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Resumo

O surgimento de tecnologias novas e disruptivas tecnologias/tendências es-
tão a revolucionar todos os sistemas projetados, desenvolvidos e fabricados pelos
nossos principais domínios da indústria. Esses sistemas tornam-se cada vez mais
complexos com a extensão das suas funcionalidades e da sua pilha tecnológica. O
automóvel é tradicionalmente um dos sistemas mais complexos e deve tal cono-
tação à importância que representa nas sociedades modernas e ao contexto deli-
cado em que atua. A evolução tecnológica está a mudar a forma como eles operam
(e.g., Condução autónoma) e como as pessoas interagem com ele (e.g., Conexão
do smartphone ao veículo).

Esta mudança de paradigma instigou o surgimento de sistemas avançados
de assistência à condução (ADAS), sistemas de informação no veículo (IVIS) e
serviços interligados [1]. Esses sistemas fornecem acesso a informação dentro do
veículo, permitindo melhorar o conforto e a segurança rodoviária. Além disso, um
grande número de funções IVIS são apresentadas em sistemas móveis computor-
izados, referidos como dispositivos nómadas (e.g., telemóveis) que não podem ser
usados durante a condução devido à indução de níveis perigosos de workload no
condutor [2, 3]. Estas tendências aumentam o workload no cockpit, podendo levar
à distração do condutor e à diminuição do desempenho da condução, resultando
em acidentes fatais [4, 5]. É neste contexto que surge o Projeto "P689 - Cockpit of
the Future: HMI Concepts and Functions", com o objetivo de desenvolver novos
conceitos, soluções e formas de interação que permitam a redução do workload do
condutor e evitar possíveis distrações durante a tarefa principal de condução.

A presente tese propõe desenvolver uma solução que aborda parte do prob-
lema apontado pelo projeto (i.e., o workload do condutor). Um sistema que avalia
e gere o nível de workload do condutor, classificando-o e propondo ações a serem
aplicadas no cockpit do veículo, a partir do contexto de condução. O objetivo do
sistema é normalizar os níveis de workload, permitindo que o condutor se concentre
exclusivamente na tarefa essencial e prioritária de condução.
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Abstract

The rise of new and disruptive technology-trends are revolutionizing all sys-
tems designed, developed and manufactured by our key industry domains. Those
systems are day-by-day becoming more complex with the extend of their func-
tionalities and their technological stack. The car is traditionally one of the most
complex systems, and it owes this status due to the importance that it represents
on modern societies and the delicate context in which it operates. Its technological
evolution is changing the way they operate (e.g., Autonomous Driving) and how
people interact with it (e.g., Smartphone connection to the vehicle).

This paradigm shift has instigated the arising and development of convo-
luted Advanced Driver Assistance Systems (ADAS), In-vehicle Information sys-
tems (IVIS) and interconnected services [1]. Those systems provide in-vehicle
access to new information, allowing the improve of comfort and enhancing road
safety. Furthermore, a great number of IVIS functions are featured on portable
computing systems, referred as nomadic devices (e.g., mobile phones) that are
not allowed to be used while driving due to the inducement of dangerous levels
of driver workload [2, 3]. These trends increase the cockpit workload, which can
instigate driver distraction and the decrement of driving performance, resulting in
fatal road accidents [4, 5]. Is in this context that the Project "P689 - Cockpit of the
Future: HMI Concepts and Functions" emerges, aiming to develop new concepts,
solutions and forms of interaction that allow the driver workload reduction and
avoid possible distractions, keeping the driver fully engaged in the primary driving
task.

The present thesis proposes to develop a solution that addresses part of the
problem pointed out by the project (i.e., the Driver Workload). A system that
assesses and manages the driver workload level by classifying it and proposing
actions to be applied in the vehicle cockpit, based on the driving context. The
overall system goal is to counteract abnormal workload levels, enabling the driver
to focus on the essential and priority driving task.
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Chapter 1

Introduction

Driver distraction is a major contributing factor to automobile crashes. Statis-
tics say that, in 2014, about 33.000 people died in traffic accidents all around
United States of America [4]. Besides, the majority of road accidents had hu-
man error as the main cause, remarking driver distraction as the main source [5].
The issue of driver distraction regarding the primary task (i.e., driving task) has
become progressively important with the increase technological evolution. This
paradigm shift lead to the introduction of complex in-vehicle technology, such as
ADAS and IVIS, and instigated the integration of electronic devices (e.g., smart-
phones, navigation systems, wearables, and wireless Internet) into vehicles [1, 26].
More specifically, the infotainment system uses the center console screen to dis-
play the navigation system, to show radio and smartphone information and even
to display multimedia content. Moreover, in the place of classical instrument clus-
ters with analog indicators, high-end screens took place for the display of speed
information and vehicle warnings. Briefly, IVIS analyzes data concerning traffic,
external environment, driving, and the vehicle in order to cater helpful informa-
tion and to provide a enhanced driving experience. The ADAS alerts the driver
to dangerous situations and increases driving safety, based on the driving context
[27]. The increasing integration of such technologies allied with the highly complex
driving environment (i.e., traffic density, visibility problems due to bad weather
conditions, complex road sections) can potentiate the aforementioned problem and
cause dangerous levels of workload by providing more distraction sources [26, 28].
Furthermore, it diverts driver’s attention away from critical activities undermining
the adoption of a safe driving posture [29].

Almost all researches and projects address usually a sub-class of the afore-
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mentioned problem, the driver workload (e.g., AIDE [2], SAVE-IT [30] or COMU-
NICAR [31]). In this context, the driver state is acknowledge and studied as a key
factor for the improvement of the interaction between the driver and the vehicle.
This interaction is often performed through Human -Machine Interfaces (HMI)
available in the car. Although in the early days encompassed only primary inter-
actions (e.g., steering wheel, accelerator and brake), evolution brought the need
to drivers to know more about the vehicle state [32]. Despite the driving safety
improvement and increased comfort that the integration of those technologies pro-
vide, drivers have to cope with a huge amount of information during the driving
task [20]. Therefore, a important question remains in the understanding of when
and how the information must be provided to the driver. This plurality of systems
and functionalities that interact with the driver is leading to the emergence of new
and complex challenges that must be addressed during the design of future HMI
solutions [33]. Solutions based on adaptive Human-Machine Interfaces allow the
adaptation of information that is presented to the driver through multiple HMI
devices. The information limitation criteria is based on driving context and the
driver state (e.g., Workload level).

In this context, the Project "P689 - Cockpit of the Future: HMI Concepts
and Functions" appears with the propose to develop concepts and solutions that al-
low forms of interaction between the driver and the vehicle that enables the driver
workload reduction and the mitigation of possible distractions associated to this
type of interactions. The P689 project aims to design and develop an advanced
HMI system appropriated for (i) semi-autonomous and autonomous driving, (ii)
capable of manage the driver workload and (iii) able to adapt itself, taking into
account the context and driving scenario [34].

The present dissertation aims to design and develop a composite system
that assesses and manages the driver workload level, based on the driving context
and a Driver-Vehicle-Environment (DVE) approach. This system makes use of a
Machine-Learning algorithm for the driver’s workload classification and, therefore,
assessing the workload (Workload Assessor). For the purpose, a Google Machine-
Learning framework, TensorFlow [17, 22], is applied. Moreover, based on the
classified level, the system proposes a specific action to the HMI system to be
applied within the vehicle cockpit. The action intends to bring the driver work-
load to an acceptable normalized level (Workload Manager). The driver history of
applied actions dictates which is the best suited action to be applied, in a specific
driving context. Prioritizing the displayed information, propose the transition to
a higher vehicle automation level or turn on the cockpit lights are part of the set
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Chapter 1. Introduction

of actions available to utilization and their application context is well defined.

1.1 Goals

The system that this dissertation intends to design and develop aims to ad-
dress a set of goals. In order to present those goals, it is essential to understand
what kind of systems will be addressed, which functionality they provide and what
they imply.

The holistic system can be decomposed in two sub-systems: (i) the Work-
load Assessor and (ii) the Workload Manager. Its main propose is to be capable of
identify and interpret possible correlations regarding the driver’s workload, based
on driver’s physiological features, vehicle telemetry and environment context vari-
ables. Furthermore, the system is capable of manage the driver’s workload by
applying actions to the HMI system according to the current driving context (i.e.,
the driver, the vehicle and the environment).

The Workload Assessor (WA) concerns the estimation of the driver’s work-
load level based on the driver, the car itself, and external environmental variables
[13]. Briefly, the WA should analyze the (i) driver’s biometric data (e.g., heart
rate, PERCLOS, etc), (ii) the car telemetry (e.g., velocity, acceleration, lateral
deviation, etc), and (iii) the driving external environment (e.g., road condition,
weather conditions, etc), and, based on these values, estimates the possible work-
load level held by the driver.

The Workload Manager system has the capability to, based on the abnormal
driver workload level, the external context, the driver state and activity, and the
vehicle automation level, propose specific actions to counter the abnormal level at
which the driver is subjected. The actions chosen to be applied to the HMI system
are specific to each driver due to the subjectivity that the reaction to a particular
action presents.

