁡± 0.0300 0.9981⁡± 0.0001 

1 0.1000 0.2368⁡± 0.0186 0.9981⁡± 0.0001 

1 0.0050 0.2316⁡± 0.0179 0.9982⁡± 0.0001 

1 0.5000 0.2237⁡± 0.0186 0.9979⁡± 0.0002 

1 0.0000 0.2211⁡± 0.0419 0.9982⁡± 0.0001 

1 0.0010 0.2184⁡± 0.0197 0.9982⁡± 0.0001 

10 0.1000 0.2158⁡± 0.0105 0.9982⁡± 0.0001 

1 0.0500 0.2105⁡± 0.0204 0.9982⁡± 0.0000 
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1 0.1000 0.2026⁡± 0.0214 0.9980⁡± 0.0001 

10 0.0100 0.2000⁡± 0.0316 0.9984⁡± 0.0001 

10 0.0500 0.1947⁡± 0.0226 0.9984⁡± 0.0001 

10 0.0000 0.1895⁡± 0.0105 0.9984⁡± 0.0001 

10 0.0050 0.1842⁡± 0.0399 0.9986⁡± 0.0001 

10 0.3000 0.1842⁡± 0.0250 0.9983⁡± 0.0001 

10 0.0010 0.1842⁡± 0.0546 0.9984⁡± 0.0002 

 

The results demonstrated once more that momentum increase the performance in comparison 

a model with no momentum. And in the two best results was present the two batch sizes although the 

batch size 1 occupied practically all the first places. The final selection comprises the model with batch 

size 1 and momentum 0.3 and the model with batch size 10 and momentum 0.5. 

b. SGD final test adding NAG.  

Table 6.35 - Average validation accuracy and cost for the model B with SGD, for batch size 1 and 5, momentum 0.5 and 
0.3, with NAG or not, part B. 

Batch 

size 
Nesterov Momentum 

Average validation 

accuracy 

Average validation 

Cost 

10 True 0.5000 0.2276⁡± 0.0132 0.9981⁡± 0.0001 

1 True 0.5000 0.2211⁡± 0.0234 0.9981⁡± 0.0001 

1 False 0.3000 0.2197⁡± 0.0264 0.9980⁡± 0.0001 

10 False 0.3000 0.2066⁡± 0.0283 0.9982⁡± 0.0001 

 

The performance of model B using SGD can be maximized by combination of Nesterov and 

momentum once they got the best results. Additionally, the batch size 10 was best than the batch size 

1, although the accuracy difference was not so great, but both models was selected for future tests. If the 

analysis is done only based in the cost, it was the batch size 1 and with no use of NAG to be chosen.  

c. SGD final and the other optimizers  
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Table 6.36 - Average validation accuracy and cost for the model B with the different optimizers and batch size 1 and 10, part 
B. 

Optimizer 
Batch 

size 

Learning 

rate 

Average validation 

accuracy 

Average validation 

cost 

RMSprop 10 0.0010 0.3500⁡± 0.0197 0.9971⁡± 0.0002 

Adadelta 10 150.0000 0.3237⁡± 0.0244 0.9971⁡± 0.0001 

Adam  10 0.0010 0.3132⁡± 0.0357 0.9970⁡± 0.0001 

Nadam 10 0.0020 0.3026⁡± 0.0235 0.9976⁡± 0.0001 

RMSprop 1 0.0010 0.2842⁡± 0.0295 0.9977⁡± 0.0002 

Adadelta 1 1.0000 0.2790⁡± 0.0268 0.9982⁡± 0.0001 

Adam 1 0.0010 0.2737⁡± 0.0367 0.9975⁡± 0.0002 

SGD* 1 0.0100 0.2276⁡± 0.0132 0.9981⁡± 0.0001 

Adadelta 10 1.0000 0.1947⁡± 0.0403 0.9987⁡± 0.0002 

Adadelta 1 150.0000 0.1947⁡± 0.0293 0.9977⁡± 0.0002 

Nadam 1 0.0020 0.0842⁡± 0.0329 0.9989⁡± 0.0004 

RMSprop 1 0.0150 0.0132⁡± 0.0000 0.9998⁡± 0.0000 

RMSprop 10 0.1500 0.0132⁡± 0.0000 0.9998⁡± 0.0000 

Nadam 10 0.3000 0.0132⁡± 0.0000 0.9998⁡± 0.0000 

Nadam 1 0.3000 0.0132⁡± 0.0000 0.9998⁡± 0.0000 

Adam 1 0.1500 0.0132⁡± 0.0000 0.9998⁡± 0.0000 

Adam  10 0.1500 0.0132⁡± 0.0000 0.9998⁡± 0.0000 

*momentum 0.3 with NAG 

 

The objective value was achieved for model B by three optimizers with batch size 10. But there 

are significate gaps between the different performances. The first result was achieved once more by 

RMSprop for the default leaning rate of the optimizer. But on contrary the cost was the large value between 

the set of three. The reason why this happen could be explicated by the different learning processes in 

each case. The RMSprop has the faster learning what can lead to more overfitting, although the training 

costs be the same apparently. The second result was achieved for Adadelta, for a learning rate calculated 

linearly taking into account the optimal learning rate by the mode in SGD and the default values of 

Adadelta. For last, it was the Adam optimizer with about less 0.01 validation accuracy than Adadelta. 

Therefore, this was the three optimizers and learning rates chosen for the next test processes.   

iii. Model D   
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a. SGD optimizer and momentum  

Table 6.37 - Average validation accuracy and average validation cost for the model D with SGD and different momentums, 
for batch size 1 and 5, part B. 

Batch size Momentum Average validation accuracy Average validation cost 

1 0.0050 0.2184 ± 0.065 3.5353 ± 0.0512 

1 0.1000 0.2158 ± 0.0229 3.5135 ± 0.0503 

1 0.0000 0.2132 ± 0.0153 3.5644 ± 0.0655 

1 0.0500 0.2079 ± 0.0305 3.6680 ± 0.0347 

1 0.0100 0.2053 ± 0.0349 3.6319 ± 0.0772 

5 0.0000 0.2053 ± 0.0404 3.5692 ± 0.0628 

5 0.1000 0.2053 ± 0.0318 3.6361 ± 0.0487 

5 0.5000 0.2026 ± 0.0244 3.5896 ± 0.0631 

1 0.5000 0.2000 ± 0.0175 3.6860 ± 0.1681 

5 0.0050 0.1947 ± 0.0241 3.6734 ± 0.1031 

5 0.0010 0.1921 ± 0.0359 3.6249 ± 0.0666 

5 0.3000 0.1895 ± 0.0283 3.6800 ± 0.1013 

1 0.0010 0.1868 ± 0.0153 3.5578 ± 0.0787 

1 0.3000 0.1868 ± 0.0542 3.6071 ± 0.1233 

5 0.0500 0.1790 ± 0.0197 3.6642 ± 0.0589 

5 0.0100 0.1763 ± 0.0244 3.6541 ± 0.0719 

 

 A brief analysis of the results permitted conclude that the best momentum was 0,005 and 

followed by 0.1 and then 0. But all validation accuracy values are near between them, so they were the 

selected momentum set. In this set it was momentum 0.1 that achieve minimum costs in training, 

validation data.  

b. SGD final test adding NAG.  

An analysis to results verify two points. One was the confirmation of the conclusion for batch 1 

in the previous set of tests, wherein the Nesterov accelerated gradient in general has improved the 

model’s performance. And second it was that momentum 0.005 that got the best results with no use of 

Nesterov accelerated gradient, which was the hyperparameter used in the final test.  
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Table 6.38 - Average validation accuracy and cost for the model D with SGD, for batch size 1, momentum 0.05, 0.1 and 0, 
with NAG or not, part B. 

Momentum Nesterov Average accuracy Average Cost 

0.005 False 0.2329 ± 0.0295 3.5139 ± 0.0816 

0.1 True 0.2237 ± 0.0390 3.5720 ±⁡0.1434 

0.005 True 0.2158 ± 0.0318 3.5551 ± 0.0987 

0 True 0.2040 ± 0.0302 3.5987 ± 0.0889 

0 False 0.1961 ± 0.0199 3.6280 ± 0.0368 

0.1 False 0.1908 ± 0.0251 3.6152 ± 0.0936 

 

c. SGD final and the other optimizers  

Table 6.39 - Average validation accuracy and cost for the model D with the different optimizers and batch size 1 and 5, part 
B. 

Optimizer Batch size Average validation accuracy Average validation cost 

RMSprop 1 0.3684 ± 0.0166 3.2112 ± 0.0453 

Adadelta 1 0.3447 ± 0.0226 3.2908 ± 0.1173 

RMSprop 5 0.3421 ± 0.0363 3.6193 ± 0.0592 

Nadam 5 0.3263 ± 0.0367 3.9140 ± 0.1536 

Adam 5 0.3263 ± 0.0327 3.5427 ± 0.1110 

Adadelta 5 0.2974 ± 0.0295 3.3480 ± 0.0679 

Adam 1 0.2921 ± 0.0099 4.2471 ± 0.1465 

SGD 0.005 momemtum 1 0.2329 ± 0.0295 3.5139 ± 0.0818 

Nadam 1 0.0316 ± 0.0179 9.7072 ± 1.3018 

 

From the validation results, show, again that RMSProp is the best optimizer and in this case with 

batch size 1. In second and third, it was respectively the Adadelta for batch size 1 and once again 

RMSprop but now for batch size 5, with similar performance accuracies but with different costs. So they 

was the three results chosen for the future tests.  

