
Systems Biology for the 

development of microbial cell 

factories
Eugénio Campos Ferreira

IBB – Institute for Biotechnology and Bioengineering

Centre of Biological Engineering, BioPSE group

Universidade do Minho



OUTLINE

Systems Biology approaches for modelling, 

optimization, and control of microbial cell factories

Cellular Models for Metabolic Engineering: gene 

networks

Inference of Biological Networks

From Genome-scale metabolic models

From experimental data

From literature data mining

In Silico Metabolic Engineering Platforms: 

Optimization of Microbial strains – OptFlux tool



INTRODUCTION
SYSTEMS BIOLOGY

Metabolic Engineering can gain major benefits from the 

systems biology approach

Systems Biology does not investigate individual cellular 

components at a time, but the behaviour and relationships of 

all of the elements in a particular biological system while it is 

functioning

?
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Systems biology 
involves the use of computer 

simulations of cellular 

subsystems (such as the networks 

of metabolites and enzymes which 

comprise metabolism, signal 

transduction pathways and gene 

regulatory networks) to both 

analyze and visualize the 

complex connections of these 

cellular processes.
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INTRODUCTION
METABOLIC ENGINEERING

In order to economically produce desired compounds like 

antibiotics, therapeutic proteins, food and feed ingredients, 

fuels, vitamins and other chemicals from microbial cell 

factories it is generally necessary to retrofit the metabolism

Metabolic engineering envisages the introduction of directed 

genetic modifications leading to desirable metabolic 

phenotypes, as opposed to traditionally used random 

mutagenesis and screening

Cell factory Genome

Metabolism / Phenotype
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Gene Deletion

Gene Addition

Gene Under/Overexpression

Manipulation of environmental conditions
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In metabolic engineering problems, it is often difficult 

to identify a priori which genetic manipulations will 

originate a given desired phenotype

In order to rationally design production strains with 

enhanced capabilities, it is essential to have:
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ACCURATE 

MATHEMATICAL 

MODELS 

ROBUST AND 

FLEXIBLE 

OPTIMIZATION 

TOOLS

GOOD SIMULATION 

METHODS
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INTRODUCTION
METABOLIC ENGINEERING

Cellular Mathematical 

Model

Gene / reaction 

associations

Productivity in a 

given metabolite

Simulation of Phenotype

Optimization 

Algorithm

Genome modifications and manipulation of 

environmental conditions

Objective function – productivity in a given metabolite
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CELLULAR MODELS
LEVELS OF INFORMATION

Models should comprise different levels of information:

reactions stoichiometry

reactions kinetics 

regulatory information

Metabolome
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There are several ways to represents the chemical 

conversions associated to metabolic reactions

Kinetic or mechanistic models use deterministic differential 

equations relating the amount of reactants with the quantity of 

products, according to a given reaction rate and other 

parameters

Given an initial state, the trajectory of metabolite can be 

obtained by numerical simulation 

CELLULAR MODELS
METABOLIC REACTIONS
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0  v-v-v 321 

A (pseudo)steady state 

condition is usually assumed 

inside the cell
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321 vvv
dt

d[Tyr]


This procedure is repeated for all considered metabolites 

and will originate the so-called stoichiometric model

CELLULAR MODELS
STOICHIOMETRIC MODELS

The result is a Linear Equations system described by 

stoichiometric matrix S.

0vS 

jjj αvβ 
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For an identified reaction set:

CELLULAR MODELS
STOICHIOMETRIC MODELS
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Stoichiometric models typically have more fluxes 

than balanced metabolites.

The equation system, S • v = 0, then has more 

variables than equations. This is a so-called under-

determined equation system with infinitely many 

solutions:

CELLULAR MODELS
STOICHIOMETRIC MODELS

0vS 

jjj αvβ 

Hyper-cone containing 

ALL solutions as defined 

by the stoichiometry of 

the organism
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How can we reduce the cone of solutions?

Reduction of 

the solutions 

space

Particular 

Solution

By optimizing a given 

criterion – FBA, MoMA, 

ROOM…

By the introduction of 

regulatory information (ex: 

Gene Networks)

CELLULAR MODELS
STOICHIOMETRIC MODELS
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FBA: Flux Balance Analysis

ROOM: Regulatory On/Off 

Minimization

MoMA: Minimization of  Metabolic 

Adjustment



prod
T vvcz 

Maximize:
c = row vector containing weights 

specifying what combination of 

fluxes to optimize

Subject to:

0vS 

jjj αvβ 

Constraints from 

stoichiometry

LINEAR 

PROGRAMMING 

PROBLEM!