The set of goals presented below are the result of the group of tasks that
outlines the overall work to be developed, within this dissertation. Briefly, the set
of main goals regarding this dissertation are discriminated in the following points:

• Design and Development of a Workload Assessor system (which encompasses
a machine-learning algorithm that estimates the driver workload in three
levels: low, normal and high);
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1.2. Dissertation’s Structure

• Design and Development of a Workload Manager system (which encompasses
a management algorithm that proposes actions to the HMI system in order
to normalize the driver’s workload level);

• Workload Assessor and Manager integration in the Advanced HMI system
developed within the project "P689 - Cockpit of the Future: HMI Concepts
and Functions", regarding the program INNOVCAR;

1.2 Dissertation’s Structure

The present dissertation starts with a brief contextualization (Chapter 1)
about the new trends and challenges that the automotive industry faces today,
the problems that are collaterally generated and possible solutions. Moreover, an
overview regarding the dissertation purpose and the P689 project context where it
is inserted and where the development took place. Towards the end of this intro-
ductory chapter the dissertation goals proposed by the author are made known.

The Chapter 2 encompasses two main sections, which present (i) the theo-
retical basis on the concepts addressed by this dissertation and (ii) related work
developed by the science community and industrial manufacturers that address the
problem that this dissertation tries to solve. The first main section tries to present
important background in order to fully understand all the succeeding chapters that
require a stable knowledge basis for its understanding. In a first phase, concepts
regarding Human-Machine Interfaces are given, and several machine learning algo-
rithms are presented and its advantages and disadvantages exposed. Then, mental
workload concepts are clarified concerning the driver workload and its implica-
tions for driving, the workload model and its variations during the driving task,
and various types of measurement tools that enable the workload level estimation.
The second main section introduces the related work regarding machine-learning
algorithms estimating driver workload level. Moreover, a state of the art section
regarding machine learning frameworks or APIs are presented and compared. Its
main advantages and disadvantages are exposed and an overview regarding its
inner-operation is given.

The Chapter 3 describes the overall system specification. It begins with
an overview of the system’s architecture and all its modules that were designed
within the P689 project. Moreover, the modules developed in this dissertation are
highlighted and contextualized concerning the Project structure. The Workload
Assessor architecture is also detailed and the components that compose this mod-

4



Chapter 1. Introduction

ule are specified. Moreover, the integration of TensorFlow framework [17] in the
Workload Assessor development process is explained and an overview of the train-
ing and deployment pipelines are given. The Workload Manager architecture is
specified in the same terms as the Workload Assessor architecture is. The adopted
approach for its development is well explained and the justification regarding its
design is acknowledged. Furthermore, the experiment setup is specified and its
procedure explained. All scenarios that compose the experiment are given and the
details regarding how each experiment scenario was performed are presented. Also,
the data collection that took place during the experiment is specified as well as
all the features that were considered. Lastly, the development environment that
make possible the implementation phase is defined and the importance of each
component explained.

The implementation description of both Workload Assessor and Manager
using a machine-learning approach is performed in Chapter 4. The implementa-
tion of the more important modules of each system (i.e., Workload Assessor and
Manager) is detailed. These modules range from the model construction (i.e., the
machine-learning algorithm) and its training cycle to the mechanism of selection
and reward of actions to counteract abnormal levels of driver workload.

Chapter 5 presents the results regarding the performed tests. The evaluation
of the Workload Assessor module accuracy and the Workload Manager effective-
ness is exposed. Furthermore, metrics that helped in the evaluation procedure are
identified and properly explained.

Lastly, the Chapter 6 describes conclusions acquired from the developed
work, as well as all the limitations comprised from it. Moreover, some sugges-
tions that aim a future work and the improvement of the developed modules are
presented.
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Chapter 2

State of the Art

This dissertation will embrace a problem regarding the automotive domain,
specifically driver’s workload. Thus, different concepts concerning Human-Machine
Interfaces, Machine Learning algorithms and frameworks, and Mental Workload
must be addressed in this chapter, in order to better understand all the aspects
and functionalities that will support and help in the realization of the goals that
this thesis aims to achieve. Therefore, the explanation of some theoretical con-
cepts concerning the thesis domain, will compose a first section of this chapter.
Moreover, a state of the art analysis regarding machine learning frameworks or
APIs composes the final part of this introductory section. In the second section of
the chapter, solutions and approaches stated by the scientific community and the
industry to solve and address the driver workload issue are referred and explained.

2.1 Background

This section will address some concepts that will be important in order to
better understand some of the knowledge concerning this thesis. Therefore, it is
divided in two parts: (i) the first part presents Workload related concepts (Section
2.1.1) and a literature review regarding workload studies developed by the scientific
community (Section 2.1.1.4); and (ii) the second part encompasses the explanation
of some Machine Learning concepts (Section 2.1.2) and, also, of frameworks that
allow the implementation of such algorithms (Section 2.1.2.6).
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2.1. Background

2.1.1 Workload Concepts

In a simplistic way, the workload concept can be defined and perceived as a
demand placed to humans [7]. However, this is a very simplistic view since it puts
more emphasis on external demands. Therefore, workload is not reflected only on
a particular task, but also, and inherently, reports to a specific person [35]. This
means that, not only individual capabilities, but also motivation to perform a task,
strategies applied in task performance, as well as mood and operator state, affect
experienced load. Regarding the automotive domain, Roskam et al. [36] affirms
that workload is not only defined by the amount of resources required by a set of
concurrent tasks, but also by the resources needed to perform them. Therefore,
the author distinguishes three different types of workload: (i) visual workload (e.g.,
how many types of sources have the driver to look?); (ii) motor workload (e.g.,
what should the driver do with their hands or feets?); (iii) mental workload (e.g.,
how many types of information has the driver to process?). In the mental work-
load literature, task demands and the effect of it on the operator are sometimes
wrongly indicated with the same term, ’workload’. Therefore, load or workload
will be used to describe, during this document, as the effect that the demand has
on the operator in terms of stages that are used in information processing and
their energetics.

Briefly, workload is the specification of the amount of information processing
capacity that is used for task performance. More specifically, workload involves
various processes, where neurophysiologic, perceptual and cognitive processes are
included. In the concept of mental workload, how the goal is reached (e.g. the
sequence of actions) and individual restrictions imposed upon performance (e.g. in
terms of accuracy or speed) are included. Consequently, workload depends upon
the individual, and regarding to the interaction between operator and task struc-
ture, the same task demands will not result in an equal level of workload for all
individuals [7].

Directly related to demand is task complexity. Complexity increases with
an increase in the number of stages of processing that are required to perform a
task. Task demand and complexity are mainly external, but both depend upon
subjective goals set for task performance. Difficulty of a task is related to the
processing effort (amount of resources) that is required by the individual for task
performance, and is dependent upon context, state, capacity and strategy of re-
sources allocation.

Depending on the best suited degree, mental workload can vary between low
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and very high levels (i.e., underload and overload, respectively). These two edges
of the optimal level (i.e., level at which operator feels comfortable, can manage
task demands and maintains a good performance) are classified as inappropriate
and can lead to imperfect or inaccurate perceptions, as well as to low levels of
attention and capacity, and to insufficient time for a proper information process-
ing. High levels of mental workload occur when task demands exceed performer
capacity [37, 38, 10].

In this thesis scope, the assessment of workload is coupled with task demand
experienced by the driver specifically because various reactions to task demand
variations are possible. Therefore, drivers can adapt their behavior and act re-
spectively concerning an increase in demand. Its behavior change can be accom-
plished by the modification of their strategy and task goals and comply with a
lower performance level. Due to the highly subjective workload assessment, be-
tween individuals, strategies will also differ and effectiveness and the required effort
to reach the same level of performance will different. Regarding the coping with
the demand, the effort will grow while performance remains at the same level.
Therefore, in this case, performance measures will not reflect any change and be
insensitive to the increase in workload, while other measures, such as self-report
ratings or physiological measures, may well give an indication of effort carried out.
In scenarios in which a change in the driver strategy occurs, measures of effort
may remain unchanged or even show a decrease, while performance measures will
indicate decreased task performance [7].

2.1.1.1 Driver Workload

The workload related to the driver must be considered individually by identi-
fying the most affecting factors. Therefore, a model of the main task of the driver is
useful in mental workload research in driving. As stated in [7], a simple definition
of the role of the primary task is to have a safe control of the vehicle concerning
the traffic environment. However, due to the dynamic control of the driving task,
that is related with the continuously changing environment, and since this task
is influenced by external traffic drivers, the driver primary task definition must
be more complex in order to truly represent car driving complexity. Therefore,
a more complex task definition is presented in [39]. This definition purposes the
task decomposition in minimum a of three levels hierarchically structured:

• Strategic Level - at the top level, it is where strategic decisions are made
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(e.g., setting a route destination or route-choice while driving);

• Manoeuvring Level - at the intermediate level, it is where reactions to situ-
ational traffic events take place;

• Control Level - at the bottom level, it is where basic control processes of the
vehicle happen (e.g., lateral-position control);

Increasing demands at all three levels can surpass driver capacity, and even-
tually result in affected performance at all levels.

The driver workload can be influenced by several variables. Sources of it can
be found both inside and outside of the vehicle (e.g., crossing a complex junction
or an important phone call). Due to the highly visual component of driving, the
main demands that affect the driver are on visual and mental resources. However,
the continuous technology development instigates the introduction of intelligent
in-car devices that raise the driver mental effort and the allocation of auditory
resources. Therefore, these devices will increase driver mental workload and affect
performance negatively.

Another problem that affects the driver is concerned with information pro-
cessing. The introduction of the aforementioned intelligent devices in the cockpit
habitat will impose an overload on information assimilation. Consequently, driver
workload will be affected, causing performance deterioration [7].

The paradigm shift that cars are experience is changing the way we drive
with the increase of semi- and fully-autonomous driving vehicles surfacing in the
market day-by-day. In this scenarios, drivers are not responsible to take manual
control of the steering wheel or even the gas pedal. Allied to this condition, new
technologies that increase the comfort and the driving experience are removing the
driving task responsibility of the driver. Therefore, this technology and paradigm
will lead to monotony and have the opposite effect of driver overload. With those
events, underload will affect the driver, being as well a workload state that must
be assessed and managed.

