
Universidade do Minho
Escola de Engenharia
Departamento de Informática

André Filipe da Silva Sampaio

Development of an Adaptable
Multicast Overlay Network

December 2017

Universidade do Minho
Escola de Engenharia
Departamento de Informática

André Filipe da Silva Sampaio

Development of an Adaptable
Multicast Overlay Network

Masters dissertation
Masters Degree in Informatics Engineering

Dissertation supervised by
Professor Pedro Nuno Sousa

December 2017

A C K N O W L E D G E M E N T S

First and foremost, I would like to thank my Advisor, Professor Pedro Nuno Sousa, without
whose guidance this work would not have been possible and whose help from start to finish
has truly been exceptional.

I would also like to thank my colleagues and friends, particularly, Alexey, Ricardo and
Vasco, who aided a lot during difficulties encountered along the way.

Last but not least, I would like to thank my family, specifically my parents and brother,
who have helped me to reach this point, and who have supported and pushed me during
the toughest times.

To all of you, my sincerest appreciation and thank you.

i

A B S T R A C T

Multicast is a group communication paradigm created in order to reduce, as much as
possible, the amount of data generated to the network. However, limited deployment of IP
Multicast protocols has motivated an interest in alternative approaches which implement a
similar process of Multicast at an application-level (using solely end-systems and not the
routers). In this context, different methodologies are presented, entitled Application-Layer
Multicast or Overlay Multicast, which may vary in the way they operate.

This dissertation’s objective is to develop and experiment a prototype of an overlay mul-
ticast system. This system should be easily configurable and adaptable in order to assume
different strategies when establishing the multicast distribution tree. It is also expected
to explore and integrate collaborative mechanisms between the overlay network and the
Internet Service Providers (ISP).

With the presented context, the first step to take is an investigation on the state of the
art, where technologies relevant to this work will be presented. After this initial step, the
developed system’s architecture will be described, one which enables different ways of
building and maintaining the multicast distribution tree. The envisioned system can oper-
ate independently, integrating mechanisms where the distribution tree relies solely on peer
decisions, which will be firstly addressed. Then, this work will move on to collaborative
mechanisms between the overlay’s management (the central node) and the Internet Service
Providers. Based on the proposed system architecture, several mechanisms are explored,
not only focusing on alternative ways to build distribution trees, but also mechanisms
allowing for some traffic engineering objectives involving the Internet Service Providers.
Using the CORE network emulator, all the proposed mechanisms are tested, and results
are analyzed to corroborate the system’s correct operation.

ii

R E S U M O

O multicast é um paradigma de comunicação em grupo que tem como objetivo reduzir,
tanto quanto possı́vel, a quantidade de tráfego gerada para a rede. No entanto, a implantação
limitada de protocolos IP Multicast tem motivado o interesse em abordagens alternativas
que implementam processos de distribuição Multicast na camada aplicacional (ou seja, us-
ando apenas os sistemas/aplicações finais e não os routers). Neste contexto, surgem as
soluções denominadas por Application-Layer Multicast ou Overlay Multicast, podendo estas
apresentar algumas variantes na sua operação.

Nesta dissertação, tem-se como objetivo o desenvolvimento e experimentação de um
protótipo de um sistema de Overlay Multicast. Este sistema deverá ser capaz de ser facil-
mente (re)configurado para assumir diferentes estratégias no estabelecimento da árvore de
distribuição Multicast, e integrar mecanismos de colaboração entre a rede Overlay e os
Internet Service Providers.

No contexto apresentado, o primeiro passo consiste na investigação do estado da arte,
onde tecnologias relevantes ao atual trabalho serão apresentadas. Após este passo ini-
cial, a arquitectura do sistema será apresentada, uma arquitectura que considera diferentes
maneiras de construir e manter a árvore de distribuição multicast. O sistema proposto pode
operar de forma independente, contemplando mecanismos onde a árvore de distribuição
depende apenas das decisões dos vários peers, sendo que estes serão os primeiros mecan-
ismos a serem apresentados. De seguida, o sistema direcciona-se para mecanismos colab-
orativos entre a gestão da rede overlay e o ISP, de maneira a incluir conhecimento acerca
da topologia da rede que nenhuma outra entidade seria capaz de providenciar. Com base
na arquitectura do sistema proposto, vários mecanismos são explorados, não só mecanis-
mos que se concentram em formas alternativas de construir a árvore de distribuição, mas
também mecanismos que permitem cumprir os objetivos de engenharia de tráfico dos ISPs.
Por fim, utilizando o emulador de redes CORE, todas as soluções serão testadas, e os seus
resultados analisados por forma a validar a correta operação de todo o sistema.

iii

C O N T E N T S

Acknowledgements i

Abstract ii

Resumo iii

Table of Contents iv

List of Figures vii

List of Tables x

List of Acronyms xi

1 introduction 1

1.1 Introduction and Motivation 1

1.2 Objectives 2

1.3 Main Contributions 3

1.4 Thesis Organization 3

2 state of the art 5

2.1 IP Multicast 5

2.1.1 Multicast Fundamentals 5

2.1.2 IP Multicast 7

2.1.3 Multicast Groups 10

2.1.4 Multicast Routing Protocols 11

2.1.5 Protocol Independent Multicast (PIM) 13

2.2 Overlay Peer-to-Peer (P2P) Systems 15

2.2.1 Overlay P2P Concepts and Applications 15

2.2.2 Architecture 16

2.2.3 Consequences/Problems and Challenges 22

2.3 Application-Layer Multicast 24

2.3.1 Application-Layer Multicast Concepts 25

2.3.2 Illustrative ALM Works and Approaches 28

3 system architecture and developed mechanisms 35

3.1 General Architecture 35

3.1.1 Central Node 36

3.1.2 Peer 40

3.1.3 ISP Collaborative Service 42

3.1.4 Extended Central Node 43

3.1.5 Extended Peer 44

iv

Contents v

3.2 Distribution Trees Construction 45

3.2.1 Minimum-Delay Approach 46

3.2.2 Minimum-Loss Approach 48

3.3 Collaborative Methods/Approaches 54

3.3.1 Link Protection 54

3.3.2 Link Minimization 57

3.3.3 ISP Forwarder Activation 61

3.4 Overlay in multiple Autonomous Systems 64

4 testing and results analysis 67

4.1 Technologies and Testing Platform 67

4.1.1 Development Tools 67

4.1.2 Network Emulation 70

4.1.3 Web-Application 70

4.2 Minimum-Delay 71

4.2.1 Activating the Central Node 72

4.2.2 Activating the Collaborative Service 73

4.2.3 Activating the Sender (Node N8) 73

4.2.4 Activating a Receiver (Node N7) 74

4.2.5 Activating other Receivers 75

4.2.6 Deactivating Peer N25 (10.0.22.20) 78

4.3 Minimum-Loss 79

4.3.1 Activating the Scenario 80

4.3.2 Activating Receiver N7 81

4.3.3 Activating Receiver N28 82

4.3.4 Activating Receiver N30 83

4.3.5 Activating Receiver N29 85

4.4 Protect-Link 86

4.4.1 Passive Protection 86

4.4.2 Active Protection 92

4.5 Link Minimization 97

4.5.1 Activating the Scenario 98

4.5.2 Link Minimization Procedures 98

4.6 ISP Forwarder Activation 102

4.6.1 Activating the Scenario 105

4.6.2 Forwarder Activation Step 1 - Link Minimization Procedures 105

4.6.3 Forwarder Activation Step 2 - Activating Forwarders 106

4.7 Multiple Autonomous Systems 108

4.7.1 Activating the Scenario 110

Contents vi

4.7.2 Link Minimization Procedures and new Distribution Tree 113

5 conclusions 115

5.1 Developed Work 115

5.2 Future Work 116

6 bibliography 119

a secondary tree representation 123

a.1 Minimum-Delay Approach 123

a.2 Passive Link Protection 123

L I S T O F F I G U R E S

Figure 2.1 Unicast vs Multicast 6

Figure 2.2 Multicast Groups Example - Part One, Extrapolated from [2] 9

Figure 2.3 Multicast Groups Example - Part Two, Extrapolated from [2] 10

Figure 2.4 API - Interface for Peers, Source: [19] 18

Figure 2.5 Flooding-Based search schema, Source: [6] 20

Figure 2.6 Random Walk search schema, Source: [6] 21

Figure 2.7 BitTorrent Architecture, Source: [19] 22

Figure 2.8 IP Multicast delivery, adapted from Source(s): [4, 43, 45]. 26

Figure 2.9 Application-Layer Multicast delivery, adapted from Source(s): [4, 43,
45]. 27

Figure 2.10 TOMA architecture, Source: [12] 28

Figure 2.11 OMNI architecture, Source: [34] 30

Figure 2.12 Scattercast architecture, Source: [36] 32

Figure 3.1 Conceptual Architecture 36

Figure 3.2 Conceptual Central Node view 37

Figure 3.3 Distribution Tree example, Central Node’s Graph Representation 39

Figure 3.4 Conceptual Peer View 40

Figure 3.5 Conceptual Central Node, Extended 43

Figure 3.6 Conceptual Peer, Extended 45

Figure 3.7 Activity Diagram - Creating a Multicast Session 46

Figure 3.8 Joining Peer Decision Example 49

Figure 3.9 Creating a minimum-loss multicast session 50

Figure 3.10 Minimum Loss Answer Accumulator 52

Figure 3.11 Joining a minimum-loss multicast session (Simplified) 53

Figure 3.12 Passive Link Protection 56

Figure 3.13 Complete Graph Representation In Parity Maps 58

Figure 3.14 Complete Graph Matrix Representation 59

Figure 3.15 Forwarder Placement 63

Figure 3.16 Best Match Determination Logic, N Forwarders 63

Figure 3.17 ISP Forwarder Activation Summarized Process 64

Figure 3.18 Multiple Autonomous Systems - Expanded Architecture 65

Figure 4.1 Graph Data Structures 69

Figure 4.2 Testing Network Topology 71

vii

List of Figures viii

Figure 4.3 Activating the Central Node 73

Figure 4.4 Creating a multicast session 73

Figure 4.5 Activating Node 7 - Part 1 74

Figure 4.6 Activating Node 7 - Part 2 74

Figure 4.7 Activating Node 7 - Part 3 75

Figure 4.8 Activating Node 7 - Part 4 75

Figure 4.9 Activating Node 7 - Part 5 75

Figure 4.10 Receivers Activation, Distribution Tree Representation 76

Figure 4.11 Overlay Distribution Representation 76

Figure 4.12 Path between N8 and N30 77

Figure 4.13 Deactivating Peer N25 Logs 78

Figure 4.14 Deactivating Node N25 - Tree Representation 1 79

Figure 4.15 Updated Network Topology 80

Figure 4.16 Activating Scenario Result 81

Figure 4.17 Logging - Arrival of Peer N7. 82

Figure 4.18 Logging - Arrival of Peer N28. 83

Figure 4.19 Minimum-Loss Tests: Multicast Tree Stage 2. 83

Figure 4.20 Logging - Arrival of Peer N30. 84

Figure 4.21 Minimum-Loss Tests: Multicast Tree Stage 3. 85

Figure 4.22 Logging - Arrival of Peer N29. 85

Figure 4.23 Minimum-Loss Tests: Multicast Tree Stage 4. 86

Figure 4.24 Activating the Central Node 87

Figure 4.25 Activating the collaborative service - Part 1 87

Figure 4.26 Activating the collaborative service - Part 2 88

Figure 4.27 Logs regarding the activation of the sessions’ sender 88

Figure 4.28 Logs regarding the activation of peer N7 88

Figure 4.29 Multicast Tree Stage 1 89

Figure 4.30 Path from peer N25 to peers N7 and N8 89

Figure 4.31 Multicast Tree stage 2 - Representation 90

Figure 4.32 Passive Protection: Overlay Distribution Tree 90

Figure 4.33 Central Node’s reply to peer N26 90

Figure 4.34 Multicast Tree Stage 4 91

Figure 4.35 Passive Protection: Final Overlay Distribution Tree 91

Figure 4.36 Tree before protection (Stage 7) 93

Figure 4.37 Active Protection: Overlay Distribution Tree 93

Figure 4.38 Path between peers N29 and N30 94

Figure 4.39 Collaborative Service’s request to protect link N5-N18 94

Figure 4.40 Central Node Logs Receiving the collaborative service’s request 95

List of Figures ix

Figure 4.41 Central node identification of problematic peers 95

Figure 4.42 Peer N29 logging the removal of peer N30 from downstream list 95

Figure 4.43 Peer N30 is requested to establish new connection 95

Figure 4.44 Peer N30, paths to possible connections 96

Figure 4.45 Final multicast tree 96

Figure 4.46 Active Protection: Overlay Distribution Tree 97

Figure 4.47 Scenario activation resulting Overlay Distribution Tree 98

Figure 4.48 Scenario activation result 99

Figure 4.49 Parity Map Creation (summarized) 100

Figure 4.50 Complete Graph Matrix 100

Figure 4.51 PRIM output for MST 101

Figure 4.52 Logging - Central Node logs peer Notifications and acknowledge-
ments. 101

Figure 4.53 Final Multicast Tree. 102

Figure 4.54 Final multicast tree with demonstrated paths. 103

Figure 4.55 Adapted Network Topology 103

Figure 4.56 Scenario activation result 105

Figure 4.57 Distribution Tree Representation 106

Figure 4.58 Link Minimization result 106

Figure 4.59 Distribution Tree Representation 2 107

Figure 4.60 Forwarder Tests Report 108

Figure 4.61 Forwarder Activation result 108

Figure 4.62 Multiple Autonomous Systems Network Topology 109

Figure 4.63 Scenario activation result 111

Figure 4.64 External Graph Matrix 113

Figure 4.65 Final Distribution Tree 113

Figure 4.66 Final distribution tree - Paths 114

Figure A.1 Receivers Activation Representation 2 123

Figure A.2 Deactivating Node N25 - Tree Representation 2 123

Figure A.3 Multicast Tree Stage 4 -Representation 2 124

L I S T O F TA B L E S

Table 2.1 Packet count log unicast 7

Table 2.2 Packet count log multicast 7

Table 2.3 Most common Structured and Unstructured P2P overlays, summa-
rized from source [9] 17

Table 3.1 Entities and interactions of Figure 3.1 36

Table 4.1 Link introduced data delay 72

Table 4.2 Packet Loss assumed in specific links 79

x

L I S T O F A C R O N Y M S

ALM Application-Layer Multicast.

ALTO Application-Layer Traffic Optimization.

AS Autonomous System.

ASM Any Source Multicast.

DHT Distributed Hash Table.

DM Dense Mode.

DVMRP Distance Vector Multicast Routing Protocol.

HTML HyperText Markup Language.

IANA Internet Assigned Numbers Authority.

IETF Internet Engineering Task Force.

IGMP Internet Group Membership Protocol.

IP Internet Protocol.

MSN Multicast Service Node.

MSON Multicast Service Overlay Network.

OLAMP Overlay Aggregated Multicast Protocol.

OMNI Overlay Multicast Network Infrastructure.

P2P Peer-to-Peer.

PIM Protocol Independent Multicast.

QOS Quality of Service.

RFP Reverse Path Forwarding.

xi

List of Acronyms xii

RIP Routing Information Protocol.

RP Rendezvous Point.

SCX Scattercast Proxy.

SM Sparse Mode.

SSM Source Specific Multicast.

TOMA Two-Tier Overlay Multicast Architecture.

TTL Time-To-Live.

1

I N T R O D U C T I O N

1.1 introduction and motivation

In the recent past, with the evolution the network infrastructure has seen, both in its capac-
ity to deal with more and more users as well as the capability to deliver data much faster
than ever before, the number of devices and applications that are now generating traffic
to the network has increased exponentially. Considering this growth, a necessity arises for
solutions and technologies which are able to cope with the ever increasing amount of data
that is introduced in the network at any given moment, particularly with applications re-
lated to group communication, such solutions will have to be both efficient and scalable. In
this context, the IP Multicast [1, 2] technology emerges as one of those solutions. In fact, it
allows for a better exploitation of the network’s resources, taking into consideration that a
given data flow may be intended for various destinations, and IP Multicast allows for that
same data to be replicated only in the branching nodes within the network [3].

Even though the benefits of implementing multicast at the network level (IP multicast)
would be immense, the difficulties associated with such deployment [4] have lead to the
development of new paradigms, such as Application-Layer multicast [10]. Among these
complications emerge the complexity of the protocols associated with IP Multicast as well as
the lack of scalability necessary for this technology to be applied to the Internet full extent
[12] where a considerable amount of multicast users/groups will have to be supported.
Also, economical and security reasons have been behind the non-deployment of multicast
by Internet Service Providers.

On the other hand, Application-Layer multicast solutions are characterized by their rather
easy implementation, considering its up to the application level developer to implement
the system. Moreover, this kind of implementation does not result in a direct (economical)
cost to the Service Providers given the fact that the management of multicast groups and
data replication happens by software and not on routers, reducing the necessity for routers
with increased computational capacity. However, these systems lack the network state
knowledge, which leads to a scenario where the multicast implementation is not always as
efficient as possible.

1

1.2. Objectives 2

All the facts stated above have lead to a stagnation of IP Multicast development and to an
approximation to the overlay network alternative. In this context, this thesis aims to develop
and implement an overlay multicast system with an easily reconfigurable distribution tree,
in order to assume different contexts of usability, and which enables interaction between the
overlay system and the ISP, who knows the current state of the network. This cooperation
between the multicast system and the ISP provides the tools for a better management of the
network’s resources, enabling ISPs to apply different policies that better suit the network
state and the kind of group communication that is being performed. This hybrid approach’s
objective is to allow for a better traffic management by the ISP, while also allowing for an
increased knowledge of the application level, leading to a performance improvement with
regards to a more resilient and efficient overlay infrastructure.

1.2 objectives

This thesis main goal is to develop an Overlay Multicast network which is adaptable to
different usability contexts. This overlay network is to be easily reconfigurable in order
to be able to assume different behaviours in the establishment and maintenance of the
multicast distribution tree taking into account distinct approaches (e.g. minimum delay,
packet loss, computation cost, etc).

In addition to the previously mentioned objective, the prototype should include collabo-
ration mechanisms between the overlay network and the Internet Service Providers in order
to allow the ISPs to be active participants in the definition of the overlay network, providing
the tools for the ISP to ensure its best interests and objectives. Finally, in a latter stage, the
aim is to devise a solution that provides the overlay network with the capacity to operate
in scenarios that involve various autonomous systems.

Taking into consideration the previously mentioned objectives, a list of particular objec-
tives is presented:

1. Investigation of the state of the art of the involved research areas.

2. Definition of the various components and mechanisms to develop, as well as their
operating rules, mainly with regards to the construction and maintenance of the mul-
ticast tree.

3. Implementation of the overlay network prototype. This implementation should repre-
sent all created entities and be able to establish the mentioned communication capac-
ity between the various components of the system.

4. Test of the developed prototype as well as a comprehensive analysis of the obtained
results. These tests are to, as much as possible, resemble a real scenario operation.

1.3. Main Contributions 3

1.3 main contributions

This work studied, designed, developed and tested the creation of a flexible and adaptable
overlay multicast network. This network, with different possible configurations in order
to maximize different objectives, presents an interesting proposal to the Internet Service
Providers as the platform also allows the inclusion of the ISP in the management of the
overlay. As the overlay network assumes a collaborative perspective, the ISP can cooperate
with the system to better manage the overlay’s traffic, and so, allowing the ISP to better
implement its traffic engineering policies. This cooperative approach, which many other
overlay architectures do not consider, improves the underlying topology’s resilience and
allows the overlay to enjoy the ISPs good will. This is possible as they operate together,
not only to improve the overlay’s performance but, more importantly even, to improve the
ISP’s capacity of peacefully adapting traffic flow into the overlay. Otherwise the ISP will
have to take more drastic measures to protect the network topology.

The testing stage has shown proof that the developed architecture and methodologies
operate properly, showing the operational feasibility of the system. This testing has shown
peers forming an overlay network independently of the collaborative service whenever no
intervention was required. Furthermore, when requests arrived on the central node, by the
ISP, the performed tests show the central node manipulating the distribution tree in order
to accommodate the ISP’s operating commands.

1.4 thesis organization

The current thesis will be organized in six chapters, whose description follows:

• Introduction and Motivation: This chapter provided a contextualization for the work
to develop, having characterized the general concept of the idea as well as the prob-
lems a prototype like the one presented could solve and, most of all, the advantages
in performance, scalability and security a system like this would provide.

• State of the art: This chapter will provide the theoretical premises with regards to
the current state of the different technologies that will be used, in order to allow for
a better understanding and definition of the various components and mechanisms
that will have to be conceived and that will result in the proposed solution. In this
chapter, a broad look into multicast, and particularly multicast at the network level,
will be provided, as well as a more in-depth analysis of overlay peer-to-peer systems
and application-layer multicast.

• Architecture and Developed System: Here, a detailed look is given on the devel-
oped architecture and distribution tree construction methodologies. First, the sys-

1.4. Thesis Organization 4

tem’s general architecture is presented and described, namely the main entities and
components, as well as the way they operate on a logical level. After this description,
different approaches on the construction and maintenance of the multicast distribu-
tion tree are presented, where both independent and collaborative approaches are
shown and explained.

• Testing and Analysis: The testing stage shows the technologies used in the develop-
ment of the present work’s prototype, as well as a variety of test cases/scenarios. Ini-
tially, the development tools are presented as well as the testing platform, the CORE
network emulator. After, a test case is presented for each of the operating method-
ologies, showing the obtained results, as well as a critical analysis as to the system’s
response to events, which are shown step-by-step.

• Conclusions: This chapter presents the conclusions extracted from this work. The
developed work is summarized before presenting what could be the future work for
the presented system, namely improvements to be made that would definitely be an
addition to the system’s characteristics and extend its range of operability.

• Bibliography

2

S TAT E O F T H E A RT

This chapter will provide an analysis of the fundamental concepts regarding the technolo-
gies important to this thesis. First and foremost, an explanation on the way IP multicast
operates in order to provide an idea of why this way of implementing multicast has not seen
a great evolution or a great interest by the Service Providers, Section 2.1. Having presented
the fundamental concept of multicast and IP Multicast, the focus will shift to peer-to-peer
overlay systems, in order to introduce a different paradigm to the way of distributing data,
Section 2.2. Finally, an investigation of application-layer multicast systems is presented, in
order to gain the necessary sensibility to understand the current ways of forming multicast
distribution trees so as to determine proper paths for data flows, Section 2.3.

2.1 ip multicast

This section will detail IP Multicast, the way multicast distribution trees are formed as well
as the way they are maintained [2]. However, before specifying IP Multicast, an explanation
will be provided on the Multicast paradigm itself, mainly its principles and objectives.

2.1.1 Multicast Fundamentals

Multicast is a technology developed with a very important purpose in mind, which is to
reduce, as much as possible, the amount of data generated into the network. In a world
where group communication is increasingly more important (be it via video-conferencing,
stock data, gaming and so on) [3], the amount of data that applications are introducing in
the network is immense. Typically, should a device, for some reason, need to send any data
to another device, a unicast connection is established, meaning that packets go from one
source to one destination. This makes perfect sense, given the fact that such source is trying
to reach a specific destination. However, considering the case where a given source is trying
to send the same exact information to two (or more) destinations, what should happen? In
a typical scenario, the sender creates as many datagrams as there are destinations, a unicast
connection is established between the sender and each of the receivers, and all datagrams

5

2.1. IP Multicast 6

are sent to and through the network. Multicast removes this necessity on the sender by
introducing a new strategy in data-delivery, the sender now simply creates one datagram
with one destination group and sends it to the network, and this single datagram is, then,
replicated only in branching nodes and delivered to all recipients in that group. Figure 2.1
illustrates this exact paradigm difference.