 

Part B - Initializers 

 In this part was tested the different initializers. It was tested a considerable amount of initializers 

due to its importance in the learning process. Since they have a great effect in how the model converges.  
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Initializers tested:  

i. Zero 

ii. Random  

iii. Random normal between -1 and 1 

iv. Random uniform between -1 and 1 

v. Truncated Normal with standard deviation equal to 0.05 and 0.  

vi. Variance Scalling using the average number of inputs and output nodes and, the total of inputs 

and outputs nodes.  

vii. Gaussian and standard deviation equal to 0.01 

viii. Glorot Normal  

ix. Glorot uniform  

x. He normal  

xi. 11.Orthogonal  

Number of tests = 10 

  

In this test was followed a procedure divided in three parts, the first part was test the weights for 

each initializer and the bias was initialized a zero, and selected the best results, then was made the 

inverse test for bias initializing the weights as 0 and selected the best initializers. For last was done a final 

test with the combination of the test results for each model. The epochs also were adjusted to the learning 

behaviour, wherein slower learnings were trained using more epochs.  

In order to understand what models were used from the last results was created a table for each 

main parameters set model A, B and D, which contains the best other models with more specific 

parameters, resulting from last tests of part B (Table 6.40, Table 6.41, Table 6.42).  

Models summary: 

i. Model A 

Table 6.40 – Lettering models of the last results for the main model A of the part A.  

  Batch size 

  1 5 

Optimizer 
RMSprop Model 1A (lr = 0.001) Model 2A (lr = 0.001) 

Adadelta Model 3A (lr = 1.0) Model 4A (lr = 1.0) 
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ii. Model B 

Table 6.41 - Lettering models of the last results for the main model B of the part A. 

  Batch size 

  10 

Optimizer 

RMSprop Model 1B (lr = 0.001) 

Adadelta Model 2B (lr = 150) 

Adam Model 3B (lr = 0.001) 

 

iii. Model D 

Table 6.42 - Lettering models of the last results for the main model D of the part A. 

  Batch size 

  1 5 

Optimizer 
RMSprop Model 1D (lr = 0.001) Model 2D (lr = 0.001) 

Adadelta Model 3D (lr = 1.0)  

 

 

In order to reduce the number of final models and get only the best results it was only selected 

the models that achieved more than 0.34 in the validation accuracy. In addition, it was also selected the 

first model below the performance line to in the selected set includes all three different models of part A, 

which means the model A, B and D. Thus, in the selected models was included the models that achieved 

the best validation accuracy and the second validation cost.  

Table 6.43 - Average validation accuracy and cost obtained in the final step for each pair of best initializers for the 50 nodes 
parcellation.  

Case 
Batch 

size 
Kernel initializer Bias initializer 

Average 

validation 

accuracy 

Average 

validation cost 

1D 1 Glorot uniform Random uniform 0.3816  ± 0.0263 3.0394 ± 0.0830 

2D 5 Random Normal (±0.01) He normal 0.3513 ± 0.0221 3.4099 ± 0.1010 

3D 1 Glorot uniform VS fan avg 0.3513 ± 0.0289 2.9461 ± 0.0690 

1A 5 Glorot uniform Random Normal 0.3434 ± 0.0266 3.6335 ± 0.0897 
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3B 10 
Variance scalling 

“fan_avg” 
Truncated Normal 0.3382 ± 0.0312 0.9971 ± 0.0002 

3A 1 Random Normal (±0.01) Random Normal 0.3355 ± 0.0088 3.0725 ± 0.0575 

 2A 1 Glorot uniform Random Normal 0.3329 ± 0.0257 3.6289 ± 0.1287 

4A 5 Random Normal (±0.01) Random uniform 0.3290 ± 0.0166 3.0560 ± 0.0507 

1B 10 Glorot uniform He uniform 0.3276 ± 0.0231 0.9968 ± 0.0001 

2B 10 Glorot uniform Random Normal 0.2816 ± 0.0244 0.9973 ± 0.0001 

 

 

Part 2 – Initializers additional tests - Categorical hinge and Softsign  

 

Besides the last test was made an additional set of tests in order to verify the effect of categorical 

Hinge loss function and Softsign activation function. So, to do that, using the principal models (models A 

and D) and parameters already the fine-tuned parameters for each case was created three more main 

possibilities. The model B was not used once it’s presented a slower learning, needing more time to train. 

One changing the loss function of the models by categorical Hinge, other replacing the activation function 

by Softsign and in for last replacing both in the models.  

So summarized was created for each situation the models in the (Table 6.44,Table 6.45,Table 

6.46,Table 6.47,Table 6.48 and Table 6.49).  

i. Replacing model A loss function by Categorical Hinge loss 

Table 6.44 – Lettering models for the new results using the categorical Hinge loss function with model A parameters.  

  Batch size 

  1 5 

Optimizer 
RMSprop Test1 (lr = 0.001) Test2 (lr = 0.001) 

Adadelta Test3 (lr = 1.0) Test 4 (lr = 1.0) 

 

ii. Replacing model D loss function by Categorical Hinge loss 

Table 6.45 - Lettering models for the new results using the categorical Hinge loss function with model D parameters. 

  Batch size 

  1 5 

Optimizer 
RMSprop Test5 (lr = 0.001) Test6 (lr = 0.001) 

Adadelta Test7 (lr = 1.0)  



CHAPTER6. RESULTS AND DISCUSSION 

149 

 

iii. Replacing model A activation function by Softsign 

Table 6.46 – Lettering models for the new results using the Softsign activation function with model A parameters. 

  Batch size 

  1 5 

Optimizer 
RMSprop Test8 (lr = 0.001) Test9 (lr = 0.001) 

Adadelta Test10 (lr = 1.0) Test11 (lr = 1.0) 

 

iv. Replacing model D activation functon by Softsign 

Table 6.47 - Lettering models for the new results using the Softsign activation function with model D parameters. 

  Batch size 

  1 5 

Optimizer 
RMSprop Test12 (lr = 0.001) Test13 (lr = 0.001) 

Adadelta Test14 (lr = 1.0)  

 

v. Replacing model A loss function by Categorical Hinge loss and activation function by Softsign 

Table 6.48 – Lettering models for the new results using the Softsign activation function and categorical Hinge loss function 
with model A parameters. 

  Batch size 

  1 5 

Optimizer 
RMSprop Test15 (lr = 0.001) Test16 (lr = 0.001) 

Adadelta Test17 (lr = 1.0) Test18 (lr = 1.0) 

 

vi. Replacing model D loss function by Categorical Hinge loss and activation function by Softsign 

Table 6.49 - Lettering models for the new results using the Softsign activation function and categorical Hinge loss function 
with model A parameters, part 2.  

  Batch size 

  1 5 

Optimizer 
RMSprop Test19 (lr = 0.001) Test20 (lr = 0.001) 

Adadelta Test21 (lr = 1.0)  
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Table 6.50 - Average validation accuracy and cost obtained for the the new tests with categorical Hinge loss function and 
Softsign activation function using as base the models A and D, for the 50 nodes parcellation. 

Test 
Batch 

size 
Kernel initializer 

Bias 

initializer 

Average 

accuracy 

Average 

Cost 

Test15 1 Glorot uniform Random Normal 0.3829 ± 0.0340 0.9674 ± 0.0241 

Test8 1 Glorot uniform Random Normal 0.3790 ± 0.0262 3.0472 ± 0.0750 

Test17 1 Glorot normal Random uniform 0.3671 ± 0.0208 0.9891 ± 0.0210 

Test20 1 Random Normal (±0.01) He normal 0.3658 ± 0.0281 0.9923 ± 0.0120 

Test19 5 Glorot uniform Random Normal 0.3540 ± 0.0350 1.0336 ± 0.0279 

Test17 1 Random Normal (±0.01) Random normal 0.3540 ± 0.0224 0.9928 ± 0.0255 

Test7 1 Zeros Vs fan avg 0.3527 ± 0.0255 1.0094 ± 0.0187 

Test21 5 Random Normal (±0.01) Random uniform 0.3487 ± 0.0188 0.9963 ± 0.0089 

Test10  Random Normal (±0.01) Random Normal 0.3434 ± 0.0216 2.9157 ± 0.0717 

Test9 5 Glorot uniform Random Normal 0.3382 ± 0.0300 3.4784 ± 0.0999 

Test11 5 Random Normal (±0.01) Random uniform 0.3355 ± 0.0251 2.9551 ± 0.0470 

Test18 5 Random Normal (±0.01) He normal 0.3316 ± 0.0327 1.0500 ± 0.0259 

Test12 10 Glorot uniform He uniform 0.3303 ± 0.0279 0.9967 ± 0.0002 

Test14 10 VS fan avg Truncated Normal 0.3197 ± 0.0250 0.9967 ± 0.0001 

Test3 1 Random Normal (±0.01) Random Normal 0.3132 ± 0.0164 1.0326 ± 0.0146 

Test4 5 Random Normal (±0.01) Random uniform 0.3040 ± 0.0472 1.0303 ± 0.0148 

Test2 5 Glorot uniform Random Normal 0.2987 ± 0.0372 1.0782 ± 0.0555 

Test6 5 Random Normal (±0.01) He normal 0.2882 ± 0.0199 1.1091 ± 0.0294 

Test13 10 Glorot uniform Random Normal 0.2842 ± 0.0301 0.9987 ± 0.0001 

Test1 1 Glorot uniform Random Normal 0.1908 ± 0.0391 1.0668 ± 0.0260 

Test5 1 Glorot normal Random uniform 0.0382 ± 0.0266 1.6096 ± 0.2002 

 
 The results were very positively in general, wherein the model achieved better results 

comparatively to the other initializers’ results in Table 6.50. As example, the new results have 7 models 

with accuracy above 0.35 while the other results have only 4 models. Also, the average validation costs 

are better for the new results. Besides the combination Softsign activation function and the categorical 

Hinge demonstrated be a good relation, once it achieved the best results over all the results created in 

the initializers test. The models’ selection was done using all the models that accomplished a validation 

accuracy above 0.35.   
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Final models - Case1D, Case 2D, Case 3D, Case 1A, Case 3B, Test15, Test8, Test17, Test20, 

Test16, Test19 and Test7. 

 Then, before the next process was done additional test to make a learning rate adjustment, 

wherein the learning rate of the final models was multiplying by the factors {0,01;0,05;0,1;0,5;1}, and 

made again 10 tests for each case.  

