NEAR SURFACE MOUNTED CFRP LAMINATES FOR SHEAR STRENGTHENING OF CONCRETE BEAMS

J. A. O. Barros¹ and S. J. E. Dias²

¹ Associate Prof., Dep. of Civil Eng., School of Eng., Univ. of Minho, Azurém, 4810-058 Guimarães, Portugal
² PhD Student, Dep. of Civil Eng., School of Eng., Univ. of Minho, Azurém, 4810-058 Guimarães, Portugal

ABSTRACT

A Near Surface Mounted (NSM) strengthening technique was developed to increase the shear resistance of concrete beams. The NSM technique is based on fixing, by epoxy adhesive, Carbon Fiber Reinforced Polymer (CFRP) laminate strips into pre-cut slits opened in the concrete cover of lateral surfaces of the beams. To assess the efficacy of this technique, an experimental program of four-point bending tests was carried out with reinforced concrete beams failing in shear. Each of the four tested series was composed of five beams: without any shear reinforcement; reinforced with steel stirrups; strengthened with strips of wet lay-up CFRP sheets; and two beams strengthened with NSM precured laminate strips of CFRP, one of them with laminates positioned at 90° and the other with laminates positioned at 45° in relation to the beam axis. Influences of the laminate strip inclination, beam depth and longitudinal tensile steel reinforcement ratio on the efficacy of the strengthening techniques were analyzed. Amongst the CFRP strengthening techniques, the NSM with laminate strips at 45° was the most effective, not only in terms of increasing beam shear resistance but also in assuring larger deformation capacity at beam failure. This technique was also faster and easier to apply than the externally bonded one. The performance of the ACI and fib analytical formulations for the EBR shear strengthening was appraised. In general, the contribution of the CFRP systems predicted by the analytical formulations was slightly larger than the values registered experimentally. Performance of the formulation by Nanni et al. for NSM strengthening technique was also appraised. Using bond stress and CFRP effective strain values obtained in pullout bending tests with NSM CFRP laminate system, the formulation by Nanni et al. predicted a contribution of this CFRP system for the beam shear resistance of 72% the experimentally recorded values.

1 Author to whom the correspondence should be sent (barros@civil.uminho.pt).
1. INTRODUCTION

To increase the shear resistance of concrete beams, sheets and laminates of carbon fiber reinforced polymers (CFRP) are generally applied on the faces of the elements to be strengthened, using an externally bonded reinforcing (EBR) technique. Adopting the EBR technique, several researchers have verified that the shear resistance of concrete beams can significantly be increased\(^1\text{–}^6\). However, due to premature debonding of the FRP, the maximum strain mobilized by these systems is well below their ultimate strain.

In an attempt to overcome this drawback, a promising strengthening innovation has been proposed by De Lorenzis\(^7\). Using rods of CFRP embedded into grooves on the concrete cover of lateral faces of the beams, a significant increase on beam load carrying capacity was obtained. Assuring the proper bond conditions for the rod into the groove is the critical phase of this strengthening technique, since it requires special equipment, well-prepared technical staff and a time consuming execution period. In the experimental program carried out by De Lorenzis and Nanni\(^8\) for the characterization of the bond properties of NSM FRP rods, the grooves were created by saw-cutting two parallel slits at the desired distance and depth, and chiseling off the material in between, which is a time consuming procedure for real applications. In another experimental program\(^9\), the grooves were pre-formed rather than cut after concrete hardening. This procedure only replicates the real conditions if the concrete cover of the element to be strengthened is deteriorated and needs to be replaced. In such a case, pre-form the grooves while reconstructing the element geometry might be a correct strategy.

In the present work, a technique similar to the previous one was used for the shear strengthening of concrete beams with the difference that, instead of rods, laminate strips were used. Since the laminates had a cross section of about 1.4\(\times\)10 mm\(^2\), they were installed into thin slits, which were easily cut using conventional saw-cut equipments. Furthermore, a high uniformity on the cross section dimensions of the slits can be assured, with the derived benefit of homogeneity in CFRP-concrete bond properties. This strengthening technique has already proven to be very effective for the flexural strengthening of reinforced concrete columns\(^10\) and beams\(^11\). The bond behavior was also well characterized by pullout bending tests\(^12\) and a local bond stress-slip relationship was evaluated\(^13\), which can be used in the analysis and design of concrete elements strengthened by this technique.

To evaluate the efficacy of the shear strengthening technique proposed in the present work, the behavior of beams strengthened according to this technique was compared to the behavior of beams reinforced with conventional steel
stirrups and with the behavior of beams strengthened by strips of wet lay-up CFRP sheet. The experimental program was designed to analyze the influences of beam depth, NSM laminate strip inclination, and longitudinal tensile steel reinforcement ratio on the shear strengthening. In the present work, the tests carried out are described and the main results are presented and analyzed.

The performance of the ACI14 and fib15 analytical formulations for the EBR shear strengthening was appraised. Additionally, the performance of the analytical formulation proposed by Nanni et al.16 is assessed.

2. EXPERIMENTAL PROGRAM

2.1 TEST SERIES

The experimental program is composed of four series of tests (Table 1 and Fig. 1). Each series is made up of a beam without any shear reinforcement (C) and a beam for each of the following shear reinforcing systems: steel stirrups of \(\phi 6 \text{ mm} \) (S), U shaped strips of CFRP sheet (M) and CFRP laminate strips at 45° (IL) or at 90° (VL) with the beam axis. Series A10 and A12 are composed of beams with a cross section of 0.15x0.30 m\(^2\) and a span length of 1.5 m. Series B10 and B12 are constituted of beams with a cross section of 0.15x0.15 m\(^2\) and a span length of 0.9 m. To evaluate the influence of the longitudinal tensile steel reinforcement ratio, \(\rho_d \), series A10 and B10 had 4\(\phi 10 \) steel bars at beam bottom tensile surface, while A12 and B12 series had 4\(\phi 12 \). The shear span, \(a \), (Fig. 1) in both series of beams, was two times the depth of the corresponding beams. At top surface, the beams of all series were reinforced with 2\(\phi 6 \) steel bars. The concrete clear cover for the top, bottom and lateral faces of the beams was 15 mm. The amount of shear reinforcement applied on the four reinforcing systems was designed such that all beams would fail in shear, at a similar maximum load. For this purpose, the strategy adopted on the evaluation of the distinct shear reinforcing systems was the following. The beam flexural load carrying capacity, \(F_{\text{flexural}} \), for each \(\rho_d \), was evaluated. The concrete contribution for the beam shear resistance was determined according to the Portuguese Code, that is similar to the CEB-FIP Model Code17 but the dowel effect is not considered (\(V_{\text{cd}} = \tau b_w d \), where \(\tau \) is the concrete shear strength and \(b_w \) and \(d \) are the beam width and the effective depth, respectively). The percentage of steel stirrups was evaluated according to Portuguese Code (\(V_{\text{wd}} = 0.9d \frac{A_{sw}}{s} f_{yld} \), where \(s \), \(f_{yld} \) and \(A_{sw} \) are the spacing, the design yield stress and the cross section area of the two arms steel stirrups, respectively). This percentage was determined in order to provide a beam shear load carrying capacity (\(2 V_{\text{cd}} + 2 V_{\text{wd}} \)) lesser than...
According to the arrangements of the steel stirrups adopted in the beam series (Fig. 1), the ratio $F_{\text{flexural}}^{\text{rupture}} \left(\frac{2V_{\text{cd}}}{3} + \frac{2V_{\text{aw}}}{3}\right)$ was 1.05, 1.08, 1.5 and 1.37 for the A10, A12, B10 and B12 series.