Figure 2.1.: Unicast vs Multicast

Analyzing Figure 2.1, on the left side, a given sender is attempting to send the same
information to PCs 1, 2 and 3. As unicast connections are in place, the sender creates
three copies of the same packet, one for each destination, and sends them into the network,
through router R1. This router, then, forwards the data to router R3 who delivers one copy
to receivers PC1 and PC2 each. Router R3 also forwards one copy of the data to router
R4, with final delivery to PC3 taking place. Alternatively, on the right side of Figure 2.1,
where multicast is being used, the employed logic is quite different as the sender sends
only one copy of the data into the network, with the multicast group’s address. So, router
R1 forwards the only copy of data it received to router R3. This router, knows receivers PC1

and PC2 are directly connected to it, replicates the packet twice, one for each receiver, and
forwards the packet to router R4, who, once more, makes delivery to PC3, performing no
replication.

Tables 2.1 and 2.2, represent the number of datagram packets that are in the network at
any given time. Considering a scenario where receivers PC1, PC2 and PC3 are not in a
multicast session/group, the sender needs to create three new datagram packets and these
datagrams need to travel, separately, through the network until they reach their destination,
which does not happen in a case where receivers PC1, PC2 and PC3 are in a multicast group
and the sender simply needs to create one single datagram and send it to the group. When
comparing Tables 2.1 and 2.2 an immediate conclusion is established, which is that multicast

2.1. IP Multicast 7

Sender Receiver Number of Packets
Sender Router R1 3

Router R1 Router R3 3

Router R3 PC1 1

Router R3 PC2 1

Router R3 Router R4 1

Router R4 PC3 1

Table 2.1.: Packet count log unicast

Sender Receiver Number of Packets
Sender Router R1 1

Router R1 Router R3 1

Router R3 PC1 1

Router R3 PC2 1

Router R3 Router R4 1

Router R4 PC3 1

Table 2.2.: Packet count log multicast

reduces the amount of data in the network structure and also reduces the amount of work
the sender needs to perform, dividing the work throughout the network infrastructure
itself.

2.1.2 IP Multicast

Having seen a very broad description regarding multicast’s modus operandi, it’s important
to take a more detailed approach, particularly on a network level, IP Multicast. As stated
in Section 2.1.1, generally normal IP packets are sent, via unicast connection, from a single
source to a single recipient, where said datagram packets are delivered to the destination
according to a predetermined forwarding table. Taking into consideration that the number
of established connections equals the number of receivers, and also that the number of
(equal) datagram packets the source will have to create also equals the number of recipients,
it is clear that the efficiency of this process is not the best, given the current growth on the
(ever increasing) number of applications that stream audio and video [14]. Also, in order
to be able to create a datagram for each receiver, the source would need to maintain an
updated list of all receivers, which is unfeasible, taking into account the processing cost of
such a task. More importantly even, on a network level, what this means is that a number
of copies of the same data would be introduced into the network and would flow through
the same links, which means a huge increase of bandwidth usage and also costs due to

2.1. IP Multicast 8

the fact that the network itself would have to be able to deal with such a huge data flow
increase.

Thus far, it has been established multicast provides the source with a way to deliver
data to all destinations sending only a single copy of data which routers then forward,
constantly duplicating said data only in branching nodes, meaning, where paths to different
destinations vary. However, how do these routers know where to send this data to? Well,
multicast groups identify a set of recipients which are interested in data being streamed by
a particular source [2]. Moreover, these multicast groups have an (attributed) IP address
and the source simply sends data to this IP address which is then forwarded to all members
of the multicast group.

Taking into consideration the concept of multicast groups, it is important to understand
how these procedures are actually put in place, mainly with regards to the job each entity
has to perform. Clearly there are different approaches each entity takes when interacting
with these groups:

• The source sends only one datagram packet into the network, whose destination ad-
dress is the IP address of the actual multicast group, not having to consider how this
data is actually delivered to all destinations;

• Users that wish to receive the data being streamed, need to join the multicast group
the sender is addressing. This is achieved through a join request to a multicast router
in the user’s local interface, using an Internet Group Membership Protocol (IGMP).

• Multicast routers are in constant communication between themselves, and implement
Multicast Routing Protocols (such as PIM-SM [15] and PIM-DM [16]) so as to guaran-
tee not only that all hosts that have joined each group receive their wanted information
but also that no bandwidth is wasted sending data to multicast routers that do not
contain any receivers in the designated multicast group.

It is clear that all this information regarding multicast groups, mainly which multicast
routers have group members appended to themselves, needs to somehow be maintained
in an updated manner. So, multicast routing protocols constantly calculate a multicast
distribution tree in order to ensure that traffic is not sent to unnecessary networks (networks
that have no members in the multicast group) and to minimize the number of copies of the
same data introduced into the same network link.

Let’s take the small example in Figure 2.2 into consideration, assuming the Routing In-
formation Protocol (RIP) is the protocol being used in the computation of the respective
forwarding tables.

In this scenario, PC1, PC2, PC4, PC7 and PC8 are members of the multicast group the
source is sending to. And so, a few conclusions can be drawn, such as:

2.1. IP Multicast 9

Figure 2.2.: Multicast Groups Example - Part One, Extrapolated from [2]

• The source sends only one datagram to router R1;

• Router R1 duplicates the datagram (it is a branching node!) and sends one copy to
router R2 and another to router R5;

• Router R2 forwards the data to router R3 which then forwards it to router R10;

• Router R10 delivers the datagram to PC8, and stops;

• Having received the datagram from router R1, router R5 duplicates it and delivers
one copy to router R4 and another to router R7;

• Router R4 duplicates the datagram once more, and delivers a copy to PC1 and another
to PC2;

• Router R7 performs another copy of the same datagram and delivers one copy to
router R8 and another directly to PC4;

• Router R8 forwards the data to router R9, not performing any copies;

• Router R9 delivers the data to PC7 directly.

Figure 2.3 illustrates the described process, highlighting copies performed by the multi-
cast routers, i.e., highlighting the branching nodes.

However, what would happen should PC3 now join the same multicast group? Would
the number of datagrams in the network change? No. Simply, router R7 would just perform
yet another copy upon receiving data from the multicast group in question, and deliver that
copy directly to PC3, which is in the same local network as PC4.

2.1. IP Multicast 10

Figure 2.3.: Multicast Groups Example - Part Two, Extrapolated from [2]

2.1.3 Multicast Groups

It has been stated that the multicast source creates only one datagram packet and addresses
it to the multicast group it is streaming to, and data is then carried out to all corresponding
members. However, no description has yet been given as to the way these multicast groups
are created or to the way receivers discover them.

Well, before a given source can start streaming (sending) data to a group or even a
receiver starts receiving data from said source (or list of sources) it must first determine the
address of said multicast group. The Internet Assigned Numbers Authority (IANA) [17] is
the entity responsible for assigning multicast group addresses to pre-established protocols
and services. Then, network administrators offer other addresses in order for hosts to be
able to request and use them, mainly at an application level.

Having established how multicast groups are assigned for a given time to a host (in
this case, a sender), it is now important to mention that there are different types of hosts,
receivers for instance. So, when joining a multicast group, hosts can elect to receive data
sent to the group from multiple sources (ASM - Any Source Multicast) or from a specific
source (SSM - Source Specific Multicast).

Any Source Multicast

Taking into consideration a scenario where a given host wishes to join a multicast group
and receive data from all sources within that group, this host needs only to specify the IP
address of the multicast group in question (*,G), and begins receiving data from any host
acting as a source. However, even though the process to enter the multicast group and start
receiving data is much simplified, it comes with a few drawbacks:

2.1. IP Multicast 11

• Security - The ASM model is more susceptible to denial-of-service attacks, due to
the fact that sources are not controlled and may keep flooding the network with an
excessive amount of data;

• Interdomain Multicast Routing - In this scenario, and remembering that there can be a
multitude of sources, it may become harder to deal with the multicast tree formation
and maintenance. This comes as a result from the fact that the mechanism for source
discovery will necessarily have to be much more complex.

The ASM model is quite used for applications where the number of sources is not con-
trolled, predictable, or keeps changing. Applications such as video-conferencing for in-
stance.

Source Specific Multicast

The Source Specific Multicast scenario presents quite a number of differences in the way it
operates when compared with ASM. When entering a multicast group, a given host must
not only specify the IP address of the multicast group itself but also the IP address of
the source it wishes to receive data from (S,G), which, obviously, adds another layer of
complexity (and necessary knowledge) on the part of the joining member. Now, this added
complexity also comes with a number of advantages [18]:

• Elimination of cross delivery of traffic when more than one source simultaneously use
the same source specific destination address;

• Address allocation becomes much simpler since the multicast group address is local
to the source, meaning no global allocation mechanism is required;

It becomes clear SSM is more appropriate for scenarios where it is predicted that the
number if sources will be quite small, and the sources are unchanging. Consider the exam-
ple of audio and video broadcasting where, despite the number of receivers, the sources
typically remain the same.

2.1.4 Multicast Routing Protocols

Multicast routers need to exchange information between themselves, mainly regarding their
directly connected neighbours, in order to be able to join and leave multicast trees, tak-
ing into consideration the multicast groups that hosts appended to them are connected to.
These information exchanges are performed using a multicast routing protocol, of which
there are a few. However, the most used protocols in this area are Protocol Independent

2.1. IP Multicast 12

Multicast Sparse Mode (PIM-SM), Protocol Independent Multicast Dense Mode (PIM-DM)
and Distance Vector Multicast Routing Protocol (DVMRP).

The mentioned communication between multicast routers, is used in order not only to
allow multicast routers to join and leave multicast groups, but also in the creation and
maintenance of multicast trees so that, once a multicast tree has been constructed, data
is forwarded down the multicast tree, replicated when the path to the different recipients
diverges.

So, knowing multicast trees are constructed using multicast routing protocols, it is impor-
tant to understand the paradigm differences that make these various protocols diverge. The
multicast tree is constructed according to three main factors: i) The routing protocol used
(opt-in or opt-out); ii) Their tree construction and maintenance mechanism (source-based
or shared-tree); iii) Their upstream router determination.

OPT-In vs OPT-Out Protocols

Protocol Independent Multicast Sparse Mode (which will be further detailed) is an opt-
in protocol. Opt-in (or sparse) protocols are used in scenarios where the receivers are
considered to be sparsely distributed throughout the network. This means that, if routers
were to be receive data they did not ask for, many subnets would be receiving a lot of
multicast packets [2]. Well, in an opt-in protocol, routers are inserted in the multicast tree
solely when they indicate interest in a determined data flow, otherwise, are kept out of the
multicast tree. It is important to state that, in this approach, routers send a join message to
the upstream router only when one host, that is appended to said router, asks to join the
multicast group.

Whereas with opt-in protocols, routers have to express their will to be included in the
multicast tree, in the case with opt-out protocols, such as Protocol Independent Multicast
Dense Mode and Distance Vector Multicast Routing Protocol, the default scenario is that
every router in the network is interested in receiving the multicast data being streamed,
and so, this data is forwarded to all routers. The logic being that, if a router does not have
any host interested in said data, it will simply inform the upstream router of its wish to
remove itself from the multicast tree, which is done via prune request message.

Source-Based vs Shared Tree Protocols

Multicast trees can be constructed in various manners, depending on the chosen multicast
routing protocol. There are two types of trees used by the main multicast routing protocols,
they can be source based or shared based.

In the case of source-based tree protocols, an independent multicast tree is built for each
source (each sender) in the group, leading to a multitude of different trees. Each one of
these trees finds its root in the router to which such source is connected to. PIM-DM and

2.1. IP Multicast 13

DVMRP are source-based tree protocols, which means, routers wishing to join a particular
multicast group must specify both the IP Address of the group and the source they are
interested in, a request that is made to the upstream router.

Shared tree based protocols, present a more complex system when it comes to tree gen-
eration. This is due to the fact that, instead of creating a new multicast tree for each source,
only one multicast tree is generated, possibly more complex, and all sources in the multi-
cast group use the same multicast tree to forward their data. This single tree is rooted at an
elected node (the Rendezvous Point (RP) in PIM). However, in a scenario where there is only
one root and multiple sources are enabled to stream data into the multicast group, in order
to ensure every host receives the desired data, it is fundamental that all data be distributed
at the source of the tree. This is performed by sending the data to the root of the tree at
which point it is forwarded through the appropriate paths in the network

Finally, it is important to highlight that shared tree protocols are more appropriate than
source-based protocols when there are more potential sources in the multicast group, how-
ever, they require a more inefficient system due to the fact that, before being forwarded to
all hosts, datagrams must be delivered to the root of the multicast tree.

Determining the Upstream Router

It has been stated that, when joining a multicast group, routers must determine their up-
stream multicast router. This requires reverse path forwarding (RFP) look-ups, which can
happen in order to determine the address of either the source of data or the root of a shared
tree, depending on the model being used.

Multicast routers use the same interface for their join and prune messages (or any con-
trol packet) as well as content, i.e., actual data being sent. To perform their reverse path
forwarding look-up operations, most protocols use their own mechanisms to exchange the
necessary routing information (such as DVMRP) while others, such as PIM, use a Multicast
Routing Information Protocol populated by a third-party source.

2.1.5 Protocol Independent Multicast (PIM)

Protocol Independent Multicast is a collection of multicast routing protocols, each opti-
mized for a different environment. There are two main protocols, previously mentioned
in this document, PIM Sparse Mode and PIM Dense Mode. All these protocols share a
common control message format, messages which are sent either to the multicast group
including the PIM routers, or as unicast datagrams to specific locations.

In this section a brief description of the two main versions of the protocol will be pre-
sented, focusing particularly on the advantages and disadvantages of each protocol.

2.1. IP Multicast 14

Protocol Independent Multicast Sparse Mode

PIM Sparse Mode is an opt-in multicast routing protocol, once more, meaning that routers
must explicitly notify their upstream neighbours of their interest in a particular group and
source. This notification is performed via PIM Join and Prune messages to join and leave
the multicast routing tree. These PIM join messages have to keep being re-transmitted as
PIM-SM is a soft-state protocol, which means, all state is timed-out after a predetermined
time interval.

By default, PIM-SM uses shared trees, with the trees for each group rooted at a router
called the Rendezvous Point (RP). As stated, data is sent from a source to the RP in PIM con-
trol messages using unicast connections. If necessary, PIM-SM can also fallback to source-
based trees to avoid the encapsulation process required in order to send the message/data
to the RP, among other reasons.

The advantages of PIM Sparse Mode far outweigh the disadvantages, which is why PIM-
SM is considered to be one of the best solutions to the multicast paradigm, its advantages
are:

• Like the name suggests, PIM is protocol-independent, meaning it can operate regard-
less of the unicast protocol that is implemented in the network;

• It scales well across bigger networks;

• Sparse Mode allows for information to be only contained at routers belonging to the
multicast tree;

• It supports both SSM and ASM.

Even though the number of disadvantages is less considerable, it is important to under-
stand that in shared trees, the process of encapsulation and decapsulation that is performed
between the source and the Rendezvous-Point can become quite inefficient, and it may be
required a number of times.

Protocol Independent Multicast Dense Mode

PIM Dense Mode (PIM-DM) is an opt-out multicast routing protocol. It is quite less com-
mon than PIM-SM due to the fact that it is most efficient in smaller domains, not scaling
well when the network starts expanding. The fact that PIM-DM is an opt-out protocol,
means that any router that joins the multicast group, is immediately added to the multicast
distribution tree and, therefore, immediately starts receiving data.

Once more, PIM-DM, unlike PIM-SM, uses source-based trees in order to calculate its
most efficient data forwarding scheme. There is, however, a particular rule about this
protocol, which is that it does not have a mechanism in which routers explicitly join the

2.2. Overlay Peer-to-Peer (P2P) Systems 15

multicast tree, instead, they are presumed as branches of the multicast tree and required to
send Prune messages in order to be removed from it.

To summarize the advantages of PIM-DM, remembering this is a smaller-scale protocol:

• It is a very efficient protocol when receivers are densely distributed in the network;

• It is protocol-independent;

• It supports SSM and ASM;

• It does not use Rendezvous points which makes it lighter and easier to implement.

2.2 overlay peer-to-peer (p2p) systems

In the previous section, 2.1.2, regarding IP Multicast, even though, performance wise, the
implementation of multicast at the network level provides a performance other solutions
can not match, it is clear that this implementation is also quite limited. This has to do with
various factors, such as the high amount of processing power IP Multicast would require
from the multicast routers, for instance. Also, in a scenario contemplating any source
multicast, denial of service attacks are clearly extremely hard to avoid, so security is also a
limitation to the deployment.

In this context, other solutions came to light, further away from the network and closer
to the application layer, most of which based on overlay p2p paradigms.

This section will present an overview of some peer-to-peer paradigm fundamentals, fo-
cusing on the solutions this approach provides. Then, different architectures will be con-
templated, such as Structured and Unstructured P2P systems and finally an observation
regarding the most used systems in a structured architecture as well as a fundamentals
look on the basic search mechanism for unstructured P2P systems.

2.2.1 Overlay P2P Concepts and Applications

Peer-to-Peer overlay systems are distributed computer architectures, built of top of an ex-
isting network [6, 20], designed with multiple objectives in mind, such as sharing data,
resources, etc, by direct exchange. This approach disregards a centralized server in the
network coordination. In this context, without any hierarchical organization, the intercon-
nected computers, named Peers, form self organizing overlay networks, operating on top
of the Internet Protocol itself.

The concept of having independent peers forming and managing their own network
comes with a number of advantages. The cooperative manner with which peers operate
and share their resources, allows for a level of scalability and growth that, otherwise, would

2.2. Overlay Peer-to-Peer (P2P) Systems 16

be very hard to achieve. Peers perform a wide variety of tasks in a system like this, needing
to act both as clients and servers at the same time while also participating in the process
of searching and delivering content that they neither possess nor want, but it may be the
case that, in the overlay, the path from source to destination includes those particular peers.
Another very important characteristic of this kind of system has to do with its high fault
tolerance and low vulnerability, namely its capacity to deal with peer failures. This is
possible due to the fact that every peer operates independently, and, at most, what can
happen is that certain content may disappear with the failing peer (in case only it should
have the desired content). To this point, an attack on the network, would have to be of
massive scale, and reach a large percentage of the overlay network, at the same time. Also,
as peers operate independently, and this structure is peer-based, it makes for an inherently
easier deployment when compared with a system that controls data flow on a network
level.

Certain characteristics may vary in the construction of the overlay network structure, in
order to optimize (namely with distinct routing and maintenance algorithms) it to achieve
different levels of performance considering different goals, such as:

• Data-Sharing [23, 24]: Data storage and retrieval are one of the highest contributors to
peer to peer systems development. Peers containing information spread it throughout
querying peers (a logic that will be explained further in this document);

• Bandwidth-Sharing and Telephony[7, 25]: Very similar to data-sharing, but optimized
for efficient streaming of real-time data throughout the network as the ability to shuf-
fle information via different paths in the network becomes of major importance so as
not to flood a specific path, and in order to take advantage of less occupied routes;

• CPU-Sharing [26, 27]: Peers can combine their machines, mainly during down-time,
and perform data mining with applications being developed mainly for scientific re-
search.

2.2.2 Architecture

As peer to peer systems may serve different purposes by having different applications and
as they can be optimized to perform better under specific circumstances, it makes sense to
think that this kind of optimization is to be reflected in the overlay’s structure. As stated
in the previous section, peers forming the overlay network operate independently but also,
each peer has its own set of responsibilities, requiring them to perform a wide variety of
tasks within the system, namely acting as both clients and servers to the overlay structure,
performing their own direct connections to other peers (directly connected peers are called
neighbours) and participating in search and content transmission efforts.

2.2. Overlay Peer-to-Peer (P2P) Systems 17

Structured Unstructured
Chord Freenet
CAN Gnutella
Pastry FastTrack
Tapestry BitTorrent
Kademlia UMM

Table 2.3.: Most common Structured and Unstructured P2P overlays, summarized from source [9]

Taking into consideration the different operating scenarios an overlay network can present,
as well as peer obligations within the overlay, P2P systems are usually classified into two
categories: structured and unstructured. Now, conceptually, each peer maintains its own
collection of information/data to share, and, upon the arrival of a request for data, it be-
gins transmitting it. Moreover, to perform a request, peers make query requests, making
them the querying peer. When a peer receives a query, it checks its own data collection to
see if it may act as the source for the desired information, and if so, begins transmitting,
otherwise, forwards the request through its neighbours until either a peer with the desired
data is found or a predetermined number of max hops is achieved and the search process
is stopped. However, this process is not equivalent in all systems, which operate differently,
with the most common structured and unstructured peer to peer overlays being presented
in Table 2.3.

Structured P2P Overlay Networks

Structured p2p overlay networks offer a scenario where the network topology is controlled,
and content is spread throughout strategic locations in order to maximize the search queries
performance [19], instead of data simply being placed randomly throughout the network
itself. The way this placement is performed, is according to an hash function that couples
data-keys with data-objects. With this relationship established, a distributed hash table
(DHT) is used to route key-based queries efficiently to the peers that strategically hold the
data to retrieve. This concept ensures access to the desired data within a bounded number
of hops from querying peer to the peer that holds the data.

Even though the presented ideology behind DHT-based systems is the same, which is
to maximize network efficiency when it comes to querying peers, different DHT-based sys-
tems present different organization schemes for data objects and key space routing strate-
gies. Despite this fact, DHT-based systems are expected to ensure the location of data ob-
jects happens, on average, with a Olog(N) efficiency, considering a number of hops metric
and N as the number of peers in the actual overlay.

Despite the fact that, theoretically, the concept of DHT-based systems presents itself as
an optimal solution with regards to querying within the overlay peers, it may also produce

2.2. Overlay Peer-to-Peer (P2P) Systems 18

an outcome where search performance is highly affected, taking into account performance
searches may lead to choking points as all searches are directed to the same entity, adding
inherent latency to the process. Figure 2.4 provides a visual representation of the API
Interface such systems use.

Figure 2.4.: API - Interface for Peers, Source: [19]

routing Routing in structured overlay networks is widely different from unstructured
overlays. The way queries conceptually operate has been very briefly mentioned in Section
2.2.2. However, it becomes clear that, as more and more peers join the system, the number
of messages that need be exchanged increases exponentially, which will lead the physical
network to reach its capacity, making the system non-scalable.

To deal with the presented problem, routing in structured overlays takes a different, more
elegant approach, despite requiring more logistical work. Peers, on arrival, are attributed a
unique identifier, which allows for each exchanged message to have a destination identifier.
Each peer, sends/forwards this message solely to one neighbour in order not to flood the
network. The selected peer is the next hop neighbour so as to minimize the number of hops
from source to destination. This greedy approach to routing allows for a better management
of the physical network’s resources, as the number of exchanged messages is quite smaller.

the napster model Napster [19, 21, 22] idealized an architecture for a peer-to-peer
file-sharing system based on a centralized file search mechanism. File distribution changed
from a paradigm where a central service was a single source of data to a scenario where
popular content can be distributed by peers who have the searched content. A p2p file-
sharing system such as this, presents a self-scaling solution as more and more peers join the
system, taking into account that a peer who retrieves some desired content then becomes a
source of the same content, increasing the download capacity, meaning, theoretically, that

2.2. Overlay Peer-to-Peer (P2P) Systems 19

a higher number of peers intent on getting the same content, make for a higher download
speed as different hosts get their files and become instant sources.