Table 6.51 – Average validation accuracy and cost for the learning rate adjustment with the final results of part 2, for 50 
nodes parcellation.  

Test/case 
Initial 

Learning rate 

New best 

learning rate 

Average validation 

accuracy 

Average validation 

Cost 

Case 1D 0.0010 0.0001 0.4105 ± 0.0193 2.7445 ± 0.0448 

Test8 0.0010 0.0001 0.4013 ± 0.0197 2.8736 ± 0.0577 

Case 2D 0.0010 0.0001 0.3947 ± 0.0243 2.9885 ± 0.0798 

Test16 0.0001 0.0001 0.3803 ± 0.0308 0.9792 ± 0.0228 

Test15 0.0010 0.0001 0.3763 ± 0.0468 0.9850 ± 0.0171 

Test16 0.0001 0.0005 0.3693 ± 0.0286 0.9962 ± 0.0199 

Case 3D 1.0000 0.5000 0.3645 ± 0.0243 2.9251 ± 0.0647 

Test20 1.0000 0.5000 0.3645 ± 0.0289 0.9797 ± 0.0191 

Test19 1.0000 0.5000 0.3638 ± 0.0251 0.9836 ± 0.0143 

Test7 1.0000 0.1000 0.3618 ± 0.0258 0.9872 ± 0.0133 

Case 1A 0.0010 0.0001 0.3500 ± 0.0265 3.3507 ± 0.0762 

Case 3B 0.0010 0.0001 0.3263 ± 0.0275 0.9968 ± 0.0001 

 

 The new validation results demonstrated that the adjustment of the learning rate was a good 

approach since the majority of the learning rates has been updated. Besides the performances of the 

models in the validation data has improved, in the accuracy and in the cost. Before this new test, the 

model only had two models over 0.38 in the accuracy, and after the number increase to four models.  It 

was selected for the next phase the models with an accuracy over 0.37 in the test accuracy.  

 The performances metrics from this step to the next decrease in general 0.1. The reason was 

the use of partial data with no temporal filtering. This problem led us to discover that the temporal filtering 

is eliminating some important features. After being identified this problem the data was corrected and 

the values diminish. This created an assumption that the temporal filtering eliminates important features, 

which will be later explored.  
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6.2.1.3. 50 Nodes Parcellation – Part C 

Part C – Change/Increase the models’ depth 

Actual model architecture: 

  3 layers:  

i. Inputs 4278 nodes 

ii. Hidden layer 200 nodes 

iii. Outputs 76 nodes (number of subjects to classify)  

Table 6.52 - Average validation accuracy and cost for the learning rate adjustment with the final results of part 2, for 50 
nodes parcellation. 

Test/case 
Batch 

size 

Kernel 

initializer 

Bias 

initializer 

Activation 

function 

Loss 

Function 
Optimizer 

Learning 

rate 

Case 1D 1 
Glorot 

uniform 

Random 

uniform 
Tanh 

Categorical 

crossentropy 
RMSprop 0.0001 

Test8 1 
Glorot 

uniform 

Random 

Normal 
Softsign 

Categorical 

cross 

entropy 

RMSprop 0.0001 

Case 2D 5 

Random 

Normal 

stddev 

0,01 

He normal Tanh 
Categorical 

crossentropy 
RMSprop 0.0001 

Test17 1 
Glorot 

normal 

Random 

uniform 
Softsign 

Categorical 

Hinge 
RMSprop 0.0001 

Test15 1 
Glorot 

uniform 

Random 

Normal 
Softsign 

Categorical 

Hinge 
RMSprop 0.0001 

 

i. 3 Layers  

The first tests were done for the model with 3 layers, changing the hidden layer nodes with values 

of the following set: 

 Nodes set – {50; 100; 200; 500; 1000; 2000; 4000; 8000; 10000} 

Table 6.53 – Average validation accuracy and cost for the best models, one hidden layer test, In-House data and parcellation 
50 nodes.  

Model Average validation accuracy Average validation cost 

Case 1D 0.3132 ±⁡0.0129 3.1422⁡± 0.0668 

Test8 0.3053⁡± 0.0255 3.2547⁡± 0.0334 

Case 2D 0.3000 ±⁡0.02680 3.1223 ±⁡0.0389 

Test17 0.2895⁡±⁡0.0300 1.0405⁡± 0.0234 

Test15 0.2921 ±⁡0.0255 1.0449 ±⁡0.0251 
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 The best results were obtained for the hidden layer with 200 nodes for all models, and the results 

are summarized in Table 6.53. Then was made a set of tests with dropout, for the next set of rates {0.1; 

0.2; 0.5; 0.7} but the results haven’t improved.   

 

ii. 4 Layers 

a. Maintaining the number of parameters: 

The total of parameters for the 200 nodes was 871000. So, with 4 layers the number of the 

nodes in the middle layers was chosen in order to maintain the total number of parameters. Thus, it were 

chosen 3 different values for the second layer of the model, and calculated the value for the third layer. 

The values chosen was 50, 100 and 150 nodes, and to respect the assumption the width in the other 

hidden-layer was respectively 5000, 2500 and 1000 nodes.  

Table 6.54 - Average validation accuracy and cost for the best models, two hidden layer test and maintaining the number of 
parameters, parcellation 50 nodes. 

Model Average validation accuracy Average validation cost 
Hidden 

layer 1 

Hidden 

layer 2 

Case 1D 0.2658⁡±⁡0.0129 3.8950⁡±⁡0.0806 100 2500 

Test8 0.2684⁡± 0.0105 3.5108⁡± 0.0486 150 1000 

Case 2D 0.2132 ±⁡0.0316 5.2878 ±⁡0.2114 150 1000 

Test17 0.2369⁡± 0.0186 1.0856⁡± 0.0197 150 1000 

Test15 0.2369 ±⁡0.0322 1.0960 ±⁡0.0181 150 1000 

 

The results obtained was poorly when compared with the best results. Globally, it was for the 

combination of 150 nodes in the hidden layer 1 and 1000 in the hidden layer 2. So, there was an 

indication that are required higher values in the second layer and not so high in the third layer.  

b. Variating the number of nodes in the hidden layers model: 

Values tested combined: 

i. Hidden-layer 1:  100, 500, 1000 and 2000 

 Hidden-layer 2: 100, 500, 1000 and 2000 

The best results are demonstrated in the Table 6.55, where the test8, test14 and test15 have 

improved their performance. All of these models have hyperparameter in common, the Softsign activation 

function or Categorical Hinge loss function.  
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Table 6.55 - Average validation accuracy and cost for the best models, two hidden layer test and variating nodes, In-House 
data and parcellation 50 nodes. 

Model Average validation accuracy Average validation cost 
Hidden 

layer 1 

Hidden 

Layer 2 

Case 1D 0.2829 ±⁡0.0197 3.4141⁡± 0.0617 2000 500 

Test8 0.3105 ± 0.0271 1.0183 ± 0.0083 2000 1000 

Case 2D 0.2893 ± 0.0144 1.0230 ± 0.0128 2000 1000 

Test17 0.3079 ± 0.0134 3.1254 ± 0.0613 2000 500 

Test15 0.2895 ± 0.0186 3.2189 ±⁡0.0412 2000 500 

 

 5 Layers 

a. Add layer to the last better set of hyperparameters: 

In this test was added to the last best four layers models a new layer that could have 200, 500 

or 1000 nodes.  

Table 6.56 - Average validation accuracy and cost for the best models, three-layer test and best parameters, In-House data 
and parcellation 50 nodes. 

Model 
Average validation 

accuracy 

Average 

validation cost 

Hidden 

layer 1 

Hidden 

Layer 

2 

Hidden 

layer 3  

Case 1D 0.3026 ±⁡0.0416 3.2601⁡±⁡0.1062 2000 500 200 

Test8 0.2947 ± 0.0214 3.3032 ± 0.0598 2000 1000 500 

Case 2D 0.2684 ± 0.0134 3.8723 ± 0.1767 2000 1000 200 

Test17 0.3105 ± 0.0283 1.0174 ± 0.0041 2000 500 1000 

Test15 0.2921 ± 0.0411 1.0312 ± 0.0118 2000 500 500 

 

Once again, the test17 has improved its results.  (Table 6.56). 

a. Variating the hidden layers nodes: 

Table 6.57 - Average validation accuracy and cost for the best models, three-layer test and variating parameters, In-House 
data and parcellation 50 nodes. 

Model 
Average validation 

accuracy 

Average 

validation cost 

Hidden 

layer 1 

Hidden 

Layer 

2 

Hidden 

layer 3  

Case 1D 0.3026⁡± 0.0144 3.3350 ±⁡0.6467 2000 2000 200 

Test8 0.2816 ± 0.0258 3.2345 ± 0.6360 2000 2000 2000 

Case 2D 0.3053 ± 0.0293 3.6108 ± 0.6480 2000 2000 200 

Test17 0.2632 ± 0.0186 1.1043 ± 0.6267 2000 200 200 

Test15 0.2711 ± 0.0134 1.1239 ± 0.6307 2000 200 200 
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In this test was tested the combination of the hypothesis 200 and 2000 nodes for each layer. 

And all the models performed worse than in previous tests (Table 6.57). And search for nodes stopped 

here.  

 

Finals best models: 

Table 6.58 – Final best models’ architecture for In-House data and 50 nodes parcellation.  

Model 
Hidden 

layer 1 

Hidden 

Layer 2 

Hidden 

layer 3  

Average validation 

accuracy 

Average validation 

cost 

Case 1D 200 - - 0.3132⁡± 0.0129 3.1422⁡±⁡0.0668 

Test8 2000 1000 - 0.3105 ±⁡0.0271 1.0183 ± 0.0083 

Case 2D 200 - - 0.3000 ±⁡0.0268 3.1223 ± 0.0389 

Test17 2000 500 1000 0.3105 ±⁡0.0283 1.0174 ± 0.0041 

Test15 2000 500 - 0.2895 ± 0.0186 3.2189 ± 0.0412 

 

From this set was selected the Case 1D and test17 the to the last tests, a simple and a more 

complex model (e.g. Deep Learning). All the values obtained outperformed the article fingerprint approach 

since are all above 0.237.  