The percentage of the CFRP shear reinforcing systems was evaluated to provide a contribution for the beam shear resistance similar to the one of the steel stirrups. For the strips of wet lay-up CFRP sheets of U shape, the recommendations of the ACI Committee 440 were followed. For the NSM CFRP laminate strips, the formulation used for the steel stirrups was adopted, but the yield stress was replaced by an effective stress that was determined assuming a CFRP strain value of 4‰, that is the maximum effective strain value recommended by ACI Committee 440 for the EBR shear reinforcing systems.

Steel stirrups were not applied in the series reinforced with CFRP systems. The interaction between the CFRP shear reinforcement and the steel stirrups will be only investigated in future experimental programs.

MATERIAL PROPERTIES

Concrete and steel bars

The average compression strength (f_{cm}) at 28 days and at the date of beam testing was evaluated from uniaxial compression tests with cylinders of 150 mm diameter and 300 mm height. At 28 days, series A and B had a f_{cm} of 37.6 and 49.5 MPa, respectively. At beam testing age of 227 and 105 days for series A and B, respectively, the f_{cm} of series A and B was 49.2 and 56.2 MPa. The properties of the steel bars were obtained from uniaxial tensile tests, carried out according to European standard EN 10 002-1. The registered results are included in Table 2.

CFRP systems

Unidirectional wet lay-up sheets of a trademark S&P C-Sheet 530 and precured laminates of a trademark S&P laminate CFK 150/2000 were the two CFRP systems used in the present work. According to the supplier, tensile strength (f'_{ju}), Young’s modulus (E_f) and ultimate strain (ε'_{fu}) of the sheets and laminates have the following values: $f'_{ju} = 3000$ MPa, $E_f = 390000$ MPa and $\varepsilon'_{fu} = 0.8\%$ for sheets; and $f'_{ju} = 2200$ MPa, $E_f = 150000$ MPa and $\varepsilon'_{fu} = 1.4\%$ for laminates. The sheet had a thickness of 0.167 mm, while the cross section of the S&P laminate CFK 150/2000 had a width of 10 mm and a thickness of 1.4 mm. For the laminates, six tests were also carried out according to the ISO 527-5 recommendations, from which the following average values were obtained: $f_{ju} = 2286$ MPa, $E_f = 166000$ MPa and $\varepsilon_{ju} = 1.3\%$.

STRENGTHENING TECHNIQUES

The EBR and NSM strengthening techniques are represented in Fig. 2. To apply the wet lay-up CFRP strengthening system, the following procedures were done: 1) on the zones of the beam’s surfaces where the strips of CFRP sheet would be glued, an emery was applied to remove the superficial cement paste and to round out the beam edges; 2) the residues were removed by compressed air; 3) a layer of primer was applied to regularize the concrete surface and to enhance the adherence capacity of the concrete substrate; and 4) strips of U shape CFRP sheet, composed of two layers, were glued to the bottom and to the lateral faces of the beam, by epoxy resin.

To apply the precured laminate strips, the following procedures were mobilized: 1) slits of about 5 mm width and 12 mm depth were made, in previously marked places, on both lateral surfaces of the beam; 2) the slits were cleaned by compressed air; 3) the laminates were cleaned by acetone; 4) the slits were filled with epoxy adhesive manufactured according to the supplier recommendations; 5) a thin layer of epoxy adhesive was applied on the faces of the CFRP laminates; and 6) the CFRP laminates were introduced into the slits after which the excess epoxy adhesive was removed.

TEST SET-UP

The beams were subjected to four point loads (Fig. 1). The force was measured from a load cell of 300 kN maximum capacity and 0.06 % linearity. To evaluate the beam deflection, five LVDTs of 25 mm and 50 mm full stroke were used, placed at mid span, under point loads and at middle of the shear span. To avoid the register of extraneous deflections (concrete crushing at beam supports, deformability of the reaction frame, etc), the LVDTs were supported on a "Japanese Yoke" system. The tests were carried out under displacement control, using a deflection rate of 10 µm/s imposed on the LVDT placed at the beam mid span.

3. RESULTS

Defining \(F_{\text{max},K,C} \) and \(F_{\text{max},K,S} \) as the maximum load of a beam without shear reinforcement and a beam reinforced with steel stirrups, respectively, \((K\) represents the series of tests) the ratios \(F_{\text{max},K}/F_{\text{max},K,C} \) and \(F_{\text{max},K}/F_{\text{max},K,S} \) were determined to assess the efficacy of the shear strengthening techniques, in terms of the increase of the beam load carrying capacity. To define the deformation capacity and the retention of the load carrying capacity in the structural softening phase of the beams, provided by each shear strengthening technique, a deflection, \(\delta_{p,K} \), corresponding to 0.95\(F_{\text{max},K} \), beyond the deflection at the peak load, \(\delta_{F,\text{max},K} \), was determined (Fig. 3). This deflection level was
selected since it represents the beam deformation capacity for a reduced loss of the beam load carrying capacity (only 5%) in the structural softening phase. The deformation capacity was evaluated from the ratios $\delta_{p,K}/\delta_{p,K,C}$ and $\delta_{p,K}/\delta_{p,K,S}$ (termed the deformability indices) where $\delta_{p,K,C}$ and $\delta_{p,K,S}$ are the deflections for $0.95F_{\text{max},K,C}$ and $0.95F_{\text{max},K,S}$, respectively.

A10 SERIES

For the A10 series, the relationship between the force and the deflection at beam mid span is depicted in Fig. 4. Table 3 includes the main results obtained in this series. When compared to the maximum force of the unreinforced beam (A10_C), Fig. 4 and Table 3 show that the CFRP shear strengthening systems increased the maximum load between 22% (A10_M) and 58% (A10_VL and A10_IL). The F_{max} of the A10_M, A10_VL and A10_IL beams (strengthened with CFRP systems) was 28%, 6% and 7% less than the F_{max} of the beam reinforced with steel stirrups (A10_S). The highest deformation capacity was registered in the beam strengthened with inclined laminates (A10_IL). In comparison with $\delta_{p,A10_C}$ (unreinforced beam), the $\delta_{p,A10_S}$, $\delta_{p,A10_M}$, $\delta_{p,A10_VL}$ and $\delta_{p,A10_IL}$ were 480%, 34%, 359% and 1006% larger. When compared to the beam reinforced with steel stirrups (A10_S), the deformation capacity of the A10_IL beam was 91% higher.