This self-scaling objective is achieved via a centralized search facility to which every peer
contributes. As a part of the overlay structure, every peer provides a list of content it
possesses and, therefore, is able to distribute. With a list from each peer, this search system
is able to establish a connection between content and network placement and, therefore,
provide the querying peer with the identity of the peer it will download the requested
content from. Obviously, this centralized search also creates a single point of failure for
the whole system as an attack on the entity responsible for handling this search makes
determining the source of data impossible for querying peers. Also, an unexpected and
immediate growth in the number of querying peers would result in a system overload.

pastry Pastry [9] implements a DHT, similar to Chord [8, 28], to perform its network
routing duties. Keys and nodeIds are stored sparsely throughout a number of selected
hosts, as it is a self-organizing and fully decentralized system. Each pastry node maintains
a set of neighbour nodes in its nodeId space, in order to locate the destination in each
routing hop as well as to protect the network and provide it with a fault-tolerance system
[5] by maintaining replicas of data items so peer failures may be dealt with.

Unstructured P2P Overlay Networks

An unstructured p2p system is built upon a different paradigm when compared to a struc-
tured scenario. In this case, there are no constraints on the relations between different
nodes, and, as such, the overlay graph does not have a particular structure, meaning, con-
tent may not (and most likely is not) be distributed in the most efficient manner as peers
connect to other peers randomly and there is no relation between the placement of the data
objects with the network topology [20]. This leads to an approach where peers have limited
(or even none) information on data objects stored by other peers, which results in a more
complex search mechanism, as follows.

unstructured search schemes Taking into consideration that, in an unstructured
scenario, peer connections happen randomly and no central table of contents exists connect-
ing peer identities with content they hold, searching in unstructured networks, for instance,
is performed by flooding the network with a given query for content. Each peer visited will
evaluate the query locally on its own content [19] and, should it have the desired data, reply
as such. Otherwise, when a peer does not contain the content to retrieve, it forwards the
query through its direct neighbours, meaning, the peers it has an established connection
with.

2.2. Overlay Peer-to-Peer (P2P) Systems 20

Unstructured p2p networks are easier to implement when compared with structured
scenarios and result in a much lower running cost as there is no need for a highly capable
computational entity to reply to all search queries. However, as the number of participating
peers grows, the number of exchanged messages grows with it. Even though this leads to
a more resilient system as an attack would have to be equal to the scale of the network (if
one peer fails, only its content is lost, all other peers remain accessible), this type of search,
to the network itself, is quite expensive.

Flooding-Based Search In an unstructured p2p system, where content is not indexed in
any way, the most basic search process is to flood [20] the network with a given query until
the peer that contains the desired content is found. Flooding is performed by each peer
forwarding the query to all neighbours. This makes up for a search system that can not
grow with the network as the number of messages eventually gets too excessive. To stop
the infinite growth on the number of messages exchanged, as would be the case in a pure
flooding approach, a time-to-live is attached to the message in order to specify a maximum
number of hops a message can perform. Figure 2.5 provides a visual representation on the
Flooding-based search model.

Figure 2.5.: Flooding-Based search schema, Source: [6]

Routing Indices based Search Routing Indices are not a necessarily different approach
to a flood based search, they simply represent a more direct path to the peer that contains
the searched content. Every peer, besides providing content it contains, also keeps a (rather
small) index that stores the direction the query message should take so as to discover the
intended data. This does not change the overlay’s structuring system as content is still kept
in each peer and is not organized in any particular way, simply nodes are contemplated
with a higher knowledge of data placement within the network.

2.2. Overlay Peer-to-Peer (P2P) Systems 21

Random Walk A Random walk through the network graph comes as an optimization to
the search process [29]. The previously regarded search schemes for unstructured overlay
networks, contemplated a search system that had every peer, upon receiving a request/-
query, check its own data structure and, should it not have the desired content, forward
that request to all its neighbouring peers, most likely resulting in many duplicated requests.
This comes at a cost to the physical network itself, as it is flooded with excessive requests,
and the search process would only stop in case content was found or every message’s
Time-To-Live (TTL) was achieved.

The random walk search process has a slightly different approach. To contain the number
of requests sent into the network, each peer forwards the received request, if necessary, to
(only) one of its neighbours, chosen randomly. With this scenario, while it is assured that
the network will not be flooded as only one copy of the request is in the network at any
given time, the delay in delivery becomes unacceptable as there are no guarantees that the
request is traveling in the right direction along the network. Figure 2.6 provides a visual
representation on the Random Walk search model.

Figure 2.6.: Random Walk search schema, Source: [6]

bittorrent BitTorrent is widely known and one of the most popular P2P file sharing
systems [9], having millions of users active at any given time. While heavily centralized, as
it contemplates a central node/manager or tracker, it is considered to form an unstructured
overlay network as peer connections do not follow any specific rules.

As far as the system’s architecture, represented in Figure 2.7, it contemplates a central
node, or tracker, which will manage the way downloads are performed. A .torrent file is
downloaded, containing information of the data to download like file name, locations, etc
[19]. The tracker keeps a record of all peers that have the requested file and the download-
ing peers connect themselves to those. As files are split in parts, any downloading peer
can be receiving data from many sources and can also act as the source for the data it has
already downloaded.

2.2. Overlay Peer-to-Peer (P2P) Systems 22

Figure 2.7.: BitTorrent Architecture, Source: [19]

A very interesting concept is the fact that bitTorrent, in order to maintain a level of
fairness in the system, implements an upload-download direct connection, as peers with
high upload speed will also probably have an high download speed and the download
speed will be lesser should the peer have low upload capacity. So, the more you share the more
you get, which can also be unfair in some ways, so, to limit peer download rate distinctions,
bitTorrent also implements a chocking algorithm to, temporarily limit peers from uploading,
in order to maintain a consistent download rate throughout the whole network.

2.2.3 Consequences/Problems and Challenges

Having presented the reasons that lead to the existence of P2P systems and why they rose
to such a scale, it is important to understand the additional consequences of their use.

In the remainder of this segment, a small overview will be given on the resilience of
overlay networks to attacks and also on measurements to stop those attacks. Overlay main-
tenance and P2P-ISP collaboration issues will also be addressed.

Attacks and Vulnerabilities

The fact that, in p2p systems, peers operate independently, as mentioned, acts a huge
amplifier for scalability but also provides a high level of resilience to the system, as the
effect of a failing node does not represent a big problem to the network (only in the case
where the failing peer was the sole carrier of specific data, in which case it may be a
problem to other peers but not to the network) and an attack would have to be in large
scale, affecting as many peers as possible in order for the network to be seriously harmed.

Despite the network’s high level of resilience, attack security is still very much an issue
and source of vulnerability as most current overlays are not secure, and malicious nodes can

2.2. Overlay Peer-to-Peer (P2P) Systems 23

easily insert themselves into the network and obstruct correct data delivery throughout the
overlay and, in some cases, actually provide other peers with wrong (unwanted) messages.
Typically good nodes can also be compromised and begin misrouting, corrupting or even
dropping messages. When a good node is compromised, another major concern has to do
with the information it is/was sourcing, as it may be deleted from the system or replaced
with another under the same name, thus beginning a flow of corrupted data.

To the previous problems, security proposals come mainly in the form of secure routing,
table maintenance and message forwarding [8]. Approaches that many systems are yet to
adapt and that need careful attention when electing a system’s structure, architecture and
operating procedures.

Overlay Maintenance

Overlay networks, due to their characteristics and usability, are inherently highly dynamic
and changing systems. High churn (churn regards the entrances and departures from the
overlay), for instance, is a defining trait of such systems. Moreover, peers do not usually no-
tify other peers of their departure, normally leaving the system abruptly or even dropping
their connection and establishing a new one. To this point, the directly connected peers
often are not aware of their neighbour’s departure for quite some time and so, keeping an
updated routing-table becomes a harder task.

To the presented point, overlay maintenance comes with significant importance in main-
taining this type of flexible and adaptable network, as it is ever-changing. So, two main
approaches have been deployed [6]:

• Proactive Maintenance: Peers periodically run updates to their own routing tables
with regards to the topology in place. As an example, Chord periodically runs what
is called a stabilization protocol to ensure peers are linked to other in increasing
distance;

• Reactive Maintenance: In this kind of approach, peers react immediately to other
peers failures or departures. Missing entries (due to the leaving peer) are replaced
with new ones by sending connection signals to other established peers. Peer detec-
tion happens by i) Probing: Peers continuously run a ping-response protocol with
each neighbour; ii) Usage: When a given peer messages another but no response
arrives within a specif time-interval, that peer is considered to have failed.

P2P-ISP Collaboration

P2P overlay networks were developed with an intent to be used as a content distribution
system where peers represent both the source and clients of data. This means a given peer is
available to distribute a particular set of data upon request. However, P2P overlay systems

2.3. Application-Layer Multicast 24

are formed on top of the Internet Routing architecture [38] with little (if any) knowledge of
the underlying network structure.

Even though P2P systems may represent a source of revenue to the Internet Service
Providers as users upgrade their internet service plan, they are also an enormous traffic
engineering problem due to the fact that the amount of traffic inserted into the network
is very high and, a lot of times, the routing scheme is implemented independently by the
overlay structure and does not consider Internet Routing or the network topology [10]. So
peers can not be used strategically throughout the network in order to reduce, as much as
possible, not only the number of packets in the network but also, the length of the path
datagrams take from source to destination.

A scenario to be considered is where peers A and B may be in the same autonomous
system (or the same ISP) and peer C may be in another, however, as far as the overlay
structure is concerned, peer A may be closer to peer C and may chose to exchange data
with peer C. This means traffic would be crossing network bounds unnecessarily, increasing
the operating cost to both Service Providers involved. Even worse, most bottlenecks in the
Internet are assumed to be either in the access network or in links between ISPs [38].

In this context, it is important to provide both the overlay system and the Internet Service
Provider with a way to collaborate in order to, at the same time, improve the performance
of the p2p system and also allow the ISP to perform traffic engineering as it sees fit. IETF
ALTO [46], created in 2008, is a IETF Working Group with this strategy in mind. The
concept is to provide the application level with information that only the Internet Service
Provider is capable of knowing, by way of a topology graph, and so, enabling the overlay
structure to perform a mode sensible routing system, increasing the system’s performance
and decreasing the operating cost to the Internet Service Provider. With such a system,
the ISP can use this mechanism to better manage the overlay traffic in the network by
directing data along the fastest path possible, by avoiding possibly congested links, or by
way of other strategy adopted by the ISP. Some additional research work examples, also
involving collaborative efforts, between p2p application level and ISPs can be also found in
[30, 31, 32].

2.3 application-layer multicast

In the sequence of sections 2.1 and 2.2, a few conclusions can be made on the different
usability of both technologies.

In Section 2.1, the benefits of implementing multicast technologies become evident. Data
delivery becomes much more efficient, both at the network level and for the source of
content. By replicating data packets only when paths to different users diverge (branching
nodes within the network) it is ensured the source no longer needs to keep a live-state on

2.3. Application-Layer Multicast 25

all peers that wish to receive the data it is streaming. Also, this means the source needs
only produce one data packet instead of producing one datagram per receiver, introducing
the idea of one copy of data per network link. Despite all these advantages, IP Multicast
has not evolved to a point where it is widely used due to the fact that these advantages
come with a substantial operating cost as multicast routers require a high computational
performance as well as extended state information of the multicast groups.

In Section 2.2, a different paradigm is presented as hosts act as both servers and clients.
This means that there is not necessarily one single source within the whole system but as
many sources as owners of content. So, different clients can retrieve the same content from
different sources. The way the search for this content is performed is based on two separate
architectures, structured and unstructured, which have been previously analyzed.

The present Section will provide a general perspective on an additional paradigm that
takes inputs from both the previously presented systems. This paradigm, entitled Appli-
cation Layer Multicast, tries to merge the two approaches, establishing itself in the frontier
of the two areas. First, the ALM concept will be addressed in its operating logic and, then,
some illustrative approaches will be presented and described.

2.3.1 Application-Layer Multicast Concepts

Application-Layer Multicast (ALM), in some ways, comes as a result of the sparse imple-
mentation of IP Multicast, an approach much closer to the network. As seen, this sparse
deployment has to do with many factors, both technological and non-technological, namely
the requirements that come with an IP Multicast implementation such as the necessity of
maintaining a per group state [4], the overhead addition that comes with, for example, hav-
ing each router maintain an entry corresponding to each multicast group, and finally, the
non-existence of a pricing model that makes IP multicast feasible at this point.

Despite the mentioned IP Multicast deployment issues, the growth of network appli-
cations that require an ever-rising amount of messages exchanged (such as audio/video
streaming [35] in the one-to-many department or video conferencing and multiplayer gam-
ing where many-to-many communication is required, [44]) has been unquestionable. This
has to do with its immense efficiency as a transmission mechanism capable of limiting the
weight to the network. In this context, different alternatives for group communication ser-
vices have been proposed, with Application-Layer Multicast providing an approach with a
much easier level of deployment as it does not depend on a full knowledge of the network.

The Application-Layer Multicast concept relies on building overlay multicast trees (which
can be built with the intention of maximizing performance to different contexts) among ses-
sion participants, while connecting these participants (named peers) via unicast connections.

2.3. Application-Layer Multicast 26

These peers are, then, responsible for forwarding data to other peers also participating in
each session [39, 42].

Figure 2.8.: IP Multicast delivery, adapted from Source(s): [4, 43, 45].

Figures 2.8 and 2.9 represent the two different approaches. Whereas in IP Multicast any
duplication of packets happens in branching nodes within the network (and is performed
by multicast capable routers themselves), in ALM, peers form direct unicast connections
between themselves and transmit data directly to each other, with some peers acting as
forwarders, i.e., as multicasting performers, meaning data replication is done in specific
peers which are tasked with distributing data to a specific sub-set of peers in the session.
Figure 2.8, shows Peer A as the source to the session, with router R1 performing three
copies of the datagram packet (as it represents a branching node) and sending it to the
respective receivers B, C and D. Figure 2.9 shows peer A (the source) creating two separate
datagram packets, sending one copy to peers B and D each, and peer B is tasked with
performing a copy of the received data and sending (forwarding) it to peer C. The latter
Figure shows the created overlay, where the upstream to peers B and D is peer A, and the
upstream to peer C is peer B.

Taking into consideration the concept that ALM is based on the overlay network peers
themselves form, it is important to understand that the way data is distributed throughout
the overlay can happen in different manners, meaning it can also be designed in such a
way that it maximizes specific uses such as, for instance, minimum-delay [13], maximizing
the network’s throughput [40, 41], among other alternatives. The easy deployment and
configuration to different contexts, as well as the fact that the overlay scales very well as the
low overhead of dealing with arriving and departing peers leads to an increase in usage
of this type of architecture or system. Also, providing multicast as an application service
instead of a network service, makes the deployment in inter-domain systems much easier,

2.3. Application-Layer Multicast 27

Figure 2.9.: Application-Layer Multicast delivery, adapted from Source(s): [4, 43, 45].

as the necessity for different ISPs to employ multicast solutions at the same time vanishes,
and multicast comes as the result of direct peer unicast connections.

Now, as Application-Layer Multicast is performed by peers themselves, often according
to a specific objective and not having a knowledge of the physical topology itself, it becomes
clear that it would be almost impossible for ALM to be as efficient a solution as IP Multi-
cast. ALM implementations often result in multicast trees with lower performance. To the
previous point, such implementations are often evaluated according to a few characteristics:

• Quality of data path: Measured by link stress (which is the number of identical copies
of data that go through a certain link [44]) and link stretch (the length of the path from
any source/forwarder to destination [4]);

• Control Overhead: A metric that directly affects the scalability of the system. The
overhead of controlling peers (both entrances and departures, as well as any distribu-
tion tree mutations) should be as low as possible taking into consideration that the
number of subscribers to any session tends to be high, and an high control overhead
would result in a chocking point to the system, impeding its scalability;

• Overlay Robustness: As the overlay is dependent on the peers themselves, it is impor-
tant that it be prepared to deal with a typically high churn (the number of entrances
and departures to the network). A robust overlay should be able to quickly deal with
peer departures, wherever they may occur. A rich connected graph with many exist-
ing connections between several different peers using different paths usually leads to
a system that rarely fails.

Taking into consideration the different characteristics of Application-Layer Multicast, its
advantages and drawbacks, also its various implementation challenges, it is important to
analyze some illustrative research works in this area.

2.3. Application-Layer Multicast 28

2.3.2 Illustrative ALM Works and Approaches

TOMA

Two-Tier Overlay Multicast Architecture (TOMA), [12, 37], is an architecture developed with
the intention of, not only, providing a fast and scalable multicast system, but also one that
makes sense for the Internet Service Providers as it considers a profitable service model for
ISPs.

The way the multicast overlay structure has been envisioned is by constructing an overlay
network, named Multicast Service Overlay Network (MSON). This overlay network is built
by service nodes strategically placed along the network (by the ISP), and forwards traffic
among these nodes according to the best multicast tree that can be constructed by analyzing
traffic flow.

Knowing the way traffic flows through the network (i.e. via the service nodes), it is
important to understand that peers connect themselves to the proxies into the MSON and
form clusters around these proxies, forwarding data among themselves as well. In other
words, peers form various multicast trees per session, one per each proxy regarding the
peers in said proxy. Figure 2.10 provides a visual representation on the way the architecture
has been designed with peers connecting themselves (and forming distribution trees) to the
available proxies and these mentioned proxies forming an overlay network with unicast
connections.

Figure 2.10.: TOMA architecture, Source: [12]

With the base model for a multicast session presented, the authors also address the scal-
ability of the system, a crucial factor for any architecture with such a purpose. As seen
in Figure 2.10, only one peer per cluster is connected to each proxy, and, as peers form
distribution trees for each cluster, it is ensured all receivers get the data in the session and
also that, once data is in the peer directly connected to the proxy, delivery, in a way, is
no longer a concern for the system. However, the overlay network MSON has been built

2.3. Application-Layer Multicast 29

with the intention of being able to deal with not only a large number of users but also a
considerable amount of separate multicast sessions, which, theoretically, could result in as
many ways to distribute data through the MSON, as different sources and destinations can
result in different distribution trees within the MSON.

Overlay Aggregated Multicast Protocol (OLAMP) has been developed with the intention
of managing the before mentioned issue. The basic idea, is to have as few different multi-
cast trees in the MSON as possible, by having multiple groups/sessions sharing the same
delivery tree within the MSON. Should there be no appropriate trees available in the begin-
ning of a new multicast group a new tree is to be established, otherwise an existing tree
will be replicated in order to minimize what can become a large number of multicast trees,
resulting in extremely long (and unfeasible) forwarding tables, slowing lookup speed.

Overcast

Overcast, [33], is a not so recent approach on the creation of an overlay multicast network.
The authors aim to build a scalable and reliable multicast system, capable of constructing
efficient and adaptable data distribution trees.

The proposed system allows data to be sent only once to many destinations, as packets
are duplicated only in the specific nodes where resources are optimized. This concept is
paired with the system’s capacity to cache data and create replicas along the network and
so, archive content for a predetermined amount of time, allowing peers/users to access
content with some delay. The system’s architecture contemplates:

• Central Source: Is the single source for the distribution tree as this system implements
single-source multicast;

• Overcast Nodes: These nodes form the overlay network. They are strategically placed
along the physical network and are able to deal with changing conditions by employ-
ing different connections to other nodes. In other words, they are able to adapt the
distribution tree at any point, a distribution tree rooted at the central source. Overcast
nodes are also capable of storing data, as mentioned previously;

• Clients: Placed along the physical network, connect to the nearest overcast node.

As the Overcast implementation relies solely on the presented entities, with the distribu-
tion trees being generated only considering the necessary nodes, and while an argument
could be made for the system’s inherent inefficiency due to its lack of knowledge of the
underlying network topology and state, overcast presents a number of advantages:

• Deployment can be performed incrementally, and so, additional nodes can be put in
place as the increase in usage happens;

2.3. Application-Layer Multicast 30

• Gains in performance happen when different users are accessing content at the same
time, but also, when they access content at separate times, as the archiving tool allows
content to be placed and accessed at a later stage.

• The distribution tree can be easily adaptable to the ever changing network conditions,
should the system detect a given connection between two (or more) specific overcast
nodes to be under performing, the distribution tree can (most times) be adapted to
not include that specific connection, relaying traffic through other paths.

OMNI

Overlay Multicast Network Infrastructure (OMNI), [34], considers the creation of a two-tier
infrastructure, directly aimed at optimizing data delivery for media-streaming applications.
This infrastructure is not unlike the one presented in Section 2.3.2, but takes another very
specific element into consideration in the way the distribution tree is created and managed,
which is the weight of a Multicast Service Node (MSN).

The overlay infrastructure consists of two entities: a set of service nodes, MSNs, dis-
tributed along the network (in non-specific locations) and the end-hosts (which may be
either the sender or one of the receivers). MSNs organize themselves in order to form a
multicast distribution tree that is able to reach all nodes with end-hosts in their subscrip-
tion list, and the end-hosts sole job is to subscribe to the closest MSN, requesting access to
the multicast session in place. Figure 2.11 represents the developed architecture/infrastruc-
ture.

Figure 2.11.: OMNI architecture, Source: [34]

Taking into consideration Figure 2.11, it is becomes clear each MSN has a set of clients
(end-hosts) appended to it (i.e., in its subscription list). At this point, it is important to
note that the distribution tree formed by the MSNs is independent of clients, i.e., there is

2.3. Application-Layer Multicast 31

a distribution tree for the MSNs alone, and then, each MSN delivers data to its subscribers
as is sees fit, either via a secondary distribution tree of via a set of unicast connections to
each end-host.

Despite the fact that MSN-Client delivery is performed under a different distribution tree
from the one MSNs build for themselves, this internal distribution tree formed by the MSNs
considers the subscriber list of each MSN. Knowing the OMNI architecture was developed
in order to optimize media-streaming applications, the authors elected to measure quality
according to two factors:

1. Access load experienced by the streamers: Addressed by the overlay multicast archi-
tecture which relieves the streamer (source) from sending an unsupportable amount
of data to the network;

2. Jitter from end-to-end path: Addressed by organizing the overlay paths in such a way
that low-latency paths are elected when possible.

The presented quality-measuring aspects as well as the way they are addressed are in-
sufficient for the system to operate as well as possible. To this end, in the formation of the
internal distribution tree (the distribution trees formed by the MSNs), MSNs consider the
weight of each MSN , i.e., the number of subscribers. With the objective of minimizing the
latency and jitter to the entire client set, MSNs with a larger client set are considered to be
more important to the the ones serving a smaller number of clients. This, determines that
higher weight MSNs take precedence in path selection, i.e, they are reserved the best paths.

Scattercast

Scattercast, [36], represents another form of creating a two-tier infrastructure, but one which
tries to take advantage of the benefits of the abstraction the application-layer provides,
while also trying to revert to IP Multicast concepts when they are available and possible.
This approach consists on the deployment of a set of strategically placed network agents,
called Scattercast Proxies or SCXs, which will form an overlay network, of unicast con-
nections, for content distribution. Then, clients will locate nearby agents and access the
desired session via that agent. Figure 2.12 provides a visual representation on the authors’
envisioned architecture.