6.3. Other Results  

6.3.1.  Dynamic Problem - Cross-Validation 

In order to demonstrate the problem of using the dynamic was made with functional connectivity 

dynamic for the In-house data using the 50 nodes parcellation and was used the session 1 to predict the 

session 2. The model used was a simple one, with 3 fully connected layers:  

i. Inputs – 4278 

ii. Hidden-layer – 200 

iii. Outputs – 76 

And the hyperparameters applied are defined in Table 6.59. The cross-validation was used with 

10 folds and the test was repeated five times.  
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Table 6.59 – Hyperparameters of one of the models.   

Batch 

size 

Kernel 

initializer 

Bias 

initializer 

Activation 

function 

Loss 

Function 
Optimizer 

Learning 

rate 
Epochs 

20 
Glorot 

normal 

Random 

uniform 
Softsign 

Categorical 

Hinge 
RMSprop 0.0001 500 

 

Table 6.60 – Results for the dynamic test using the cross-validation  

 
Training average 

cost 
Validation accuracy Final cost 

Test 
accuracy 

Test 
Cost 

 3.30x10-08 ± 0.033 1.0 ± 0.0 
5.60x10-07 ± 
5.49x10-07 

0.0467 1.4575 

 

 As can be seen in the Table 6.60, the final validation accuracy for each subset was always 1.0 

and the final cost is also near to the training cost demonstrating that the validation data values are much 

related with the training data. In other hand the final test accuracy is very far in the accuracy and cost to 

the validation values, so it’s not possible use the cross-validation with the dynamic functional connectivity.   

6.3.2. Static Problem - Cross-Validation 

The static data has the problem of have few cases for each label (e.g. subject), for example for 

In-House data there is one case for each subject and in the HCP are two for each subject. This makes 

the application of cross-validation inapplicable, since the final value of the cross-validation will be a correct 

measurement of the performance of the model. Since in the training could not occur any training with 

the label that appear in the validation. So, the validation values will be always low or even null, no giving 

the true value of the model performance. So, to prove this problem was made the cross-validation with 5 

folds, to In-House data 50 nodes parcellation, predicting the session 2 using the session 1.  

The model used was a simple one, with 3 fully connected layers:  

i. Inputs – 4278 

ii. Hidden-layer – 200 

iii. Outputs – 76 

And the hyperparameters applied are defined in Table 6.59. 

As the results show in the Table 6.61, the validation accuracy is almost equal the probability of 

the random probability of a correct classification, and is very far from the test accuracy. So, the value of 
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the validation doesn’t characterize the real performance of the model which makes to adjust the 

hyperparameters analysing these values.   

Table 6.61 – Results for the static test using the cross-validation 

 
Training average 

cost 
Validation accuracy Final cost 

Test 
accuracy 

Test 
Cost 

 1.23x10-07 ± 0.1829 0.0258 ± 0.0317 
1.4136 ± 
0.0465 

0.1447 1.2194 
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7. CONCLUSION 

1. Can an implementation of a nipype pipeline improve several points of a 

processing workflow? 

1.1 And with differences in the time and data organization? 

Regarding the methods applied and obtained results in this work, there are some assumptions 

and pertinent statements that can be made. The construction of a nipype pipeline brings positive features 

and several advantages in relation to the normal use, either by commands lines or bash scripts. The fact 

that the pipeline created, before and during the computation optimized the different preprocessing steps 

made according to the order that they appear, the type of preprocessing done and the number of 

acquisitions, decrease the necessary time several times.  

1.2 What about the data management? 

The different results, produced by preprocessing, were automatically created in a base directory 

by a structure easily handled. This base directory contains the different folders of the parcellations and 

the subjects with the respective files. During the definition of the pipeline is not difficult to identify the 

different parts, since it is only necessary the directory base that is always saved. As happen in the creation 

of the pipeline, each preprocess step has a name choose by the customizer, and the pipeline will be 

organized by them.  

1.3 And using multi-processing? 

Other great feature is the fact that the pipeline compute in parallel and do not need any software. 

This gives a great advantage to the normal use, when the computation is required to be divided and it 

has to be done by handmade and there is no processes optimization.  

1.4 How to stop failures from affecting the working pipeline? 

Also in the nipype pipeline, the pre-processing steps do not have to be made since from the 

beginning until the end of the row, instead of the normal use. Once the processing is done step by step 

saving the results during the process, it can run preprocess and then go to another subject. Besides, this 

gives the possibility of optimizing the process, as already mentioned, making the pipeline fault tolerant. 

If the preprocessing ends for some reason, when the pipeline rerun, it will be checked the different 

processes done and begins where the process was stopped. Thus, this is very important, since there is 
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no need of repeated computation and, at the end, it saves a lot of time. Even over in this type of 

preprocessing wherein are used acquisitions of rs-fMRI with several minutes, making a computation of 

the pipeline for a single subject last several minutes.  

 

2. What approach should be used to extract the different types of functional 

connectivity?  

The functional connectivity analysed and extracted, using the ROI’s approach, where the 

functional connectivity is study between each pair of brain regions defined à priori. To define these regions 

is used an atlas where define each node by a set of voxels that share a similar characteristic, functional 

or anatomical.  Besides using this approach, this work also extracted the functional connectivity in two 

different ways originating thus two types of correlation matrices. One was the static where is computed 

by the Pearson’s correlation between the full time-series of each pair of brain regions [10]; [183]. And 

the other was the dynamic where was computed the phase coherence to estimate the phase of the time-

series of each region for each volume in the acquisition (TR) [63]; [64]. To compute the different phases 

of the BOLD signal was used the Hilbert transform.  

3. Which is the best way and which data to save using a python environment? 

3.1 It is the Python object a good choice? 

Since Python is an object-oriented programming language, there is the option to deal with the 

datasets as objects of a well-defined class that is easily saved and load from a normal file. When using 

the data as objects there is the opportunity to save different attributes as meta-information attributes as 

well as different arrangements of data. Attributes that are easy to get from an object. Moreover the fact 

that it is possible to create a set of methods, such as pre-processing before retrieving a data or as tool 

for apply in a type of data, they are always available in the object to be used. Thus, to get the data, or 

any data with some preprocessing or information, is quicker and of easy application; it is only needed 

two lines of code. 

3.2 And which data will be saved? 

The data saved in this object datasets were of different types depending majority of the package 

used in the development of Deep Learning models and the type of models (e.g. fully connected layers 

and convolutional networks). For fully connected layers it were only save non-repeated values, and for 

convolutional networks it were saved all the correlation matrices. Besides, once the convolutional 
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networks use the spatial information from images, it was added the option of add structural information 

about the nodes of a parcellation and create the respective correlation matrices. Further, the object also 

provides the normalized data. The labels used in the classification supervised learning were also saved 

in the normal and binary levels. Therefore, the object provides a set of different arrangements and a set 

of values to test different approaches and help the learning process in the Deep Learning models training. 

The most used data was saved in the object, in order to be faster the data retrieving and do not be 

necessary repeated computation, with exception of the normalizations. Once they are not computational 

heavy, due the NumpY optimizations, they increase to much the dataset size, especially the dynamic 

functional connectivity with one correlation matrix by volume. 

4. What is the best architecture to implement in order of fine-tunnelling the DL 

models and its posterior creation? 

4.1 Which Deep Learning python libraries are more appropriate to use? 

In the development of the models, the Python open-source Keras library demonstrated to be the 

best package to develop the different DL models. It made the development process faster and easier, 

once the models are easily created and changed, besides providing several methods to manage and to 

deal with the different models created. They also offer a panoply of different types of layers, and 

hyperparameters that can be applied to the models. As well it wraps other Deep Learning libraries, such 

as Theano and Tensorflow, which allows, with the correct CUDA drivers installed, to run the computations 

associated to the training, validation, and testing of the model, in the GPU instead of using the normal 

CPU. With this technique, the time-consumption is decreased multiple times, being possible to make 

more Deep Learning tests in less time and train models with more parameters due to the depth or the 

number of nodes by layer. 

4.2 Which metrics to use and to compare the models? 

In order to compare the different models it was used a set of metrics to assess the performance 

of the model and to be possible to compare with other models, - to fine-tuning the different 

hyperparameters of the model. For that, it was used some metrics, such as the accuracy and loss, to 

assess the behaviour of the model in the training and validation. In addition to the final values, other 

important values are calculated during the training, such as maximum accuracy in validation with the 

corresponding epoch occurrence, the differences between the different data (e.g. training and validation), 

and others. The different metrics used were always saved, in order to be used in the future and the 

information not to be lost. 
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4.3 Which metrics are extracted in the final analysis of the models? 

In the final analysis of the models, as done before, the loss and accuracy were extracted, and a 

set of other metrics to compare the differences between the different parts, in training, validation and test 

data were performed. These metrics are used to compare the different results and to confirm if the model 

generalizes well. Furthermore, the final classification results were also analysed, which were computed 

for each label, and globally analysed to different parameters, such as the precision, sensitivity, specificity, 

false positive rate, f1-score, and Area under the curve AUC. Also all the metrics are saved for future use.  

4.4 Was there any limitation in the validation approach used? 

The validation approaches used in the models in the case of the fingerprint’s classification have 

some limitations. The cross-validation is the most correct form of validation, however it was not possible 

to apply, since for static there were few cases for each label. In other hand, in the case of the dynamic, 

due to the predictable behaviour in successive dynamic functional connectivity matrices. So the best 

approach was to divide each acquisition session in two equal parts. Then, in the Deep Learning application 

in the fingerprint’s classification, the functional connectivity values of a full acquisition session are used 

as training data. For other session, FC values are used from two divided parts from full acquisition: one 

is used to do the validation data and the other is used to do test data.  