A12 SERIES

Fig. 5 depicts, for the A12 series, the relationship between the force and the deflection at beam mid span. Table 3 includes the main results obtained in this series. Taking the F_{max} of A12_C beam as a reference value, the steel stirrups provided an 85% increase in F_{max}, while CFRP strengthening systems assured an increase ranging between 54% and 125%, having highest one been registered in the beam strengthened with inclined laminates (A12_IL), and the lowest one in the beam with strips of wet lay-up sheet (A12_M). Comparing the F_{max} of the beams strengthened by CFRP systems with the beam reinforced with steel stirrups (A12_S), the F_{max} of A12_M, A12_VL and A12_IL beams was 17% smaller, 9% and 22% larger, respectively. The higher efficacy of the laminates at 45° was also notable in terms of deformation capacity. When compared with δ_{p} of beam A12_C ($\delta_{p,A12_C}$), the δ_{p} of A12_S, A12_VL and A12_IL beams was 131%, 145% and 329% larger, respectively, i.e., the beam strengthened with inclined laminates had an 85% higher deformation capacity than the beam reinforced with steel stirrups. The deformation capacity of the A12_M beam was 77% of the A12_S beam.
B10 SERIES

For the B10 series, Fig. 6 illustrates the relationship between the force and the deflection at beam mid span. The main results are included in Table 3. Taking into account the load of the beam without any shear reinforcement, $F_{\text{max}, B10_C}$, the steel stirrups provided a 63% increase on the F_{max}, while the increase assured by CFRP shear strengthening systems ranged between 50% and 77%, having highest one been registered in the beam with vertical laminates (B10_VL), and the lowest one in the beam with strips of sheet (B10_M). Taking the maximum force of the beam reinforced with steel stirrups ($F_{\text{max}, B10_S}$) as a basis of comparison, it was verified that the maximum load of B10_M, B10_VL and B10_IL beams was 92%, 109% and 100% of the $F_{\text{max}, B10_S}$ respectively. The better performance of the vertical laminate shear reinforcing system was more pronounced in terms of beam deformation capacity. In fact, the beams reinforced with steel stirrups, vertical laminates, inclined laminates and strips of sheet had a δ_p 327%, 242%, 114% and 120% larger than the δ_p of the beam without any shear reinforcement. The deformation capacity of the beam reinforced with vertical laminates was 80% of the beam reinforced with steel stirrups.

B12 SERIES

For the B12 series, the relationship between the force and the deflection at beam mid span is depicted in Fig. 7. The main results are included in Table 3. When compared to the maximum load of the beam without any shear reinforcement, $F_{\text{max}, B12_C}$, it is observed that steel stirrups provided an increase of 110% in the F_{max}, while the increase assured by CFRP shear strengthening systems ranged from 84% to 96%, having the highest one been recorded in the beam with inclined laminates (B12_IL), and the lowest one in the beam with vertical laminates (B12_VL). Using the maximum force of the beam reinforced with steel stirrups ($F_{\text{max}, B12_S}$) as a basis of comparison, it was verified that the maximum load of B12_M, B12_VL and B12_IL beams was 90%, 87% and 93% of the $F_{\text{max}, B12_S}$ respectively. In terms of deformation capacity, the better CFRP strengthening system was the one composed of inclined laminates. When the δ_p of the beam without any shear reinforcement ($\delta_p, B12_C$) is compared to the δ_p of the remaining beams, an increase of 151%, 73%, 119% and 142% was obtained in the B12_S, B12_M, B12_VL and B12_IL beams, respectively, showing that the deformation capacity of the beam with inclined laminates was 97% of the beam reinforced with steel stirrups.
FAILURE MODES

Figs. 8 to 11 include photos of the beams after they have been tested. A representation of the failure modes is also depicted. The unreinforced shear C beams have failed by the formation of one shear failure crack without the yielding of the longitudinal tensile reinforcement. A shear failure crack occurred in the beams reinforced with steel stirrups (S beams). However, in beams A10_S (Fig. 8) and A12_S (Fig. 9) this shear failure crack occurred after the yielding of the longitudinal tensile reinforcement since the flexural load carrying capacity \(F_{\text{flexural rupture}}\) of these beams is only 5% to 8% higher than the combined contribution of the concrete and steel stirrups \(2V_{\text{cr}} + 2V_{\text{cd}}\) for the beam shear resistance (see subsection “Test Series” of Section 2). Since \(F_{\text{flexural rupture}}\) of the beams B10_S (Fig. 10) and B12_S (Fig. 11) is 50% and 37% higher than the \(2V_{\text{cr}} + 2V_{\text{cd}}\) of these beams, they were failed by the formation of a shear crack before the yielding of the longitudinal tensile reinforcement.

The sudden loss of the load carrying capacity in the S beams corresponds to the moment when a steel stirrup, crossing the shear failure crack, ruptured. Due to the combined crack opening and crack sliding of the shear failure crack, a stress gradient occurred in the cross section of the steel stirrup crossing the shear failure crack, leading to its rupture. This stress gradient was significant since only one steel stirrup was bridging the shear failure crack.

In general, beams M failed by the formation of a shear crack. In Figs. 8 to 11, the darkest parts of the CFRP strips represent the length that peeled-off. Due to the U configuration of the CFRP strips, the peeled-off process propagated from the top to the bottom of the beam (Fig. 12a). In these beams, immediately after the CFRP strips crossing the shear failure crack have peeled-off, the CFRP strips crossing the horizontal path of the shear crack have ruptured due to an abrupt increment of tensile and shear stresses in the CFRP, as a result of the crack opening and crack sliding (Fig. 12a). B12_M beam (Fig. 12b) had a distinct failure mode. This beam has failed by the formation of two “concrete lateral walls” that have separated from the interior concrete volume. A shear crack formed in this interior concrete volume and, finally, the “lateral walls” ruptured. The justification for this distinct failure mode can reside on the ratio between the area of the CFRP strips bonded to the beam lateral surfaces and the area of the beam lateral surfaces, since it is the highest one of the M beams. Due to the high percentage of CFRP strips of beam B12_M, the shear failure crack did not extend to the total width of the beam. Two lateral walls of 15 to 20 mm thick, reinforced with the strips, have spoiled, resulting a failure mode composed by the beam core, failed in shear, and two lateral reinforced walls, detached from this core.

This complex type of failure also occurred in beams B10_IL, B12_VL and B12_IL, due to similar reasons (Fig. 12c).
In A10_VL beam, after the yielding of the longitudinal tensile reinforcement, a shear failure crack formed. During the opening process of this crack, the shorter bond length of the CFRP laminate strip crossing this crack slip (Fig. 12d).

Beams A12_VL failed in shear and the shorter bond length of the CFRP laminate strip crossing this crack slip. Finally, beams A10_IL and A12_IL ruptured by the formation of a flexural failure crack.

INFLUENCE OF TEST PARAMETERS ON THE EFFICACY OF THE CFRP SHEAR STRENGTHENING SYSTEMS

Fig. 13 represents the influence of the CFRP shear reinforcement ratio \(\rho_f \), the beam depth \(h \) and the longitudinal tensile steel reinforcement \(\rho_s \) on the beam load carrying capacity provided by the considered CFRP shear reinforcing systems. The \(\Delta F_{\text{max}} \) corresponds to two times the contribution of the CFRP systems for the beam shear resistance \(V_f \), since \(\Delta F_{\text{max}} = F_{\text{max},K} - F_{\text{max},K,C} = 2 \ V_f \). To take into account the distinct values of the Young’s modulus of the CFRP materials, the \(\rho_f \) of the CFRP sheets was converted into an equivalent percentage of CFRP laminates, multiplying its percentage by the \(E_{f,M}/E_{f,L} \) parameter, where \(E_{f,M} \) and \(E_{f,L} \) are the Young’s modulus of the sheets and laminates, respectively.