Much like the architectures previously presented, the concept for Scattercast relies on
data being forwarded through a distribution tree formed with the network agents, SCXs,
and then, each SCX is to deliver one replica to each client. However, Scattercast is different
in many ways:

2.3. Application-Layer Multicast 32

Figure 2.12.: Scattercast architecture, Source: [36]

1. While clients can tap into the session via unicast connections to the SCX and can
also form distribution trees among themselves (much like in Section 2.3.2), Scattercast
can even take advantage of the creation of multicast groups at the network level (IP
Multicast), where they are available;

2. Scattercast allows multi-source multicast sessions, as SCXs are capable of including
application-specific rules for data streaming, and so, determine who is allowed to
send or receive data into/from the session.

Knowing Scattercast shares the same two-tier logic of other presented architectures, but
understanding it is structurally different in the way it operates, another factor to take into
consideration is the way multicast sessions themselves operate. With Scattercast, a single
multicast session can enjoy multiple independent data streams, each with their own trans-
port requirements, be it the least possible latency or reliable delivery, for instance. This
notion of separate data channels for the same session introduces a huge advantage for
Scattercast when compared to other systems, as the operational uses for this extension are
immense.

Finally, it is important to consider the way the different SCXs interact between them-
selves. In order to provide support for the system and to efficiently distribute data through
the overlay, an inter-SCX communication protocol was introduced, Gossamer. This protocol
is responsible for building efficient distribution trees, as well as their maintenance. It builds
a mesh structure from the unicast connections between the SCXs, and, on top of this mesh,

2.3. Application-Layer Multicast 33

runs a routing protocol to determine source-based distribution trees, which accounts for
two specified advantages: i) The generated mesh provides a more resilient system, as fail-
ures are dealt with by simply routing around the failing node; ii) The routing mechanisms
provide ways to detect looping in the distribution paths, and so, reducing link stress.

ISP Collaboration for Traffic Reduction

The obvious use of the presented technology and systems has lead many different appli-
cations to adopt systems of this type. In doing so, application-generated traffic into the
network has grown immensely, resulting in an obvious increase in the service provider’s
costs. This is fueled by the fact that most approaches create overlay networks with complete
disregard and lack of knowledge of the underlying topology, resulting in inefficient use of
resources [10, 11] such as data passing multiple time through the same network link, data
crossing autonomous system boundaries when the same result could be achieved within
the same system domain, etc.

With this inefficiency of resources use in mind, a number of studies are being made
aiming the inclusion of the ISP in these systems, adding an entity with full knowledge
of both the underlying network topology and state. With this inclusion, the application-
created routing system can be made to consider not only the peers (both service nodes and
end-users/clients) but also the network topology, becoming able to improve the system’s
performance.

In [11], the authors presented an approach that considers a topology-aware overlay mul-
ticast system. However, unlike most solutions, the goal is not solely to optimize network
efficiency by reducing link usage and inter-domain data flow, but to do so while maintain-
ing high network performance as a live-streaming scenario is to be put in place, making
data delay a crucial factor.

The presented solution relies on knowing the network cost between any two nodes, as
the topology is considered in the overlay formation. The authors construct the overlay
with two kinds of edges, primary and secondary: i) Primary: Edges created with preferen-
tially nearby peers, where the cost to the network is low; ii) Secondary: Edges connected
randomly within the network, regardless of cost to the network.

The two types of edges considered allow for the network to operate at maximum effi-
ciency when primary edges are in place, but also allow for unchoke mechanisms to be
quickly put in place, should the primary edges (peers) fail. This mechanism, when a peer
is determined to have failed, allows the system to notify the affected peers to begin using
secondary connections until an adapted overlay can be formed, and restart operating under
maximum efficiency.

This approach is one of many that consider the network topology in their routing algo-
rithms, which constitutes a huge gain for the ISP, as otherwise, overlays formed without

2.3. Application-Layer Multicast 34

any consideration for the underlying topology, are usually terribly inefficient in their rout-
ing. The addition of the ISP to the system, results in a scheme beneficial to all, as it leads
to a reduction of the operating costs on the side of the ISP, and collaboration protocols
between these entities can lead to improved overlay performance, as will be shown later in
this document.

3

S Y S T E M A R C H I T E C T U R E A N D D E V E L O P E D M E C H A N I S M S

The objectives of the present work, as mentioned before, contemplate the implementation
of an overlay multicast network which is adaptable to different usability contexts. With
this in mind, the current chapter presents the planned architecture for the devised system,
along with several associated mechanisms.

First, an introduction will be given regarding the different entities that make up the pro-
posed system, namely peers, central node (which acts as the coordinator for any and all
multicast sessions) and the collaborative service, Section 3.1. After a description of each
entity, different ways of independently (i.e., without intervention from the collaborative
service) constructing the multicast trees will be presented, namely the used metrics for up-
stream peer selection, Section 3.2. Next, some collaborative mechanisms will be described
and explained, where the ISP, via the collaborative service, will cooperate with the central
node to attain specific purposes, Section 3.3. Finally, the concept of extending the overlay
to multiple autonomous systems will be addressed in the final section, Section 3.4.

3.1 general architecture

On the conception of the general architecture for the proposed system, it is important to
have a good understanding of the goals that this work aims to achieve and how the different
entities must be contextualized around those specific goals.

With the objective of developing an overlay multicast system capable of assuming differ-
ent usability contexts, it is essential that distribution trees be easily reconfigurable both in
their construction and in their management. Now, the decision on the usability context to
put in place (i.e., which type of distribution trees will be formed by the peers) can be made
by the session’s sender (as will be detailed later) but can also be influenced by the ISP, tak-
ing into consideration that only it knows the state of the network itself at any given time. In
order for this collaboration to be possible, a communication channel has to be considered
between the ISP and the overlay’s manager.

Taking into consideration the generalized but more practical view on goals to achieve,
Figure 3.1 provides a basic visual representation on the devised conceptual architecture,

35

3.1. General Architecture 36

Router

Sender
Receiver/Forwarder

ISP Activated Forwarder

Communication Channel, ISP - Central Node
Communication Channel, Central Node - Peer

Table 3.1.: Entities and interactions of Figure 3.1

which includes the entities mentioned in Table 3.1, further described in the following sec-
tions.

Figure 3.1.: Conceptual Architecture

3.1.1 Central Node

In more detail, the central node will be the coordinator for any and all multicast sessions.
At the current point in this section, Figure 3.2 provides a visual representation on the way
the central node has been structured (thus far, without the inclusion of the collaborative
service).

3.1. General Architecture 37

Figure 3.2.: Conceptual Central Node view

Observing Figure 3.2 it is easy to understand that the central node integrates the follow-
ing elements:

• Multicast Session Map: This map connects each peer to the list of multicast sessions
it is involved in. In the particular case of senders, they can only participate in the
session they are streaming to; Receivers can participate in as many multicast sessions
as they wish (always as receivers of content);

• Connection Data Map: The central node uses this map to keep track of the live-state
of peers. Time stamps of Hello Messages are stored in this data structure, and a
worker notifies the central node to remove any specific peer from all sessions in case
the mentioned peer’s last time stamp exceeds a predetermined amount of time;

• Hello Port: This is the port peers use to send their respective Hello Messages in order
to be allowed to remain in the system, as it employs a soft-state protocol;

• Management Port: This is the port peers use to communicate with the central node,
exchanging management messages, with some of the more important being:

– Create Multicast Session: Any peer can create a multicast session (and be immedi-
ately set as the sender for that session) and begin streaming data upon receiving
the central node’s authorization;

– Join Multicast Session: This is the message receivers wishing to join a multicast
session send the central node, asking for information on the session with the
desired sender;

– Join Peer Notification: This message is absolutely critical to the proper simula-
tion of multicast distribution trees by the central node. It is the message peers

3.1. General Architecture 38

send the central node when they make a decision on which peer they append
themselves to, making it possible for the central node to perform accurate rep-
resentations of multicast sessions, a concept that will be detailed further in this
document, in Section 3.1.1.

In summary, the central node, as described thus far, is already instrumental in facilitating
the system’s operation, as it:

1. Filters the whole system for peers that have left, and notifies the affected peers, for
instance, the peers that were receiving data from the departed peer and would, other-
wise, be left without the data being streamed into the session. The upstream peer from
the peer that left is also notified to update its downstream list, meaning, removing
the peer that left.

2. Maps every peer to the session it is involved in, and so, with the information ex-
changed with peers, is able to maintain an accurate and updated state on the distri-
bution tree of each multicast session.

Multicast Session Operation

In section 3.1.1, the central node has been described as the brain of the operation. The
concept of multicast session is an intricate part of the central node, as it is the structure that
combines the information that the central node obtains via its communication with all the
separate peers involved in each session.

To the multicast session, peers can either be the sender (for simplification, it is assumed
that there is only one sender per session) or receivers. Receivers can also act as forwarders
in case they represent a better performance option than a direct connection to the sender.
This happens when peers are applying their QoS tests to other peers, and the obtained
results to other receivers represent improved efficiency (which will be further detailed).

It has been established that any peer that wants to create a new multicast session informs
the central node, which then creates the session and places the mentioned peer as the sender.
On the central node’s part, this allows for the creation of a new Multicast Session instance,
and so, including it in its records. With this record having been created, when a receiver
wishes to join a given session the process is a bit more complex and will assume different
metrics according to different usability contexts, still, it follows similar guidelines:

1. The joining peer messages the central node notifying it of its intent to join the desired
sender’s session, identified by its IP Address;

2. The central node, as all peers perform this process, knows every peer in the session,
and replies with the IP address of every connected peer;

3.1. General Architecture 39

3. The joining peer, then performs the appropriate QoS tests with every peer in the
session, and elects the one it wishes to join, meaning, elects its upstream peer;

4. The joining peer, then, notifies the Central Node of the performed choice.

The previous (simplified) description of actions performed by a peer that wishes to join a
specific session, in particular, step 4, allows the central node to keep a replica of the current
distribution tree. This has to do with the fact that, from these notifications, the central node
now knows both the joining peer and the elected upstream peer. This allows for a graph
representation of the multicast distribution tree, as seen in Figure 3.3, which presents an
illustrative example:

Figure 3.3.: Distribution Tree example, Central Node’s Graph Representation

• The Source is only streaming data to Peers A and F;

• Peer A’s upstream is the source and its downstream list are peers B and C;

• Peer B’s upstream is peer A and its downstream list is peer D;

• Peer C’s upstream is peer A and has an empty downstream list;

• Peer D’s upstream is peer B and its downstream list is peer E;

• Peer E’s upstream is peer D and has an empty downstream list;

• Peer F’s upstream is the source and its downstream list is peer G;

• Peer G’s upstream is peer F and its downstream list is Peer H;

3.1. General Architecture 40

• Peer H’s upstream is peer G and has an empty downstream list.

As previously discussed, an absolute requirement for the proposed overlay system to
perform as desired, was that the distribution trees were to be easily reconfigurable and
adaptable as different usability contexts may be put in place if and when it is deemed
necessary. This graph representation allows an easy manipulation and checkup of the
multicast distribution tree, and comes as a result of the existent communication channel
between peers and the central node, adding no communication overhead.

3.1.2 Peer

At this stage, with the central node and its role in the overlay network having been pre-
sented, it has to be made clear that the overlay itself is composed by the peers present in
each session. With this concept in mind, a peer can be either the sender of the session or
one of the receivers. Figure 3.4 represents the structural logic of the peer entity.

Figure 3.4.: Conceptual Peer View

Sender

Previously in section 3.1.1, in a simplified way, it has been stated that any peer that wishes
to create a multicast session (and so, be placed as the sender for that specific session),
communicates with the central node to perform that request and obtain its reply and autho-
rization. On the sender’s part, to make this communication possible, a Management port
was added, as seen in Figure 3.4.

3.1. General Architecture 41

Another fact that is represented in Figure 3.4 is that the sender contemplates as down-
stream list, which represents (possibly part of) the peers in the session, or at least, the peers
it is directly streaming to. Once more, the sender will receive QoS probes and Join requests
in its management port.

Receiver

Analyzing, once more, Figure 3.4, it becomes clear that the receiver is structurally different
from the sender, despite also being a peer.

First and foremost, the receiver has not only a management port but also a data port. The
data port is where the session’s actual streamed data is sent to, whereas the management
port is where interaction with the central node and with other peers is performed. For
example, QoS probes and peer join requests are sent through this management port.

The second distinction between the sender vs receiver logic, is that receivers contain an
upstream peer, which represents the peer that the receiver is getting data from, in other
words, it is the peer to which the receiver is appended to. Now, should it be the case where
all receivers connected themselves to the sender, there would be no necessity to keep a
record as to the peer’s upstream, as it would always be the sender. The reason why this
information is maintained, and the reason why peers have to perform a QoS gathering
process (which may follow different methodologies and approaches) with other peers in
order to elect their upstream peer, is that peers may elect as their upstream, another receiver
in the session, in which case, the elected peer will also act as a forwarder in the session.

So, with the notion that a receiver was also conceived to operate as a forwarder, another
analysis can be performed on Figure 3.3:

• The Source is only streaming data to peers A and F;

• Peer A is receiving data directly from the source, making two copies and forwarding
to Peers B and C;

• Peer B is receiving data from peer A and forwarding it to peer D;

• Peer C is receiving data from A, while sending data to no one;

• Peer D is receiving data from B and forwarding it to peer E;

• Peer E is receiving data from D, while sending data to no one;

• Peer F is receiving data from the source and forwarding it to peer G;

• Peer G is receiving data from peer F and forwarding it to peer H;

• Peer H is is being forwarded data by peer G, while sending data to no one.

3.1. General Architecture 42

The concept of having receivers perform forwarding duties allows an enhancement of
the overlay’s performance as paths from source-receiver may have higher delays or packet
loss percentages and, in some cases, a longer path using receiver-receiver direct connections
may come as a better solution, performance-wise, so traffic engineering may be put in place
in similar situations.

3.1.3 ISP Collaborative Service

The described architecture contemplates the central node (coordinator for the overlay net-
work) as well as the peers that form the overlay network itself. This allows for the creation
of multicast sessions, as well as some decision-making on the peer side, namely, each peer
is able to choose its upstream peer, as explained previously.

The addition of the collaborative service, which represents a communication channel
between the ISP and the overlay network (via the central node), allows a paradigm change
to the present architecture. This is due to the fact that the overlay network will now be able
not only to work on top of the network but also to work with it, as the physical network
itself belongs to the ISP. The previous concept is only made possible as the ISP is now able
to communicate with the overlay’s managing entity.

While the ISP will not be an active participant in multicast sessions taking place, it can
be of great influence in the distribution tree’s formation. Without the ISP, distribution
trees come out of peers electing their upstream peer, however, the ISP’s knowledge of the
network topology allows for a number of additional mechanisms and functionalities that
can be introduced in the overlay level.

The way the presented concept works is by having the ISP, via the collaborative service,
provide the central node with a topology graph, which represents the whole network topol-
ogy. Additionally, the ISP also provides knowledge of the access router each peer is using
into the network, so that the central node may (knowing the routing protocol in place) simu-
late and determine the best path between any two peers. This information allows the central
node to more efficiently manipulate the distribution tree’s formation and management.

While it is true that this concept comes with some additional work for the central node,
it brings many advantages as well. This has to do with the fact that the ISP knows not
only the network’s topology, but also its state. So, in case, for instance, a link is receiving
too much traffic and/or loosing datagram packets, or even in case the ISP knows that at a
certain point in time (with traffic agreement) a given path will have increased usage, the
ISP can have central node re-direct, if possible, overlay traffic and deviate from using any
path the ISP wishes to protect, whenever possible, leading to a much more stable network.
This traffic engineering possibility could only come with a full knowledge of the network
topology and some routing level details, which only the ISP can provide.

3.1. General Architecture 43

With the central node being able to simulate the paths taking place, considering the dis-
tribution tree, sometimes, tree management and manipulation is not possible taking into
account the current peers in session, i.e, the way they are spread through the network does
not allow for traffic improvement. However, the ISP not only owns and knows the net-
work topology but also is able to activate entities within it. To this point, the ISP can, at
any given time, activate (and deactivate) overlay forwarders in strategic places within the
network, and have traffic go through them, when they result in performance or security im-
provements. This allows for the deviation of traffic, sometimes resulting simply in avoiding
certain parts of the network the ISP wishes to see freed, or resulting even in a reduction of
the number of links the distribution tree is using.

3.1.4 Extended Central Node

The addition of the collaborative service to the architecture of the present work, implies
some changes to the central node’s structure, which are represented in Figure 3.5.

Figure 3.5.: Conceptual Central Node, Extended

The inclusion of the collaborative service provides the central node with an extended
number of alternatives in the overlay management. This new version of the central node
now contemplates some new elements:

• Topology Graph:

– Actual Topology: Contains the topology layout;

– Access Routers: Contains all the information regarding peers themselves, mean-
ing, the access router each peer is using into the network;

3.1. General Architecture 44

– Routing level information;

• Forwarder List: Contains the list of forwarders the ISP has provided to the overlay,
which, at any given time can be updated as the ISP can activate (or deactivate) for-
warders as it sees fit;

• Collaborative Service Port: Whilst the central node’s management port could be used
in the communication with the ISP (via the collaborative service) a decision was made
to create a dedicated port. Some of the exchanged messages/requests (which will be
detailed later in this document) are:

– Link Protection, where the ISP requests that the central node protects a given
link, if possible;

– Link Minimization, where the ISP requests that the central node try and reduce,
as much as possible, the number of links in use, by the overlay;

– Forwarder Activation, where the ISP notifies the central node of changes to the
available forwarders and has it test multicast sessions for improvements to per-
formance;

– The mentioned network info (topology graphs, access routers and routing infor-
mation) will also travel through this port;

Once more, in summary, the central node is now able to operate with more extensive
knowledge, allowing for traffic engineering/management through the overlay. The ways
the central node will perform this management will be detailed along the present docu-
ment and will take many forms, namely with regards to different approaches or usability
contexts, and mostly with regards to the collaborative methods that take place between the
overlay and the ISP via the collaborative service.

3.1.5 Extended Peer

The inclusion of the ISP collaborative service to this work, in theory, should bring no change
to the peer, as any interaction is made with the central node, and does not include the peer.
Despite this fact, a decision was made to change the peer architecture as well, as represented
in Figure 3.6, including the ISP activated forwarder as a peer to the overlay. This allows for
no change to be necessary to the multicast session, as an entity, as the forwarder is seen as
a regular peer.

Despite the fact that, to the multicast session, the ISP activated forwarder is a regular
peer, in particular, a regular receiver, its structure is different. While it shares the fact that it
has both a management port and a data port, it does not receive (or respond to) QoS probes

3.2. Distribution Trees Construction 45

Figure 3.6.: Conceptual Peer, Extended

as it operates only under instructions from the central node, never from other peers in the
session. So, the management port is used only for communication with the central node
and the data port also operates in a different manner.

Normal receivers have an upstream peer, and when messages arrive through the data
port, they are replicated and forwarded to the downstream list should said receiver be act-
ing as a forwarder. ISP activated forwarders operate differently as they may be forwarding
messages from various sources. What this means is that, when messages arrive through the
data port, they are checked to see where they come from so that the proper downstream list
for that source is used as actual forwarders are to serve as many peers as possible, which is
why, as seen in Figure 3.6, forwarders have not only one upstream, but a collection of them,
associated with the corresponding downstream (forwarding) list.

3.2 distribution trees construction

This section will explain the way multicast trees are formed according to different usability
contexts. Within this purpose, two distinct examples will be provided. The first scenario
will be one of cumulative minimum-delay, where peers will try to minimize data delivery
delay from the source/sender to each receiving peer in the multicast session, Section 3.2.1.
The second scenario to present contemplates cumulative packet loss percentages that the
system will try and minimize, Section 3.2.2.

3.2. Distribution Trees Construction 46

3.2.1 Minimum-Delay Approach

When peers receive instructions to form the multicast tree favouring an objective of mini-
mizing the delay from sender to each receiver, a cumulative scenario is started where peers
connecting to multicast sessions distribute themselves in such a way to make end-to-end
delay as small as possible. To this point, every different entity is responsible for a set of
tasks in order to make the process viable.

Following, a description is given on the logical steps the various entities involved per-
form.

Creating a (Minimum-Delay) Multicast Session

The first step to be taken in the creation of a multicast session, is to have the peer that will
act as the source (sender) for that session request the central node to create and register
a new session. Figure 3.7 illustrates the rather simple process the sending peer and the
central node go through in order to establish a new multicast session.

Figure 3.7.: Activity Diagram - Creating a Multicast Session

After receiving authorization from the central node, the sender then starts streaming data
to the multicast session. A note should be made regarding Figure 3.7, particularly the fact
that the presented loop has to do with the fact that the protocol in use is UDP, making it
necessary to verify the arrival of any and all management packets.

So, in summary, the process to create a new multicast session is as follows:

1. The sender (peer) contacts the central node with a message informing of its intent to
create a new multicast session, type 0 (minimum-delay);

3.2. Distribution Trees Construction 47

2. The Central Node, verifies the existence of a multicast session with said peer as the
sender:

a) If the session does not exist, the central node adds it to its database of multi-
cast sessions and replies ”True” to the sender, so it may start transmitting data,
whenever the session’s first receiver arrives;

b) If the session already exists, should the type of the existing session be the same
as the type of the session being requested, the central node, assuming the reply
packet was lost in transit, replies ”True” so the sender may start transmitting
data on the arrival of the first receiver. In case a session with that peer as the
sender already exists, but under a different usability context (other type), the
central node will reply ”False”.

3. The sender, having received the Central Node’s authorization, starts streaming data.
As this data streaming happens directly to any joining peers, it begins only after the
first receiver has connected. Should no reply arrive in a predetermined amount of
time, the sender will repeat the process, from Step 1.

Joining a (Minimum-Delay) Multicast Session

When joining a multicast session, a peer must know the sender’s IP address, which deter-
mines the multicast session it is joining. With that, the procedure to join a session takes the
following steps:

1. The joining peer sends a message to the Central Node (coordinator) asking for infor-
mation on the session it wishes to join;

2. The Central Node replies with the IP Address of all the Peers involved in the session;

3. With the list of all peers in the distribution tree, the joining peer, then, messages every
single peer in the reply. This serves two purposes. The first it that it allows the joining
peer to request the queried peer’s delay until the sender;

In this scenario, it is important to remember that a cumulative delay is considered,
and so, while the joining peer requests every other peer’s delay until the sender, this
information has to be complemented with the delay between the joining peer and the
peer it is appending itself to, which is the second purpose of the mentioned message
exchange. With this in mind, an algorithm was created to:

a) Message all peers in the session requesting their delay to the source;

b) Measure the reply time from each peer, and add this value to the peer’s delay to
the source, which is done via the mentioned probe message;

3.2. Distribution Trees Construction 48

c) Select the peer which results in the minimum cumulative delay from the joining
peer to the session’s source;

Figure 3.8 aids in the understanding of the created algorithm.

In it, receivers R1, R2, R3 and R4 are directly connected to the sender, and
receiver R5 is connected to R4. So, when R6 joins the overlay, the selection of
the peer to join is: minimum{Delay(R6-S);Delay(R6-R1)+D1; Delay(R6-R2)+D2;
Delay(R6-R3)+D3; Delay(R6-R4)+D4; Delay(R6-R5)+D5+D4}.