CELLULAR MODELS
FBA - FLUX BALANCE ANALYSIS

The idea is to find one solution to the under-determined 

system

S • v = 0 by optimization of a given criterion. 

A vector containing the values of each 

individual metabolic flux is obtained
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BUT WHAT SHOULD WE OPTIMIZE?

Studies in several organisms demonstrated that 

their metabolic network has evolved for optimization 

of the specific growth rate under several carbon 

source limiting conditions 

Thus, for simulating cellular behaviour, the most 

common objective function is the maximization of 

biomass production (BPCY: Biomass-Product Coupled Yield)

CELLULAR MODELS
FBA - FLUX BALANCE ANALYSIS
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Ibarra et al (2002),  Nature



CELLULAR MODELS
MoMA - Minimisation of Metabolic Adjustment

The problem is the search of a flux set (x) that 

has a minimal distance from the wild-type flux 

vector (w) obtained with FBA. 

The distance between w and x is given by the 

Euclidean distance:

2

1

( , ) ( )
N

i i

i

D w x w x


 

The minimization of that distance can be formulated as a 

QP problem

For mutants and organisms grown on unusual 

carbon sources the hypothesis of optimal growth is 

not always real

Such strains may undergo minimal redistribution of 

fluxes with respect to the wild-type strains (MoMA)
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Segre et al. (2002),  PNAS



CELLULAR MODELS
GENE NETWORKS

Gene Regulatory Networks represent regulatory elements 

and their interactions 

A regulatory network will direct the activation or repression

of a set of genes in response to a specific environmental 

stimulus, like O2 or pH

Gene1

Gene1

Gene3Gene2

Gene1

Gene1 Gene3Gene2

Gene1

Gene1

Gene1

Gene1

TF1 TF2

Activation

Repression
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The simulation of a genetic network can be performed in 

several ways

The simplest one is to consider Boolean Networks, where 

ON/OFF gene states are assumed.

This approach:

Allows analysis at the network-level

Provides useful insights in network dynamics

A

B

C C =  A AND B

0

1

0
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Reconstruction of E. coli 

regulatory network and integration 

with stoichiometric model
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GENE NETWORKS

WORK IN PROGRESS: Reconstruction of E. coli 

regulatory network and integration with stoichiometric

model
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Genetic 

Regulation

Metabolic 

Transcriptional 

Regulation

Inhibition / 

Activation
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WORK IN PROGRESS: Information System of 

Biochemical and Regulatory Data on Escherichia coli



HOW CAN WE BUILD THE MODELS IN AN 

AUTOMATED WAY?

Ideally, it should be possible to extract all the knowledge 

necessary to construct biological models from the 

information obtained during genome sequencing

However, the knowledge extracted is still very limited…

INFERENCE OF BIOLOGICAL NETWORKS

GENOME

Presently, the 

methodology of obtaining 

stoichiometric models from 

genome annotation is quite 

developed
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INFERENCE OF BIOLOGICAL NETWORKS
GENOME-SCALE METABOLIC MODELS
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Rocha et al (2007), Gene Ess Gen Scale

WORK IN PROGRESS: 

Reconstruction of Metabolic 

Networks of:

-H. pylori

-K. lactis

-Streptococcus faecalis



Inference of Biological Networks can also be performed, 

from experimental data.

Flux and metabolomic data allow, in principle, to 

estimate model parameters for kinetic deterministic 

metabolic models

However, the number of experiments and 

measurements to be performed is very high!

Also, the structure of the kinetic equations has to be 

imposed a priori

In this field, optimal experiment design play an 

important role 

An alternative is to use Text Mining tools to automatically 

search in the literature for biological relations 

INFERENCE OF BIOLOGICAL NETWORKS
INFERENCE FROM EXPERIMENTAL DATA
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INFERENCE OF BIOLOGICAL NETWORKS

WORK IN PROGRESS: Experimental Design for 

inferring model structure and parameters from flux 

data

Mathematical Expression                             
(rate laws and ODE)

Model Structure

Structural and Numerical 

identifiability analysis

Parameter identifiable?