From the analysis of Fig. 13a it can be concluded that \(\Delta F_{\text{max}} \) increased with \(\rho_f \) and this increase was most significant in the highest beams strengthened by NSM technique. Fig. 13b shows that, for the beams strengthened by EBR technique the \(\Delta F_{\text{max}} \) decreased with the increase of the beam depth, while in the beams strengthened by NSM technique the \(\Delta F_{\text{max}} \) increased with the increase of the beam depth. This increase was more pronounced in the beams of high longitudinal tensile reinforcement ratio \(4\phi12 \), mainly when laminates are positioned at 45-degrees. This can be justified by the values of the total effective length of the CFRP laminates \(L_{\text{tot, min}} \) contributing for the beam shear resistance, which concept is described in Subsection “FORMULATION BY NANNI ET AL. FOR NSM TECHNIQUE” of Section 4, since it was verified that \(\Delta F_{\text{max}} \) has an increase linear trend with \(L_{\text{tot, min}} \), and the maximum \(L_{\text{tot, min}} \) corresponds to A12_IL beam (see, for a while, Fig. 20).

Fig. 13c reveals that \(\Delta F_{\text{max}} \) increased with \(\rho_s \) and this increase was more pronounced in the highest beams strengthened by the NSM technique.
PROFITABILITY OF THE NSM TECHNIQUE

To assess the influence of the CFRP laminate orientation, not only in terms of increasing the beam load carrying capacity \(F_{\text{max}} \), but also in terms of the amount of consumed CFRP, the ratio \(\Delta F_{\text{max}}/l_{\text{CFRP}} \) of the beams strengthened by the NSM technique was evaluated (designated by profitability index), where \(\Delta F_{\text{max}} \) is the increase in the \(F_{\text{max}} \) and \(l_{\text{CFRP}} \) is the total length of the laminates applied in the beam. The values included in Table 4 show that (see also Fig. 14), independent of the beam height and the longitudinal steel reinforcement ratio \(\rho_s \), the profitability index was larger in the beams with laminates at 45°. For both the A series, the profitability index increased with the increase of \(\rho_s \). This tendency was not observed in both B series since the reduced bonded lengths of the CFRP laminates in these shallow beams limited the increase on the \(\Delta F_{\text{max}} \).

4. APPRAISAL THE PERFORMANCE OF ANALYTICAL FORMULATIONS

Taking the results obtained in the tested beams strengthened with EBR technique, the performance of the analytical formulations proposed by ACI \(^{14}\) and fib \(^{15}\) was appraised. The documents published by these institutions are not yet dealing with the NSM technique. Thereby, the applicability of the analytical formulation proposed by Nanni et al. \(^{16}\) was checked, using for this purpose the experimental results obtained in the beams strengthened with NSM laminates. New estimates for the parameters of the model by Nanni et al. are proposed in order to take into account the bond stress and the CFRP effective strain values recorded in pullout bending tests \(^{12}\).

ACI RECOMMENDATIONS FOR EBR TECHNIQUE

According to ACI \(^{14}\), the design value of the contribution of the FRP shear reinforcement is given by,

\[
V_{fd} = \phi \psi_f f_{fc} f_{fv} d_f / s_f
\]

(1)

where \(\phi \) is the strength-reduction factor required by ACI \(^{21}\) that, for shear strengthening of concrete elements, has a value of 0.85, \(\psi_f \) is an additional reduction factor of 0.85 for the case of three-sided U-wraps (see Fig. 15), \(s_f \) is the spacing of the wet lay-up strips of FRP sheets, \(A_{fc} \) is the area of FRP shear reinforcement within spacing \(s_f \),

\[
A_{fc} = 2 n t_f w_f
\]

(2)

with \(n, t_f \) and \(w_f \) being the number of layers per strip, the thickness of a layer and the width of the strips. The effective stress in the FRP, \(f_{fc} \), is obtained multiplying the Young’s modulus of the FRP, \(E_f \), by the effective strain,
\[e_{fe} = k_v e_{fu} \leq 0.004 \text{ (for U-wraps)} \]

where \(k_v \) is a bond-reduction coefficient that is a function of the concrete strength, the type of wrapping scheme used, and the stiffness of the FRP,

\[k_v = \frac{k_1 k_2 L_c}{11900 e_{fu}} \leq 0.75 \]

with,

\[L_c = \frac{23300}{(m_f E_f)_{0.58}} \]

\[k_j = \left(\frac{f'_{c}}{27} \right)^{2/3} \]

\[k_2 = \frac{d_f - L_c}{d_f} \text{ (for U-wraps)} \]

In (1) and (7) \(d_f \) is the depth of FRP shear reinforcement (see Fig. 15), and \(f'_{c} \) is the characteristic value of the concrete compression strength \(^{21} \). The length and the force units of the variables in (4) to (7) are millimeter and Newton, respectively.

In Table 5, the values obtained with this formulation are compared to those registered experimentally. Apart beam B10_M, the ACI formulation has estimated a FRP contribution for the shear strengthening that was larger than the contribution recorded experimentally. A deficient bond of the strip crossed by the shear failure crack might have caused the high abnormal value of \(V_{f}^{\text{ana}} \) of A10_M beam, since this strip has debonded prematurely (see Fig. 8).

fib RECOMMENDATIONS FOR EBR TECHNIQUE

According to fib recommendations \(^{15} \), the contribution of wet lay-up strips of FRP sheets for shear strengthening is evaluated by the following expression,

\[V_{fd} = 0.9 e_{fc,d} E_f \rho_f b_w d \]

where \(b_w \) and \(d \) are the width of the beam cross section and the distance from extreme compression fiber to the centroid of the nonprestressed steel tension reinforcement. In (8) \(\rho_f \) is the FRP shear reinforcement ratio,
and $\varepsilon_{\text{fe,d}}$ is the design effective strain in the FRP, that can be obtained from ε_{fe}.

$$\varepsilon_{\text{fe}} = \min \left[0.65 \left(\frac{f_{\text{c}m}}{E_f \rho_f} \right)^{0.56} \times 10^{-3}; 0.17 \left(\frac{f_{\text{c}m}}{E_f \rho_f} \right)^{0.30} \varepsilon_{\text{fu}} \right]$$ (10)

applying two safety factors, $\varepsilon_{\text{fe,d}} = 0.8 \varepsilon_{\text{fe}}/1.3$, the first one, 0.8, to convert ε_{fe} in a characteristic value and the second one, 1.3, that depends on the FRP failure mode (in the present case the beams strengthened with EBR technique failed by debonding). In (10) $f_{\text{c}m}$ is the cylinder average concrete compression strength and ε_{fu} is the ultimate FRP strain. The analytical and the experimental results are compared in Table 5. Apart beam B12_M, fib formulation has also predicted an FRP contribution larger than the experimentally registered values. Like in the ACI formulation, an abnormal high $V_{\text{fid}}^{\text{ana}}/V_{\text{f}}^{\text{exp}}$ value was also obtained in A10_M beam, which stresses the suspicious that the strip crossing the shear failure crack was deficiently bonded.

Fig. 16 compares the values of the CFRP contribution for the shear strengthening according to ACI and fib formulations. In general, all the formulations estimated larger values than the ones registered experimentally. Apart B12_M beam, in the remaining beams the ACI formulation estimated lower values than fib. Using similar EBR shear strengthening configuration, other researchers have obtained larger safety factors. However, these researchers have used wet lay-up CFRP sheets of Young’s modulus (E_f) of about 220 GPa, and, in the major cases, the shear CFRP strips were formed of one layer. In the present research a CFRP sheet of $E_f=390$ GPa and strips of two layers were used. This indicates that the expressions of ACI and fib formulations defining the FRP effective strain were not well calibrated for this situation, since they are providing too high effective strain values when using stiffer shear CFRP systems. Therefore, more research is needed in this field.