The previous reasoning, was made according to Equation 1, where D stands
for Delay, R means receiver, and j is the joining peer:

selectedpeer = mini(D(Ri) + Dj−>i) (1)

4. The joining peer, having selected the peer it wishes to append itself to, messages the
selected peer of this intent. In other words, requests to be added to its forwarding list;

5. The peer that received the joining peer’s request, then simply adds the joining peer
to its forwarding list and replies informing the joining peer that it has accepted the
request;

6. The joining peer, having received the reply from the peer it is appending itself to, then
opens its data port to start receiving data and sends a notification to the central node
informing it of this connection;

7. The central node updates the multicast session registries with this new information,
and now considers the new peer as a part of the session when other replies or requests
arrive.

An important factor to take into consideration is that, at any time, packet loss may occur.
So, in this process, for example, in Step 3, should no reply arrive from the central node, the
peer simply repeats the process, from Step 1. Furthermore, within the whole process, all
QoS probing and management messages are checked for delivery.

3.2.2 Minimum-Loss Approach

In the previous section, the usability context’s goal was to provide the best possible perfor-
mance for the multicast session, in terms of end-to-end delay to each peer involved. In this
section a different approach is taken, as the objective is to minimize, as much as possible,
the loss of data being streamed into the session. With the presented usability context in

3.2. Distribution Trees Construction 49

Figure 3.8.: Joining Peer Decision Example

mind, the way peers connect themselves to the session, for obvious reasons, must change.
Meaning, the way each peer elects its upstream is different, as will be shown bellow.

The remainder of the present subsection will describe the way the sender creates this new
type of session and also, the process each peer performs when entering the session.

Creating a (Minimum-Loss) Multicast Session

When creating a multicast session with a minimum-loss usability context, the first step to
be taken is to have the peer that will act as the sender of that particular multicast session,
request the central node to create and register a new session. At this point, while the
logical process is the same as was presented for the minimum-delay scenario, the new
multicast session that the central node registers is tagged with a different session type
value, corresponding to minimum-loss in the present case. Figure 3.9 illustrates the process
the sending peer and the central node iterate through in the creation of a new multicast
session using the minimum-loss usability context.

The peer (sender), having received the reply from the central node acknowledging the
creation of the multicast session, then begins streaming data to the session as the first peer
(receiver) connects.

Now, as mentioned previously with the minimum delay usability context, packets can be
lost in traffic. To this point, the process must be repeated consecutively until the case where
the sender receives the actual reply from the central node, as seen in Figure 3.9, regardless
of where the datagram packet may have been lost. While this is true for any approach as
UDP packets are exchanged throughout the system, this scenario requires special attention
as packet loss is to be measured, and QoS probing messages are not repeated when no

3.2. Distribution Trees Construction 50

Figure 3.9.: Creating a minimum-loss multicast session

reply arrives. With this in mind, the process to create a minimum-loss multicast session is
as follows:

1. The peer (sender) contacts the central node with a message informing of its intent to
create a new multicast session, type 1 (minimum-loss);

2. The Central node, verifies the existence of a multicast session with said peer as the
sender (regardless of type):

a) If such a session does not exist, the central node adds it to its database of multi-
cast sessions and replies ”True” to the sender, so it may start transmitting data;

b) If the session already exists, should the type of the existing session be the same
as the type of the session being requested, the central node simply assumes the
packet was lost in transit and replies ”True” so the sender may begin transmitting
data; (Note: Should a session with that peer as the sender already exist, but
under a different usability context, the central node will reply ”False”.)

3. The sender waits for the central node’s reply:

a) Should the answer from the central node arrive, it will simply start transmitting
data to the session on the arrival of the first receiver and the session will operate
normally;

b) Should it be the case that no answer arrives, the peer simply repeats the process
by jumping back to 1 until a maximum of five times. The time the peer waits for
the central node’s reply is five seconds.

With the connection process being complete, the session is either activated and the sender
starts transmitting data or it is removed as the sending peer leaves the system.

3.2. Distribution Trees Construction 51

An important reference to be made is the fact that, this packet delivery validation is only
performed in such management data exchanges, once the session is active, the session data
(i.e., the data being streamed) is not confirmed for arrival in each peer. This work assumes
that multicast distribution trees are used to transmit real-time data flow applications using
the UDP protocol.

Joining a (Minimum-Loss) Multicast Session

As before, when joining a multicast session, the joining peer must know the sender’s IP
Address, which identifies the session it wishes to join. However, the joining process now
differs from the one previously detailed in section 3.2.1 particularly in the way QoS probing
is performed. With this new management scheme in mind, the joining procedure is as
follows:

1. As any multicast session can now be of different types, it is crucial that the joining peer
is made aware of the usability context in use so that it may elect the peer it will append
itself to in an according manner. The peer, having received the reply from the central
node regarding the type of session in place, should it be 0 (Minimum-Delay), simply
resumes the standard minimum-delay connection setup, detailed previously, should
it be 1 (Minimum-Loss), moves on to step 2, starting the minimum-loss connection
setup process.

2. The peer, messages the central node requesting information on the peers already in
the session. As this is a management interaction, requires packet delivery validation,
meaning, the peer cyclically performs this request until a response finally arrives. The
delay between one request and the next being performed (should no reply arrive) is
5 seconds.

3. On each request, the central node replies the requesting peer with the IP Address of
all Peers involved in the session. At this point, the central node performs no validation
at all, simply replies to every single request, any needed delivery validation regarding
this type of message happens on the peer’s side.

4. The joining peer, having received, from the central node, the IP Addresses of all peers
in the session, then begins the best peer selection process:

a) At this point, for each peer in the central node’s reply, the joining peer must
gather QoS information regarding the average packet loss from such destination.
It is important to understand that the aim is to reduce packet loss in the streamed
data, meaning, tests must be performed downstream through the distribution
tree, i.e., packet loss is measured from the tested peer to the joining peer. As
such, an auxiliary answer manager was developed in order to store each peer’s

3.2. Distribution Trees Construction 52

loss percentage from the session’s sender (if it is the actual sender, that value
is zero). Then, QoS probing begins and the answer manager increments the
number of obtained answers every time one arrives. The joining peer will request
each peer in the session to perform the tests, and each peer will reply with a
burst of datagram packets, which will later be used to determine the packet loss
percentage.

Figure 3.10.: Minimum Loss Answer Accumulator

b) The joining peer, having performed the necessary QoS tests to each peer returned
in the central node’s reply, must then elect the peer which it will append itself
to. This minimum-loss usability context is performed considering a cumulative
method of calculating the peer’s loss percentage from the sender, which means,
that the final decision on the elected peer considers both loss percentage from
the joining peer to the appending peer as well as the appending peer’s loss
percentage to the session’s source. This process is translated in the minimum loss
answer accumulator, which implements an upstream loss percentage calculator
method that uses Equation 2 in order to determine the peer to join, where j is the
joining peer, i is the peer being tested, and P represents packet loss percentage.

selectedPeer = mini(1− ((1− Pj−>i)(1− Pi))) (2)

5. The joining peer, after electing the peer to append itself to, now has to establish a
direct connection between itself and the peer to append. To to so, it sends the selected
peer a join message. This joined peer, having received a join message, adds the joining
peer to its downstream list, replies ”True” to the joining peer and starts forwarding
data to the joining peer. Once more, this is a session management interaction between
these two peers, packet arrival must be validated, and so, if the joining peer does
not receive the expected reply from the appended peer, it simply repeats the direct
connection establishment process.

3.2. Distribution Trees Construction 53

6. Should the connection between the joining peer and the appended peer have been
successfully establish, the joining peer needs only to notify the central node of such
connection, as it is essential that the central node maintains an updated state on the
multicast tree. To this point, the joining peer messages the central node of the per-
formed connection, a notification that the central node replies, as this is a management
interaction and must be validated. The joining peer, once more, repeats the process
until a confirmation arrives.

Figure 3.11.: Joining a minimum-loss multicast session (Simplified)

Figure 3.11 represents a simplified (some steps have been joined) version of the de-
scribed process, but illustrates rather accurately the way the process is performed. In
step 5, where the best peer is elected, Equation 2 is used to perform the determination.

3.3. Collaborative Methods/Approaches 54

3.3 collaborative methods/approaches

This section will present the developed collaborative methods between the ISP and the over-
lay network. The importance of such a collaboration has been addressed previously in this
document and various approaches can be taken in the establishment of such a cooperation.
This section will detail three illustrative examples. First, Link Protection will be addressed,
both passive and active modes, Section 3.3.1. The second approach to be addressed will be
Link Minimization, where the ISP requests the central node to try and reduce the number
of ISP links the overlay is using, Section 3.3.2. These two first approaches, do not actively
involve the ISP, it simply performs the requests. The following methodology, ISP Forwarder
Activation, enables the ISP to activate forwarders along the ISP network, elements activated
in order to optimize the overlay’s impact in the network, Section 3.3.3.

3.3.1 Link Protection

The first collaborative method to be established between the ISP and the central node is the
capability to protect the underlying network. This type of protection of the physical net-
work itself, is achieved through the avoidance of certain links from the overlay’s operation.

The idea is to avoid the introduction of traffic to any links in the topology that the ISP
wishes to protect. However, in order for such a system to work, the central node needs to
be provided with both the network topology and the access routers each peer is using, as
well as the necessary routing information. With that in mind, the ISP, via the collaborative
service, is able to provide the central node with the required information. Moreover, at any
point, the ISP also knows the state of the network and may request that the central node
protect certain links by distributing traffic, where possible, through other paths. This traffic
redirection is made by changing the way the multicast distribution tree is constructed, in
other words, by having peers append themselves to other peers, when possible.

The central node must, then, be able to determine whether or not the path between any
two peers involves any of the links to protect. To aid in path determination between two
peers, a graph library was used, as will be shown in Section 4.1.1.

As far as link protection goes, a decision was made to implement two different strategies,
one which simply contemplates the protection of a given link by impeding new connections
using that link, and another which actively attempts to stop already established connections
between peers whose path involves the links to protect. They were called passive and active
link protection, respectively, and are described bellow.

3.3. Collaborative Methods/Approaches 55

Passive Link Protection

Passive link protection, as the name suggests, does not directly influence the multicast
distribution tree, at least, as far as connections that have previously been established are
concerned. Passively protecting the network topology means that any new peers that wish
to join the multicast session have their list of possible connections filtered in such a way as
to avoid passage through certain areas of the network, even though this may impede the
multicast tree from reaching maximum performance for the usability context in question.

The way the system operates is according to the following steps:

1. The ISP, via the collaborative service, messages the central node notifying it of the
intention to protect a given link;

2. The central node, adds that link to the list of links to protect;

3. When a given peer messages the central node with a join session request, whereas
in a normal scenario the central node would simply reply with the address of every
single peer involved in the session, in this case the process is a bit more complex:

a) The central node uses its connection index to determine the access router the
joining peer is using;

b) The central node, for each peer already in the session, uses the graph library
presented in Section 4.1.1 to determine whether or not the path between said
peer and the joining peer includes any of the links to protect. Should it include
the link, that peer is not included in the set of peers the joining peer will receive
as a reply, otherwise, it will be added to the list and will be one of the possible
connections;

c) The central node then replies the joining peer with a list of the peers to whom
the path does not include the protected link;

d) Should the paths to all possible peers in the session use the links to protect,
the reply goes into default mode, and simply includes all peers in the session,
meaning that it is impossible to protect the network in that specific case;

4. The joining peer, then, resumes the normal connection process, contacting the peers
included in the central node’s reply and appending itself according to the usability
context in place.

Figure 3.12 provides a simplified visual representation of above the described process.

3.3. Collaborative Methods/Approaches 56

Figure 3.12.: Passive Link Protection

Active Link Protection

Active link protection is a much more intrusive and costly type of protection. Whereas in
the passive protection mode, there was never a necessity to restructure the multicast tree, in
an active protection scenario, existing connections are disrupted should the path between
any two connected peers include the link to protect.

This type of link protection, obviously, is much more aggressive, not only to the central
node, which has to perform quite a lot more operations in order to determine the necessity
to have the multicast tree reassemble itself, but is also rather more costly to the overlay
itself, as it destabilizes the multicast tree, and therefore introduces extra traffic into the
network, with peers flooding it with requests to the central node and to each peer in order
to determine the best solution to re-append themselves to.

As far as the algorithm is concerned, in order to reduce the computational weight of the
process, the way the system protects the network is:

1. The ISP, once more, via the collaborative service, messages the central node notifying
it of its intent to protect a specific link;

2. The central node, adds that link to the list of links to protect;

3. The central node, for every single peer in the multicast session, tests if the path from
such peer to each of its children (peers that are in the downstream list of the men-
tioned peer) includes the link in question. If the link to protect is not included, the
central node simply moves on to the next peer in the list. However, if the path does
include that link, a few decisions had to be made:

a) The peer that is receiving data that is going through the link in question, is
notified by the central node in order to reconnect itself to the multicast session.
The reason is simple, instead of determining a new parent for this peer (which

3.3. Collaborative Methods/Approaches 57

would be much more complex, in an algorithmic sense), the idea was to have the
affected child reconnect itself as the system will default to the passive protection
mode, where the child’s current parent will not be included in the list of possible
parent peers due to the fact that the link has been added to the protected links
list;

b) The children of the notified peer (which, itself, was a child of another peer) are
not notified by the central node, they simply wait for their parent to reconnect
itself to the session. This decision was made in order to try and reduce the flood-
ing of requests that would result by having every single peer in the tree branch
try and reconnect, in other words, this decision provides for a more stabilized
multicast tree as well a more stabilized network;

4. The affected peer then simply resumes the normal connection mode into the multicast
session.

3.3.2 Link Minimization

In this current section another way to protect the network is documented, however, this
protection is achieved via a different format. Whereas before, the goal was to protect a
certain link (or group of links), with Link Minimization the goal is to reduce, as much as
possible, the number of ISP links in use per multicast session, and so, also reducing the
number of packets in the network.

Now, as protection is performed under a different logic, it is important to understand that,
before, protection was guaranteed, where possible, by having the central node disconnect
specific peers in the multicast session in order to, then, manipulate the way they established
their new connection (upon re-connection). Under the new paradigm, the central node will
simply perform all the work, and then notify each peer in the session of their new upstream
and downstream peers.

In this link minimization approach to protecting the network, performance is not taken
into consideration and, as such, this procedure works the same way regardless of the metric
each peer uses in order to determine its upstream peer, which is why, when this method is
activated, the peer’s choice is removed, and it appends itself to whomever the central node
determines. Each peer’s downstream list is also calculated by the central node.

So, in this link minimization method, so that the central node computes the appropriate
peer associations, the following steps are taken:

1. Creation of a complete graph/map, Section 3.3.2;

2. Peer indexation and cost association, Section 3.3.2;

3.3. Collaborative Methods/Approaches 58

3. Calculation of a Minimum Spanning Tree, Section 3.3.2;

4. New Multicast Tree, Section 3.3.2.

With the presented steps in mind, the final aim is to have each peer in the session receiv-
ing the intended data, but with the overlay using the lowest possible number of network
links.

Activation of Parity Maps

The first step in order to achieve the desired goal is the creation of a complete graph where
each connection’s cost is represented with the shortest path from each origin to each desti-
nation.

Figure 3.13.: Complete Graph Representation In Parity Maps

Figure 3.13 provides a visual representation to the implemented structure with regards to
parity maps. In detail, parity maps represent the complete graph, where a direct connection
between each peer is determined, via the Dijkstra algorithm. And so, in each represented
cell, there is information regarding the origin, the destination, and the best path between
them. This allows for a full-mesh representation between all peers in the session.

Peer Indexation And Cost Association Graph

Having a representation, in memory, of each peer’s shortest path to every other peer in
the session, in other words, having a data structure (map) representing the complete graph

3.3. Collaborative Methods/Approaches 59

(where edges represent the number of hops in the shortest path between peers), allows for
the creation of a matrix indexed by peer (Peer x Peer) where each cell contains the cost
(number of hops) of travel from source to destination. In Figure 3.14, two examples were
included. Overlay nodes 0 and 1 are connected with a shortest path involving 5 ISP links,
and overlay nodes 5 and 6 are connected with a shortest path of 2 ISP links.

Figure 3.14.: Complete Graph Matrix Representation

Minimum-Spanning-Tree (PRIM)

The work described in the previous section has been performed to get data in proper form
so that a Minimum Spanning Tree (MST) may be calculated. An MST is an edges subset, of
a connected, weighed and undirected graph (as the demonstrated case), that has no cycles
and where all edges are connected with the minimum possible combined edge weights. In
other words, the sum of the weights in the graph’s edges is as little as possible. In the
presented case, these costs are translated in the number of links connecting two specific
peers. With this in mind, after the MST has been calculated, a new multicast tree can be
derived, where the number of links being used is the least possible.

Now, there are several algorithms to determine Minimum-Spanning-Trees, the elected
one was PRIM (PRIM’s Minimum Spanning Tree [48]), a greedy algorithm that performs as
mentioned later in Section 4.1.1.

3.3. Collaborative Methods/Approaches 60

New Multicast Tree

Taking into consideration that the output from Section 3.3.2 is a vector where the value in
each cell represents the parent of the indexed position, the translation of said output into a
multicast tree becomes trivial.

So, at this point, the central node has the new overlay multicast tree which minimizes the
number of traversed ISP links.

Now, the way operations of this type, where changes are to be made in the connections
between peers, have been performed in previous scenarios (such as link protection, for
instance), is to have the peers reconnect themselves into the session and, then, manipulate
the way they perform their connection procedure. However, in this case, this would not
be the most efficient solution as changes will probably be made throughout the whole
multicast tree, which would mean flooding both the overlay network and the central node
with unnecessary traffic, namely requests of information on the multicast session (requests
to the network) and QoS probes (to other peers) which would, again, flood the underlying
topology.

With the previous point in mind, a decision was made to create a new kind of message
that would be directed to each peer in the session. So, instead of notifying each peer that it
must reconnect, the central node now, via a Link Minimization Tree Update Message, simply
messages each peer its new upstream peer and downstream list. There are no connection
processes being performed as they are unnecessary as the central node is now determining
connections.

Post Minimization Operating Protocol

An important fact to take into consideration is what happens after the link minimization
protocol is in place. Also, in a link minimization scenario, a necessity arises to determine
what happens to an arriving peer in a session where the link minimization protocol is in
place.

To this point, two decisions were made. When a peer requests the central node infor-
mation on the multicast session (which typically would result in the central node simply
sending it the list of all peers in the session), the central node now:

1. For each peer already in the session, determines shortest path between such peer and
the joining peer and elects the result with the least number of hops (the shortest path).
It then informs the joining peer of its new upstream peer, and requests the elected
peer to update its downstream list with the joining peer;

2. Every N entries of new peers into the session, the Link Minimization protocol is re-
performed and the whole multicast session is updated. This approach allows the

3.3. Collaborative Methods/Approaches 61

reduction of the overlay’s oscillations due to the PRIM algorithm outputs, only peri-
odically updating the overlay state.

3.3.3 ISP Forwarder Activation

The present section regards yet another form of interaction and cooperation between the
central node and the ISP. Once more, the objective is to minimize the number of links
receiving the overlay’s traffic.

With the goal being similar to the one presented in the Link Minimization section, it
is important to understand that the starting point for the present approach, is with ses-
sions implementing the link minimization scenario. The previously mentioned method-
s/approaches contemplated a somewhat passive interaction with the ISP, it would simply
perform requests to the central node (link protection and/or link minimization) and pro-
vide it with both the updated network topology and the access router being used by peers
in the overlay network, and, with this information, the central node, when possible, would
adapt multicast trees to respond to the performed requests. In this new usability context,
the ISP takes a much more active role in its implementation.

As mentioned, the starting point for this new approach is a session that already is imple-
menting the link minimization procedures, and it has been shown that sessions implement-
ing these procedures already use as few links as possible, while still ensuring every peer
in the session has access to the data being streamed. So, in order to minimize the number
of used links even further, it is required that the ISP provides the session (and the central
node) with more tools so that it may test if any improvements can be made.

The mentioned tools come in the form of ISP activated forwarders. They are application
level entities that the ISP places along strategic places in the network so that the central
node can simulate them as peers in the session, and determine if, with the inclusion of
these forwarders in the session(s), the number of links in use can be further reduced. In
which case, they are then seen as a normal peer in the session, and are assigned an upstream
and a downstream list, and, to every other peer in the session, are seen as a ”normal” peer.

With the presented generalized view of the approach, lets take a more algorithmic look
as to what the performed steps are:

1. The ISP sends the central node a request to activate the link minimization procedures
to all multicast sessions;

2. The Central Node, then, activates the appropriate link minimization procedures, as
described;

3.3. Collaborative Methods/Approaches 62

3. The ISP, then, sends the central node a list of its available forwarders in an updated
graph of the topology, along with a request that the central node perform the For-
warder Activation Procedures;

4. The central node then, per multicast session:

a) For each available forwarder, appends that forwarder to a copy of the session
(performed for simulation purposes), and determines the number of ISP links in
use;

b) Assesses the best scenario and applies the necessary changes, if any;

5. The ISP, should the central node recommend the activation of any certain forwarder,
will do as suggested.

With the presented steps in mind, the final aim is to have a, somewhat, pure multicast,
where each peer in the session receives the intended data, with the network having been
loaded with as little traffic as possible, as a minimum spanning tree is in use.

With the presented steps in mind and with an understanding of what the ultimate goal
is, the following will detail the way the process is performed, particularly with regards to
step 4 above, as it is where are all changes (if any) are determined and applied.

Determining Best Match (Forwarder) and Changes

As stated before, the idea behind this approach, is to place forwarders along the network
topology and have them be treated as ”normal” peers, included in a multicast session.
However, this is to happen only if the inclusion of the forwarder in question results in a
lesser number of links being used when distributing data throughout the whole set of peers
in each multicast session. Figure 3.15 represents the inclusion of these potential forwarders
in the underlying topology (in red), where, data duplication and forwarding may now
happen.

However, in order to decide which specific ISP forwarder will be chosen, some simula-
tions must be made so as to determine the best possible scenario before actually implement-
ing any changes.

Figure 3.16 focuses on the best match determination process the central node performs
on each multicast session, which includes the following steps:

1. In order to keep the multicast session as stable as possible, tests are not performed
directly. This means, copies of the session are performed, as many as the number of
potential ISP forwarders;

3.3. Collaborative Methods/Approaches 63

Figure 3.15.: Forwarder Placement

Figure 3.16.: Best Match Determination Logic, N Forwarders

2. In each copy of the session, a shadow peer is added, the forwarder being tested;

3. Link Minimization procedures (the same procedures as in 3.3.2) with the newly added
peer (forwarder) being recognized as a ”normal” receiver in the session;

4. The number of used links is calculated (and stored) using the explained best path
determination between each peer connection;

After the described process has been performed, the next step is quite simple, to iterate
through the number of different generated multicast trees and determine the one with the
least used links, and then, compare it with the number of links in the session already in
place:

3.4. Overlay in multiple Autonomous Systems 64

• Should the number of used links with the specific ISP activated forwarder be lesser
than in the session already in place, the forwarder is added to the actual session (not
the copy), link minimization procedures are run, and peers are notified of the changes
to their upstream peer and downstream list;

• Should the number of used links with forwarder be higher than in the session al-
ready in place, all the calculated data is discarded and the session is deemed to be
performing better with no changes, so it remains as is.