 

Thus, joining all the different points, it was possible to create an architecture framework to use 

rs-fMRI in raw format (e.g., DICOM images) and Deep Learning models that use functional connectivity 

in classifications tasks. Which comprehends the pre-processing of the raw data, creation of datasets with 

different functional connectivity information, and a module to help to fine-tuning the different Deep 

Learning models before getting a “good” model, which is used to the final analysis. 

 Using Deep Learning application was already done in some fine-tuning processes for fully 

connected layers, which results in a set of different model architectures and hypermeters. The preliminary 

analysis reveals some promising results.    

In the future, it will be necessary to improve the framework capacity to create models for 

regression and the set of tools to analyse their results. Due timing limitation it was not possible to explore 

further the fingerprint’s classification. The questions rise in this manuscript should be address in future 

works.   
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APPENDIX A – PROCESSING RS-FMRI 

The implementation of the processing workflow was constructed based in the FSL software due 

to advantages comparatively to others. So, each pre-processing step was exemplified with respective FSL 

commands-line with a short explanation of the process and the reasons of its application.  

To achieve a better example of the procedure, it was chosen an example, a subject with the name 

"Caso_teste". So, the main folder with all images and processing had the same subject name, and its 

directory is represented by “path”. Initially, it only had two folders with the images obtained from the 

acquisition. One contained the images from MRI, the folder "MPRAGE_SAG_2", and the other contained 

the images from fMRI, the folder "ep2d_bold...". After, it was added three more folders: the folder "mri", 

the folder "fmri" and the folder "ica", for the respectively processing steps. The final result of all folders 

can be visualized in Figure A.1. 

 

Figure A.1 - Scheme of the folders used in the storage fMRI data and processing for the subject example “Caso_teste”. 

For a better exemplification, it was created an illustration of all the steps applied with the 

corresponding commands used, and that included the processing steps, since raw data, MRI and fMRI, 

until getting the final files as pretended, whose were divided in three main parts: the MRI pre-processing, 

the fMRI pre-processing and analysis (ICA).  

 

1 Processing image of magnetic resonance imaging (MRI). 

The process begins with the MRI, not because the objective is the analysis or study of the last 

resulting MRI, but because some files there are produced during the process and that are applied in the 

fMRI pre-processing registration.  

In order to a better organization and explanation, all the files resulting from the various processes 

were placed in the folder “mri” (Figure A.1), thus the path of input and output files are always this folder 

with only one exception for the input file in the first of process.  
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1.1 Change of the format of the initial Images of MRI 

First it was started with the format transformation of the images .dcm to a single image .nii; in 

other words, from format DICOM to NifTI-1.  

A DCM is an image file saved in the Digital Imaging and Communications in Medicine format, 

created by the National Electrical Manufacturers Association as a standard for distributing and viewing 

medical images, such as MRI, CT scans, and ultrasound images.[71] 

NIfTI-1 is a format adapted from another file format, the ANALYZEtm 7.5, where the NIfTI-1 uses 

the "empty space" in the ANALYZE 7.5 header to add several new features. Features such as:  

o Affine coordinate definitions relating voxel index (i,j,k) to spatial location (x,y,z);  

o Codes to indicate spatio-temporal slice ordering for FMRI;  

o "Complete" set of 8-128 bit data types;  

o Standardized way to store vector-valued datasets over 1-4 dimensional domains;  

o Codes to indicate data "meaning";  

o A standardized way to add "extension" data to the header;  

o Dual file (.hdr & .img) or single file (.nii) storage;  

And many other features. The goal of this format is a best interoperability in the file-exchange between 

analysis software packages, as FSL, SPM, AFNI and others [72]. 

To change the image format was used one of the programs available from MRIcron, the dcm2nii. 

That converts the images DICOM in NIfTI format.  Posteriorly allows that these images could be visualized 

by analysis software as already referenced.  

 

 

   

1.2 Brain extraction  

This pre-processing step is real important, because in the fMRI analysis the only region of interest 

to study it’s the brain. Only the voxels of the brain will change their intensity values over time in each 

volume. Thereby it is needed to select only the volume of the brain, which is the region of interest (ROI). 

For that it is used the BET (Brain Extraction Tool) available in FSL, and what it does is to delete the non-

brain tissue from an acquisition of the whole brain. Furthermore, it has another features, like to be able 

Command: dcm2nii -x Y -o 'path/mri' 'path/MPRAGE_SAG_2/IM-0002-0001.dcm'  

 
Input: in use of this command it is enough give the path of the first image of MRI. 

 
Output:  in the folder “mri” was created the NIfTI file “Caso_teste_str.nii.gz”. 
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to estimate inner and outer skull surfaces, and outer scalp surface, provided that the quality of images 

T1 and T2 are good [188]. 

 

Options:  

o -m generate binary brain mask 

o -f fractional intensity threshold; from its default value of 0.5 will cause the overall 

segmented brain to become larger (<0.5) or smaller (>0.5). In this case was applied 0.2.   

o -B bias field and neck clean-up 

 

 

1.3  Registration  

This method is indispensable in fMRI processing and will be again approached in fMRI 

registration. However, this is also performed in MRI processing whose resulting files meant to be applied 

in the final fMRI registration in the point 2. Here, in this step it’s only used the image from MRI that is 

transformed in a standard model of respective subject. This allows that this can be used in a set of images 

or volumes from the same subject, thus the same space characteristics are preserved in all being 

accordingly to the universal standardization of brain medical images. It is important to refer one more 

time that this standardization is only relative to brain position and its occupation in the space. For that, 

it’s required to traduce this model in a values’ matrix that correspond to space vectors, in order to be 

able to make this model from any other volume of the same subject and acquisition [189]. 

All of this process it’s intended to compare and have conclusions of several fMRI analysis of 

acquisitions made in different times and from different subjects. So, to be possible the combination across 

individuals it is needed that the image data had suffered a “standardization”. Moreover, during the fMRI 

scanning occurs a lot of motions that can negatively affect the final results. Then, the different voxels that 

represent the brain don’t retain the same position of volume to volume. Not being in that way possible to 

have continuity about the voxels localization, it can lead to errors in theirs values conducing to appearance 

of artefacts and false results. And as this type of medical imaging are associated to studies of brain 

Command: bet 'path/mri/Caso_teste_str.nii.gz' 'path/mri/Caso_teste_str_bet.nii.gz' -m -f 0.2 -B 

 

Input:  The NIfTI file “Caso_teste_str.nii.gz”, created previously.  

 
Output: In the folder “mri” the file “Caso_teste_str_bet.nii.gz”, further the file with the brain mask 

for extraction only of the brain, which file name is “Caso_teste_str_bet_mask.nii.gz”.  
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connectivity, it is fundamental that doesn’t happen, or else it will not be possible to reach truly and 

conclusive results [190]. 

 In the universe of medical imaging, the process and method explained are known and named as 

Registration. And basically, the registration process is to take in two images and align them, or in other 

words, one of the image is reshaped to match the other. This is made by finding a relationship between 

the voxels locations in the two images and, once this is found, the voxel information can be exchanged 

and combined, being possible the fusion and comparison between them. In addition, the registration has 

two main categories depending on the registration method, being these feature-based and intensity-based. 

The difference between them is if it’s aligned by manually or automated extracted features or if it’s aligned 

by the intensity voxels values. The intensity-based methods are more common and it was what was used 

in the registration steps by the FSL software [191]. 

 As said before, during the process of registration occur spatial transformations to image to align, 

to change shape, orientation, or position of brain structures in the image. So, during a process is applied 

a transformation model canning this to be of two different types, linear and non-linear.  Also, in order to 

a better description of the model, it’s a lot of times described by its Degrees Of Freedom (DOF), which is 

the number of transformations by independently ways that can be realized [189];[191]. 

 Finally, in this processing example was used both registration type models, first here for pre-

processing MRI image and later for fMRI acquisition.  

1.3.1 Linear Registration  

The application of linear registration was made by the use of the program available by FSL, more 

properly, the flirt command-line program [181];[182];[183]. The flirt is a fully automated and accurate 

program to deal and to perform the linear intra-modal and inter-modal brain image registration. As linear 

transformations can be two types, also can be the registration flirt, being characterized by different DOF 

[191]:  

 Rigid-Body Transformations (6 DOF) – the only transformations permitted are rotations and 

translations, so each one has 3 DOF, one for each axis. And as the name says, this describes 

the type of movements of a rigid-body.  

 Affine Transformations (12 DOF) – allows tall linear coordinate transformations that can-do 

translations, rotations, scaling and skew parameters with 3 DOF each of them. Thus, this type of 

transformation allows both size and shape change for structures in the image.  
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In this pre-processing was used the affine transformations due to the more functionality, which has 

larger number of associated transformations.  

 

Options:  

o -searchrx <min_angle> <max_angle>  

o -searchry <min_angle> <max_angle> 

o -searchrz <min_angle> <max_angle> 

o -dof degrees of freedom  

o -cost cost function; in this case normcorr 

o -in input volume 

o -ref reference volume 

o -omat output matrix 

o -out output volume 

 

 

1.3.2 Non-linear registration  

For this pre-processing was applied other registration program by FSL, the fnirt. The fnirt is 

characterized by non-linear transformations, where are included all transformations that aren’t in the 

affine registration. And it is associated a countless quantity of DOF. So, for this registration comparatively 

to non-linear, instead of being represented by a matrix of values, is represented by a deformation field.  

 

Options:  

o --in name of input image 

Command: flirt -searchrx -180 180 -searchry -180 180 -searchrz 180 -180 -dof 12 -cost normcorr 

-in 'path/mri/Caso_teste_str_bet.nii.gz' –ref 

/usr/share/FSL/5.0/data/standard/MNI152_T1_1mm_brain.nii.gz -omat 

'path/mri/Caso_teste_str_2mni.mat' -out 'path/mri/Caso_teste_str_bet_affine_mni.nii.gz' 

 

Input: file “Caso_teste_str_bet.nii.gz” with only the brain after its extraction.  