FORMULATION BY NANNI ET AL. FOR NSM TECHNIQUE

According to the formulation by Nanni et al.16, the contribution of the NSM FRP elements for the shear strengthening is obtained from expression,

$$V_f = 4 \cdot (a_f + b_f) \cdot \tau_b \cdot L_{\text{tot min}}$$ (11)

where a_f and b_f are the dimensions of the laminate cross section, τ_b represents the average bond stress of the FRP elements intercepted by the shear failure crack, and $L_{\text{tot min}}$ is obtained from (see Fig. 17),
\[L_{\text{tot min}} = \sum_i L_i \]

where \(L_i \) represents the length of each single NSM laminate intercepted by a 45-degree shear crack expressed as,

\[
L_i = \begin{cases}
\min \left(\frac{s_f}{\cos \alpha + \sin \alpha} i; \ l_{\text{max}} \right) & i = 1,..., \frac{N}{2} \\
\min \left(l_{\text{net}} - \frac{s_f}{\cos \alpha + \sin \alpha} i; \ l_{\text{max}} \right) & i = \frac{N}{2} + 1,..., N
\end{cases}
\]

(13)

\(L_{\text{tot min}} \) corresponds to an arrangement of the FRP reinforcements crossing the shear failure crack that leads to the minimum of the \(\sum_i L_i \). In (13) \(\alpha \) represents the slope of the FRP laminate with respect to the beam longitudinal axis and \(l_{\text{net}} \) is defined as,

\[
l_{\text{net}} = l_b - \frac{2c}{\sin \alpha}
\]

(14)

which represents the net length of a FRP laminate, as shown in Fig. 17, to account for cracking of the concrete cover and installation tolerances. In (14), \(l_b \) is the actual length of a FRP laminate and \(c \) is the concrete clear cover.

The first limitation of (13) takes into account bond as the controlling failure mechanism, and represents the minimum effective length of a FRP laminate intercepted by a shear crack as a function of the term \(N \):

\[
N = \frac{l_{\text{eff}} (1 + \cot \alpha)}{s_f}
\]

(15)

where \(N \) is rounded off to the lowest integer (e.g., \(N=5.7 \Rightarrow N = 5 \)), and \(l_{\text{eff}} \) represents the vertical length of \(l_{\text{net}} \) as shown in Fig. 17 written as follows:

\[
l_{\text{eff}} = l_b \sin \alpha - 2c
\]

(16)

The second limitation in (13), \(L_i = l_{\text{max}} \), results from the force equilibrium condition, taking an upper bound value for the effective strain, \(\varepsilon_{fe} \) (see Fig. 18),

\[
l_{\text{max}} \geq \frac{\varepsilon_{fe} \cdot a_f \cdot b_f}{2 \cdot a_f + b_f} \cdot \frac{E_f}{\tau_b}
\]

(17)

Adopting for \(\varepsilon_{fe} \) and \(\tau_b \) the values recommended by Nanni et al. 16, 4‰ and 6.9 MPa, respectively, and assuming for the Young’s modulus of the laminate the average value recorded in the experimental program of the present work (166 GPa), the values of the contribution of the NSM laminates for the shear strengthening of concrete beams,
included in Table 6, are compared to those registered experimentally (for ϕ and ψ_f a value of 0.85 was considered, following the recommendations of ACI 14). This table does not include the data of the B10 VL beam since, according to the formulation by Nanni et al., the FRP contribution is null. An average $V_{f_{\exp}} / V_{f_{\text{ana}}} \psi$ ratio of about 2.51 was obtained, which is significantly larger than the value determined by Nanni et al. 16, which indicts that for τ_b and/or ε_f, a too conservative values were adopted.

Since the value of 6.9 MPa for the τ_b was obtained from bond tests with round cross sectional FRP bars, pullout-bending tests 12, schematically represented in Fig. 19, were carried out to assess the average bond stress for the used rectangular cross sectional CFRP laminates. The specimen was composed of two blocks: block B where the CFRP was fixed to concrete along a bonded length of 325 mm; block A where the CFRP was bonded to concrete using distinct bond lengths (test region). This configuration assured that the bond failure would occur in block A. The slit where the CFRP was inserted had a 15 mm depth and a 3.3 mm width. The displacement transducer LVDT2 was used to control the test, at 5 μm/s, and to measure the slip at the loaded end, u_l, while LVDT1 recorded the slip at the free end, u_f. The strain gauge glued to the CFRP at the symmetry axis of the specimen was used to estimate the pullout force on the CFRP at the loaded end. The applied forces were measured using two load cells (LC1 and LC2) placed at the supports of the specimen. Bond lengths, L_b, of 40, 60 and 80 mm were considered for assessing its influence on bond behavior.

From the obtained peak pullout forces a τ_b of 16.1 MPa was determined, which is much larger than the value obtained by De Lorenzis 7 for the NSM FRP rod strengthening system (τ_b=6.9 MPa), and recommended by Nanni et al. 16. This difference can be justified by the fact that in the present work the adhesive system in the slit is composed by two thin layers of quasi constant thickness, while in the groove of De Lorenzis 7 bond tests the adhesive material had a variable thickness, in consequence of the rectangular geometry of the groove and the circular geometry of the rod cross section.

The CFRP average strain (ε_f) in the bond length of the carried out pullout bending tests 12 was evaluated from the u_l and u_f slips. At peak pullout force, the ε_f of the series of L_b equal to 40, 60 and 80 mm was 4.2‰, 5.7‰ and 7.9‰, respectively, giving an average strain of 5.9‰.

Assuming that τ_b, ε_f and E_f are equal to 16.1 MPa, 5.9‰ and 166 GPa, respectively, the analytical results indicated in Table 6 were obtained. If the experimental results ($V_{f_{\exp}}^f$) are compared to the analytical ones ($V_{f_{\text{ana}}}^\phi$), an average $V_{f_{\exp}}^f / V_{f_{\text{ana}}}^\phi \psi$ ratio of about 1.39 was obtained. Since a safety factor of 1.79 ($\varepsilon_{\text{exp}}^f / \varepsilon_{\text{ana}}^\phi \psi = 1.79$) was
obtained in the beams without any shear reinforcement (see Table 7), and a safety factor of 1.24 \(\frac{V_{\text{exp}}}{V_{\text{crit}}^{\text{tot}}} = 1.24 \) was determined for the contribution of the steel stirrups for the shear resistance, the safety factor of 1.39 indicates that the formulation by Nanni et al. can be considered for the evaluation of the NSM CFRP laminates in the shear strengthening of concrete beams.

Expression (11) indicates that \(V_f \) is proportional to \(L_{\text{tot min}} \). To check this assumption, Fig. 20 represents the relationship between the \(\Delta F_{\text{max}} \) (equal to two times the contribution of the CFRP systems for the beam shear resistance, \(V_f \)) obtained experimentally in the beams strengthened by NSM technique and the \(L_{\text{tot min}} \). From this figure a clear linear increase trend between these two parameters is observed, which the validity of the aforementioned assumption.