Figure 3.17 provides a very summarized visual representation on the way the involved
entities cooperate in order to make this collaborative approach possible.

Figure 3.17.: ISP Forwarder Activation Summarized Process

3.4 overlay in multiple autonomous systems

The present section focuses on the extension of the presented work to scenarios contemplat-
ing multiple autonomous systems.

The developed architecture and methodologies, as shown thus far and represented in
Figure 3.1, show different entities operating in the same autonomous system. However,

3.4. Overlay in multiple Autonomous Systems 65

an extrapolation can be made to demonstrate that both entities and methodologies can be
extended to operate in various autonomous systems, i.e., in much broader scenarios, as
demonstrated in Figure 3.18.

Figure 3.18.: Multiple Autonomous Systems - Expanded Architecture

In Figure 3.18, various autonomous systems are considered, enabling the overlay network
to be extended to operate in each of them, as the sender is in AS1, but the other Autonomous
Systems (AS2, AS3, AS4) also contain overlay peers. This results in a wide-spread overlay,
distributed and operating through a variety of separate systems.

This extended scenario, however, depends on each Autonomous System having their own
collaborative service, in which case, the presented methodologies (such as link protection,
minimization, etc) can be applied in a Multi-AS perspective. For these methodologies to be
available in such a way, the system only requires that each collaborative service (in a way,
representing their own AS) provides the overlay’s central node with its network topology
information (much like in the Single-AS scenario) and routes.

Another concept that is introduced with the addition of these systems, is the fact that
different collaborative services can eventually communicate among themselves to discuss
policies and metrics, and provide the central node with synchronized requests, i.e., requests
that they all agree on, such as: i) Requesting the central node to try and minimize the
number of links the overlay is using; ii) Requesting the central node to try to protect a
specific set of links, namely, the collaborative services can request that the central node
manipulate the way data flows from one Autonomous System to another.

To make the presented approach viable, the only changes required to the system, once
more, would be that each AS would have to provide the central node with its topology
graphs, each peer’s access router, and its BGP routes. As seen previously, this information

3.4. Overlay in multiple Autonomous Systems 66

is required so that the central node can, then, simulate the topology and calculate the
routing tables for each AS, and apply the necessary changes to the multicast distribution
tree.

Assuming the collaborative service (ISP) present in each AS is able and willing to provide
the overlay’s central node with the required information, the presented symbiotic behavior
is possible, enabling the overlay network to enjoy the benevolence and goodwill of the
various ASs. On the other end, the different ASs also gain the flexibility of the overlay
network, which they can have the central node change and adapt (when possible), in order
to better employ their traffic management policies.

4

T E S T I N G A N D R E S U LT S A N A LY S I S

The present chapter will document the tests that validate the implemented strategies and
algorithms as well as an analysis on the obtained outcome versus the expected one.

First, a presentation will be made on the technologies used to develop the system, as well
as any third party software/libraries, Section 4.1. Then, non-collaborative tests, minimum-
delay and minimum-loss, will be performed and documented in Sections 4.2 and 4.3, respec-
tively. Finally, the collaborative approaches will be tested in the following order: Passive
and Active Link Protection in Section 4.4 , Link Minimization in Section 4.5, ISP Forwarder
Activation in Section 4.6, and finally, operation in Multiple Autonomous Systems, in Section
4.7.

4.1 technologies and testing platform

To properly develop and test the presented architecture and associated mechanisms, dif-
ferent technologies were required. Various aspects have been taken into consideration
in the determination of tools to use, considering the different goals to achieve. The fol-
lowing sections will present the elected tools for the development of the prototype, the
Web-Application (and its use), the way the physical network is emulated so tests can be
performed and finally, auxiliary libraries that were used to speed the development process
and that are instrumental for the system to operate correctly.

4.1.1 Development Tools

To accurately implement all the proposed architecture, three separate projects (Peer, Central
Node and Collaborative Service) were created, using JAVA 8. The reasoning behind this
choice as to do with the numerous advantages of this technology, such as the vast array
of available third-party libraries which this work will use, excellent performance, immense
documentation, platform ubiquity, etc.

67

4.1. Technologies and Testing Platform 68

During the prototype implementation, as seen in Sections 3.2 and 3.3, where various
methodologies to create and maintain the multicast distribution trees are addressed, the
necessity for path determination between any two peers became clear as well as the use
of the PRIM algorithm, when link-minimization procedures are put in place. To aid and
accelerate this process, two third-party libraries available for JAVA were used, which will
now be introduced.

Path Determination

As mentioned before, at any point, the ISP, via the collaborative service, can provide the
central node with an updated state of the network topology, information regarding the
access router each different peer is using, as well as the required routing information.

The central node, with this information, has to be able to, if possible, reroute overlay
traffic through other links in the network. The way this determination on whether or
not it is possible to change traffic flow through other links (using the overlay network)
is according to both the network topology and the peers that form the multicast session,
considering the available routing information.

So, the collaborative service provides the central node with two separate graphs, one
containing the network topology and another containing the access point each peer is using
into the network. As it will be made clear further in this document, tests for the developed
mechanisms will be made in networks using the OSPF (Open Shortest Path First) routing
protocol, which uses the Dijkstra algorithm in order to determine the best path between
any two source-destination pair.

Now, in order to determine whether or not traffic from a given source to a given destina-
tion goes through a specific link, a graph library [47] was used with data structures [49] by
the authors, Robert Sedgewick and Kevin Wayne. Figure 4.1 illustrates the generated asso-
ciation of an index array with the nodes that make up the network (which is then inverted
in order to facilitate calculations) and, on the right, the number of associations (links) each
node (router) has to others.

With this information and representation, it is now possible to determine whether or not
traffic between two peers uses any particular link.

PRIM

A second library used in this work has to do with the Link Minimization objective, where
the ISP requests that the central node try and form a minimum-spanning tree, having the
overlay operate in such a way that the number of ISP links to which the overlay introduces
traffic is as small as possible.

4.1. Technologies and Testing Platform 69

Figure 4.1.: Graph Data Structures

To the previous point, another available library was used [48], which implements, in
JAVA, the elected greedy algorithm, PRIM. The following description, logically follows the
algorithm:

1. Create a new mstSet, which will store the vertices already included in the MST
(changed every step);

2. Initialization:

a) Assign a key value to each vertex in the graph;

b) Initialize all key values as MAX INT (Infinite);

c) Initialize the source’s key value as zero (in this case, the source is the session’s
sender, so it can be the root of the tree, which is absolutely necessary for best
performance);

3. While the mstSet is not complete with vertices in graph:

a) Select the vertex with the minimum key value, not considering vertices already
in the mstSet pool;

b) Include the selected in the mstSet;

c) Update the key value for all the vertex’s adjacent vertices. For all adjacent vertex:

i. if (weight<previous key value) key = u-v;

4.1. Technologies and Testing Platform 70

4.1.2 Network Emulation

For testing purposes, the Common Open Research Emulator (CORE), [50] was used to
emulate a physical network topology, which is required to test an architecture with the
dimension of the proposed one.

This tool provides a very accurate representation of real-life networks, providing scenar-
ios very similar to the ones that the proposed architecture would encounter on deployment.
Also, this product is able to simulate not only networks, but also computers, allowing its
users to run programs, namely the projects that represent each entity in the proposed ar-
chitecture, which introduce datagrams into the network. These characteristics, make real
simulations to the system possible.

The routing protocol that will be used for the performed tests is OSPF. This protocol
implements the Dijkstra algorithm in the determination of the shortest possible path from
source until destination. Moreover, with this algorithm, every single node has a global
knowledge of the topology for its specific area in the network. In the first scenarios, only
one area will be considered. An important consideration to be made is that the CORE
network emulator, by omission, attributes a cost of 10 to each link, a cost that will be left
unchanged throughout testing.

The testing scenarios that will be presented, will consider the basic network topology pre-
sented in Figure 4.2, with any changes to this topology being presented when and where
necessary. Any delay or loss in data propagation will be introduced directly into the respec-
tive links.

4.1.3 Web-Application

To aid in the analysis of the performed tests, the prototype was complemented with a
logging system in order to register requests and decisions each entity makes. Taking into
consideration the range the testing scenarios will achieve, it is important to gather the
registered logs from each entity in an ordered manner so as to make it possible to see the
actions and reactions that occur at each point in the system. So, a web-application was
created, which, orders all logs, regardless of the entity, by the time they were made, and so,
allows for a step-by-step analysis of the events that occur.

This web application required the use of another set of technologies: i): Python & Flask:
This technology acts as the server to the web application. It receives requests in order to
determine which peers/entities have their logs shown. Obviously, the server is the entity
that parses the different files from the various entities and sends the obtained information
for rendering; ii) HTML 5; iii) CSS 3; iv) Javascript.

4.2. Minimum-Delay 71

Figure 4.2.: Testing Network Topology

4.2 minimum-delay

The first scenario to be tested is one where the usability context’s objective is to have the
delay between the source and each receiver be the least possible, i.e, the objective, per peer,
is to achieve minimum-delay. Table 4.1 considers introduced propagation delay in certain
links along the network topology to provide a testing scenario that will enable a better
comprehension of the methodology being tested. Other links also have delays, but the ones
presented in the mentioned Table aid in the comprehension of the mechanism.

Now, for the purpose of this test, node n8 (10.0.5.21) will act as the sender of the multicast
session while each of the other peers will be receivers. So, knowing the algorithm behind
the OSPF routing protocol, it is possible to predict the paths that will be used. The paths
from source to destination the routing protocol will determine are as follows:

• N8 - N7: Nodes are in the same network;

• N8 - N10: n1(10.0.5.1) - n2(10.0.2.2) - n5(10.0.4.2) - n13(10.0.19.2) - n14(10.0.14.2) -
n9(10.0.6.2) - n10(10.0.20.20);

• N8 - (N25, N26, N27) (Network 10.0.22.0/24): n1(10.0.5.1) - n3(10.0.0.2) - n18(10.0.27.1)
- n15(10.0.12.2) - n16(10.0.18.2) - 10.0.22.0/24;

4.2. Minimum-Delay 72

Node Node Delay (in ms)
n2 n5 1000

n5 n18 300

n5 n13 100

n13 n15 150

n15 n17 120

n15 n16 85

n15 n20 80

n16 n20 5

n16 n19 30

Table 4.1.: Link introduced data delay

• N8 - N28: n1(10.0.5.1) - n3(10.0.0.2) - n28(10.0.24.20);

• N8 - N29: n1(10.0.5.1) - n3(10.0.0.2) - n18(10.0.27.1) - n29(10.0.25.20);

• N8 - N30: n1(10.0.5.1) - n2(10.0.2.2) - n5(10.0.4.2) - n30(10.0.26.29).

This test will be performed according to the following sequence: i) Activation of the
central node; ii) Activation of the collaborative service; iii) Activation of peer N8 as the
sender; iv) Activation of peers as receivers in the following order: N7, N25, N26, N27, N28,
N29, N30; v) Deactivation of peer N25 (10.0.22.20).

4.2.1 Activating the Central Node

Upon the activation of the central node, two maps are created, one which registers the
association between peers and the multicast session they are involved in, and another to
maintain the live state of each peer, as the central node employs a soft-state protocol in
order to continuously validate that each peer is still in the session, and so, optimize or
change the scenario should a given peer leave the session for any reason. With this in mind,
three communication ports are activated as the central node starts:

1. Hello Port: this is the port peers send their hello messages to;

2. Management Port: peers use this port to perform every single interaction with the
central node other than sending hello messages, meaning, join session requests and
notifications, etc;

3. Collaborative Service Port: This port is used to receive the topology graphs as well
as any changes to the multicast distribution trees the ISP would like to see happen,
mainly network management, as explained.

4.2. Minimum-Delay 73

Figure 4.3 shows the resulting Logs, which are a textual representation of the imple-
mented procedures.

Figure 4.3.: Activating the Central Node

4.2.2 Activating the Collaborative Service

Upon activation, the collaborative service immediately sends the central node the graphs
with the network topology. The line with sequence number 6, Figure 4.3, represents the
central node logging the arrival of the mentioned network topology.

4.2.3 Activating the Sender (Node N8)

As mentioned, the sender of the session will be node N8. Figure 3.7, presented previously
in this document, represents the way the peer (sender) and the central node interact in
order to create a multicast session. The sender sends a create session message to the central
node’s management port, the central node verifies that that peer is not involved in any other
session and then authorizes the request, registering the session. The sender then assumes
the registration has been made on the part of the central node, and starts streaming data.
Figure 4.4 represents the registration of events in the creation of the session.

Figure 4.4.: Creating a multicast session

4.2. Minimum-Delay 74

4.2.4 Activating a Receiver (Node N7)

Remembering the description of the process peers perform when joining a multicast session
is important at this stage:

1. The receiver messages the central node requesting information on the multicast ses-
sion (namely, the peers involved) via a join session message;

2. The central node replies with the peers involved in the session, should the requested
session be a valid one;

3. The receiver checks the central node’s reply, then, messages all peers in the session
with a QoS (Quality of Service) message, which is time stamped in order to obtain
the delay until the source;

4. The receiver, out of the QoS replies, elects a peer to append itself to, and messages
that peer in order to be added to its downstream list;

5. The receiver (joining peer) then notifies the central node of said connection.

Figure 4.5.: Activating Node 7 - Part 1

Analyzing Figure 4.5, it becomes clear the central node logged the request from the
receiver wishing to join the multicast session. As there is no way to protect the network (in
this case, because there are not any links to protect at this point), the central node simply
replies with every peer in the session. The receiver, through its management port, logs the
arrival of the peers list as well as its contents. In this case, there is only one peer to choose
from, the sender.

Figure 4.6.: Activating Node 7 - Part 2

4.2. Minimum-Delay 75

In Figure 4.6, the sender logs the fact that it received a QoS message from the joining
peer, logging also the corresponding reply. As node N8 is the sender, its delay until the
source is zero ms.

Figure 4.7.: Activating Node 7 - Part 3

Figure 4.7 references the joining peer logging the fact that it received a reply from the
request it sent, and activated the data port, as the sender has now included peer N7 in its
downstream list.

Figure 4.8.: Activating Node 7 - Part 4

Figure 4.8 logs the fact that the receiver, node N7, sent the central node a join session
notification, informing the central node it had appended itself to the sender, directly in
this case. The central node, then, logs this information, and updates its representation of
the multicast tree, which can be seen in Figure 4.9, which shows the sender (node N8 -
10.0.5.21) now has one receiver in its downstream list (node N7 - 10.0.5.20), which, itself,
has no receivers.

Figure 4.9.: Activating Node 7 - Part 5

4.2.5 Activating other Receivers

As the connection process is analogous for the following receivers, the results of activating
peers N25, N26, N27, N28, N29 and N30, will be documented together.

Figure 4.10 (and A.1, in Appendix A.1) provides a visual representation of the multicast
tree upon activation of the mentioned peers.

4.2. Minimum-Delay 76

Figure 4.10.: Receivers Activation, Distribution Tree Representation

Figure 4.11 shows the way the peers arranged themselves in order to minimize the delay,
where, with a different color, peer N29 is shown forwarding data to peer N30. In other
words, the overlay is working on top of the physical network.

Figure 4.11.: Overlay Distribution Representation

4.2. Minimum-Delay 77

In the paths between the source and each receiver, enforced link delay only occurs twice.
Once to the 10.0.22.0/24 network and another in the link between n2 and n5 (through
interfaces 10.0.4.1 and 10.0.4.2). Taking a closer look to the sequence of events:

• Nodes in the 10.0.22.0/24 network (nodes N25, N26 and N27) are expected to connect
themselves directly to the source, as they share the delay from themselves to the
source. Also, as the direct path to peer N7 also includes that delay, it is normal for
them to connect themselves directly, instead of adding the extra delay time peer N7

would include;

• Peers N28 and N29 also connect themselves directly to the source, as their respective
direct paths to it do not have any delay;

• Peer 30 however, in its direct path to the source, encounters a 1000ms delay, as repre-
sented in Figure 4.12. A closer look into the topology, and it becomes clear that the
path to peers N28 and N29 also includes a delay, however, it is still faster, and so, peer
N30 appends itself to N29, with IP Address 10.0.25.20. The path between peers N8

and N30 is represented in Figure 4.11.

Figure 4.12.: Path between N8 and N30

4.2. Minimum-Delay 78

4.2.6 Deactivating Peer N25 (10.0.22.20)

When a peer leaves the multicast session, for obvious reasons, stops sending hello messages
to the central node. As the central node employs a soft-state protocol in order to determine
the current state of each peer in each multicast session, within a determined time-space
(five seconds), it will quickly be able to determine that a given peer left the session, and
will perform the appropriate measures, which are:

1. Determine the upstream river (if any) of the deactivated peer and notify it. This en-
ables the upstream peer to remove it from its downstream list, stopping unnecessary
data flow into the network.

2. Determine the children of the deactivated peer (downstream river) and notify each
one that they need to establish a new connection with another peer in the multicast
session.

Analyzing the current scenario in the deactivation of peer N25, it is clear this peer is
neither the source, nor is it forwarding data to any other peer, and so, only its upstream
peer needs to be warned to stop sending data to the peer in question. After this removal,
the central node updates its multicast tree representation to exclude peer N25. Figure 4.13

contains the generated logs. Figure 4.14 (and Figure A.2 in Appendix A.1) provides a visual
representation on the updated multicast tree.

Figure 4.13.: Deactivating Peer N25 Logs

Should peer N25 be forwarding data to any other peers, these would simply be notified
as well and would start a new connection establishment process.

4.3. Minimum-Loss 79

Figure 4.14.: Deactivating Node N25 - Tree Representation 1

Interface Interface Packet Loss
10.0.5.20 10.0.5.1 6%
10.0.9.1 10.0.9.10 4%
10.0.0.1 10.0.0.2 12%
10.0.4.1 10.0.4.2 8%

Table 4.2.: Packet Loss assumed in specific links

4.3 minimum-loss

The next scenario to be tested contemplates a different usability context, one where the goal
is to have any packet loss between sender and receivers be as contained as possible.

Despite the fact that the protocol in use both for multicast sessions and management in-
teractions between central node and peers and, also, between peers themselves, is UDP, the
number of lost packets, thus far, has been unnoticeable. This fact, therefore, makes it nec-
essary to force datagram loss in the network being used to test the developed mechanisms.
Figure 4.15 presents the updated topology with forced data loss.

Table 4.2 shows packet loss percentages which were introduced directly in the links in
question, a functionality insured by the CORE network emulator.

The purpose of the present test is to verify each node selects its appending peer in an
appropriate manner, according to the presented selection formula and so, ensuring a maxi-
mization of data delivery from source to destination. In order to validate this selection, the
following test sequence will be performed: i) Activation of the Central Node; ii) Activation

4.3. Minimum-Loss 80

Figure 4.15.: Updated Network Topology

of the Collaborative Service; iii) Activation of Peer N8 as the Sender; iv) Activation of Peers
as receivers in the following order: N7, N28, N30, N29.

4.3.1 Activating the Scenario

As the process until the first receiving peer arrives is the same as before, the scenario
activation step will be skipped, which includes steps i), ii) and iii).

Figure 4.16 shows the result of performing the described steps in the presented agenda.
Namely:

• The Central Node logging the arrival of the request to create a new minimum-loss
multicast session (which is mapped with type ”1”);

• The Central Node, then, logs the creation of the requested multicast session under the
requesting sender, with the requested type;

4.3. Minimum-Loss 81

Figure 4.16.: Activating Scenario Result

• Finally, the peer logs the activation of the necessary ports and its first hello message.

4.3.2 Activating Receiver N7

When activating the first receiver of the session, it is important to remember the described
process, in Section 3.2.2, which is summarized in Figure 3.11. So, at this point it is possible
to predict the procedure that peer N7 will perform:

• It will message the central node notifying of its intent to join the multicast session
where peer N8 (10.0.5.21) is the sender;

• The central node will, then, reply with the IP address of each peer in the session,
which, in this particular case, is solely the sender of the session as peer N7 is the first
receiver to arrive;

• The QoS metrics will still be performed, despite the fact that the sender is the only
peer in the session and, therefore, is the only peer the joining peer can append itself
to. This is done so packet loss can still determined;

• Peer N7 will calculate its packet loss percentage from the sender and perform the
connection process to peer N8, then, it will notify the central node, so it may update
its version of the multicast tree.

The described procedure is summarized in Figure 4.17 where, in particular, it is clear that
peer N7, upon performing the QoS metrics with peer N8, having received 46 out of 50 sent
packets, registered a loss percentage of approximately 8%, according to Equation 2. The
resulting multicast tree (in its first stage for the presented testing steps) will integrate peer
N7 as a receiver of peer N8 (Sender) as predicted.

4.3. Minimum-Loss 82

Figure 4.17.: Logging - Arrival of Peer N7.

4.3.3 Activating Receiver N28

The activation of peer (receiver) N28 follows the same presented logic, despite the single
difference that, in this new step, QoS metrics will be performed to more than a single peer,
as the session now contemplates two existing peers: N8 and N7.

So, in order to accurately try and ”predict” what will happen to the multicast session
with the arrival of peer N28, it is important to take a look at Figure 4.15, which represents
the topology in place for the presented tests, namely the packet loss percentages in each
link, which can also be verified in Table 4.2.

1. Path (N7 - N28):

a) 10.0.5.20 - 10.0.5.1: Link with 6% packet loss;

b) 10.0.0.1 - 10.0.0.2: Link with 12% packet loss;

c) 10.0.24.1 -10.0.24.20: Link with no forced packet loss:

2. Path (N8 - N28):

a) 10.0.5.21 - 10.0.5.1: Link with no forced packet loss;

b) 10.0.0.1 - 10.0.0.2: Link with 12% packet loss;

c) 10.0.24.1 -10.0.24.20: Link with no forced packet loss

Having analyzed the paths between each peer in the session to peer N28, it is expected
that peer N28 appends itself to peer N8, as it will probably present a lower packet loss
percentage.

4.3. Minimum-Loss 83

Figure 4.18.: Logging - Arrival of Peer N28.

Figure 4.18 shows Peer N28 logging the fact that it elected to append itself to peer N8,
as expected. The remaining logs have to due with the connection establishment process
as well as central node notification. It also shows the calculated packet loss percentage
between peers N7 and N28.

Figure 4.19 shows the updated multicast tree at the current stage of the testing process.

Figure 4.19.: Minimum-Loss Tests: Multicast Tree Stage 2.

4.3.4 Activating Receiver N30

With the understanding of the process peers N7 and N28 performed in order to determine
the peer they would append themselves to, the decision-making process receiver N30 iter-
ates through becomes clear, as it follows the same logic.

It will test packet loss percentage from each peer in the session, and then elect the peer
which results in a lesser cumulative loss percentage from the sender. Looking, once more,
at Figure 4.15, and taking into consideration the packet loss percentages in each link, an
expected prediction can be made on the peer that will be elected.