In order to better understand which factors affect driver workload, a sum-
mary is presented in Table 2.1. These factors affect driver workload either by
increasing or decreasing it.
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Table 2.1: Driver Workload factors [7].

Driver State factors Driver Trait factors Environmental Factors
Monotony Experience Road environment
Fatigue Age Traffic demands

Distraction Strategy Automation
Drugs Mood System’s feedback
Alcohol

2.1.1.2 Mental Workload, Task Demand and Performance Model

As stated in the literature, mental workload, task demand and performance
have an inherent relationship. In 1976, Meister [6] proposed an evaluation model
that incorporates those concepts. It was divided in three regions, A, B and C,
depending on the task demand, workload and the way performance is affected
(Figure 2.1):

• In region A, the task demand is low, as well as the workload and, conse-
quently, the performance is considered at an high level. If, for some reason,
in this region, an increase in demand takes place, performance efficiency will
not be compromised.

• In region B, performance level decrease due to the increase of task demand,
possibly resulting in an increase of workload.

• In region C, performance is dramatically decreased due to the increase of
task demand level and high levels of workload.

Regarding the simplicity of this model [6], De Waard [7] proposed an im-
provement to that model by adding a new region D that is located before the
region A. The aim of this deactivation region is to represent the effects and im-
plications of monotonous task performance. Considering its low demand level,
monotonous tasks may force an increase of task difficulty by reducing capacity,
which happens in monotony and boredom. In order to counter the increase in task
difficulty, the operator will apply a greater ability to perform it and, consequently,
mental workload will increase.

Despite all the notions regarding how and when the driver mental workload
increases, the knowledge of how much workload remains unexplored/unmapped.
In order to try to solve this knowledge gap, De Waard [7] proposes a decompo-
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Figure 2.1: Mental workload, task demand and performance evaluation model proposed
by Meister [6].

sition of the region A in several sub-regions by virtue of delineate a "red line"
that represents the exact moment that the decrease performance happens. This
proposal divides the region A in three sub-regions: in the middle part of region
A2, operator can easily handle with task demand and performance remains at a
stable level even when there is an increase in task demand (i.e., there is not an
increasing of effort); in sub-region A3, operator is only able to maintain the level
of performance by increasing effort, but evaluation measures do not show a de-
cline of performance. A episodic application of extra effort in region A3 is one
of the human flexibility advantages and is not considered as critical. However, if
effort is continuously required to ensure performance, this can lead to stress and
this situation has to be avoided. At this time, there may arise a critical moment,
where operator can lose control of the situation (i.e., red line). If effort increases,
task demand increases and performance drops, it seems suitable to assume that
the critical moment for mental workload is during the transition from sub-region
A2 to A3. In turn, the transition from region D to region A1 is associated with
monotony practiced by the operator when he undertakes a major effort for not de-
creasing performance level. Thus, it is through a greater effort that operator does
not change his performance. A second workload redline appears at the transition
from region A2 to A1, where the operator is effectively counteracting a reduced
operator state. When the investment of effort is no longer effective, the D-region
is entered where performance is affected [7, 40].
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Figure 2.2: Mental workload, task demand and performance model divided in 6 regions,
proposed by Dick DeWaard [7].

The model representation of task demand, performance and workload is de-
picted in Figure 2.2 (task demand on the x-axis is not directly linked to region
of performance). Task demands relies on the goals that have to be reached by
task performance and are not directly related to workload, thus being subjective.
Each region in the model just indicates the behavior correlation between work-
load and task performance. Therefore, the same task can result in performance
in region A2 for one person, and for another may require effort compensation and
thus region A3 performance for another. Besides, Figure 2.2, presents two types
of effort compensation divided in two regions: (i) the A1 region, deactivation is
compensated by state-related effort; (ii) the region A3 the compensation is made
through task-related effort. However, this model only represents one dimension of
mental workload. What is depicted denotes the overall or sum relation between
demand, workload and performance.

2.1.1.3 Measurement Tools

A literature review on methodologies for measuring workload shown the need
to address the selection criteria for measurement tools [41]:

• Sensitivity - if the technique or tool can discriminate between different
levels of workload (i.e., is the technique able to reflect changes in workload?);

• Diagnosticity - if the technique or tool can distinguish different types of
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workload (i.e., how capable is the measure in reflecting demands on specific
resources?).

Additional criteria was proposed in [7], regarding primary task interference.
Referring that the introduction of a new task can damage performance of a prior-
ity task (i.e., the degree to which a technique degrades ordinary or primary task
performance).

Regarding the measurement tools in plenitude, the literature propose three
workload measurement groups: (i) subjective measure (i.e., self-report measures),
(ii) performance measures and (iii) physiological measures [7, 37, 40, 41]. Briefly,
the physiological measurement is based on the concept that increased mental de-
mands lead to increased physical response. These changes are measured in signals
such as cardiac activity, brain activity, respiratory activity, speech measures and
eye activity. The subjective measurement is based on the use of rankings or scales
to measure the amount of workload a person is feeling. These measures are devoted
primarily to the intermittent question-answer type response to detect varying lev-
els of workload. The two main types of scales used to measure subjective workload
are unidimensional and multidimensional scales. Performance measurement relies
on examining the capacity of the subject to perform either a primary and a sec-
ondary task. By measuring how well a person performs the task, or how their
performance worsens with increasing workload, an estimate of mental workload
can be determined.

An overview of the aforementioned measures will be given in the following
sub-sections, as well as an analysis regarding the relation between measurement
tools.

2.1.1.3.1 Self-report Measures

Self-report measures are often known as subjective measures. However, the
correct term is self-report since there are other measurement groups that are also
subjective (e.g., physiological measures).
Self-report measures consist in the application of measures to the driver, focus-
ing on the perceived level of task demand, and it is widely used in projects and
research. These measures are often used by researchers due to the accurate judg-
ment regarding the person’s experienced mental load [7]. It is also stated as least
intrusive, most flexible, least time consuming, and least expensive form of evaluat-
ing workload. However, some may not trust in self-report measures arguing that
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physical and mental workload are hard to separate, and the person may be unable
to distinguish between what are external task demands and mental effort experi-
enced, and to quantify the mental effort invested [40, 41]. Moreover, some people
may not have the ability to detect internal changes [37]. Also as a drawback, they
do not provide a continuous form of measurement. Measurements can be taken
during the task, but should not affect performance of the primary task perfor-
mance. For example, if a person needs to complete a NASA-TLX questionnaire
[42, 43] while they are driving over a difficult section of road, it violates the safety
driving concerns. It was found that it is not necessary to subjectively interview a
person during or immediately following the difficult section. However, long delays
may interfere with workload score reporting.

Different dimensions of workload, such as performance and effort, are in-
corporated in self-report measures while at the same time individual fluctuations,
operator state and attitude are also taken into account.

Regarding the previous workload model (Figure 2.2), most self-report mea-
sures are sensitive to all regions, except region A2. In the A1 and A3 region,
ratings of effort could indicate the increase in workload.

The self-report measures are divided in two different topologies: unidimen-
sional or multidimensional. These two topologies are, respectively, related to the
evaluation of one or more dimensions concerning mental workload. Unidimensional
rating scales are considered the simplest to use because there are no complicated
analysis techniques. The multidimensional workload scale is considered to be a
more complex and more time-consuming form of measurement, and has from three
to six dimensions [44].

Unidimensional Measures

Unidimensional measures are often considered to be too simple to measure the
complexity of workload, but recent research concluded that they outperform mul-
tidimensional scales [45]. It is possible to use a single scale to evaluate all tasks,
despite their huge diversity in modalities, mental operations and response modes.
They are the easiest and least time-consuming to both measure and analyze work-
load. Some unidimensional measures are briefly explained on the next points:
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• The Modified Cooper-Harper (MCH) scale is a 10-point unidimensional rat-
ing scale to evaluate the global workload. This study was developed to be a
change from the psychomotor Cooper-Harper scale and increase the range of
applicability to situations commonly found in modern systems. The MCH
scale is used to measure perceptual, cognitive, and communications workload
[46, 47].

• The Rating Scale Mental Effort (RSME) scale is a unidimensional scale.
Ratings of invested effort are indicated by a cross on a continuous line. The
line runs from 0 to 150 mm, and every 10 mm is marked. Along vertical
line there are some landmarks identified with a verbal descriptor of effort,
ranging from “no effort” to “extreme effort”. It should be noted that RSME
is increasingly used to assess mental workload on traffic sector [48].

Briefly, although presenting some sensitivity to changes in task difficulty,
MCH is not as sensitive measuring mental workload as NASA-TLX (multidimen-
sional scale), or as RSME [40].