5. CONCLUSIONS

To assess the effectiveness of a near surface mounted (NSM) technique for the shear strengthening of concrete beams, four beam series of distinct depth and longitudinal tensile steel reinforcement ratio were tested under four point loads. Each series was composed of one beam without any shear reinforcement and one beam using the following shear reinforcing systems: conventional steel stirrups; strips of wet lay-up CFRP sheet embracing the bottom (in tension) and the lateral beam faces, designated by externally bonded reinforcing (EBR) technique; and laminate strips of CFRP embedded into vertical or inclined (45 degrees) pre-cut slits on the concrete cover of the beam lateral faces (NSM strengthening technique). From the results obtained, the following main conclusions can be pointed out:

- The load carrying capacity of reinforced concrete beams failing in shear can be significantly increased using the CFRP shear strengthening systems applied in the present work;
- The NSM shear strengthening technique was the most effective of the CFRP systems. This efficacy was not only in terms of the beam load carrying capacity, but also in terms of deformation capacity at beam failure. Using the load carrying capacity, \(F_{\text{max}} \), of the unreinforced beams, for comparison purposes, the beams strengthened by EBR and NSM techniques showed an average increase of 54% and 83%, respectively. The same comparison for the deflection at \(0.95F_{\text{max}} \) after peak load (designated by deformability index, \(\delta_p \)), showed that the increments were 77% and 307%, respectively, indicating that the efficacy of the NSM was more pronounced in terms of deformability index;
• In terms of the F_{max} and the δ_p of the beams reinforced with steel stirrups, the NSM strengthening technique provided almost similar F_{max} and an increase of 9% in the δ_p;

• Failure modes of the beams strengthened by the NSM technique were not as brittle as the ones observed in the beams strengthened by the EBR technique;

• The NSM shear strengthening technique was easier and faster to apply than the EBR technique;

• The design values of the contribution of the CFRP EBR strengthening systems for the beam shear resistance, evaluated from the ACI and fib formulations were 2% and 8% higher than the values registered experimentally, respectively;

• Assuming a bond stress of 16.1 MPa and an effective strain of 5.9‰ (average values of the data recorded in pullout bending tests), the formulation by Nanni et al. for the NSM technique predicted a CFRP contribution around 72% of the experimentally registered values, which indicate to be a formulation that can be considered for the design of the contribution of the CFRP NSM shear strengthening system.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the supports provided by the S&P®, BeTTor MBT® Portugal, Secil (Unibetão), and the colaboration of Cemacom. The study reported in this paper forms a part of the research program “CUTINSHEAR - Performance assessment of an innovative structural FRP strengthening technique using an integrated system based on optical fiber sensors” supported by FCT, POCTI/ECM/59033/2004.

REFERENCES

21. ACI Committee 318, 2002, “Building code requirements for structural concrete and commentary”, American Concrete Institute, Reported by ACI Committee 118.
TABLES AND FIGURES

List of Tables:

Table 1 - Series of tests
Table 2 - Properties of steel bars
Table 3 - Main results
Table 4 - Profitability index of the NSM technique
Table 5 - Analytical vs experimental results (ACI and fib analytical formulations)
Table 6 - Analytical vs experimental results for NSM technique
Table 7 - Analytical vs experimental results of the contribution of the concrete and steel stirrups for the shear resistance

List of Figures:

Fig. 1 - Beam series
Fig. 2 - Strengthening techniques: a) External Bonded, b) Near Surface Mounted
Fig. 3 - Concept of $\delta_{p,K}$: deflection at $0.95F_{\max,K}$ after $\delta_{\max,K}$
Fig. 4 - Force vs deflection relations of the A10 beam series
Fig. 5 - Force vs deflection relations of the A12 beam series
Fig. 6 - Force vs deflection relations of the B10 beam series
Fig. 7 - Force vs deflection relations of the B12 beam series
Fig. 8 - Failure modes of A10 beam series
Fig. 9 - Failure modes of A12 beam series
Fig. 10 - Failure modes of B10 beam series
Fig. 11 - Failure modes of B12 beam series
Fig. 12 - Details of the failure modes: a) A12_M, b) B12_M, c) B12_IL, B10_IL and B12_VL, d) A10_VL
Fig. 13 - Influence of the: a) CFRP shear reinforcement ratio, b) beam depth, c) longitudinal steel reinforcement ratio, on the efficacy of the shear strengthening technique
Fig. 14 - Representation of the profitability index for the NSM technique
Fig. 15 - Data for the externally bonded shear strengthening technique
1 Fig. 16 - Analytical vs experimental results (ACI and fib analytical formulation)

2 Fig. 17 - Graphical representation of variables used in the formulation by Nanni et al. (for this example

3 \[\sum \ell_i = \ell_2 + \ell_3 + \ell_4 \]

4 Fig. 18 - Graphical representation of \(l_{\text{max}} \)

5 Fig. 19 - Specimen of the pullout-bending tests

6 Fig. 20 - Relationship between the contribution of the NSM CFRP shear strengthening system (\(\Delta F_{\text{max}} = 2V_f \)) and the total effective length of this strengthening system (\(L_{\text{tot.min}} \))
Table 1 - Series of tests

<table>
<thead>
<tr>
<th>Beam designation</th>
<th>Material</th>
<th>Quantity</th>
<th>Spacing (mm)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A10 C</td>
<td>Steel stirrups</td>
<td>6φ6 of two branches</td>
<td>300</td>
<td>90</td>
</tr>
<tr>
<td>A10 S</td>
<td>Strips of S&P C-Sheet 530</td>
<td>8×2 layers of 25 mm (U shape)</td>
<td>190</td>
<td>90</td>
</tr>
<tr>
<td>A10 M</td>
<td>S&P laminate strips of CFK 150/2000</td>
<td>16 CFRP laminates</td>
<td>200</td>
<td>90</td>
</tr>
<tr>
<td>A10 IL</td>
<td>S&P laminate strips of CFK 150/2000</td>
<td>12 CFRP laminates</td>
<td>300</td>
<td>45</td>
</tr>
<tr>
<td>A12 C</td>
<td>Steel stirrups</td>
<td>10φ6 of two branches</td>
<td>150</td>
<td>90</td>
</tr>
<tr>
<td>A12 S</td>
<td>Strips of S&P C-Sheet 530</td>
<td>14×2 layers of 25 mm (U shape)</td>
<td>95</td>
<td>90</td>
</tr>
<tr>
<td>A12 M</td>
<td>S&P laminate strips of CFK 150/2000</td>
<td>28 CFRP laminates</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>A12 IL</td>
<td>S&P laminate strips of CFK 150/2000</td>
<td>24 CFRP laminates</td>
<td>150</td>
<td>45</td>
</tr>
</tbody>
</table>

Table 2 - Properties of steel bars

<table>
<thead>
<tr>
<th>Series</th>
<th>Stress</th>
<th>φ6 (long.)</th>
<th>φ6 (trans.)</th>
<th>φ10 (long.)</th>
<th>φ12 (long.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>f_{sym} *</td>
<td>622 MPa</td>
<td>540 MPa</td>
<td>464 MPa</td>
<td>574 MPa</td>
</tr>
<tr>
<td></td>
<td>f_{sum} **</td>
<td>702 MPa</td>
<td>694 MPa</td>
<td>581 MPa</td>
<td>672 MPa</td>
</tr>
<tr>
<td>B</td>
<td>f_{sym} *</td>
<td>618 MPa</td>
<td>540 MPa</td>
<td>464 MPa</td>
<td>571 MPa</td>
</tr>
<tr>
<td></td>
<td>f_{sum} **</td>
<td>691 MPa</td>
<td>694 MPa</td>
<td>581 MPa</td>
<td>673 MPa</td>
</tr>
</tbody>
</table>