N 

 
Output: the file “Caso_teste_str_2mni.mat” with transformation matrix and the brain now with 

transformations processed, which file name is “Caso_teste_str_bet_affine_mni.nii.gz”.  

ne 

Command: fnirt --in='path/mri/Caso_teste_str.nii.gz' --aff='path/mri/Caso_teste_str_2mni.mat' --

cout='path/mri/Caso_teste_str_warp.nii.gz' --config=T1_2_MNI152_2mm 
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o --aff name of file containing affine transform 

o --cout name of output file with field coefficients 

o --config name of config file specifying command line arguments (standard image to compare) 

 

 

Then it was used the applywarp command for to apply the warps estimated by fnirt to some 

image (volume).   

 

Options:  

o --in name of input image 

o --ref filename for reference image  

o --warp filename for warp/coefficient (volume) 

o --out name of config file specifying command line arguments (standard image to 

compare) 

 

 

2 Processing of functional magnetic resonance images  

As was made for processing MRI images, also for this second part of pre-processing steps, it was 

created a specific folder to save all the outputs resultants, creating the folder named "fmri" - Figure A.1.  

2.1 Alteration of the format of the initial Images of fMRI 

Input: file “Caso_teste_str.nii.gz” with the initial volume MRI, and the file 

“Caso_teste_str_2mni.mat'” with transformations realized by flirt command.  

 
Output: in the current folder was created the file “Caso_teste_str_warp.nii.gz” with the new resulting 

volume from the fnirt application.  

 

Command: applywarp --ref=$FSLDIR/data/standard/MNI152_T1_2mm_brain --

in=$'path/mri/Caso_teste_str_bet.nii.gz' --warp='path/mri/Caso_teste_str_warp.nii.gz' --

out='path/mri/Caso_teste_str_bet_mni.nii.gz' 

 

Input: It has as input the file “Caso_teste_str_bet.nii.gz” only with the brain’s volume. The volume 

had as reference named “MNI152_T1_2mm_brain”and the resulting volume from fnirt the file “fnirt 

Caso_teste_str_warp.nii.gz”. 

 
Output: the file “Caso_teste_str_bet_mni.nii.gz” that is obtained at the end the brain completely 

normalized and ready to be used in the next steps of image functional processing.  
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Like happens for the MRI images, it was needed to convert the format of the fMRI images from DICOM 

to NIfTI. And as before, the program dcm2nii from MRIcon was used to the conversion, such as it is 

indicated in the command below:  

 

2.2 Eliminate possible artefacts of the initial signal  

In an effort to minimize artefacts due to not stabilization of the signal in the first extracted volumes, it is 

removed the first five volumes. So, for this case, where TR is 2 seconds, it was removed the first 10 

seconds from the acquisition. 

For support as help tool to see the metadata from a specific fMRI acquisition, it can be used the fslhd 

command that retrieves the information in the nifty header of the file. In this step, this command was 

used to verify the number of volumes of all acquisition, like is demonstrated in the Figure A.2.  

 

Figure A.2. Header NIfti from the file “Caso_teste_fnc.nii.gz” retrieved by fslhd command. 

Looking to the results retrieved, it’s possible to find that in this acquisition there was an extraction 

of 360 volumes, wherefore it is intended to have 355 volumes in the final. For that, it was used another 

FSL command, the fslroi.  

The command fslroi extracts the region of interest (ROI) from an image, and can be used for 

three different means [195]:   

1. Take a 3D ROI from a 3D dataset (or, if it is 4D, the same ROI is taken from each time 

point and a new 4D dataset is created); 

2. Extract just some time points from a 4D dataset; 

3. Control time and space limits of the ROI.  

Taking into account the characteristics of the mentioned case, it was used the following command 

in fslroi application.  

Command: dcm2nii 'path/ep2d_bold_default_12min_10' 
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Again, it can be used the command fslhd to verify if the process before ran like it was intended 

to. So, only it is needed to use this command for the last file created, the “Caso_teste_fnc_vol.nii.gz”, 

and the results now are like it’s in image beneath (Figure A.3).  

 

Figure A.3. Header NIfti from the file “Caso_teste_fnc_vol.nii.gz” retrieved by fslhd command. 

2.3 Slice Timing Correction 

For this process, it was used the command slicetimer from FSL software. The slicetimer is a 

pre-processing tool designed to correct sampling offsets inherent in slice-wise EPI acquisition sequences. 

In the process each voxel time-series is analysed and processed independently, and intensities are shifted 

in time, so that they reflect the interpolated value of the signal at a common reference time point for all 

the voxels. So, it is applied an interpolation synchronized by Hanning windowing kernel to each time 

course to calculate the interpolated values resulting. Additionally, is also needed to know in what order 

the slices were acquired, for known if this was acquires from the bottom or the top of the brain or if this 

acquire in the slice 1 or 2, for example [196]. 

 

Options:  

o -i , --in filename of input timeseries 

Command: fslroi 'path/fmri/Caso_teste_fnc.nii.gz' 'path/fmri/Caso_teste_fnc_vol.nii.gz' 5 360  

 

Input:  file” Caso_teste_fnc.nii.gz” resulting of the conversion process previously, where will occur 

the process of selection’s volumes pretended.  

 

Output: file “Caso_teste_fnc_vol.nii.gz” with only the waned volumes (in this case the 355 volumes 

instead of the 360 initial volumes). 

 

Command: slicetimer -i 'path/fmri/Caso_teste_fnc_vol.nii.gz' -o 

'path/fmri/Caso_teste_fnc_vol_stime.nii.gz' --odd -r 2 --ocustom='path/fmri/slicetimmings'  -v 
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o -o, --out  filename of output timeseries 

o --odd  use interleaved acquisition 

o -r, --repeat  specify TR of data - default is 3s 

o -ocustom filename of single-column custom interleave order file 

o -v, --verbose switch on diagnostic messages 

 

 

2.4 Motion correction  

In this step it was applied the fslmaths command, which it is a simple but powerful program that 

allows mathematical manipulation of images. In the present, the application includes spatial and temporal 

filtering, statistic conversion, diffusion tensor decomposition, and TFCE calculation [195]. 

 

Options:  

o -Tmean mean across time 

 

 

After the previous command, it was used the file created as reference, that is the average of 

intensity of each voxel over time, and it was used in the command MCFLIRT.  

Input: The input files are two. One of them is the file with fMRI acquisition where happens the process 

of time correction and the other it’s a file with the order of cuts realized for each repetition time (TR). 

This to be made appropriately the correction over time taking into account the how the various slices 

were extracted. To that it was created one new file, the “slicetimings”, wherein it was placed the 

correct order of the slices through application of the slice number in each line of the document. And 

this document was put in the same folder of the other file.  

 
Output:  At the end it’s obtained the corrected acquisition on what the file name is 

“Caso_teste_fnc_vol_stime”.  

 

Command: fslmaths 'path/fmri/Caso_teste_fnc_vol_stime.nii.gz' -Tmean 

'path/fmri/Caso_teste_fnc_vol_stime_mean.nii.gz' 

 

Input: It was the more recent file resulting from the last processing step, so it’s the file 

“Caso_teste_fnc_vol_stime.nii.gz”.  

 

Output: It has only one volume with average values of each voxel of the entire fMRI acquisition.  
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MCFLIRT is an intra-modal motion correction tool designed to use on fMRI time series and it is 

based on optimization and registration techniques used in FLIRT, a fully automated robust and accurate 

tool for linear (affine) and inter-modal brain image registration.[197][194]   

 

Options:  

o -in filename of input   

o –r  use a separate 3d image file as the target for registration 

o –stages default is 3. 4 specifies final (internal) sinc interpolation. 

o –plots save transformation parameters in file outputfilename.par. 

 

 

 After, in order to analyse and visualise the results obtained relatively to translation according the 

three dimensions all over the volumes in the motion correction, it was used the fsl_tsplot command.  

 

Options:  

o –I or --in comma-separated list of input file names 

o –o or --out output filename for the PNG file 

o –t or --title plot title 

o --start position of first column to plot 

o --finish position of final column to plot 

o –a or --labels comma-separated list of labels 

Command: mcflirt -in 'path/fmri/Caso_teste_fnc_vol_stime.nii.gz' -r 

'path/fmri/Caso_teste_fnc_vol_stime_mean.nii.gz' -stages 4 -plots 

 

Input: The same file used in the input before that is the file “Caso_teste_fnc_vol_stime.nii.gz”, and, 

as already mentioned, the file “Caso_teste_fnc_vol_stime_mean.nii.gz” was used as reference in the 

correction of all existing volumes in the acquisition.  

 

Output: In the final of the process, it resulted in two files: one with the total fMRI acquisition corrected 

over time having as name “Caso_teste_fnc_vol_stime_mcf.nii.gz”, and the other with the corrections 

matrix done for each one of the 355 volumes over of the 6 degrees of freedom possible and which 

name was “Caso_teste_fnc_vol_stime_mcf.par”.   

 

Command: fsl_tsplot -i 'path/fmri/Caso_teste_fnc_vol_stime_mcf.par' -t 'Headmovement - 

translation' --start=4 --finish=6 -a x,y,z -o 'path/fmri/Caso_teste_fnc_vol_stime_trans.nii.gz'  
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Figure A.4. Representation translation head movement over all volumes using the fsl_tsplot command. 

 

  

 

 

  Figure A.5. Representation rotation head movement over all volumes using the fsl_tsplot command. 

Input:  As this command it’s only for the constructions demonstrative graphics, merely has to process 

one matrix of values already made. This matrix was obtained previously in the application of the mcflirt 

command that has resulted in the file’s matrix “Caso_teste_fnc_vol_stime_mcf.par”. But, in this 

command, the unique interest is relatively to translate and not to rotate, so it was needed to select 

the pretended columns, and hence it had selected the columns between 4 and 6 inclusive.  