Multidimensional Measures

Regarding multidimensional measures, is the most widely used and accepted
way to assess workload by subjective means. There are currently two main mul-
tidimensional measures being used in the real-world and simulated environment,
the NASA-Task Load Index (NASA-TLX) scale, and the Subjective Workload As-
sessment Technique (SWAT). There are also several other scales that are less well
known. The multidimensional nature of the scales provide a more in-depth anal-
ysis of the many aspects of workload, where the one-dimensional scales cannot.
Generally, the multidimensional form of measurement takes more time to com-
plete, so it is hard to use a multidimensional scale during a study. Not only is the
gathering of results time-consuming, the analysis takes time as well. In order to
better understand how this multidimensional measures work, a brief explanation
about the aforementioned measures will be given in the following points:

• The NASA Task Load Index uses six dimensions to assess workload: men-
tal demand, physical demand, temporal demand, performance, effort, and
frustration. Twenty-step bipolar scales are used to obtain ratings for these
dimensions and score from 0 to 100 is obtained on each scale. This scale uses
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a weighting process that requires a paired comparison task. The task requires
the operator to choose which dimension is more relevant to workload for a
particular task across all pairs of the six dimensions. The workload scale is
obtained for each task by multiplying the weight by the individual dimen-
sion scale score, summing across scales, and dividing by the total weights.
Generally, the NASA-TLX is an extremely good multidimensional scale for
measuring mental workload with high sensitivity to changes in workload,
however the time needed to complete and analyze the test, presents as a
drawback. Recently, a different type of TLX scale was developed called the
NASA Raw Task Load Index (NASARTLX). This scale was developed be-
cause the collection and analysis of the original TLX scale was cumbersome
and labor intensive. The RTLX computes a score by taking the sum of the
TLX test and dividing it by six. This new way to score the NASA-TLX was
found to be almost equivalent to the original TLX scale with far less time
involved for analysis [42].

• The Subjective Workload Assessment Technique uses three levels – low,
medium, and high – for each of the three dimensions of time load, men-
tal load, and physiological stress load to assess workload. This multidimen-
sional test uses three steps to complete and analyze workload. The first step
is scale development, which combines all the possible combinations of the
three dimensions in 27 cards. The person sorts the cards into a ranking that
reflects his or her perception of increasing workload. The rankings are used
to develop a scale with interval properties. The second step is rating the
workload. The third step is to convert the scores into a 0 to 100 scale using
the scale developed in step one. When the SWAT scale is compared to the
NASA-TLX, the TLX scale is generally considered to be the better scale for
measuring mental workload [44].

• The Driving Activity Load Index (DALI), a revised version of the NASA-
TLX, is designed to evaluate the workload during the driving task. As in the
NASA-TLX, it is a scale rating procedure for six pre-defined factors (i.e.,
effort of attention, visual demand, auditory demand, temporal demand, in-
terference, and situational stress) that measures the perceptual load, mental
workload, and drivers state. To each factor, a six point scale can be at-
tributed, between Low (0) and High (5), and followed by a weighting proce-
dure in order to combine the six individual scales into a global score. The
subjects are asked to relate the given driving task to what they consider to
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be normal driving conditions. In terms of comparison to the NASA-TLX,
the main difference is based in the choice of the main factors that make up
the workload score to adapt to the driving context [49].

In this way, it is important to mind that unidimensional scales have been
more appropriate when assessing mental workload aims to determine a single gen-
eral measure [40]. Additionally, if unidimensional scales are used separately in
each dimension of the task, they also can provide multidimensional properties [7].

2.1.1.3.2 Performance Measures

Performance measures are based on techniques of direct registration of driver’s
ability to perform the driving task at a level that is considered acceptable and safe,
and also properly maintain the vehicle on the road preserving the safety of all par-
ticipants in it. Therefore, it may be defined as the effectiveness in accomplishing a
task. Generally, it can consider two main ways to measure workload by means of
performance: (i) direct measurements (i.e., they are only focused on performance
of the main or primary driving task); (ii) indirect measurements (i.e., which as-
sociate a secondary task to the primary driving task). The basic assumption for
using primary and secondary tasks to measure workload is to assume that people
have limited resources. The tasks that demand the same resource structure will
reveal performance decrements when time-shared and further decrements when
the difficulty of one or both is manipulated. This means that workload can be
estimated by measuring the decrease in performance by either the primary or
secondary tasks. The primary task measure is a more direct way to measure work-
load than the secondary task measure, but both are used and at least moderately
accepted [7, 40].

Primary Task

Primary task performance measurement assesses the workload based on the
capability to perform the main task. This is a direct and non-intrusive form of
measurement. It must be individually determined for each situation and may in-
clude measuring lateral control (steering wheel movements, lateral deviation), lane-
keeping behavior, longitudinal control (speed control), and Time-to-Line Crossing
(TLC) in driving situations. It was found that steering wheel movements, particu-
larly wheel reversals, are sensitive to changes in workload. Speed has been shown
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to decrease as workload increases, it is a sensitive measure, but can be disrupted
by changes in traffic. Time-to-Line Crossing is defined as the time required for the
vehicle to reach either the center or edge line of the driving lane if no further cor-
rective steering wheel movements are executed, and as mental workload increases,
TLC increases. One of the problems associated with strictly using the performance
on a primary task is that it does not consider spare mental capacity. For example,
two tasks may be performed equally, but one person’s mental capacity may be
pushed to its limits while another person’s mental capacity is not pushed at all.
Another problem with using primary performance measures to estimate workload
is motivation. When people are more motivated, their workload may increase, but
their performance might not increase to the same extent. It is also hard to mea-
sure changes to performance due to workload, unless the workload is very high.
Changing from a low to medium level of workload probably will not produce a
change in performance even though workload is increasing [7].

Secondary Task

The secondary task is an additional measure to the primary task. The con-
cept for the secondary task is that it measures the difference between the men-
tal capacity consumed by the main task, and the total available capacity. Poor
dual-task performance would suggest competition for many of the same resources,
whereas efficient dual-task performance would suggest little resource competition.
An advantage of secondary measurement over primary measurement is that it can
determine if there is any spare mental capacity. The problem with embedded tasks
is that they may not be less important than the primary task. For a secondary
task to be used, less importance must be placed on it than the primary task.
Artificial tasks like addition or simple mathematical computations are considered
good secondary tasks. The problem with artificial tasks is the intrusion factor.
Artificial tasks may intrude on other workload measures. The major problem that
may occur when secondary tasks are used to measure workload is that they may
disrupt primary task performance. Some people may not perform the primary
task before they perform the secondary task. This causes problems for measure-
ment of changes in performance of the secondary task. When determining the
validity of different measures of workload, it is imperative that the primary and
secondary tasks use the same resource. For example, a primary measure that is
visual must be coupled with a secondary measure that is also visual to achieve the
best measure of performance. Many of the discrepancies between and within the
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different measures of workload are due to inaccurate or poor collection of the data.
It is important to keep safety in mind when choosing a secondary task because
the performance may be degraded to the point that it becomes dangerous when
workload is too high [7].

2.1.1.3.3 Physiological Measures

Physiological measures evaluate the answers given by peripheral and central
nervous system during driving performance, and may involve, in particular: (a)
heartbeat measuring; (b) electroencephalogram; (c) electrocardiogram; (d) eval-
uation of eye movement and pupil dilation; (e) blood pressure evaluation; (f)
assessment of breath levels; (g) assessment of electrodermal activity; and (h) de-
termination of hormone levels. Their main advantage lies in the fact that they do
not involve a clear and objective response from the driver, e.g., they do not require
an overt response by the operator, and most cognitive tasks do not require overt
behavior. Physiological measures are sensitive to changes in mental workload levels
before registering clear decrements in driving performance. Moreover, most of the
measures can be collected continuously, while measurement is nowadays relatively
unobtrusive due to miniaturization. This logic is not always supported since the
body also responds physiologically to things other than mental workload. When
an increase in mental task difficulty is coupled with increased physical workload,
the results may be skewed. Each of the physiological workload measures must be
examined individually to find the relation between the physiological responses due
to physical activity and mental activity. Most research focuses on five physiologi-
cal areas to measure workload: cardiac activity, respiratory activity, eye activity,
speech measures, and brain activity [7, 40, 50].

Cardiac Measure

The most common physiological workload measurement regards the cardiac
monitoring. Cardiac measures are often used because they are easy to evaluate
and are considered a reliable indicator of workload. Heart rate measurement is the
most common and reliable measure of workload by cardiac means. It is an exact
measurement since the signals can be measured in the form of beats, which are
easily identifiable. Generally, it is assumed that heart rate increases with increas-
ing workload. However, not all studies agree with these conclusions. A percentage
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of articles are reluctant of the utilization of heart rate for the workload measure-
ment due to the influence that some factors (e.g., psychological, environmental,
and emotional) can have on it [45]. It is important to remember that heart rate
varies by individual. When using heart rate as a measurement tool, it is necessary
to find a baseline measurement of the heart rate to compare as a reference.

Another cardiac workload measure is heart rate variability (HRV). HRV mea-
sures the inter-beat intervals of the heartbeat over time. This measure is not used
as extensively as heart rate, but many studies focus on the use of HRV to study
workload due to its novelty and promising area of research. When the spectrum
is divided into three parts, there is a lower band that is associated with regulation
of body temperature from 0.02 to 0.06 Hz, a middle band that is associated with
blood pressure regulation from 0.07 to 0.14 Hz, and a high band associated with
respiration from 0.10 to 50 Hz. There is not one standard method to measure
HRV, although the most common method for scoring HRV encompasses the calcu-
lation of the standard deviation or variance of the inter-beat intervals over a given
time, or for a given number of beats. On the other hand, some studies shows that
speech, respiration, muscle activity, body position, physical fitness, and age can
influence the results of HRV. It was also found that psychological factors like phys-
ical fatigue may also influence HRV. Another problem with HRV measures is time
considerations. Some spectral analysis techniques require a minimum of three to
five minutes of data to correctly resolve low frequency components. While driving,
this may be a problem because the event of interest may not be long enough to
get an accurate measure.

Blood pressure is usually a secondary measurement of workload. It is not
widely used because it is a more obtrusive measure than heart rate or heart rate
variability. Although blood pressure is found to increase as workload increases, it
does not provide any more detailed information about workload than heart rate
[51, 52].