1. Path (N7 - N30):

a) 10.0.5.20 - 10.0.5.1: Link with 6% packet loss;

b) 10.0.2.1 - 10.0.2.2: Link with no forced packet loss;

c) 10.0.4.1 - 10.0.4.2: Link with 8% packet loss;

d) 10.0.26.1 - 10.0.26.20: Link with no forced packet loss;

4.3. Minimum-Loss 84

2. Path (N8 - N30):

a) 10.0.5.21 - 10.0.5.1: Link with no packet loss;

b) 10.0.2.1 - 10.0.2.2: Link with no forced packet loss;

c) 10.0.4.1 - 10.0.4.2: Link with 8% packet loss;

d) 10.0.26.1 - 10.0.26.20: Link with no forced packet loss;

3. Path (N28 - N30):

a) 10.0.24.20 - 10.0.24.1: Link with no forced packet loss;

b) 10.0.27.2 - 10.0.27.1: Link with no forced packet loss;

c) 10.0.10.1 - 10.0.10.2: Link with no forced packet loss;

d) 10.0.26.1 - 10.0.26.20: Link with no forced packet loss;

Now, if a direct connection logic were in place, the expectation would be that the elected
peer would be peer N28, as there is no forced packet loss between the joining peer N28 and
peer N30. However, it makes sense to consider not only each peer’s packet loss percentage
from its upstream but also such peer’s loss from the source, as a cumulative scenario was
implemented. And, as seen before, N28 appended itself to the source with approximately
14% (link with 12% packet loss percentage is used) packet loss percentage from the source.
With this in mind, it becomes clear that the path from peers N8 and N7 has less forced
packet loss, making peer N8 the expected elected peer.

Figure 4.20.: Logging - Arrival of Peer N30.

Figure 4.20 shows the generated Logs with regards to Peer N30’s arrival, and election
of peer N8 as its upstream, as expected. It shows the calculated packet loss percentage
between peers N28 and N30, which, as explained, is peer N28’s packet loss percentage
from the source, as no packet was lost in the QoS test process between these two peers. It
also considers the packet loss percentage from peer N7 to the joining peer, N30.

4.3. Minimum-Loss 85

Figure 4.21.: Minimum-Loss Tests: Multicast Tree Stage 3.

Figure 4.21 shows the updated multicast tree at the current stage of the testing process.

4.3.5 Activating Receiver N29

The last part of the proposed test, regards the activation of receiver N29. Once more, the
election process will be the same as previously.

Analyzing the network topology, it becomes clear that direct connections with peers
N8 and N7 involve direct packet loss, whereas connections to peers N28 and N30 would
involve the upstream’s packet loss percentages. Well, direct connections to N8 and N7

involve two links with (rather high) loss percentages, which would also be involved in a
connection with peer N28. On the other side, a connection with peer N30, would involve,
solely, one link with packet loss percentage from the source, and a lesser one. And so, the
expected elected peer is N30. Figure 4.22 shows peer N29’s decision making, calculating
the respective packet loss percentages, per peer, and electing peer N30 as its source.

Figure 4.22.: Logging - Arrival of Peer N29.

4.4. Protect-Link 86

Figure 4.23 shows the final version of the multicast tree, with peer N29 having elected
peer N30 (now shown not only as a receiver but also as a transmitter) as its upstream source,
with a packet loss percentage equivalent to the one peer N30 has from the session’s source.

Figure 4.23.: Minimum-Loss Tests: Multicast Tree Stage 4.

4.4 protect-link

In these tests, the same topology was used as in Section 4.2, with the same testing con-
ditions, meaning, link delays are unchanged for this scenario. Furthermore, this section
represents a system protection that is independent of the multicast tree’s usability context,
it has to work regardless of the metric that is being used in the formation of the multcast
tree. For this test, the tree will maintain a minimum-delay construction scenario.

4.4.1 Passive Protection

To test the developed algorithm for passive network protection, with the overlay operating
under the minimum-delay usability context, similar overlay multicast trees are expected as
the ones in Section 4.2. However, even though peers will use the same metric, the performed
steps will be somewhat different:

1. Activation of the central node;

2. Activation of the collaborative service;

Collaborative service protects link N18-N15;

3. Activation of peer N8 as the sender;

4. Activation of Peers N7, N25, N26 and N27 as receivers.

4.4. Protect-Link 87

Although the presented test scenario provides for a smaller test case, passive protection
is expected, as the direct path from peers in the 10.0.22.0/24 network to the peers N7 and
N8 includes the link to protect.

Activation of the Central Node

The activation of the central node, as expected, follows the same steps of the activation in
the previous example, 4.2. Figure 4.24 represents the resulting logs.

Figure 4.24.: Activating the Central Node

Activation of the Collaborative Service and N15-N18 Link Protection

Once more, upon activation, the collaborative service immediately sends the central node
the graphs with the network topology representation, Figure 4.25 shows the central node
logging the arrival of the topology graphs.

The collaborative service, having been activated and having sent the network topology,
then, sends a message to the central node, requesting the protection of link N15-N18. Figure
4.26 shows how the ISP uses the collaborative service to interact with the central node. In
this case, requesting it protect the link in question.

Figure 4.25.: Activating the collaborative service - Part 1

4.4. Protect-Link 88

Figure 4.26.: Activating the collaborative service - Part 2

Activating the Sender (Peer N8)

As with the previous scenario, the sender for this multicast session will be node N8. Again,
the steps in creating a new session are the same as before, Figure 4.27 shows the resulting
Logs, both by the central node and the sender.

Figure 4.27.: Logs regarding the activation of the sessions’ sender

Activating Receiver - Peer N7

Looking at the topology represented in Figure 4.2 and considering the OSPF routing algo-
rithm, it is clear the path from peer N7 and the sender does not include the link to protect.
And so, the connection is established normally. Figure 4.28 represents the logs resulting
from peer N7’s activation and Figure 4.29 shows the visual representation of the resulting
multicast tree.

Figure 4.28.: Logs regarding the activation of peer N7

4.4. Protect-Link 89

Figure 4.29.: Multicast Tree Stage 1

Activating Receiver - Peer N25

The path between peer N25 and both other peers in the session includes the link to protect.
Now, it has been stated before that, both passive and active protection modes will protect

the network, if possible. This is a case where it is not possible to protect the network, as the
resulting paths from N25 to N8 and N7, with the OSPF routing protocol, include the link to
protect, as represented in Figure 4.30. So, the central node has no possible solution, other
than allowing for the connection of peer N25 to any peer in the session, and so, not being
able to protect the network. With the presented reasons in mind, the normal connection
establishment process is performed.

Figure 4.30.: Path from peer N25 to peers N7 and N8

As the result of a standard connection process, node N25 elected to append itself directly
to the source of the multicast session, as seen in Figure 4.31. Figure 4.32 provides a visual
representation of the overlay network.

4.4. Protect-Link 90

Figure 4.31.: Multicast Tree stage 2 - Representation

Figure 4.32.: Passive Protection: Overlay Distribution Tree

Activating Receivers - Peers N26 and N27

Now, peers N26 and N27 belong to the same network as peer N25, network 10.0.22.0/24.
Obviously, looking at the topology once more, they share the same path until peers N7 and
N8. It has also been stated that it is impossible to protect data flow into the link N15-N18,
which is the link to protect. However, it is possible to have traffic through that path only
once, and having peer N26 connect itself direcly to N25 and then, N27 choose from the two
(likely connecting itself to peer N25 as well due to the forwarding added time).

Figure 4.33.: Central Node’s reply to peer N26

4.4. Protect-Link 91

So, whilst data streams from the source to peer N25, peer N26, when contacting the
central node for the list of peers it can append itself to, receives only one possible connection
in the central node’s reply, as seen in Figure 4.33.

Upon activation of peer N27, the central node repeats the same process, and peer N27

connects itself with the same logic. Figure 4.34 (and Figure A.3 in Appendix A.2) provides
a visual representation on the final multicast tree obtained for this test, making it possible
to conclude that the prototype worked as expected. Showing peer N25 connected directly
to the source, and peers N26 and N27 being forwarded data by peer N25. Another repre-
sentation is provided in Figure 4.35, where data paths and peer connections are made clear.
So, even though it is impossible to completely protect the link in question, the data flowing
through it can, at least, be reduced.

Figure 4.34.: Multicast Tree Stage 4

Figure 4.35.: Passive Protection: Final Overlay Distribution Tree

4.4. Protect-Link 92

4.4.2 Active Protection

Active protection, as described, is a more aggressive method of protecting the network. Not
only does it mean that new connections are to avoid the passage of data through the link
to protect, but also, existing connections are to be interrupted, and the receiving peers to
append themselves to other peers in the network, peers whose path does not include the
protected link.

With the described capacity in mind, it is important to describe the test scenario. The
following steps will be taken: i) Activation of the central node; ii) Activation of the collabo-
rative service; iii) Activation of Peer N8 as the sender; iv) Activation of Peers N7, N25, N26,
N27, N28, N29 and N30 as receivers; v) Collaborative Service requests the protection of link
N5-N18.

As it is possible to see from the steps to be taken, and considering, once more, the
usability context that will be used, in this case is one with a minimum-delay for each
peer, in order to go directly to the active protection system, the scenario will be activated
completely until the protection step.

Activating Scenario

With the presented usability context, the multicast tree, before the collaborative service
requests the protection of link N5-N18, must be similar to the one seen in section 4.2,
as expected, until the deactivation of certain peers. Figure 4.36 provides the the visual
representation on the central node’s map of the multicast tree whereas Figure 4.37 shows
the overlay tree formed on top of the physical network.

Protecting Link N5-N18

Knowing the link to protect is the one connecting routers N5 and N18, the problem becomes
quite clear. As link N5-N18 is to be protected, this will affect the connection between peers
N29 and N30, as peer N29 is forwarding data to peer N30, with the path highlighted in
Figure 4.38. So, at this point, when the ISP uses the collaborative service to request that
link N5-N18 be protected:

1. The central node must add this link to the protection list;

2. The central node must determine whether or not there are any two peers (or more)
passing data through the link in question. Should this be the case:

4.4. Protect-Link 93

Figure 4.36.: Tree before protection (Stage 7)

Figure 4.37.: Active Protection: Overlay Distribution Tree

a) The peer forwarding data is to be notified to remove the receiving peer from it’s
downstream list;

b) The receiving peer is to be notified to establish a new connection to another
peer, with the protection system falling back to passive protective mode, as the
new connecting peer will now try to enter the multicast session again with link
protection in place.

4.4. Protect-Link 94

c) No other peers in the session should even be aware of the changes in the network
and multicast tree;

3. The receiving peer then starts the normal connection procedures.

Figure 4.38.: Path between peers N29 and N30

Figure 4.39 represents the collaborative service’s request to the central node that link
N5-n18 be protected.

Figure 4.39.: Collaborative Service’s request to protect link N5-N18

Figure 4.40 shows the central node’s log regarding the fact that it received the collabo-
rative service’s request to protect link N5-N18 and will deploy the appropriate measures,
which are to identify the problematic connections, meaning peer pairings using the link in
question. Figure 4.41 shows the result of the central node’s queries regarding the multicast
tree. So, the central node has determined, as expected, that there is an established connec-
tion between peers N29 and N30, where peer N29 (called parent) is forwarding data to peer
N30 (which is stamped as problematic).

4.4. Protect-Link 95

Figure 4.40.: Central Node Logs Receiving the collaborative service’s request

Figure 4.41.: Central node identification of problematic peers

For this specific scenario, having determined the two peers with an established connec-
tion using a path with a link to protect, the central node, then, simply has to notify peer N29

to remove peer N30. Also, the central node, must have peer N30 re-establish its connection
to the multicast session. Figure 4.42 represents Peer N29 logging the fact that it removed
peer N30 from it’s downstream list.

Figure 4.42.: Peer N29 logging the removal of peer N30 from downstream list

Figure 4.43 represents the fact that peer N30 got an order to re-establish its connection to
the multicast session, and also, the fact that, when the central node sent the list of possible
peers N30 could connect itself to, peer N29 (as well as N28, which would use the same link)
is not included in the list, and so, the network is protected, as the paths to the possible
peers in the central node’s reply are represented in Figure 4.44.

Figure 4.43.: Peer N30 is requested to establish new connection

4.4. Protect-Link 96

Figure 4.44.: Peer N30, paths to possible connections

As the normal connection scenario is now being used, due to the fact that peers N28 and
N29 are not on the list of possible connections, the network has been protected, as expected.
And so, finally, the representation of the final stage multicast tree is presented in Figure
4.45, showing peer N30 being forwarded data by peer N27, and so avoiding the one second
delay it would have with peers N7 and N8. Figure 4.46 shows the overlay network, once
more, working on top of the physical network, in order to protect the mentioned link.

Figure 4.45.: Final multicast tree

4.5. Link Minimization 97

Figure 4.46.: Active Protection: Overlay Distribution Tree

4.5 link minimization

In this test, the goal is not necessarily the enhancement of the overlay’s performance but
the reduction of the number of used links in the underlying network.

Now, as far as the testing conditions, Figure 4.2 represents, once more, the network
topology being used for this testing stage. In order to validate the developed system, the
following test sequence will be performed:

1. Activation of the scenario:

a) Activation of the Central Node;

b) Activation of the Collaborative Service;

c) Activation of the Sender (N8);

d) Activation of Receivers N7, N28, N29, N30, N25, N26, N27;

2. Collaborative Service will request the activation of link minimization procedures:

a) Central Node will perform the appropriate procedures;

b) Central Node will notify each peer of its new upstream and downstream list so
changes can be applied where necessary.

4.5. Link Minimization 98

4.5.1 Activating the Scenario

The activation of the scenario, as mentioned, is performed using the Minimum-Delay ap-
proach. As the modus-operandi for this system has been previously described, Figure 4.47

represents the multicast tree after the whole scenario has been activated.

Figure 4.47.: Scenario activation resulting Overlay Distribution Tree

4.5.2 Link Minimization Procedures

Analyzing Figure 4.47, with the minimum delay metric in use, and taking into consideration
the topology represented, once more, in Figure 4.2, a few considerations can be made, when
translating both these results into Figure 4.48:

1. Path (N8 - N7): 10.0.5.21 - 10.0.5.1 - 10.0.5.20 (2 links in use);

2. Path (N8 - N28): 10.0.5.21 - 10.0.5.1 - 10.0.0.2 - 10.0.24.20 (3 links in use);

3. Path (N8 - N29): 10.0.5.21 - 10.0.5.1 - 10.0.0.2 - 10.0.27.1 - 10.0.25.20 (4 links in use);

4. Path (N8 - N25/26/27): 10.0.5.21 - 10.0.5.1 - 10.0.0.2 - 10.0.27.1 - 10.0.12.2 - 10.0.18.2 -
10.0.22.20/21/22 (6 links in use per connection, meaning 18 links in use);

5. Path (N7 - N30): 10.0.5.20 - 10.0.5.1 - 10.0.2.2 - 10.0.4.2 - 10.0.26.20 (4 links in use).

4.5. Link Minimization 99

Figure 4.48.: Scenario activation result

The described paths, in the presented connections, bring the total count of used links
in the multicast tree to 31 links (links being used more than once count separately). Now,
when the ISP, via the collaborative service, requests the central node to perform the link
minimization procedures, the minimum end-to-end delay for each peer logic is disregarded,
and the goal becomes to have the number of links in use be as small as possible.

Now, when the Central Node receives the request from the collaborative service, it imme-
diately starts performing the link minimization protocol. As seen in the protocol’s descrip-
tion, this happens according to a set of steps:

1. Activating Link Parity;

2. Peer Indexation and Cost Association Graph;

3. Minimum-Spanning-Tree Generation (PRIM);

4. New Multicast Tree Formation;

5. Peer Notifications (if required).

Activating Parity Maps

Figure 3.13, in Section 3.3.2, shows the way parity maps information is represented. Essen-
tially, it contemplates the best path from each peer in the session, to every other peer also in
the session. It is a complete graph. Figure 4.49 shows a small representation of the process
of creating a complete graph parity map, as it shows the central node determining the best
path between any two peers. The presented process is performed for every single peer.

4.5. Link Minimization 100

Figure 4.49.: Parity Map Creation (summarized)

Peer Indexation and Cost Association

The current step has a rather simple job, which is to take the developed parity map, and
translate it into a matrix, where rows and columns represent sources and destinations (Peer
x Peer) and where each cell contains the cost of the best possible path between those two
peers.

Figure 4.50.: Complete Graph Matrix

Figure 4.50 provides the visual representation of the matrix the central node created for
the present case-study. It is clear to see that, paths already being used in the session in
place, match the cost the central node calculates, which means, the central node accurately
represented the session in the cost matrix.

Minimum-Spanning-Tree from PRIM

The deployment of PRIM, to determine the Minimum-Spanning-Tree, is according to the
output of the previous step (which is the input matrix for the algorithm). When the algo-
rithm is performed, the output is a vector, connecting indexed peers to their parent. The
algorithm’s output is represented in Figure 4.51.

So, with the Minimum-Spanning-Tree represented in Figure 4.51, the central node now
simply has to derive the multicast tree from the peer index association with the presented
children and corresponding parents.

4.5. Link Minimization 101

Figure 4.51.: PRIM output for MST

New Multicast Tree and Peer Notifications

Should the number of used links in the generated multicast tree be lesser than the number
of links being used in the tree already in place, peers need to be notified to apply the proper
changes. If this number is equal, no changes are made to the multicast tree, as there is no
need to flood the network with peer notifications. In the present case-study, that necessity
occurs.

Figure 4.52 shows the central node logging the fact that the resulting multicast tree is
better than the one currently in place and, as such, peers need to be notified to apply the
necessary changes so as to obtain the desired result. Also, each peer’s acceptance of the
changes is logged as well.

Figure 4.52.: Logging - Central Node logs peer Notifications and acknowledgements.

Now, Figure 4.53 shows the final multicast tree, after the procedure’s execution and after
peers have been notified. With this new multicast tree in mind, a similar reasoning to the
one performed previously can be made:

1. Path (N8 - N7): 10.0.5.21 - 10.0.5.1 - 10.0.5.20 (2 links in use);

2. Path (N8 - N28): 10.0.5.21 - 10.0.5.1 - 10.0.0.2 - 10.0.24.20 (3 links in use);

3. Path (N28 - N29): 10.0.24.20 - 10.0.24.1 - 10.0.27.1 - 10.0.25.20 (3 links in use);

4. Path (N29 - N30): 10.0.25.20 - 10.0.25.1 - 10.0.10.2 - 10.0.26.20 (3 links in use);

4.6. ISP Forwarder Activation 102

5. Path (N29 - N25): 10.0.25.20 - 10.0.25.1 - 10.0.12.2 - 10.0.18.2 - 10.0.22.20 (4 links in
use);

6. Path (N25 - N26): 10.0.22.20 - 10.0.22.1 - 10.0.22.21 (2 links in use);

7. Path (N25 - N27): 10.0.22.20 - 10.0.22.1 - 10.0.22.22 (2 links in use);

Which, brings the number of used links to a total of 19. Remember that the previous
multicast tree used a total of 31 links.

Figure 4.53.: Final Multicast Tree.

Figure 4.54 provides a visual representation on the obtained results, where as few links
as possible are used, with the desired goal having been obtained as initially 31 links were
being used, and now only 19 are receiving traffic. Meaning, the underlying topology is
much more protected, with a decrease of almost 40% in the number of used links.

4.6 isp forwarder activation

As mentioned in the description of the ISP Forwarder Activation methods, this approach
requires action on the part of the ISP. As these actions come in the form of the activation of
application level forwarders along the network, and given the testing platform present in all
presented test cases, the way to simulate these forwarders is by appending such application
entities to routers in the network. Thus, Figure 4.55 represents the new topology with most
routers having ”ovals” attached, where the ISP may execute and run applications.

4.6. ISP Forwarder Activation 103

Figure 4.54.: Final multicast tree with demonstrated paths.

Figure 4.55.: Adapted Network Topology

The ISP is capable of activating any forwarder it deems necessary, at any time. And
so, via the collaborative service, it is capable of communicating the addition of any new

4.6. ISP Forwarder Activation 104

forwarder to the central node, and having it test if the addition of this forwarder brings any
possible improvements to the multicast sessions taking place.

Testing for the present usability context will happen according to the following steps:

1. Activation of the scenario (Minimum-Delay scenario, once more, will be used as the
initial usability context):

a) Activation of the Central Node;

b) Activation of the Collaborative Service;

c) Activation of the Sender (N8);

d) Activation of Receivers N28, N30, N32, N25, N10;

2. The Collaborative Service will request the activation of link minimization procedures
(as it is the starting point for forwarder improvement verification):

a) Central Node will perform the appropriate procedures;

b) Central Node will notify each peer of its new upstream peer and downstream
list so changes can be applied where and if necessary;

3. The Collaborative Service will inform the Central node of the available forwarders,
present in Figure 4.55, and will request it to elect one to use, if any. In the case where
the inclusion of forwarders does not bring improvements to the network, no changes
are made;

4. The Central Node:

a) will perform as many copies of the multicast session as available forwarders and
include them in the multicast session;

b) per copy (and so per inclusion of each forwarder), will perform the Link Min-
imization procedures and determine the minimum-spanning tree including the
forwarder as a peer;

c) per copy, will determine the number of links in use;

d) will elect the best case, whether it includes the addition of any forwarder to the
multicast tree or not;

e) will notify each peer involved in the session of any changes to their upstream
peer or downstream list, if any;

5. The Collaborative Service will activate the elected forwarder, if any.

4.6. ISP Forwarder Activation 105

4.6.1 Activating the Scenario

The scenario activation, again, is performed following the Minimum-Delay approach. With
this usability context having been explained, demonstrated, and used previously, Figure
4.56 represents the obtained multicast tree with the scenario having been activated.

Figure 4.56.: Scenario activation result

4.6.2 Forwarder Activation Step 1 - Link Minimization Procedures

As described, the use of forwarders is to happen only in sessions where Link Minimiza-
tion is the usability context taking place. To this point, the first step to be taken, upon
activation of the scenario, is to have the ISP request that the central node perform the link
minimization procedures to any active multicast session.

Taking a close look at Figure 4.56 and taking into consideration the adapted topology,
Figure 4.55, allows, once more, for the conversion of these results into Figure 4.57.

Figure 4.57 allows for the determination of the paths being used, they have been shown
in the previous sections.

Knowing the paths being used, it is easy to determine that the total number of links
receiving traffic is 25. So, with the ISP requesting that the session be placed in the Link
Minimization usability context, the previously described procedures are performed and a
new multicast tree is generated, as shown in Figure 4.58.

Once more, from Figure 4.59 and the updated topology, the best path between each peer
connection can be extrapolated, and so, the number of links receiving overlay traffic can be
calculated. As these paths have also been demonstrated in the previous sections, it is clear
the number of links in use is 21, 4 less then before.

4.6. ISP Forwarder Activation 106

Figure 4.57.: Distribution Tree Representation

Figure 4.58.: Link Minimization result

4.6.3 Forwarder Activation Step 2 - Activating Forwarders

At this stage, the multicast session being tested, is employing a Link Minimization Scenario,
as seen. So, the ISP is now able to request that it be tested for improvements, using the

4.6. ISP Forwarder Activation 107

Figure 4.59.: Distribution Tree Representation 2

placed forwarders, seen in Figure 4.55. Now, as seen previously, all existent forwarders will
be sent to the central node when the ISP requests the test, so, remembering the process:

1. The ISP will send the central node a request to have it test the session for improve-
ments with the inclusion of forwarders;

2. The central node:

a) For each available forwarder, appends it to a copy of the session, and determines
the number of links in use after performing the Link Minimization procedures
with the added forwarder;

b) Assesses the best scenario and applies the necessary changes, if any.

