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Systems Biology approaches for modelling,
optimization, and control of microbial cell factories

©® Cellular Models for Metabolic Engineering: gene
networks

® Inference of Biological Networks
® From Genome-scale metabolic models
® From experimental data
® From literature data mining

® In Silico Metabolic Engineering Platforms:
Optimization of Microbial strains — OptFlux tool




® Metabolic Engineering can gain major benefits from the

SYSTEMS BIOLOGY

systems biology approach

® Systems Biology does not investigate individual cellular
components at a time, but the behaviour and relationships of
all of the elements in a particular biological system while it is

functioning

CELLULAR MODELS
INFERENCE OF BIOLOGICAL
NETWORKS

OPTIMIZATION TOOLS

Systems biology
involves the use of computer
simulations of cellular

subsystems (such as the networks
of metabolites and enzymes which
comprise metabolism, signal
transduction pathways and gene

regulatory networks) to both
analyze and visualize the
complex connections of these
cellular processes.
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METABOLIC ENGINEERING

@ In order to economically produce desired compounds like

e . . . . . CELLULAR MODELS
antibiotics, therapeutic proteins, food and feed ingredients, INFERENCE OF BIOLOGICAL
fuels, vitamins and other chemicals from microbial cell P TIMZATION oo &

factories it is generally necessary to retrofit the metabolism

® Metabolic engineering envisages the introduction of directed
genetic modifications leading to desirable metabolic
phenotypes, as opposed to traditionally used random
mutagenesis and screening

Metabolism / Phenotype
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METABOLIC ENGINEERING STRATEGIES

® Gene Deletion
® Gene Addition
® Gene Under/Overexpression

® Manipulation of environmental conditions

CELLULAR MODELS
INFERENCE OF BIOLOGICAL
NETWORKS

OPTIMIZATION TOOLS



METABOLIC ENGINEERING

® In metabolic engineering problems, it is often difficult NEERENCE OF BlOLOeICAL
to identify a priori which genetic manipulations will DR TIMIZATION T &

originate a given desired phenotype

® In order to rationally design production strains with
enhanced capabilities, it is essential to have:

ACCURATE “ ROBUST AND
MATHEMATICAL FLEXIBLE
MODELS OPTIMIZATION
TOOLS

N

GOOD SIMULATION
METHODS



METABOLIC ENGINEERING

Optimization Genome modifications and manipulation of CELLULAR MODELS
. environmental conditions INFERENCE OF BIOLOGICAL
Algorithm NETWORKS
OPTIMIZATION TOOLS

Objective function — productivity in a given metabolite

N

Cellular Mathematical
Model

Gene / reaction
associations

@ Simulation of Phenotype

Productivity in a

given metabolite
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Models should comprise different levels of information:

CELLULAR MODELS

® reactions stoichiometry
® reactions kinetics

® regulatory information
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METABOLIC REACTIONS

Mameh Qv

) INTRODUCTION
There are several ways to represents the chemical NEERENCE OF BlOLOGICAL

conversions associated to metabolic reactions NETWORKS
OPTIMIZATION TOOLS

Kinetic or mechanistic models use deterministic differential
equations relating the amount of reactants with the quantity of
products, according to a given reaction rate and other
parameters

Given an initial state, the trajectory of metabolite can be
obtained by numerical simulation
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STOICHIOMETRIC MODELS

A (pseudo)steady state
condition is usually assumed

inside the cell Fire
Ph4H vy
AttY
drl_yr] Tyr < » 4-HPP
— . =V —Vy; —Vg3 V,
dt
Ty3H Vs
V, -V, -Vvy; =0
L-DOPA

This procedure is repeated for all considered metabolites
and will originate the so-called stoichiometric model

The result is a Linear Equations system described by
stoichiometric matrix S.

Mameh Qv

INTRODUCTION

INFERENCE OF BIOLOGICAL
NETWORKS
OPTIMIZATION TOOLS
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CELLULAR MODELS

For an identified reaction set:

VvV
6
— E
Vil v v, v, ve vy ... fluxn 0 <V, < +o0
-1/0| -1 0 0 O .. O] A —0 <V, <400
<v, <
1 —1 0 —1 0 0 1 B 0<V < 40
o/j1/0 0 1 0 .. O C —oo<3V < 10
— 74
s={0/0f1 1 -1 -1.. -1 D 0 <V, <+
oj0j0 O O 1 .. O E
0<v6<+oo
0Ol1/,-2 0 0 O O O |metabolitem
L - BV, Za




STOICHIOMETRIC MODELS

Stoichiometric models typically have more fluxes
than balanced metabolites.

The equation system, S < v = 0, then has more
variables than equations. This is a so-called under-
determined equation system with infinitely many
solutions:

Hyper-cone containing
ALL solutions as defined
by the stoichiometry of
the organism

v

Mameh Qv

INTRODUCTION

INFERENCE OF BIOLOGICAL
NETWORKS
OPTIMIZATION TOOLS



STOICHIOMETRIC MODELS %&Q\w\ R**

. INTRODUCTION
How can we reduce the cone of solutions?
INFERENCE OF BIOLOGICAL
NETWORKS
OPTIMIZATION TOOLS

By optimizing a given By the introduction of
criterion — FBA, MoMA, requlatory information (ex:
ROOM... Gene Networks)

d Z

v

v

Particular Reduction of
Solution the solutions
space

FBA: Flux Balance Analysis
ROOM: Regulatory On/Off
Minimization

MoMA: Minimization of Metabolic
Adjustment



FBA - FLUX BALANCE ANALYSIS

The idea is to find one solution to the under-determined
system

S «v =0 by optimization of a given criterion.