Respiratory Measure

There are several ways to use respiratory measures to find mental workload.
Some can be used in real-world settings, while others can only be measured in a
laboratory setting. The most common type of respiratory measurement is breath-
ing rate. Other measures include monitoring the volume of air entering and exiting
the lungs and measuring the amount of carbon dioxide in expired air. Almost all
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Figure 2.3: ECG readings in the form of a PQRST graph or waves. The first wave (P
wave) indicates the contraction of the auricles, the second section (RQS wave) represents
ventricles contraction and the third ST wave indicates the ventricles relaxation when
filling with blood form the auricles. Moreover, it depicts a normal versus abnormal ECG
readings [8].

research conducted on respiration uses rate to determine workload. Respiratory
rate measures the number of breaths per minute. Measuring breathing rate is a
very easy and unobtrusive indicator of mental load. It is generally agreed that an
increase in respiratory rate is indicative of increased workload. Respiratory rate
has also been used extensively as an indicator of emotional states, stress, arousal,
and mental load. However, sensitivity to other factors other than increased mental
workload may cause problems in reliability and consistency. Respiration rate in-
fluences other measures of workload, for example heart rate variance. Moreover, it
is necessary to measure respiration if measuring HRV in order to find a comparison
between the two. One problem associated with the measurement of breathing rate
is that it can be interrupted by speech. Talking and breathing are interconnected
in most real-world situations, so it is hard to apply respiratory rates to situations
where speech is involved. Measuring the air volume flow and the amount of carbon
dioxide expelled during breathing is not studied as extensively as simply measur-
ing respiratory rate. One reason for not examining the effects of workload on
these measures is that it is much harder to calculate the amount of air and carbon
dioxide flow than the number of breaths per unit time, without being obtrusive.
Most research supports the notion that volume decreases as workload increases.
On the other hand, there is conflicting evidence that flow volume is not affected
by changes in workload [7].

22



Chapter 2. State of the Art

Eye Measure

Several measures use physiological changes in the eye to determine mental and
visual workload. Despite the fact that the eye is related fundamentally with visual
workload, it has been demonstrated that some measures can also precisely predict
mental workload regarding some tasks [45]. The measures mostly associated with
the eye are horizontal activity, blink rate, and interval of closure. Different mea-
sures incorporate eye fixation and pupil diameter. Associated with visual activity
is the electrooculogram (EOG) that is a brain activity measure and will be dis-
cussed in further ahead. Eye blink rate is the number of eye closures in a given
amount of time and the interval of closure is defined as the time spent blinking.
Although measuring eye blink rate is easy, the results are mixed. It is generally
accepted that eye blinks are good at measuring visual workload. Eye blinks and
blink duration decrease with increasing visual workload. Environmental changes
may also influence eye blink and its duration. When there are changes in light or
air quality, eye blink rate may also change. Several other eye activity measures
show promise in measuring visual and mental workload. The most promising is
horizontal eye movement (HEM). HEM involves the scanning eye movements that
are used to acquire information. Typically, HEM would measure glances at the
speedometer, side mirrors, or rear-view mirror. This measure was found to be a
good indicator of visual and mental workload, but there are not many studies that
examine HEMs to estimate mental workload. As workload increased, it was found
that HEMs increase. Pupil diameter may be another good way of estimating men-
tal workload under certain conditions. Pupil diameter is found to increase with
increasing mental workload. Eye fixations are another measure used to estimate
mental workload and they measure the amount of time the eye spends looking at
a selected object [7].

Speech Measure

Speech measures are rarely studied as tools for measuring workload. One possi-
ble reason for not using speech to find workload is that it is difficult to take exact
measures of different aspects of speaking. The six measures most often used to
measure speech are pitch, rate, loudness, jitter, shimmer, and a derived speech
measure. It was found that the three speech measures affected by workload are
pitch, loudness, and rate. These three measures all increase as task difficulty in-
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creases. The derived speech measure was found to have the most correlation to
workload demands. Since not much research is devoted to using the voice to mea-
sure workload, the information is not corroborated. This may lead to problems
when exact measures are needed to determine workload [53].

Brain Activity

All the previous physiological means for measuring workload employ indirect
means to gather data, since all these data are influenced by signals the brain sends
when experiencing different amounts of mental load. The brain is responsible for
processing information, making decisions and initiating actions on the external
environment. It is generally agreed that the most precise measurement of mental
workload comes directly from measuring the activity of the brain, not to mention
that it provides good temporal resolution of cognitive activity. Although brain
activity measurement does not directly interfere with the task, the gathering of
the data may be distracting and intrusive. A major problem with measuring brain
activity is that specialized equipment is needed and, in some cases, can be intru-
sive.

The electroencephalogram (EEG) is by far the most studied and accepted
form of workload measurement that uses brain activity. EEG signals are generally
classified into four bands: up to 4Hz (Delta waves), 4 to 8 Hz (Theta waves), 8
to 13 Hz (Alpha waves), more than 13 Hz (Beta waves). When there is an in-
crease in mental workload, the EEG shows that the Alpha waves disappear and
are replaced by Beta waves. Generally, as mental workload increases, theta waves
increases and alpha decreases. One well known problem regarding this type of
measure regards to physical movements that may cause problems in the analysis
of the EEG. The electrooculogram (EOG) is primarily used for measuring saccadic
eye movements. This measure is another form of measuring eye blink rate and eye
closure interval. Not much research is presently being conducted on the benefits
of using electrooculogram for workload measurement. This may be due to the
intrusiveness of the measure. This type of measure seems to be a good indicator
of visual workload, but there are not enough studies to determine whether the
electrooculogram results agree with other types of visual workload measures like
eye blink rate. The EOG is intrusive, and also expensive to implement [54].
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Figure 2.4: Representation of the appropriate placement position of electrodes for the
measurement of Electroencephalogram, Electrooculogram, and Electromyogram signals
[9].

Others

There are several brain activity measures that are not studied as exten-
sively as the aforementioned. These measures may hold some promise in mental
workload measurement. The use of the electromyogram (EMG) is a new but
promising measure of mental workload. The EMG measures task irrelevant facial
muscles that are not required in the motor performance of that task. Different
facial muscles are found to be differentially sensitive to changes in mental work-
load. Other changes that deal with physiological changes in parts of the body
other than the brain may hold some potential for measurement of workload. Elec-
trodermal activity (EDA) measures electrical changes in the skin. As workload
increases, EDA was found to increase. The measure is not very selective because
many factors were found to affect EDA. Changes in hormone levels are related
to extremely stressful situations. Hormone levels are usually used for long-term
studies on workload [7].

2.1.1.3.4 Summary Table

Table 2.2 presented below gathers all the measures that were addressed in
this chapter and sums all the information related to them. Moreover, some consid-
erations about it will be taken regarding the use of measures from different groups
or types.
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Table 2.2: Summary and analysis of Workload measures

Measure Result of
Increased WL Benefits Drawbacks

Heart Rate Increases
Widely accepted
and studied, easy

to measure

(1) May not be
completely reliable;
(2)Does not measure
absolute levels of work

Heart Rate
Variability Decreases

Some studies
indicate better

accuracy than HR

(1) Not widely
studied or accepted;
(2) Influenced by

respiration equipment

Blood Pressure Increases Can be used to
calculate modulus

(1) Not widely studied
accepted;

(2) No more information
than HR or HRV

Respiratory Increases
Rate Easy,
unobtrusive,

sensitive, reliable

Influenced by emotion,
stress, speech

Electro
encephalogram

Alpha waves
replaced by Beta

waves

Extremely
accurate,
reliable,

catches changes

(1) Obtrusive, requires
special equipment;

(2)Other measures may
miss and training, may
not be cost effective

Electro
oculogram

Less jumps in
data (Gaze and
blink rate)

Accurate for
visual measures

Not widely used,
obtrusive, requires special
equipment and training

Eye Blink
Measures

(1) Rate
decreases;(2) Pupil
diameter increases

Most accurate for
visual workload

Not as accurate as
other workload measures

Speech
Measures

Pitch, loudness,
and rate increase

Can be used to
determine
influence on

HRV

Not studied, speech
not important for all

applications

Modified
Cooper-Harper

Scale
Higher rating Fast, fairly

accurate
Conflicting opinions,
considered hard to use

Overall
Workload

Scale
Higher rating

Fast, accurate for
unidimensional scale;
easy to administer,
prepare for and

analyze

Mainly used for
identifying

"chokepoints"
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Measure Result of
Increased WL Benefits Drawbacks

NASA Task
Load Index

Scale
Higher rating Accurate, valid

Takes a long time
to administer and

analyze

Subjective
Workload

Assessment
Technique

Higher rating
May be more

sensitive to difficulty
increase than TLX

(1) Reports of high
failure in analysis

of results;
(2) No agreement on
accuracy or sensitivity

DALI Higher rating Identify the origins
of driver workload

Factors are not linked
to specific aspects
of the driving task

Primary Task Decreases Accurate to changes
in workload

Not accurate when
low levels of workload

Secondary Task Decreases
Finds spare mental
capacity better
than Primary

May interfere with
task, not accepted

As stated during this chapter regarding each measurement group and tech-
nique it is possible to discriminate groups of measures. Accordingly, two groups of
techniques to measure mental workload can be differentiated [55]: (i) first group
assumes that it is possible to obtain a global measure of mental workload, compa-
rable to single-resource use (e.g., self-report measures, performance measures and
physiological measures that are arousal-related); (ii) the other group are diagnostic
procedures that are linked to theories of multiple resources (e.g., secondary-task
techniques and some of the physiological measures). It is possible that single-
resource theories and global workload measures are in many cases applicable,
simply because task demands in one dimension predominates. In general, and
particularly in most applied settings, measures from both groups are useful [7].