3. The ISP activates the elected forwarder, if any.

With the process in mind, and having sent the request to the central node, Figure 4.60

represents the Central Node’s report on performed simulations with the inclusion of each
forwarder to the multicast tree. It becomes clear the current number of links being used
is 21 (as demonstrated previously) and that only forwarder 10.0.37.20 would not result in

4.7. Multiple Autonomous Systems 108

Figure 4.60.: Forwarder Tests Report

an improvement to the multicast tree. However, forwarder 10.0.35.20 provides the best
outcome, as the number of used links when it is included in the multicast tree comes from
21 to 17, meaning a 4 link reduction.

So, the decision will be made to include the best forwarder into the multicast tree,
10.0.35.20, as seen in Figure 4.61.

Figure 4.61.: Forwarder Activation result

It is, however, important to understand that the activation of forwarders along the net-
work topology can result in much higher gains than presented, due to the fact that, in real
scenarios, peers tend to be much more distributed along the network and not as concen-
trated as in the presented test case.

4.7 multiple autonomous systems

In section 3.4, an assessment is made on the way the developed prototype could operate un-
der a wider scenario, i.e., one where peers are connected to the multicast sessions through

4.7. Multiple Autonomous Systems 109

multiple autonomous systems. So, as to be able to test this characteristic, a new network
topology is required, shown in Figure 4.62.

Figure 4.62.: Multiple Autonomous Systems Network Topology

The new topology allows testing under the described conditions, and contemplates, as
mentioned, one Collaborative Service per Autonomous System. The necessity for one col-
laborative service per each AS has to do with the fact that only the ISP knows its own inner
network topology as well as its external routing metrics, i.e, the path used to reach different
Autonomous Systems, which is information the Central Node requires in order to be able
to apply any desired changes to the overlay network.

So, knowing that each AS has its own collaborative service and that they all coordinate
with the central node to achieve the desired goals, testing for the present usability context
will happen according to the following steps:

1. Activation of the Central Node;

2. Activation of the Collaborative Service;

a) Each collaborative service will send its own inner network topology to the central
node;

4.7. Multiple Autonomous Systems 110

b) Each collaborative service will send its external routes to the central node;

3. Activation of the Sender (N101);

4. Activation of Receivers N102, N201, N202, N301, N501, N401, N402, N601;

5. One (or more in the future) of the Collaborative Services will request that the central
node apply the inter-AS link minimization procedures;

6. The Central Node:

a) Will gather the information received from the different autonomous systems and
emulate the topology they form;

b) Will apply the link minimization procedures to the external routing network
(minimizing the usage of inter-AS links), meaning, the complete graph with costs
between all peers will consider external paths only;

c) Per autonomous system, will elect a representative peer, which will receive exter-
nal data and forward it to other peers in that specific autonomous system (this
separation, allows for the future implementation of different usability contexts
per autonomous system);

d) Will notify each peer involved in the session of any changes to their upstream
peer or downstream list, if any.

4.7.1 Activating the Scenario

The scenario activation will be performed, once more, under the Minimum-Delay approach.
Figure 4.63 shows a representation of the generated distribution tree.

It becomes clear that, even though multiple autonomous systems are considered, connec-
tions using inter-AS links are used as any other, with peers ignoring the fact that the usage
of such links is much more costly. Now, in order to understand the way traffic is circulating,
it is necessary to be given the external routing taking place:

1. AS1

• AS2: n7 (direct, 1 link):

• AS3: n7 n3 (2 links);

• AS4: n7 n3 n12 (3 links);

• AS5: n19 (direct, 1 link);

• AS6: n20 (direct, 1 link);

2. AS2

• AS1: n10 (direct, 1 link);

• AS3: n3 (direct, 1 link);

• AS4: n3 n12 (2 links);

• AS5: n3 n19 (2 links);

• AS6: n10 n20 (2 links);

4.7. Multiple Autonomous Systems 111

Figure 4.63.: Scenario activation result

3. AS3

• AS1: n7 n10 (2 links);

• AS2: n7 (direct, 1 link);

• AS4: n12 (direct, 1 link);

• AS5: n19 (direct, 1 link);

• AS6: n7 n10 n20 (3 links);

4. AS4

• AS1: n3 n7 n10 (3 links);

• AS2: n3 n7 (2 links);

• AS3: n3 (direct, 1 link);

• AS5: n3 n19 (2 links);

• AS6: n3 n7 n10 n20 (4 links);

5. AS5

• AS1: n10 (direct, 1 link);

• AS2: n3 n7 (2 links);

• AS3: n3 (direct, 1 link);

• AS4: n3 n12 (2 links);

• AS6: n10 n20 (2 links);

6. AS6

• AS1: n10 (direct, 1 link);

• AS2: n10 n7 (2 links);

• AS3: n10 n7 n3 (3 links);

• AS4: n10 n7 n3 n12 (4 links);

• AS5: n10 n19 (2 links).

Although extensive, the presented information is the data the central node receives, per
each autonomous system, in order to be able to create the necessary graph, required to
perform its link minimization procedures. With this information in mind, and considering
the presented generated distribution tree in Figure 4.63, it becomes clear that inter-AS links
are consistently being used, which results in an unnecessary exploitation of resources.

4.7. Multiple Autonomous Systems 113

4.7.2 Link Minimization Procedures and new Distribution Tree

At this point, the central node is considered to be topology-aware, i.e., it knows both the
inner topology for each autonomous system as well as their external routing information.
As mentioned, the central node is now able to apply the link minimization procedures
considering the external paths only. Figure 4.64 shows the generated external graph matrix
and Figure 4.65 provides a visual representation on the final multicast tree.

Figure 4.64.: External Graph Matrix

Figure 4.65.: Final Distribution Tree

With the presented multicast tree, and considering also the external paths each au-
tonomous system uses as well as the inner network topology, Figure 4.66 represents the
used paths for data distribution, showing a reduction of the number of used inter-AS links
as the link between AS3 and AS5 stops being required. Furthermore, a close analysis shows
that only one copy of each datagram sent by the source’s stream traverses each used inter-
AS link, meaning, the process also reduced the number of datagram packets sent in inter-AS
links.

4.7. Multiple Autonomous Systems 114

Figure 4.66.: Final distribution tree - Paths

5

C O N C L U S I O N S

This chapter will provide an overview on the developed work, both the envisioned archi-
tecture and associated mechanisms as well as the obtained results. Later, future work will
be addressed as the developed prototype is extendable to more usability contexts and ways
of operating.

5.1 developed work

As presented in the first chapter of this document, this thesis’ main goal consisted in the
development of a Multicast Overlay network, adaptable to different usability contexts. Fur-
thermore, one which is easily reconfigurable to assume different behaviours and metrics in
the construction and management of the multicast distribution tree.

To the previous objectives, the first stage was the investigation of different technologies
to provide the knowledge and sensibility to the requirements of such a system. The first
studied technology was IP Multicast, a way of implementing group communication on
the network level, the most efficient way even, but one with high operating costs and no
pricing-model available, which has made the deployment of this technology rather slow
and sparse. The second technology to be analyzed was the implementation of overlay net-
works on peer-to-peer systems. With the sparse deployment of multicast on the network
level, solutions were presented in the application-level, where overlay networks are formed
by peers, also called clients or end-hosts in many works, in which they act as both sources
(providers of content) and clients (receivers of content). These peers participate together in
the distribution of content throughout the overlay network they built on top of the underly-
ing topology. Finally, Application-Layer Multicast was the third technology investigated, a
technology that tries to bridge the two previously mentioned, as it implements group com-
munication on an overlay network formed by peers which can be clients or even probes
inserted by the ISPs themselves. This latter technology is the one closer to the developed
architecture.

Having studied different approaches to the challenge in hand, the developed architec-
ture consisted of three main entities: peer (sender or receiver), central node and the col-

115

5.2. Future Work 116

laborative service (bridging the gap between the overlay’s management and the ISP). Two
methodologies were implemented which did not necessarily include the ISP’s involvement
(collaborative service), where the distribution tree was built to minimize either delay or loss,
respectively, from source to sender. Furthermore, link protection, link minimization and for-
warder activation were the other approaches and methodologies implemented sustained by
using ISP collaborative approaches.

Finally, the testing stage consisted in the conception of a network topology in order to
be able to simulate operating scenarios and test the architecture and methodologies im-
plemented. This simulation was performed in CORE, a network emulator that accurately
simulates real-life infrastructures and network systems. Also, this platform allows its users
to run the developed code/projects, enabling proper testing. For better and simplified anal-
ysis on the developed work, all entities were made to log their decision-making processes
and events, so a web application was also developed at this stage to gather data from all
entities in the system, providing a simpler way to validate the obtained results.

With the presented development steps, it is important to note that the developed archi-
tecture and mechanisms operated as expected and the described objectives have been met.
Peers can form the overlay network without any help from the collaborative service, i.e., the
overlay operates independently whenever the ISP does not deem it necessary to intervene.
Furthermore, the collaborative approaches have been shown to work properly, meaning,
the ISP (via the collaborative service) can cooperate with the central node, requesting it to
implement specific changes, such as link protection or link minimization, or they can even
work together with the ISP activating forwarders along the topology in order to improve the
system, forwarders whose activation the central node requests. The prototype has also been
shown to operate correctly under scenarios considering multiple autonomous systems.

5.2 future work

Despite the fact that the objectives for this work have been achieved, the developed solution
could be improved with further development.

While the system was made to work with multiple multicast sessions operating at the
same time, sessions were made to be single-sourced so as to simplify and accelerate the
development process. As future work, changing the multicast session’s operation in order
to support multiple senders will be an important issue. This could be made via the estab-
lishment of a distribution tree per source, or by having a single source tree, but one where
other senders sent their data to that source, and it would distribute it throughout all the
system, for instance.

Another aspect that could be improved with future work, has to do with the ISP For-
warder Activation methodology. The system contemplates only one forwarder at each time,

5.2. Future Work 118

and could be extended to perform its improvement simulations with different combinations
of various forwarders. This would ensure the absolute best possible result, and not search
solely for the improvement of the system with the addition of one forwarder.

In the construction of the multicast distribution tree, methodologies have been imple-
mented to work separately, i.e., the session either operates in one scenario or another, for
instance, minimum-loss or minimum-delay. This decision, however, could be extended to
hybrid approaches, where, for example, decisions could be made to minimize loss until
a certain factor of loss percentage at which point, another route would be selected if pos-
sible. This more elaborated method would be a significant addition to the system as it
would allow for the maximization of the system’s performance. On this subject, extending
the number of alternatives would also be important, such as bandwidth maximization, for
instance.

6

B I B L I O G R A P H Y

[1] S. Deering, Host Extensions for IP Multicasting, RFC1112,
https://www.ietf.org/rfc/rfc1112.txt, August 1989.

[2] Jon Hardwick, IP Multicast explained, Metaswitch, http://network-
technologies.metaswitch.com/download/multicast.pdf, 71, 2004.

[3] Li Lao, Jun-Hong Cui, Mario Gerla, Dario Maggiorinni, A Comparative Study of Multicast
Protocols: Top, Bottom, or in the Middle?, Proc. IEEE INFOCOM, vol. 4, pp. 2809 – 2814,
2005.

[4] Suman Banerjee, Bobby Bhattacharjess, A Comparative Study of Application Layer Multicast
Protocols, University of Maryland, 2002.

[5] Miguel Castro, Peter Druschel, Y. Charlie Hu, Antony Rowstron, Topology-Aware Rout-
ing in Structured Peer-to-Peer Overlay Networks, Future Directions in Distributed Comput-
ing, part of, Lecture Notes in Computer Science, pp. 103-107, 2003.

[6] Wojciech GalubaAffiliated, Sarunas Girdzijauskas, Peer to Peer Overlay Networks: Struc-
ture, Routing and Maintenance, Encyclopedia of Database Systems, pp 2056-2061, 2009.

[7] Xinyan Zhang, Jiangchuan Liu, Bo Li, Tak-Shing Peter Yum, CoolStreaming/DONet: A
Data-driven Overlay Network for Peer-to-Peer Live Media Streaming, Proc. IEEE INFOCOM,
pp. 2102-2111, 2005.

[8] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, Dan S. Wallach,
Secure routing for structured peer-to-peer overlay networks, 5th Symposium on Operating
Systems Design and Implementation, pp. 2909-314, 2002.

[9] Apostolos Malatras, State-of-the-art survey on P2P overlay networks in pervasive computing
environments, Journal of Network and Computer Applications, pp. 1-23, 2015.

[10] Piotr Wydrych, Piotr Cholda, ISP - Supported Traffic Reduction for Application-Level Mul-
ticast, IEEE International Conference on Communications, pp. 1 – 6, 2011.

119

6. Bibliography 120

[11] Fabio Picconi, Laurent Massoulie, ISP Friend or Foe? Making P2P Live Streaming ISP-
Aware, IEEE International Conference on Distributed Computing Systems, pp. 413-422,
2009.

[12] Li Lao, Jun-hong Cui, Mario Gerla, Shigang Chen, A Scalable Overlay Multicast Architec-
ture for Large-Scale Applications, IEEE Transactions on Parallel and Distributed Systems,
Vol. 4, pp. 449-459, 2007.

[13] Kianoosh Mokhtarian, Hans-Arno Jacobsen, Minimum-delay overlay multicast, Proceed-
ings IEEE INFOCOM, pp. 1771-1779, 2013.

[14] Yang Cao, Xu Chen, Tao Jiang, Junshan Zhang, SoCast: Social Ties Based Cooperative
Video Multicast, Proceedings INFOCOM, IEEE, pp. 415-423, April 2014.

[15] B. Fenner, M. Handley, H. Holbrook, I. Kouvelas, Protocol Independent
Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised), RFC4601,
https://tools.ietf.org/html/rfc4601, August 2006.

[16] A. Adams, J. Nicholas, W. Siadak, Protocol Independent Multicast - Dense Mode (PIM-
DM): Protocol Specification (Revised), RFC3973, https://tools.ietf.org/html/rfc3973, Jan-
uary 2005.

[17] M. Cotton, L. Vegoda, D. Meyer, IANA Guidelines for IPv4 Multicast Address Assignments,
RFC5771, https://tools.ietf.org/html/rfc5771, March 2010.

[18] H. Holbrook, B. Cain, Source-Specific Multicast for IP, RFC4607,
https://tools.ietf.org/html/rfc4607, August 2006.

[19] Eng Keong Lua, J. Crowcroft, M. Pias, R. Sharma, S. Lim, A Survey and comparison of
peer-to-peer overlay network schemes, IEEE Communications Surveys and Tutorials, Vol. 7,
pp. 72-93, 2005.

[20] Vlachou, A., Doulkeridis, C., Norvag, K., Kotidis, Y., Peer-to-Peer Query Processing over
Multidimensional Data, SpringerBriefs in Computer Science, Chapter 2, pp 5-12, 2012.

[21] Rodrigo Rodrigues, Peter Druschel, Peer-to-Peer Systems, Communications of the ACM,
Vol. 53 No. 10, pp. 72-82, October 2010.

[22] Napster, available at http://www.napster.com/

[23] Bittorrent, available at http://www.bittorrent.com/

[24] Gnutella, described and available at http://whatis.techtarget.com/definition/Gnutella

[25] Skype, available at https://www.skype.com/

6. Bibliography 121

[26] Stanford University, Folding Coin, available at http://foldingcoin.net/

[27] UC Berkeley, SETI@home, available at https://setiathome.berkeley.edu/

[28] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan, Chord:
A Scalable Peer-to-peer Lookup Service for Internet Applications, SIGCOMM, Conference on
Applications, technologies, architectures, and protocols for computer communications,
pp. 149-160, 2001.

[29] Nabhendra Bisnik, Alhussein A.Abouzeid, Optimizing random walk search algorithms in
P2P networks, Computer Networks, Volume 51, Issue 6, pp. 1499-1514, 2007.

[30] Pedro Sousa, Towards Effective Control of P2P Traffic Aggregates in Network Infrastructures,
Journal of Communications Software and Systems, 11(1), 37-47, 2015.

[31] Pedro Sousa, A Framework for Highly Reconfigurable P2P Trackers, Journal of Communi-
cations Software and Systems, 9(4), 236-246, 2013.

[32] Pedro Sousa, Traffic Engineering Approaches in P2P Environments, 5th International
Conference on Advanced Infocomm Technology (ICAIT 2012), Paris, France, Springer,
LNCS 7593, pp. 61-74, 2013.

[33] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek, James W. O’Toole
JR., Overcast: Reliable Multicasting with an Overlay Network, Proc. Of the 4th conference
on Symposium on Operating System Design and Implementation, vol. 4, pp. 197-212,
2000.

[34] Suman Banerjee, Christopher Kommareddy, Koushik Kar, Bobby Bhattacharjee, Samir
Khuller, Construction of an Efficient Overlay Multicast Infrastructure for Real-time Applica-
tions, IEEE Societies INFOCOM, vol. 2, pp. 1521 – 1531, 2003.

[35] Sherlia Y. Shi, Jonathan S. Turner, Marcel Waldvogel, Dimensioning server access band-
width and multicast routing in overlay networks, NOSSDAV: Proceedings of the 11th inter-
national workshop on Network and operating systems support for digital audio and
video, pp. 83-91, 2001.

[36] Yatin Chawathe, Steven McCanne, Eric Brewer, An Architecture for Internet Content Dis-
tribution as an Infrastructure Service, Ph.D. Thesis. University of California, Berkeley 2000.

[37] L. Lao, J.-H. Cui, and M. Gerla, Multicast Service Overlay Design, Proc. of International
Symposium on Performance Evaluation of Computer and Telecommunication Systems
(SPECTS’05), Philadelphia,PA, USA, July 2005.

6. Bibliography 122

[38] Vinay Aggarwal, Anja Feldmann, Christian Scheideler, Can ISPs and P2P Users Co-
operate for Improved Performance?, ACM SIGCOMM Computer Communication Review,
Volume 37 Issue 3, pp. 29-40, July 2007.

[39] S.Y. Shi, J.S. Turner, Routing in Overlay Multicast Networks, Twenty-First Annual Joint
Conference of the IEEE Computer and Communications Societies, pp. 1200-1208, 2002.

[40] J. Zhao, F. Yang, Q. Zhang, Z. Zhang, F. Zhang, LION: Layered Overlay Multicast With
Network Coding, IEEE Transactions on Multimedia, Vol. 8, pp. 1021-1032, 2006.

[41] Zhou Su, Masato Oguro, Yohei Okada, Jiro Katto, Sakae Okubo, Overlay tree construc-
tion to distribute layered streaming by application layer multicast, IEEE Transactions on Con-
sumer Electronics, Vol. 56, pp. 1957-1962, 2010.

[42] Reza Besharati, Mozafar Bag-Mohammadi, Mashallah Abbassi Dezfouli, A Topology-
Aware Application Layer Multicast Protocol, Consumer Communications and Networking
Conference (CCNC), IEEE, pp. 1-5, 2010.

[43] Suman Banerjee, Bobby Bhattacharjee, Christopher Kommareddy, Scalable application
layer multicast, Proceedings of conference on Applications, technologies, architectures,
and protocols for computer communications, pp. 205-217, 2002.

[44] Kai-Wei Ke, Chia-Hui Huang, Performance evaluation of multisource Application Layer
Multicast (ALM): Theoretical and simulative aspects, Computer Networks, Volume 57, Issue
6, pp. 1408-1424, 2013.

[45] Mojtaba Hosseini, Dewan Tanvir Ahmed, Shervin Shirmohammadi, Nicolas D. Geor-
ganas, A Survey of Application-Layer Multicast Protocols, IEEE Communications Surveys
& Tutorials, Vol. 9, Issue 3, pp. 58-74, 2007.

[46] Mirja Kühlewind, Jan Seedorf, Vijay Gurbani, ALTO Status Page, IETF Group,
https://datatracker.ietf.org/wg/alto/charter/.

[47] Graph Library, http://algs4.cs.princeton.edu/41graph/SymbolGraph.java.html, as
seen in 2017.

[48] PRIM algorithm, http://www.geeksforgeeks.org/greedy-algorithms-set-5-prims-
minimum-spanning-tree-mst-2/, as seen in 2017.

[49] Graphs data structures for library, http://algs4.cs.princeton.edu/, as seen in 2017

[50] CORE network emulator, https://www.nrl.navy.mil/itd/ncs/products/core, version
4.8.

A
S E C O N D A RY T R E E R E P R E S E N TAT I O N

a.1 minimum-delay approach

Figure A.1.: Receivers Activation Representation 2

Figure A.2.: Deactivating Node N25 - Tree Representation 2

a.2 passive link protection

123

A.2. Passive Link Protection 124

Figure A.3.: Multicast Tree Stage 4 -Representation 2

A.2. Passive Link Protection 125

	Acknowledgements
	Abstract
	Resumo
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Introduction and Motivation
	1.2 Objectives
	1.3 Main Contributions
	1.4 Thesis Organization

	2 State of the art
	2.1 IP Multicast
	2.1.1 Multicast Fundamentals
	2.1.2 IP Multicast
	2.1.3 Multicast Groups
	2.1.4 Multicast Routing Protocols
	2.1.5 Protocol Independent Multicast (PIM)

	2.2 Overlay Peer-to-Peer (P2P) Systems
	2.2.1 Overlay P2P Concepts and Applications
	2.2.2 Architecture
	2.2.3 Consequences/Problems and Challenges

	2.3 Application-Layer Multicast
	2.3.1 Application-Layer Multicast Concepts
	2.3.2 Illustrative ALM Works and Approaches

	3 System Architecture and Developed Mechanisms
	3.1 General Architecture
	3.1.1 Central Node
	3.1.2 Peer
	3.1.3 ISP Collaborative Service
	3.1.4 Extended Central Node
	3.1.5 Extended Peer

	3.2 Distribution Trees Construction
	3.2.1 Minimum-Delay Approach
	3.2.2 Minimum-Loss Approach

	3.3 Collaborative Methods/Approaches
	3.3.1 Link Protection
	3.3.2 Link Minimization
	3.3.3 ISP Forwarder Activation

	3.4 Overlay in multiple Autonomous Systems

	4 Testing and Results Analysis
	4.1 Technologies and Testing Platform
	4.1.1 Development Tools
	4.1.2 Network Emulation
	4.1.3 Web-Application

	4.2 Minimum-Delay
	4.2.1 Activating the Central Node
	4.2.2 Activating the Collaborative Service
	4.2.3 Activating the Sender (Node N8)
	4.2.4 Activating a Receiver (Node N7)
	4.2.5 Activating other Receivers
	4.2.6 Deactivating Peer N25 (10.0.22.20)

	4.3 Minimum-Loss
	4.3.1 Activating the Scenario
	4.3.2 Activating Receiver N7
	4.3.3 Activating Receiver N28
	4.3.4 Activating Receiver N30
	4.3.5 Activating Receiver N29

	4.4 Protect-Link
	4.4.1 Passive Protection
	4.4.2 Active Protection

	4.5 Link Minimization
	4.5.1 Activating the Scenario
	4.5.2 Link Minimization Procedures

	4.6 ISP Forwarder Activation
	4.6.1 Activating the Scenario
	4.6.2 Forwarder Activation Step 1 - Link Minimization Procedures
	4.6.3 Forwarder Activation Step 2 - Activating Forwarders

	4.7 Multiple Autonomous Systems
	4.7.1 Activating the Scenario
	4.7.2 Link Minimization Procedures and new Distribution Tree

	5 Conclusions
	5.1 Developed Work
	5.2 Future Work

	6 Bibliography
	A Secondary Tree Representation
	A.1 Minimum-Delay Approach
	A.2 Passive Link Protection