Output: In the final it resulted in the graphic as is represented in Figure A.4, where it has all the 

translations for all the volumes for the space of three variables from the acquisition 

“Caso_teste_fnc_vol_stime_trans.nii.gz”.  

 

Command: fsl_tsplot -i 'path/fmri/Caso_teste_fnc_vol_stime_mcf.par' -t 'Headmovement - 

rotation(rad)' --start=1 --finish=3 -a x,y,z -o 'path/fmri/Caso_teste_fnc_vol_stime_rot.nii.gz' 

 
Input: This command is equal to before, so it has the same input matrix file, but in this case, it was 

intended only the values related to rotation according to three spaces variables and, for that reason, 

it was just chosen columns between 1 and 3 inclusive.    

Output: A graphic with rotation in radians of the head movement over all volumes as it's showed on 

below in the   Figure A.5.  
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2.5 Brain extraction 

Before to execute the principal extraction process, it is used again the command fslmaths to 

obtain a volume that for each voxel this has the average intensity’s voxel of all volumes existing in the 

acquisition.  Then, this is used as reference in the process for a better brain extraction had in account all 

acquisition.  

 

 

 

Then, for brain extraction it was applied the bet2 command, contrary to the processing made in 

MRI with bet command. Although bet2 has practically the same functionality comparatively to a bet 

command, therefore can be saw like an upgraded version.  Even the same command-line syntax can be 

used in the two commands. The unique main addition in bet2 is the –e option to outputting a “mesh” 

version of the estimated brain mask [198].  

 

Options:  

o -m,--mask    generate binary brain mask; 

o -f fractional intensity threshold (0->1); default=0.5; 

 

Command: fslmaths 'path/fmri/Caso_teste_fnc_vol_stime_mcf.nii.gz' -Tmean 

'path/fmri/Caso_teste_fnc_vol_stime_mcf_mean.nii.gz'  

 

 
Input:  File “Caso_teste_fnc_vol_stime_mcf.nii.gz” with fMRI acquisition after the movement 

correction performed in the preceding step.   

 
Output:  A file “Caso_teste_fnc_vol_stime_mcf_mean.nii.gz” that it’s an average volume from all 

volumes.  

 

Command: bet2 'path/fmri/Caso_teste_fnc_vol_stime_mcf_mean.nii.gz' 

'path/fmri/Caso_teste_fnc_vol_stime_mcf_mean_bet.nii.gz' -m -f 

Input:  the file “Caso_teste_fnc_vol_stime_mcf_mean.nii.gz” obtained in the previous command-

line program.  
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In the last step was fulfilled the brain extraction and, for that, it was used the command fslmaths 

to extract the brain from each volume in the fMRI after motion correction. For that it was used a mask 

obtained previously.  

 

Options:  

o -m use (following image>0) to mask current image 

 

  

2.6 Registration  

For this registration, like it was made before for the MRI acquisition, it was made the registration 

by all axes, with 6 degrees of freedom though it was used another cost function, the corratio function. In 

this process to a better registration process is used the volume with the brain already spatial normalized 

from the final pre-processing step of the MRI data.  

 

Options:  

o -searchrx <min_angle> <max_angle>  

Output: As result it had two files: one with only volume of the brain - the file 

“Caso_teste_fnc_vol_stime_mcf_mean_bet.nii.gz”, and the other is a file with a mask. In this mask 

the voxel intensity only has two values, so it works like delimiter of Region Of Interest (ROI). In this 

case the ROI was the brain and it was created from the average volume of the acquisition in order 

that this mask be the best in defining the brain in all volumes of the acquisition.   

 

Command: fslmaths 'path/fmri/Caso_teste_fnc_vol_stime_mcf.nii.gz' -mas 

'path/fmri/Caso_teste_fnc_vol_stime_mcf_mean_bet.nii.gz' 

'path/fmri/Caso_teste_fnc_vol_stime_mcf_bet.nii.gz' 

Input: the most recent file with fMRI acquisition after motion correction, file 

“Caso_teste_fnc_vol_stime_mcf.nii.gz”.  

 

Output: A file with the fMRI acquisition but just with the brain for each volume, because merely this 

region matters, since only the intensity of this voxels will variate over time.  

 

Command: flirt -searchrx -180 180 -searchry -180 180 -searchrz -180 180 -dof 6 -cost corratio -in 

'path/fmri/Caso_teste_fnc_vol_stime_mcf_bet.nii.gz' -ref 'path/mri/Caso_teste_str_bet.nii.gz' -

omat 'path/fmri/fnc_2str.mat' 
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o -searchry <min_angle> <max_angle> 

o -searchrz <min_angle> <max_angle> 

o -dof degrees of freedom  

o -cost cost function, in this case normcorr 

o -in input volume 

o -ref reference volume 

o -omat output matrix 

  

 

Then it is only necessary to use the command applywarp in order to apply to fMRI acquisition the 

registration flirt with the resulting matrix.  

 

Options:  

o --in name of input image 

o --ref filename for reference image  

o --warp filename for warp/coefficient (volume) 

o --premat filename for pre-transform (affine matrix) 

o --out filename for output (warped) image 

Input:  the most recent fMRI acquisition’s file with only the brain and, time and motion corrections 

were made, so it was the output file of the previous command-line program, the file 

“Caso_teste_fnc_vol_stime_mcf_bet.nii.gz”. Besides is use a reference brain obtained in the final of 

structural MRI data, the “Caso_teste_str_bet.nii.gz”.  

Output: the resulting file was a matrix with result values from flirt, that after should be applied to 

correct the acquisition in some voxels problems.  

 

Command: applywarp --ref=$FSLDIR/data/standard/MNI152_T1_2mm_brain --

in=$'path/fmri/Caso_teste_fnc_vol_stime_mcf_bet.nii.gz' --

warp='path/mri/Caso_teste_str_warp.nii.gz' --premat='path/fmri/fnc_2str.mat' --

out='path/fmri/Caso_teste_fnc_vol_stime_mcf_bet_mni.nii.gz'  
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2.7 Motion scrubbing and removal of confounding factors 

To know the average values in the different volumes of the CSF and white matter, it was applied 

the command fslmeants. 

 

Options:  

o --i  input 4D image 

o --label label input 3D label image 

o --o  output text matrix 

 

 

After this, it was used the command fsl_motion_outliers. This tool is designed to detect time 

points in an fMRI dataset that has been corrupted by large motion. It creates a confound matrix that can 

be used in the GLM to completely remove the effects of these time points on the analysis, without any 

Input: the main file of this command/process its fMRI acquisition most recent and that was used in 

the flirt command, the file “Caso_teste_fnc_vol_stime_mcf_bet.nii.gz”. Then it’s necessary the 

utilization of a standard reference, so it was used the “MNI152_T1_2mm_brain” from the standards 

images given by FSL packages. Moreover, there was another input file, a file with matrix’s affine of 

the last flirt command, the file “fnc_2str.mat” and, lastly, the file “Caso_teste_str_warp.nii.gz” with 

the mitigation needed for each volume, and made in the MRI processing by application of fnirt 

command-line program.  

 
Output: resulted in a file fMRI acquisition’s brain already with the registration process done.  

Command: fslmeants -i 'path/fmri/Caso_teste_fnc_vol_stime_mcf_bet_mni.nii.gz' -o 

'path/fmri/Caso_teste_fnc_vol_stime_mcf_bet_mni_csf+white.txt' --

label='/home/ivoramalhosa/Tese/white+csf.nii.gz' 

 

Input: It’s the most recent file from the previous process, so the file 

“Caso_teste_fnc_vol_stime_mcf_bet_mni.nii.gz” and a volume “white+csf.nii.gz” that works like a 

mask where were defined the regions of CSF and white matter as regions of interest.  

 

Output: It resulted in the file that has the intensity average of the voxels of white matter and CSF for 

each volume that existed in the input fMRI acquisition. As the acquisition was constituted by 355 

volumes, this file had 355 lines with two columns for the average of each region.  
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adverse effects in the statistics. This is intended to deal with the effects of intermediate to large motions, 

which corrupt images beyond anything that the linear motion parameter regression methods can fix [199]. 

 

Options:  

o -i  input 4D image 

o -s  save metric values (e.g. DVARS) as text into specified file 

o -o  output confound file 

o --nomoco  do not run motion correction  

 

 

At the end of this second command-line program it was needed to merge the three documents 

.txt created before. So, for that, it was applied the command paste available from command-line bash of 

OS. The file merged was “Caso_teste_fnc_vol_stime_mcf.par”, with information for motion correction in 

each volume of the fMRI scan in the 6 DOF. Moreover, the file 

Caso_teste_fnc_vol_stime_mcf_bet_mni_csf+white.txt with values’ mean intensity of the voxels in the 

regions CSF and white matter. And finally, the last file obtained, 

Caso_teste_fnc_vol_stime_mcf_scrubbed. After, it resulted in the file 

“Caso_teste_fnc_nuisance_reg_wScrubbing.txt” with all columns of each one of the input files. Thus, 

the complete command applied was the following: 

 

Command: fsl_motion_outliers -i 'path/fmri/Caso_teste_fnc_vol_stime_mcf.nii.gz'  -o 

'path/fmri/Caso_teste_fnc_vol_stime_mcf_scrubbed' -s 

'path/fmri/Caso_teste_fnc_vol_stime_mcf_DVARS.txt' --nomoco   

 

Input: The fMRI acquisition before brain extraction, file “Caso_teste_fnc_vol_stime_mcf.nii.gz”.  

 
Output:  Result in two files .txt as requested, wherein in one had confound matrix with each column 

indicated which volume had outliers, the file “Caso_teste_fnc_vol_stime_mcf_scrubbe”. And in the 

other, it was found DVARS value for each volume, the file 

“Caso_teste_fnc_vol_stime_mcf_DVARS.txt”. On what DVARS is root mean square intensity 

difference of volume N to volume N+1.  