*f_{sym} - Average value of the yield stress; **f_{sum} - Average value of the maximum stress.
<table>
<thead>
<tr>
<th>Beam designation</th>
<th>Shear reinforcing system</th>
<th>$F_{\text{max},K}$ (kN)</th>
<th>$\frac{F_{\text{max},K}}{F_{\text{max},K_{\text{c}}}}$</th>
<th>$\frac{F_{\text{max},K}}{F_{\text{max},K_{\text{s}}}}$</th>
<th>$\delta_{p,K}$ (mm)</th>
<th>$\frac{\delta_{p,K}}{\delta_{p,K_{\text{c}}}}$</th>
<th>$\frac{\delta_{p,K}}{\delta_{p,K_{\text{s}}}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A10_C</td>
<td>-</td>
<td>100.40</td>
<td>1.00</td>
<td>0.59</td>
<td>2.80</td>
<td>1.00</td>
<td>0.17</td>
</tr>
<tr>
<td>A10_S</td>
<td>Steel stirrups</td>
<td>169.35</td>
<td>1.69</td>
<td>1.00</td>
<td>16.25</td>
<td>5.80</td>
<td>1.00</td>
</tr>
<tr>
<td>A10_M</td>
<td>Strips of sheet</td>
<td>122.06</td>
<td>1.22</td>
<td>0.72</td>
<td>3.75</td>
<td>1.34</td>
<td>0.23</td>
</tr>
<tr>
<td>A10_VL</td>
<td>Vertical laminates</td>
<td>158.64</td>
<td>1.58</td>
<td>0.94</td>
<td>12.86</td>
<td>4.59</td>
<td>0.79</td>
</tr>
<tr>
<td>A10_IL</td>
<td>Inclined laminates</td>
<td>157.90</td>
<td>1.57</td>
<td>0.93</td>
<td>30.96</td>
<td>11.06</td>
<td>1.91</td>
</tr>
<tr>
<td>A12_C</td>
<td>-</td>
<td>116.50</td>
<td>1.00</td>
<td>0.54</td>
<td>2.74</td>
<td>1.00</td>
<td>0.43</td>
</tr>
<tr>
<td>A12_S</td>
<td>Steel stirrups</td>
<td>215.04</td>
<td>1.85</td>
<td>1.00</td>
<td>6.34</td>
<td>2.31</td>
<td>1.00</td>
</tr>
<tr>
<td>A12_M</td>
<td>Strips of sheet</td>
<td>179.54</td>
<td>1.54</td>
<td>0.83</td>
<td>4.91</td>
<td>1.79</td>
<td>0.77</td>
</tr>
<tr>
<td>A12_VL</td>
<td>Vertical laminates</td>
<td>235.11</td>
<td>2.02</td>
<td>1.09</td>
<td>6.70</td>
<td>2.45</td>
<td>1.06</td>
</tr>
<tr>
<td>A12_IL</td>
<td>Inclined laminates</td>
<td>262.38</td>
<td>2.25</td>
<td>1.22</td>
<td>11.75</td>
<td>4.29</td>
<td>1.85</td>
</tr>
<tr>
<td>B10_C</td>
<td>-</td>
<td>74.02</td>
<td>1.00</td>
<td>0.61</td>
<td>2.00</td>
<td>1.00</td>
<td>0.23</td>
</tr>
<tr>
<td>B10_S</td>
<td>Steel stirrups</td>
<td>120.64</td>
<td>1.63</td>
<td>1.00</td>
<td>8.53</td>
<td>4.27</td>
<td>1.00</td>
</tr>
<tr>
<td>B10_M</td>
<td>Strips of sheet</td>
<td>111.14</td>
<td>1.50</td>
<td>0.92</td>
<td>4.40</td>
<td>2.20</td>
<td>0.52</td>
</tr>
<tr>
<td>B10_VL</td>
<td>Vertical laminates</td>
<td>131.22</td>
<td>1.77</td>
<td>1.09</td>
<td>6.83</td>
<td>3.42</td>
<td>0.80</td>
</tr>
<tr>
<td>B10_IL</td>
<td>Inclined laminates</td>
<td>120.44</td>
<td>1.63</td>
<td>1.00</td>
<td>4.27</td>
<td>2.14</td>
<td>0.50</td>
</tr>
<tr>
<td>B12_C</td>
<td>-</td>
<td>75.7</td>
<td>1.00</td>
<td>0.48</td>
<td>2.03</td>
<td>1.00</td>
<td>0.40</td>
</tr>
<tr>
<td>B12_S</td>
<td>Steel stirrups</td>
<td>159.1</td>
<td>2.10</td>
<td>1.00</td>
<td>5.09</td>
<td>2.51</td>
<td>1.00</td>
</tr>
<tr>
<td>B12_M</td>
<td>Strips of sheet</td>
<td>143.0</td>
<td>1.89</td>
<td>0.90</td>
<td>3.52</td>
<td>1.73</td>
<td>0.69</td>
</tr>
<tr>
<td>B12_VL</td>
<td>Vertical laminates</td>
<td>139.2</td>
<td>1.84</td>
<td>0.87</td>
<td>4.44</td>
<td>2.19</td>
<td>0.87</td>
</tr>
<tr>
<td>B12_IL</td>
<td>Inclined laminates</td>
<td>148.5</td>
<td>1.96</td>
<td>0.93</td>
<td>4.92</td>
<td>2.42</td>
<td>0.97</td>
</tr>
</tbody>
</table>
Table 4 - Profitability index of the NSM technique

<table>
<thead>
<tr>
<th>Series</th>
<th>Beam designation</th>
<th>F_{max} (kN)</th>
<th>ΔF_{max} (kN)</th>
<th>l_{CFRP} (m)</th>
<th>$\Delta F_{\text{max}}/l_{\text{CFRP}}$ (kN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(4φ10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A10_R</td>
<td>100.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>A10_VL</td>
<td>158.64</td>
<td>58.24</td>
<td>4.8</td>
<td>12.13</td>
</tr>
<tr>
<td></td>
<td>A10_IL</td>
<td>157.9</td>
<td>57.5</td>
<td>3.68</td>
<td>15.63</td>
</tr>
<tr>
<td></td>
<td>(4φ12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A12_R</td>
<td>116.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>A12_VL</td>
<td>235.11</td>
<td>118.61</td>
<td>8.4</td>
<td>14.12</td>
</tr>
<tr>
<td></td>
<td>A12_IL</td>
<td>262.38</td>
<td>145.88</td>
<td>7.35</td>
<td>19.85</td>
</tr>
<tr>
<td>B</td>
<td>(4φ10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B10_R</td>
<td>74.02</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>B10_VL</td>
<td>131.22</td>
<td>57.2</td>
<td>2.4</td>
<td>23.83</td>
</tr>
<tr>
<td></td>
<td>B10_IL</td>
<td>120.44</td>
<td>46.42</td>
<td>1.97</td>
<td>23.56</td>
</tr>
<tr>
<td></td>
<td>(4φ12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B12_R</td>
<td>75.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>B12_VL</td>
<td>139.2</td>
<td>63.5</td>
<td>4.2</td>
<td>15.12</td>
</tr>
<tr>
<td></td>
<td>B12_IL</td>
<td>148.5</td>
<td>72.8</td>
<td>3.91</td>
<td>18.62</td>
</tr>
</tbody>
</table>