Another important consideration to highlight is that not all measures are
sensitive to workload in the same area of performance, and dissociation between
measures of different categories was already reported [7]. A dissociation well known
is between self-report and performance measures, although having some authors
that address another dissociation between self-report and physiological measure
[56]. This dissociation between measures happens due to the lack of correlation
to changes in workload, or if one measure stats a decrease in workload while the
other indicates an increase. One explanation to this phenomenon is a differential
sensitivity of different measures to particular sources. For example, performance
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is affected by amount of resources invested, by resource efficiency and by compe-
tition for a resource, while subjective workload perception is affected by amount
of resources invested and by demands on working memory [7].

2.1.1.4 Related Work

The task of a Driver Workload estimation is to identify driver’s workload sta-
tus from the observations of driver’s behavior. Some old researches on cognitive
workload estimation followed a pattern that, briefly, consist of an initial analysis
of the correlation between various features, that relate with human behavior, and
the subsequent model’s design to generate a workload index by combining features
of high correlation. This approach can be referred as a manual DWE design pro-
cess methodology. Obviously, it can raise some doubts regarding the robustness of
the estimator due to the dependence of a strong domain knowledge in the field of
human behavior and the inefficiency of a manual data analysis and modeling con-
sidering the enormous list of features related to driver’s cognitive workload. One
alternative approach to this paradigm is the learning-based DWE design process.
In other words, alternatively to analyzing manually the meaning of each feature
or a small set of features, it can be considered the complete set of features at the
same time using machine-learning techniques, in order to adjust the DWE module
and obtain an optimized model that will provide the correct workload index.

The effectiveness of machine-learning in discovering the subjacent structure
of data and in generating precise models, supported its introduction in this field
since experts could not discover effectively, from domain knowledge, such inner in-
formation and models. Lately, this is the approach that a huge part of researchers
are adopting in the designing of theirs workload estimators.

2.1.1.4.1 Driver Cognitive Workload Estimation: a Data-driven Per-
spective

Zhang Y., Owechko Y., and Zhang J. [10] proposed a machine-learning-based
design process for driver cognitive workload estimation. The learning-based DWE
design process conducted in this study is depicted in the Figure 2.5.

One of the most widely used method for inductive inference, the Decision-
Tree, was used as a learning algorithm in this study, through a decision-tree learn-
ing software named See5 (developed by Quinlan). In order to improve the perfor-
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Figure 2.5: The learning-based DWE development process [10].

mance, a well-known used training mechanism called Boosting was used.
Database for training the machine learning algorithm was composed by sim-

ulated vehicle data and driver’s behavior data. The simulated vehicle data was
collected from a driving simulator supported by General Motors. This simulator
was equipped with a non-force feedback Microsoft Sidewinder USB steering wheel
together with the accelerator and brake pedals.

The data collected from the simulator encompasses vehicle speed and ac-
celeration, steering angle, lateral acceleration and lane position, being transposed
and used in terms of means and standard deviations. The driver behavior’s moni-
toring was made using a gaze tracking system, installed in the subject’s computer,
composed by a remote monocular eye-tracker and a head tracker. This system
measures the pupil diameter and the point of gaze.

During the experiment, twelve students participated in the simulation sce-
narios. Each participant drove the simulator in three different driving scenarios:
highway, urban and rural. Each scenario, with 8 to 10 minute duration, was
divided in two sessions where the participants were asked to perform secondary
tasks (two verbal tasks and two spatial-imagery tasks). These tasks were per-
formed during four different periods of thirty seconds. The verbal task consisted
in the construction of words starting with a designated letter. On the other hand,
in the spatial-imagery task, subjects were asked to imagine the letters from A to
Z with one of the following characteristics: (i) remaining unchanged when flipped
sideways, (ii) remaining unchanged when flipped upside down, (iii) containing a
close part such as "A", (iv) having no enclosed part, (v) containing a horizontal
line or (vi) containing a vertical line. In each session, a 2 minute period was es-
tablished as a control session, where no secondary tasks were introduced.

Dataset labeling was not done by directly assess the driver’s workload, through
a subject workload assessment. Instead, based on the assumption that the more
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tasks a driver has to handle at a time, the more resources he is consuming and the
higher workload he is bearing, the study’s authors labeled all the sensor inputs
that concern to dual-task periods with high workload. Similarly, sensor inputs
concerning normal control periods were labeled with low workload.

Training was performed with different See5 decision trees, where each one
was trained with various combinations of features. The results showed that the
best performance achieved by the algorithm was 81% when using all of features in
training. The Eyegaze-related features were concluded to be more predictive when
comparing to driving-performance features since the removing of these features
from training set reduced the correct prediction rate by only one percentage point,
from 81% to 80% (Table 2.4).

Study’s authors concluded that the machine learning algorithm provided a
good performance when estimating the driver’s workload index, considering the
difficulty of cognitive workload estimation. Also, since a general machine learning
package was used as an inference tool, a customized algorithm could provide a
better performance than a general-purpose one.

Table 2.4: Correct prediction rates in the task-level training with different features
combinations [10].

Feature Combination Correct Prediction Rate (%)
All features 81

Eyegaze-related features 80
All but pupil-diameter features 70
Pupil-diameter features only 61
Driving-performance features 60

2.1.1.4.2 Driver Cognitive Workload Estimation using Support Vector
Machines

Son et al. [11] suggests several approaches for identifying driver’s cognitive
workload. The inference model implemented in this study was enforced using a
machine-learning technique, based on statistical learning theory: Support Vector
Machines.

For the algorithm training, driving performance, physiological response and
eye movement data was considered. The driving performance data was collected
using a fixed-based driving simulator with a car cab shape. The virtual roadway
was displayed on a 2.5 meters by 2.5 meters wall-mounted screen and sensory
feedback was provided to the driver through an auditory and kinetic channels.
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Such data encompasses driving distance, speed, steering throttle and braking in-
puts, captured at a 30 Hz sampling rate. The physiological an eye behavior data
were, respectively, collected using the MEDAC System (NeuroDyne Medical Corp.,
Cambridge, MA) and the FaceLAB eye tracking system (Seeing Machines Ltd.,
Canberra, Australia).

A preprocessing phase took place on the aforementioned data, resulting in
six different features from the aforementioned three domains that were selected as
SVM models’ input features to detect driver’s cognitive workload. Standard devi-
ation of lane position (SDLP) and steering wheel reversal rate (SRR) are related
to features specified in driving performance domain. Heart rate (HR) and skin
conductance level (SCL) are features that represents the physiological domain and
the standard deviation of horizontal gaze (SDHG). And lastly, standard deviation
of vertical gaze (SDVG) are related to features representing the eye behavior. An
experiment was conducted in the previously described simulator and followed the
procedure illustrated in Figure 2.6.

Figure 2.6: Experimental setup and procedure [11].

Since one of the study’s premises was to consider age differences, subjects
for collecting training and testing data were expanded to older drivers. Therefore,
some requirements were imposed when selecting subjects: (i) age within 25 to 35 or
60 to 69, (ii) driving frequency at least twice a week, (iii) self-reported good health
condition and free from major medical conditions, (iv) not taking medications for
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psychiatric disorders, (v) scored 27 or greater on the mini mental status exam for
grading the cognitive state [57], and (vi) having not previously participated in a
simulated driving study.

After the completion of an informed consent and a pre-experimental ques-
tionnaire, subjects spent 10 minutes of driving training and adaptation time in the
simulator. Afterward, participants were trained in the secondary task, that would
be introduced during the main experiment as a cognitive workload instigator.

A Secondary task applied in this study as an auditory delayed digit recall
task that create three workload distinct levels. It requires subjects to speak out
loud the nth stimulus back in a sequence that is informed via audio recording. For
example, the lowest level n-back task is the 0-back, meaning that the subject must
repeat loudly and immediately the last item presented. At the intermediate level
(1-back), the next-to last stimulus must be repeated. Lastly, the most difficult
level (2-back), the second to the last stimulus must be repeated.

The n-back task was presented in four 30-second trials consisting of 20 single
digit numbers (0-9) shown in a random order with a 2.1 seconds interval. Followed
by 5 minutes rest, subjects drove through a 37 km straight highway in a good
weather, during 20 to 25 minutes. For the driving and n-back task experiment,
between minutes 5 and 7, a single task driving reference was instructed to the
subject. Thirty seconds later, the secondary task (0, 1 or 2-back) was introduced,
based on a 18 seconds periods of expert instructions. A two-minute recovery pe-
riod was provided before presenting instructions for the next task. The order of
these three levels of task difficulty was randomly assigned across subjects.

Subsequently to the experiment data collection, the labeling procedure was
carried out according to the periods of experience to which the data belong. In
other words, the experiment data were categorized based on the category of cog-
nitive workload that the subject, in a specific period, is supposed to hold. Con-
sequently, four cognitive workload categories were established based on the com-
plexity of primary and secondary tasks.

The secondary task, according to the n-back task applied to the subject, may
induce different levels of workload and, therefore, can be categorized as follow: (i)
the 0-back task, that is a low-level cognitive challenge, was categorized with a
low workload level on individuals; (ii) the 1-back task, that requires an additional
step up in cognitive load, would have a moderate workload on individuals; and
(iii) the 2-back task, that requires the highest cognitive load, was categorized with
the high workload level. Although the cognitive workload was classified into four
categories (i.e., normal driving and driving with three levels of n-back task) the
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study only use two levels of cognitive workload: normal driving and high cognitive
workload condition (i.e., driving while performing the most difficult cognitive task,
the 2-back task).

Model training was performed using a 10-second window of experiment data,
without overlapping. These data refer to the normal driving and the driving while
performing the 2-back task. The segmented data were then normalized using z-
score and labeled as ’not distracted’ for normal driving condition or ’cognitively
distracted’ for high cognitive workload condition. The kernel function used to
construct the SVM models was the Radial Basis Function (RBF).