Parameter Estimation

Stimulus Study for 

Model Validation

Initial Conditions     

and Parameters

Experimental 

Design and 

Sensitivity Analysis

Focus at the moment

Model Reduction
YES

NO

Simulations and     

Confidence intervals

http://biopseg.deb.uminho.pt/acveloso/default.htm


Model Reduction based on dynamic sensitivity 

analysis

High-Throughput Data

Metabolism 

Complexity

Stoichiometric 

and/or 

Dynamic 

Modelling ?

From in vivo to in silico and back
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A complete kinetic description

Complexity of dynamic modelling

Obstacle for their effective use in 

optimization and control processes
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 Model fluxes and concentrations over time

Drawbacks

• Lots of parameters

• Measured in vitro (valid in vivo?)

• Nearly impossible to get all parameters at genome scale 
model



Complex E. coli dynamic model describing

the carbon central metabolism with 116

parameters was used to:

Identify key parameters that have more 

impacts on the global systems – Sensitivity 

analysis

Study a model reduction strategy based on 

univariate analysis of the Euclidean-norm to 

consider the effect to all metabolites.

Motivation for model reduction
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dotted line = original model 

Solid line = reduced model
41 (35.3%) parameters were rejected

Comparison Original and reduced Model - Metabolites



dotted line = original model 

Solid line = reduced model

Comparison Original and reduced Model - Fluxes
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WORK IN PROGRESS: Development of tools for 

automatically inferring regulatory networks from literature 

data

Lourenço et al., J. Biomed Inform. 2009, 42(4):710-720.



Cellular 

Model

Stoichiometry

Regulation

Gene / reaction 

associations

Productivity in a 

given metabolite

Simulation of Phenotype 

(FBA, MoMA, ROOM...)

Optimization 

Algorithm

Manipulation of gene deletions / additions and 

environmental conditions

Objective function – productivity in a given 

metabolite

OPTIMIZATION TOOLS
OPTIMIZATION PROBLEM
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FBA: Flux Balance Analysis

ROOM: Regulatory On/Off 

Minimization

MoMA: Minimization of  Metabolic 

Adjustment



The only reported algorithms are:

OptKnock (Burgard et al., Biotech Bioeng 

2003)

Based on MILP

Only applicable to relatively small 

stoichiometric models

OptGene (Patil et al., BMC Bioinf 2005) & 

OptFlux (Rocha et al., BMC Bioinf 2008)

Evolutionary Algorithms

Applicable to different types of (large-

scale) models

Additional algorithms being applied:

Local Search

Simulated Annealing

OPTIMIZATION TOOLS
OPTIMIZATION PROBLEM
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OPTIMIZATION TOOLS

OptFlux is an open-source, user-friendly and modular 

software aimed at being the reference computational tool 

for metabolic engineering applications. It allows the use of 

stoichiometric metabolic models for simulation and 

optimization purposes. www.optflux.org

WORK IN PROGRESS: OptFlux – a software for the 

Optimization of microbial strains



OPTIMIZATION TOOLS
OptFlux - Conceptual overview

Strain 

Optimization

 Evolutionary algorithms

 Simulated Annealing

 Local optimization 

Objective 

function:

Maximize the 

production of a 

given metabolite

Phenotype

Simulation

 FBA, MoMA, ROOM

 Boolean net simulation 

…

Determine the 

set of fluxes (in 

steady state)

Model

Stoichiometric

Regulatory

…

Environmental

Conditions

Genetic conditions

(e.g. knockouts)
Override Model

Original Model



OPTIMIZATION TOOLS

www.optflux.org

WORK IN PROGRESS: OptFlux – a software for the 

Optimization of microbial strains

(…)

FBA

ROOM

MOMA

Steady State 
Models
-stoichiometric
-regulatory

Environmental
Conditions

Gene/ reaction
knockouts

Models and 

conditions

Simulation 

methods

Linear
Programming

GLPK 

MILP

Quadratic 
Programming

Optimization

problems

Solvers

SCIP

QPGen

Problem

Formulation
Problem

Solving

MPS

(…)

(…) (…)

Formats



OPTIMIZATION TOOLS
OPTFLUX

www.optflux.org



OPTIMIZATION TOOLS
OPTIMIZATION PROBLEM

BPCY: Biomass-Product Coupled Yield

VS: Variable size
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