Maximize:
C = row vector containing weights

specifying what combination of

-
=C Vv=V
Z=C prod fluxes to optimize

Subiject to:

Sv=0 Constraints from
stoichiometry

Bj <v; <a;

A vector containing the values of each
individual metabolic flux is obtained

Mameh Qv

INTRODUCTION

INFERENCE OF BIOLOGICAL
NETWORKS
OPTIMIZATION TOOLS



Mameh Qv

INTRODUCTION

FBA - FLUX BALANCE ANALYSIS

INFERENCE OF BIOLOGICAL
NETWORKS
OPTIMIZATION TOOLS

BUT WHAT SHOULD WE OPTIMIZE?

Studies in several organisms demonstrated that
their metabolic network has evolved for optimization
of the specific growth rate under several carbon
source limiting conditions

Thus, for simulating cellular behaviour, the most
common objective function is the maximization of
biomass production (spcy: Biomass-Product Coupled Yield)

Ibarra et al (2002), Nature



MoMA - Minimisation of Metabolic Adjustment

For mutants and organisms grown on unusual
carbon sources the hypothesis of optimal growth is
not always real

Such strains may undergo minimal redistribution of
fluxes with respect to the wild-type strains (MoMA)

The problem is the search of a flux set (x) that
has a minimal distance from the wild-type flux
vector (w) obtained with FBA.

The distance between w and x is given by the
Euclidean distance:

D(w, X) = \/ZN: (W, — Xi)2

The minimization of that distance can be formulated as a

QP problem
Segre et al. (2002), PNAS

Mameh Qv

INTRODUCTION

INFERENCE OF BIOLOGICAL
NETWORKS
OPTIMIZATION TOOLS



GENE NETWORKS \X%S(\% R**

INTRODUCTION
Gene Requlatory Networks represent regulatory elements
INFERENCE OF BIOLOGICAL

and their interactions NETWORKS
A regulatory network will direct the activation or repression O TIMIZATION TOOLS
of a set of genes in response to a specific environmental

stimulus, like O, or pH

Genel

Gene?2 Gene3 Genel
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Genel

Genel
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Mameh Qv

INTRODUCTION

GENE NETWORKS

The simulation of a genetic network can be performed in
INFERENCE OF BIOLOGICAL

several ways NETWORKS
OPTIMIZATION TOOLS

The simplest one is to consider Boolean Networks, where
ON/OFF gene states are assumed.

O

1

B

This approach:

0
® C=AawmnB

Allows analysis at the network-level

Provides useful insights in network dynamics



GENE NETWORKS

TRANSCRIPTION /
TRANSLATION
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GENE NETWORKS %SQ% Q)(

INTRODUCTION
INFERENCE OF BIOLOGICAL

NETWORKS
OPTIMIZATION TOOLS

Metabolic
Transcriptional
Regulation

Promoter,

Inhibition /
Activation

Metabolic
Gene,

~
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GENE NETWORKS
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GENE NETWORKS
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® HOW CAN WE BUILD THE MODELS IN AN

AUTOMATED WAY?

© Ideally, it should be possible to extract all the knowledge
necessary to construct biological models from the
information obtained during genome sequencing

® However, the knowledge extracted is still very limited...
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® Presently, the
methodology of obtaining
stoichiometric models from
genome annotation is quite
developed

INTRODUCTION
CELLULAR MODELS

OPTIMIZATION TOOLS
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INFERENCE FROM EXPERIMENTAL DATA

©® Inference of Biological Networks can also be performed,
from experimental data.

® Flux and metabolomic data allow, in principle, to
estimate model parameters for kinetic deterministic
metabolic models

® However, the number of experiments and
measurements to be performed is very high!

® Also, the structure of the kinetic equations has to be
imposed a priori

® In this field, optimal experiment design play an
important role

® An alternative is to use Text Mining tools to automatically
search in the literature for biological relations

CELLULAR MODELS

OPTIMIZATION TOOLS
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From in vivo to in silico and back

. &
I A
T

High-Throughput Data

Stoichiometric
and/or

Dynamic
Modelling

L]

dC;
o > Vi = G,
j

INTRODUCTION
CELLULAR MODELS

OPTIMIZATION TOOLS

Metabolism
Complexity



[acet‘g.rl-phnsphntransferase ]

rel l

relpr,= f(metabolites, enzyme, parameters, regulators,...
Model fluxes and concentrations over time

Drawbacks
Lots of parameters
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Complex E. coli dynamic model describing P
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the carbon central metabolism with 116 b e
parameters was used to:
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Strategy

- Nonlinear ODE model

%:Z\,ijrj _X X® =ty Xo)
dt 4

- Computing sensitivity analysis

Xi(pj +Apj)_xi(pj _Apj) y Py dln X;(t, p)

S (t) = ~
i 2AAp; X:(p) oln p;

- Dynamic sensitivity analysis based on Euclidean-norm

1 n p 2
05 = a \/Zkleizl‘Si’j (t)‘
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The only reported algorithms are:

® OptKnock (Burgard et al., Biotech Bioeng
2003)
Based on MILP
Only applicable to relatively small
stoichiometric models

® OptGene (Patil et al., BMC Bioinf 2005) &
OptFlux (Rocha et al., BMC Bioinf 2008)
Evolutionary Algorithms
Applicable to different types of (large-
scale) models

® Additional algorithms being applied:
® Local Search
® Simulated Annealing
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® OptFlux is an open-source, user-friendly and modular
software aimed at being the reference computational tool
for metabolic engineering applications. It allows the use of
stoichiometric metabolic models for simulation and
optimization purposes.
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