In order to train and evaluate the performance of the cognitive workload
detection model, a nested cross-validation1 was adopted.

The evaluation of the performance of SVMs was made using three aspects:
classification accuracy, sensitivity and specificity (Equations (2.1), (2.2), (2.3))
[58].

Sensitivity = TP

TP + FN
∗ 100 (2.1)

Accuracy = TP + TN

TP + FN + TN + FP
∗ 100 (2.2)

Specificity = TN

TN + FP
∗ 100 (2.3)

Where:

TP = True Positive
TN = True Negative
FP = False Positive
FN = False Negative

The study reported some promising results regarding algorithm’s perfor-
mance and its influential features. The SVM models’ performance varied from
58,9% to 89,0%, depending on the input features combinations (i.e., performance
is influence by which input feature or group of input features was used for each
SVM model’s training).

Regarding the SVM models that used a single input feature, the one that
obtained the best accuracy was the heart rate (HR). This model achieved an 80%
accuracy in detecting driver’s cognitive workload followed by the model with the

1Allows the simultaneous optimal selection of parameters of SVMs and the unbiased estima-
tion of the performance of the final SVM model [11].
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standard deviation of vertical gaze (SDVG) as a single input feature with an accu-
racy of 76,7%. The high accuracy rate evidenced by the HR-based model confirmed
the HR effectiveness in detecting the driver’s cognitive workload, as already re-
ported in early findings.

The SVM models that reported the best performance were the ones with
multiple input features (Table 2.5). Among this last models, the combination
of physiologic, gaze and SDLP features achieved the best performance with an
accuracy of 89%, sensitivity of 86,4% and specificity of 91,7% (the higher the
specificity, the less false alarms will be triggered). Also, the combination of all
features as input features of the SVM model was not optimal, regarding accuracy
and specificity.

Table 2.5: Model performance of Single and Multiple input features [11].

Single Input
Model SDLP SRR SDHG SDVG HR SCL

Sensitivity 62.5 67.2 82.8 71.9 77.8 75.0
Specificity 55.3 76.1 64.2 81.4 82.2 72.5
Accuracy 58.9 71.7 73.5 76.7 80.0 73.8

Best Combination

Model Physio.
Gaze

Physio.
Gaze
SDLP

Physio.
Gaze
SRR

Physio.
Driving
SDHG

Physio.
Driving
SDVG

Physio.
Driving

Gaze
Sensitivity 85.0 86.4 86.7 83.6 85.0 87.5
Specificity 91.1 91.7 90.6 90.6 89.7 90.0
Accuracy 88.1 89.0 88.6 87.1 87.4 88.8

An interesting conclusion concerns the influence of age in the input features
and, consequently, in the SVM models’ performance. The results showed a better
return with younger drivers than with older drivers in the driving performance
domain. However, this fact was reversed in the physiological domain. Therefore,
from these differing results, the study recommends to use cross-domain measures
for improving the robustness against age factors.

Concluding, the study presents a limited data set and a limited driving use
cases, being constricted to a straight highway road in a homogeneous traffic sce-
nario. Therefore, a diverse set of scenarios is crucial to fully assess the holistic
workload domain.
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2.1.1.4.3 Driver Workload Classification through Neural Network Mod-
eling using Physiological Indicators

Hoogendoorn and Arem [59] proposed an neural network model approach
to classify and predict driver workload through physiological indicators of driver
workload, driver characteristics and characteristics of the driving conditions. Driver’s
reaction times were used as output of the model representing the driver workload.

Data for the analysis and the algorithm’s training was collected through a
driving simulator experiment with a two independent groups experimental design.
Between groups all variables were kept constant, except for the traffic intensity.
The independent variable was varied through the groups as it was assumed that a
higher traffic intensity will cause a higher driver workload.

The driving simulator was composed by three screens placed at an 120 de-
gree angle, a driver’s seat mockup, and hardware and software to interface the
simulation (simulation software was developed by StSoftware). A virtual driving
environment consisting of two different segments was developed for the experiment:
(i) the first segment encompasses a short test drive on the freeway, aiming to let
participants familiarize to driving in the simulator and to test if they were prone
to simulator sickness; and (ii) the second segment was used for the experiment.
The virtual driving environment consisted of a freeway with three lanes.

In order to provide a more realistic experiment, the virtual freeway was pop-
ulated with other vehicles. Their speeds were varied depending in which lane
they circulated: vehicle in the left lane were programmed to have a average speed
greater than vehicles in the right lanes. The only varied variable was the traffic
intensity, being set to 2500 veh/hr in the first group and to 5000 veh/hr in the
second group.

Physiological and performance measures were chosen as they are driver work-
load indicators. Heart rate (HR) and heart rate variability (HRV) were measure
through a ElectroCardioGram (ECG). The participant’s age was collected before
each session of the experiment. Also, driving behavior was measured and registered
using the driving simulator at a 10 Hz sampling rate. From this data, reaction
times were extracted using a car-following model, the Helly model [60], through
the estimation approach described in Hoogendoorn and Hoogendoorn [61]. The
authors of the study chose this approach because reaction times are not directly
observable from data.

Forty four subjects (34 male and 10 female) were recruited for the experiment,
within a range of ages between 18 and 65 years old (mean age of 28,89 years). These
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subjects were randomly assigned to one of two aforementioned groups, resulting in
a balanced distribution between the groups regarding age, driving experience and
gender.

The aforementioned neural network was used in this study to classify inputs
(e.g., physiological indicators of driver workload, driver characteristics and char-
acteristics of the driving condition) into a set of target workload categories. More
specifically, it is a Multiple-layer perceptron neural network(MLP), with a two
layer feed-forward network using sigmoid hidden and output neurons. A relatively
small number of 10 hidden neurons were set for this neural network.

The training step was performed using a scaled conjugate gradient back-
propagation method, that is a variation of the normal gradient backpropagation
method and provides a generally faster convergence to the minimum gradient of
the error function. The dataset collected in the experiment was divided in three
subsets: 70% of data for training, 15% of data for validation and 15% of data used
for testing.

The neural network input data encompasses three main features types: (i)
driver characteristics, composed by the age of participants, (ii) physiological indi-
cators of driver workload represented by heart rate and heart rate variability, and
(iii) traffic intensity, coded with 1 for low traffic intensity while high traffic inten-
sity was coded with 2. The output data encompasses the reaction time, composed
by three categories: Tr ≤ 1, 1 > Tr ≤ 2 and Tr > 2. Each one represents low,
medium and high driver workload, respectively.

Before proceeding to the network training, the study reports an analysis of
the experiment collected data, regarding heart rate and its variability. This analy-
sis showed a noticeable difference between the two groups, finding that the overall
heart rate was higher and the heart rate variability was lower in the group with
the high traffic intensity. This information indicated that was an increased driver
workload in the group with the high traffic level, revealing an association between
high traffic level and the increase of driver workload.

Afterward the training, testing and validation phases, the accuracy of the
network was analyzed and it achieved a 78% correct classification rate. Also, the
model produced the higher classification accuracy for its highest class, when ob-
serving the generated confusion matrices and the respective Receiver Operating
Characteristic (ROC) plots.

Concluding, the model showed the capability to classify workload with a good
performance. However, some limitations have to be pointed out. The limited num-
ber of types of physiologic data can, in some way, jeopardize the performance and
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the model’s correct classification of driver workload. Also, additional driver char-
acteristics can be introduced, such as gender, driving experience, among others.
The traffic intensity was the only independent variable that, therefore, was var-
ied. Nevertheless, other factors can express the driving complexity conditions, like
road design, secondary tasks, and others. Finally, the study’s authors expressed
the motivation to switch from a driving simulator experiment to a naturalistic
driving observation method, in order to validate the model and obtain a more
realistic feedback.

2.1.1.4.4 Bayesian Network Classifiers Inferring Workload from Phys-
iological Features

A workload classifier was proposed in [12]. This study proposes an approach
based on Bayesian Networks (BN) in order to estimate the workload of opera-
tors, using physiological features and the reaction time from a secondary task as
a cognitive measure of workload. Different BN structures were implemented in
order to test several combinations of physiological features. The ground truth was
provided as a subjective measure collected during the experiment. This classifier
was implemented for the aviation domain. However, this study is still relevant due
to the many similarities with the automotive domain and its workload estimation
approaches.

For the experiment, ten subjects (9 males and 1 female) with a mean age of
30 years (standard deviation of 10,7 years) have participated and with normal or
corrected to normal hearing and seeing.

The simulator was composed by a non-force feedback joystick and a 24" mon-
itor, where the experiment simulation was generated by ICE software. Simulation
data (e.g., aircraft position) was collected from the simulator at a sampling rate
of 100 Hz and physiological data was acquired at a 2048 Hz sampling rate. Stereo
headphones were provided to subjects so they could hear the recorded instructions
regarding the experiment and also aircraft engine noises.

Experiment script was composed by a predefined flying trajectory made of
60 rings. The subject’s goal was to pass through each rings, placed in a varied
vertical distance, trying to successfully pass through ring placed in the trajectory.
Aircraft’s speed was predefined and constant for all trajectories.

Experiment was divided in 5 sessions composed by 6 trials each. The trial’s
duration was approximately 90 seconds. The 5 sessions imposed to each partici-
pant was divided as follows:
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• The three first sessions presented to the subject three different trajectories
of increasing difficulty. The trajectories of each session for the 6 trials were
maintained the same. The only variable independent, and therefore varied,
was the trajectory difficulty in order to create different levels of workload
upon the subject. This additional cognitive load was introduced by varying
the vertical distance between two successive rings, keeping the depth distant.