Table 5 - Analytical vs experimental results (ACI and fib analytical formulations)

<table>
<thead>
<tr>
<th>Beam designation</th>
<th>Experimental</th>
<th>ACI * formulation</th>
<th>fib ** formulation</th>
<th>$V_{f}^{\text{exp}}/V_{f}^{\text{ana}}$ (ACI formulation)</th>
<th>$V_{f}^{\text{exp}}/V_{f}^{\text{ana}}$ (fib formulation)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V_{f}^{exp} (kN)</td>
<td>ε_{f_e} (%)</td>
<td>V_{f}^{ana} (kN)</td>
<td>ε_{f_e} (%)</td>
<td>V_{f}^{ana} (kN)</td>
</tr>
<tr>
<td>A10_M</td>
<td>10.8</td>
<td>2.50</td>
<td>17.0</td>
<td>4.62</td>
<td>24.0</td>
</tr>
<tr>
<td>A12_M</td>
<td>31.5</td>
<td>2.50</td>
<td>33.8</td>
<td>3.75</td>
<td>38.9</td>
</tr>
<tr>
<td>B10_M</td>
<td>18.6</td>
<td>2.42</td>
<td>17.7</td>
<td>3.66</td>
<td>20.5</td>
</tr>
<tr>
<td>B12_M</td>
<td>33.7</td>
<td>2.42</td>
<td>35.0</td>
<td>2.79</td>
<td>30.9</td>
</tr>
</tbody>
</table>

* f_e values were obtained at the age of the beam tests ($f_e = 40.2$ MPa for A series and $f_e = 46.5$ MPa for B series).

** f_{cm} values were obtained at the age of the tested beams.
Table 6 - Analytical vs experimental results for NSM technique

<table>
<thead>
<tr>
<th>Beam designation</th>
<th>Experimental V_f (kN)</th>
<th>Formulation by Nanni et al. (^{16}) V_f (kN)</th>
<th>$V_f^{\exp}/V_f^{\text{ana}}$</th>
<th>Experimental V_f (kN)</th>
<th>Formulation by Nanni et al. (^{16}) V_f (kN)</th>
<th>$V_f^{\exp}/V_f^{\text{ana}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A10_VL</td>
<td>29.1</td>
<td>10.9</td>
<td>1.05</td>
<td>29.1</td>
<td>9.9</td>
<td>1.00</td>
</tr>
<tr>
<td>A10_IL</td>
<td>28.8</td>
<td>14.2</td>
<td>1.53</td>
<td>28.8</td>
<td>14.2</td>
<td>1.53</td>
</tr>
<tr>
<td>A12_VL</td>
<td>59.3</td>
<td>23.9</td>
<td>1.28</td>
<td>59.3</td>
<td>23.9</td>
<td>1.28</td>
</tr>
<tr>
<td>A12_IL</td>
<td>72.9</td>
<td>33.6</td>
<td>1.36</td>
<td>72.9</td>
<td>33.6</td>
<td>1.36</td>
</tr>
<tr>
<td>B10_IL</td>
<td>23.2</td>
<td>7.4</td>
<td>1.46</td>
<td>23.2</td>
<td>7.4</td>
<td>1.46</td>
</tr>
<tr>
<td>B12_VL</td>
<td>31.8</td>
<td>10.5</td>
<td>1.48</td>
<td>31.8</td>
<td>10.5</td>
<td>1.48</td>
</tr>
<tr>
<td>B12_IL</td>
<td>36.4</td>
<td>18.8</td>
<td>1.75</td>
<td>36.4</td>
<td>18.8</td>
<td>1.75</td>
</tr>
</tbody>
</table>

Table 7 - Analytical vs experimental results of the contribution of the concrete and steel stirrups for the shear resistance

<table>
<thead>
<tr>
<th>Beam designation</th>
<th>Experimental V_c (kN)</th>
<th>Analytical (Portuguese Code) V_c^{ana} (kN)</th>
<th>$V_c^{\exp}/V_c^{\text{ana}}$</th>
<th>Experimental V_w (kN)</th>
<th>Analytical (Portuguese Code) V_w^{ana} (kN)</th>
<th>$V_w^{\exp}/V_w^{\text{ana}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A10</td>
<td>50.2</td>
<td>34.9</td>
<td>1.44</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A12</td>
<td>58.3</td>
<td>34.8</td>
<td>1.68</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B10</td>
<td>37.0</td>
<td>18.6</td>
<td>1.99</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B12</td>
<td>37.9</td>
<td>18.5</td>
<td>2.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A10-S</td>
<td>50.2**</td>
<td>34.5</td>
<td>1.44</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A12-S</td>
<td>58.3**</td>
<td>49.2</td>
<td>1.13</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B10-S</td>
<td>37.0**</td>
<td>23.3</td>
<td>1.68</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B12-S</td>
<td>37.9**</td>
<td>41.7</td>
<td>1.06</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^*\) $V_c^{\text{ana}} = \tau_b \cdot d$; \(^{**}\) $V_w^{\text{ana}} = 0.9 \cdot \frac{f_{yd}}{s} \cdot d$; \(^{***}\) Values that were obtained in the reference beams.
Fig. 1 - Beam series
Two layers of U strips of wet lay-up CFRP sheets

Fig. 2 - Strengthening techniques: a) External Bonded, b) Near Surface Mounted

Deflection at mid span (mm) vs. Force (kN)

Fig. 3 - Concept of $\delta_{p,K}$: deflection at $0.95F_{\text{max},K}$ after $\delta_{F_{\text{max},K}}$
Fig. 4 - Force vs deflection relations of the A10 beam series

Fig. 5 - Force vs deflection relations of the A12 beam series
Fig. 6 - Force vs deflection relations of the B10 beam series

Fig. 7 - Force vs deflection relations of the B12 beam series
Fig. 8 - Failure modes of A10 beam series

Fig. 9 - Failure modes of A12 beam series
Fig. 10 - Failure modes of B10 beam series

Fig. 11 - Failure modes of B12 beam series
Fig. 12 - Details of the failure modes: a) A12_M, b) B12_M, c) B12_IL, B10_IL and B12_VL beams, d) A10_VL
Fig. 13 - Influence of the: a) CFRP shear reinforcement ratio, b) beam depth, c) longitudinal steel reinforcement ratio, on the efficacy of the shear strengthening technique
Fig. 14 - Representation of the profitability index for the NSM technique

Fig. 15 - Data for the externally bonded shear strengthening technique
Fig. 16 - Analytical vs experimental results (ACI and fib analytical formulation)

Fig. 17 - Graphical representation of variables used in the formulation by Nanni et al.

\[\sum_i L_i = L_2 + L_3 + L_4 \]

Fig. 18 - Graphical representation of \(l_{\text{max}} \)

\[F_i = A_i \varepsilon_{f,e} E_f \]
Fig. 19 - Specimen of the pullout-bending tests

Fig. 20 - Relationship between the contribution of the NSM CFRP shear strengthening system ($\Delta F_{\text{max}} = 2V_f$) and the total effective length of this strengthening system ($L_{\text{tot min}}$)

$$\Delta F_{\text{max}} = 1.305L_{\text{tot min}} + 7.5799$$

$R^2 = 0.9088$