Command: paste -d \ 'path/fmri/Caso_teste_fnc_vol_stime_mcf.par' 

'path/fmri/Caso_teste_fnc_vol_stime_mcf_bet_mni_csf+white.txt' 

'path/fmri/Caso_teste_fnc_vol_stime_mcf_scrubbed' > 

'path/fmri/Caso_teste_fnc_nuisance_reg_wScrubbing.txt'  
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 Finally, it reaches at last and main command of this step, the fsl_glm command. This command 

is the implementation of a statistic modelling named general linear model (GLM). So, without delving too 

much, this method wants to predict response Y for each voxel through linear combination’s modelling of 

one or more predictors that are stored in the columns of a determinate “design matrix”. Additionally, it is 

also possible to get the important residuals to analyse and get the values that can’t be explained by the 

GLM design matrix - the errors of GLM.  

This command was not applied with the direct intention of its main application. Because of what 

was wanted, it was the file’s residuals output corresponding to acquisition without noise and artefacts, 

since these were predicted by the glm method from the design matrix given and, therefore, explained in 

this statistical form. So, it was used as a design matrix of the file resulting on the merge of 3 files relative 

problems’ fMRI volumes of motion or other problems.  

 

Options:  

o -i,--in  input file name 

o -d,--design  file name of the GLM design matrix 

o --out_res  output file name for residuals 

o --demean  switch on de-meaning of design and data 

o -m,--mask mask image file name if input is image 

 

 

2.8 Smoothing or spatial filtering  

 Again, it’s used the command-line program fslmaths, and now it was to do the spatial filtering. 

Spatial filtering or spatial smoothing means that in the process in itself voxels are averaged with their 

neighbours. Thus, it has an effect like a low pass filter wherein the low frequencies are amplified, while 

Command: fsl_glm -i 'path/fmri/Caso_teste_fnc_vol_stime_mcf_bet_mni.nii.gz' -d 

'path/fmri/Caso_teste_fnc_nuisance_reg_wScrubbing.txt' --

out_res='path/fmri/Caso_teste_fnc_vol_stime_mcf_bet_mni_denoised_wScrubbing.nii.gz' --

demean -m $FSLDIR/data/standard/MNI152_T1_2mm_brain_mask.nii.gz 

 

Input: It’s the newest fMRI acquisition with more correction processes that resulted of the registration 

process accordingly to the file “Caso_teste_fnc_vol_stime_mcf_bet_mni.nii.gz”.  

 

Output:  The output file it’s an acquisition as mentioned without several problems related to motion 

artefacts. 
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the high frequencies are removed. So, the result are images blurred and the spatial correlation between 

them is stronger. During the process, the fMRI signal is convolved with a Gaussian function with a width 

pretended - width that has to be chosen carefully not to create problems associated to reducing’s spatial 

resolution [200]. 

 

Options:  

o -kernel gauss gaussian kernel (sigma in mm, not voxels) 

o -fmean  mean filtering, kernel weighted (conventionally used with gauss kernel)  

o -mas use (following image>0) to mask current image 

 

 

2.9 Band pass temporal filtering  

This was the last process in the pre-processing steps made, because time series of each voxel 

contains scanner-related and physiological signals, and high frequency noise. Hence, it was used a band 

pass to remove signals of high and low frequency which, without, of course, there would be a loss of 

important signals especially low frequency signals.  

 

Options:  

o -bptf <hp_sigma> <lp_sigma> Band pass temporal filtering; nonlinear high pass and 

Gaussian linear low pass (with sigmas in volumes, not seconds); set either sigma<0 to 

skip that fil.  

Command: fslmaths 

'path/fmri/Caso_teste_fnc_vol_stime_mcf_bet_mni_denoised_wScrubbing.nii.gz' -kernel gauss 

3.397 -fmean -mas /usr/share/FSL/5.0/data/standard/MNI152_T1_2mm_brain_mask 

'path/fmri/Caso_teste_fnc_vol_stime_mcf_bet_mni_denoised_wScrubbing_smooth.nii.gz'  

 

Input: It’s the newest fMRI acquisition with more correction processes that resulted of the registration 

process accordingly the file “Caso_teste_fnc_vol_stime_mcf_bet_mni.nii.gz”.  

 

Output:  The output file it’s an acquisition as mentioned without several problems related to motion 

artefacts.  

 

Command: fslmaths 

'path/fmri/Caso_teste_fnc_vol_stime_mcf_bet_mni_denoised_wScrubbing.nii.gz' -bptf 25.000000 

3.125000 'path/fmri/Caso_teste_fnc_vol_stime_mcf_bet_mni_denoised_wScrubbing_filter.nii.gz'  
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3. Data analysis example 

The output results of this process were saved in the folder "ICA", which means Independent 

Component Analyses. This was the process implemented by the program Melodic, which is a FSL fully 

automated tool that decomposes a multiple or, as in this case, a single 4D data set into the maximum 

time-courses and spatial maps using ICA. For that, the ICA separate statistically and independently the 

patterns of variation of each voxel time series in order to identify possible brain networks relating to these 

variations [190];[191];[192];[193].  

 

Options:  

o -i input file names 

o -o output directory name 

o --report generate Melodic web report 

o --tr TR in seconds 

o --nobet switch off BET 

 

Input: the file "Caso_teste_fnc_vol_stime_mcf_bet_mni_denoised_wScrubbing.nii.gz" resulting 

from the last pre-processing step. The interval of values chosen for the band pass temporal filtering 

was between 0,01 Hz and 0,08 Hz, corresponding respectively to periods (T) of 100 seconds and 

12,5 seconds. As each TR corresponding to one volume has the duration of 2 seconds, and the 

command works with volumes, the time is traduced in a number of volumes - this is 50 volumes and 

6,25 volumes, respectively. Then, in order to not have signal loss, the Nyquist sampling theorem has 

to be respected, so the number of each volumes is reduced to half, resulting in the final values of 25 

volumes and 3,125 volumes. 

 

Output:  acquisition corrected in order to high and low frequency noises, such as is in the file 

"Caso_teste_fnc_vol_stime_mcf_bet_mni_denoised_wScrubbing_filter.nii.gz".  

 

Command: melodic -i 

'path/fmri/Caso_teste_fnc_vol_stime_mcf_bet_mni_denoised_wScrubbing_smooth_filter.nii.gz' -o 

'path/ica' --report –nobet –tr=2 
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Input: The file resulting from the total fMRI processing: 

"Caso_teste_fnc_vol_stime_mcf_bet_mni_denoised_wScrubbing_smooth_filter.nii.gz". Also, the 

repetition time is mentioned in order to a better analysis process.  

 

Output: This command involves analysis application, therefore it results are a large number of 

statistics files, log files and others. But, besides that resulted in a file with the various components 

found in the acquisition, that explicit more or less significantly brains connectivity. This file had as 

name "melodic_IC.nii.gz", and for this test case were found 24 different components. Additionally, 

as requested by option report, the process has created a folder, also named report, wherein it has 

files .txt and .html about statistical values for each one of the components found. 

 



 

199 

 

APPENDIX B – DEVELOPMENT ENVIRONMENT  

1. Theano GPU/CPU Test 

1 from Theano import function, config, shared, tensor   

2 import numpy   

3 import time  

4  

5 vlen = 10 * 30 * 768# 10 x# cores x# threads per core  

6 iters = 1000 

7  

8 rng = numpy.random.RandomState(22)  

9 x = shared(numpy.asarray(rng.rand(vlen), config.floatX))  

10 f = function([], tensor.exp(x))  

11 print(f.maker.fgraph.toposort())  

12 t0 = time.time()  

13 for i in range(iters):  

14      r = f() t1 = time.time()  

15  

16 print("Looping %d times took %f seconds" % (iters, t1 t0))  

17 print("Result is %s" % (r, ))  

18 if numpy.any([isinstance(x.op, tensor.Elemwise) and('Gpu'not in 

type(x.op).__name__) for x in f.maker.fgraph.toposort()]):  

19      print('Used the cpu')   

20 else : 

21      print('Used the gpu')   

 

2. Processing 

o Configuration Files  

def create_file_configurationOfProcessing(path): 

f = open(path,"w") 

    f.write('Folder with the MRI and FMRI Data in the base 

directory  = "Data"\n') 

    f.write('Folder with FMRI Data = "FMRI"\n')  

    f.write('Folder with MRI Data = "MRI"\n') 
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    f.write('Sufix name of MRI image after subject id = 

"_str_crop.nii.gz"\n') 

    f.write('Sufix name of fRMI image after subject id = 

"_fnc.nii.gz"\n') 

    f.write('Processing folder name = "Processing"\n')  

    f.write('Folder name of the output processing results  = 

"Processing_Results"\n') 

    f.write('Folder name of the output first part (bet) MRI 

processing results= "MRI_bet_Results"\n') 

    f.write('Folder name of the output second part MRI 

processing results= "MRI_rest_Of_results"\n') 

    f.write('Folder name of the output with the functional 

connectivity = "Connectivity_data_final_results"') 

    f.close      

     

def create_file_configurationOfProcessing_HCP(path): 

    f = open(path,"w") 

    f.write('Folder with preprocessed data (subjects folder) in 

the base directory  = "Data"\n') 

    f.write('Path to folders with results for LR and RL phase  = 

"/MNINonLinear/Results"\n')  

    f.write('Folder name with LR phase data = 

"rfMRI_REST1_LR"\n') 

    f.write('Folder name with RL phase data = 

"rfMRI_REST1_RL"\n') 

    f.write('Name of fRMI volume as input for LR phase = 

"rfMRI_REST1_LR.nii.gz"\n') 

    f.write('Name of fRMI volume as input for RL phase = 

"rfMRI_REST1_RL.nii.gz"\n') 

    f.write('File name with regressors of movement = 

"Movement_Regressors.txt"\n') 

    f.write('Processing folder name = "Processing"\n')  

    f.write('Folder name of the output processing results  = 

"Processing_Results"\n') 

    f.write('Folder name of the output with the functional 

connectivity = "Connectivity_data_final_results"') 

    f.close      
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