• In the last two sessions, subjects had to repeat the flight of the simplest and
the hardest trajectories of the first and third session, and they were proposed
to beat their own scores over these trajectories.

Furthermore, for each of the five aforementioned sessions, a secondary task
was introduced in the experiment. This task was composed by two geometrical
shapes that were displayed on the screen for 1 second, at random positions and
random times (minimum time interval of 1,5 seconds between two successive tar-
gets). When a square target appears, the subject must, as quickly as possible,
press a button on the joystick and should not react to a triangle target.

Performance data was collected during the experiment realization. This data
encompasses the primary task (e.g., percentage of hit rings) and the secondary task
(e.g., reaction times and false and true detection rates). Physiological features en-
compasses heart rate (estimated from the ECG), root mean squares of the flexor
digitorum EMG and the right trapezius descendens EMG, respiration measured
trough chest expansion, and skin conductance measured using electrodes placed
on the subject’s fingers.

During the experiment performance, subjects evaluated their own workload
level using the NASA Task Load Index questionnaire (TLX). The subjective rates
on the six subscales were weighted and summed for each session in order to obtain
a single task load index per session.

Before proceeding to the model construction, the collected data was ana-
lyzed in order to evaluate its representativity within the problem. Mainly, from
this analysis, was perceived the increase of cognitive resources allocation when a
secondary task was introduced during the primary task performance. Also, in-
vestigating the subjective data it indicates that the TLX scores increase with the
session difficulty. Correlating the TLX scores and the reaction times, per session,
the study achieved, in most cases, a value greater than 0,5 (Table 2.6). This corre-
lation value indicates that the subjective evaluation of workload is consistent with
the objective measure (i.e., reaction time). Some values under the aforementioned
one exist due to the withdrawal of some subjects on the secondary task when ex-
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periencing high workload, so RT were not available and the relation with TLX
scores was no more linear.

Table 2.6: Correlation between TLX scores and reaction times over th five sessions,
per subject [12].

Subject S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Correlation 0.67 0.79 0.83 0.80 0.68 0.48 0.32 0.75 0.90 0.45

In order to prepare data to model’s learning phase, the noise in the raw
signals was removed using specific filters. Moreover, the first and last seconds of
each trial’s signal were removed in order to avoid possible starting and ending
effects. After this step, data was normalized between 0 and 1. The Shannon’s
method was used to calculate the entropies of the physiological data that will be
inputs for the model. The entropy is a measure of disorder, thus it is expected
to acquire differences in physiological data regarding workload variations. These
entropies are estimated on 15 second long windows slided with 5 seconds sliding
windows. Once again, the entropy values are normalized between 0 and 1, taking
the maximal and minimal values that appeared on the three first sessions, per
subject.

Despite the variation of the mean entropy features was consistent with the
variation of the primary task, the reaction time and the TLX scores, the variation
of the physiological data presented an abnormal pattern. The mean entropy values
of physiological data decreased with difficulty levels for some subjects while for
others it has decreased. Due to this abnormality, the model implementation was
be performed for each subject separately (i.e., for each subject, a unique model
was trained and tested).

Since a data driven approach, and therefore a Supervised learning method,
was applied it requires the data labeling with the ground truth extracted from the
subjective measure applied during the experiment. Thus, a relationship between
the input features and the model’s output can be discovered during the algorithm’s
learning phase. To this end, three different BN structures are tested, differing in
how many physiological features the model would have (one, two or three input
physiological features). In total, 25 classifiers were trained and tested with different
physiological nodes and implementing the aforementioned 3 different structures
(Figure 2.7): (i) the first structure is a naive BN where the TLX is a direct child
of the physiological nodes, (ii) the second structure is the same BN but TLX node
is a child of the RT that is also a child of the physiological nodes, and (iii) the
third structure also is a naive BN but has a more complex structure, where TLX
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is a direct child of both physiological nodes and RT node. The model’s objective,
independently of which structure was being used, was to infer the subject’s TLX
score on each session.

Figure 2.7: BN model structures for TLX score inference from physiological features
ϕ1, ϕ2 and reaction time (RT) [12].

The algorithm’s training was performed using the experiment collected data.
For this phase, the training set was composed by data collected on the first three
sessions and the testing data set encompasses data from the last two sessions. The
learning and inference phases were performed using a Matlab toolbox: the Bayes
Net Toolbox. For assess the performance of the models, the study’s authors an-
alyzed the differences between the subjects’ TLX scores and the predicted TLX
scores, for the three first sessions. Since a separately model was implemented for
each subject, the study’s goal was to achieve the maximum number of subjects
to be correctly detected. Therefore, a two-variable optimization problem appears,
since model diversity and accuracy were intended to be optimized. The model
diversity results from teh percentage of subjects’ TLX score correctly detected.

Some results were achieved regarding the two-variable optimization problem.
Thus, the best classifier in terms of maximal accuracy was the single physiological
(skin conductance feature) node classifier with the first structure. Regarding the
maximal diversity, the best classifier was the two physiological (heart rate and skin
conductance features) node classifier with second structure (Table 2.7). However,
the optimal model is the one with a good performance in both criterion. The
model with the best performance regarding accuracy and diversity was the three
physiological (hear rate, right trapezius descendens EMG and skin conductance
features) node classifier with the second structure. Its accuracy reached the 60%
and the diversity a 0,66 score.
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Table 2.7: Performance of the best model combination regarding accuracy and diversity
independently [12].

Performance
criterion Structure Physiological

nodes S (Diversity) θ (Accuracy)

Maximal
Accuracy 1 SC 20 0.89

Maximal
Diversity 2 HR and SC 80 0.47

The study concludes that the best model was the three physiological node
classifier with the second structure. However, each one of the five proposed physi-
ological features appear in the classifiers with a good performance. Moreover, the
model’s performance increases with the number of physiological inputs. Therefore,
it can be concluded that these physiological features provide information related
to workload and a model implemented with all these features would outperform
the study’s proposed classifier. Another conclusion suggests that the inclusion of
the reaction time in the model yield to a better workload prediction, although
creating a more task-dependent method due to the introduction of a secondary
task. Finally, the study claims that a test on new subjects must be performed
in order to check if the best classifier, that shows a good diversity performance,
remains performing well.

2.1.1.4.5 Classifying Driver Workload using Physiological and Driving
Performance Data

The study [13] proposes a series of machine learning classification algorithms
and perform a evaluation on their ability to identify elevated cognitive workload
levels in drivers. Moreover, a comparison between heart rate, skin conductance
and driving data is performed for classification. Models for inferring the workload
level across individuals and for each person were implemented, through a large two
field studies. The purpose of model’s training across individuals was to demon-
strate the potential of building models that can generalize and work with new
drivers. The final goal with the classifier algorithm is to evaluate IVIS and tech-
nology using the cognitive workload detection. From this, moments of interest can
be identified during task performance in order to apply countermeasures regarding
the not intended increase of cognitive workload.

Two on-road driving experiments were conducted for each field study. In
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both studies, subjects drove on an interstate highway and vehicle performance
and physiological data were collected during the experiment. Besides the normal
primary driving task, subjects were asked to complete secondary tasks that cause
elevated cognitive workload. In the first experiment, 20 subjects participated and
the goal was to classify individual driver’s workload level by building exclusive
models for each subject. The second experiment, 99 subjects participated aiming
to build classification models across participants, reducing the need for training
on each subject.

The secondary task was introduced in both field studies and was employed to
impose additional mental workload while driving. It was composed by an auditory
presentation with verbal response delayed digit recall task, namely n-back task.
A single number between 0 and 9 is displayed, one at a time with 2,25 seconds
intervals between digit displays. For each digit display, subjects must say out loud
the digit two items back in the current sequence (2-back task). This task demands
an attentive auditory perception and the corresponding cognitive processing in-
volving working memory.

For the two field experiment data collection, the vehicle was equipped with
embedded vehicle sensors for a synchronized data record. Vehicle data was logged
at 10 Hz and physiological data at 250 Hz. Different vehicles were used for each
field study. The vehicle data encompasses the driving speed, steering wheel posi-
tion, and acceleration data, collected from the vehicle’s CAN bus. Physiological
data was composed by data from a electrocardiogram (EKG) accordingly placed
on the subject, and skin conductance measures.

Before proceeding to the model construction, data collected from the ex-
periment must be processed in order to create the model’s input features. After
processing the raw signal coming from the EKG, heart rate (HB) and heart rate
variability (HRV). However, due to prior work [62] regarding this physiological
measure, only the HR was chosen because it was found to be more robust than
HRV during driving and performing a secondary task that increases driver’s cog-
nitive workload. The skin conductance was preprocessed with a filter in order
to remove the high frequency noise component of the original signal. Lastly, the
steering wheel reversal measures the frequency of its reversals exceeding a certain
threshold angle.

For the feature generation, a sliding-window approach was used in order to
preserve information about temporal dynamics and to aggregate features. Then,
these features (i.e., heart rate, skin conductance level and vehicle velocity) were
computed in mean, standard deviation, minimum, maximum and first derivative.
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Moreover, the number of small and large steering wheel reversals was computed.
In order to choose which window length and overlap factor provides the best work-
load information and enables a higher classifier algorithm’s performance, sliding
windows of 10, 15, 20, 25 and 30 seconds were used with overlap percentages of
0%, 25%, 50% and 75%.

As mentioned in the introduction of this analysis, the study used five fea-
ture based machine learning algorithms: decision tree, logistic regression, 1-nearest
neighbor, Multiple-layer perceptron neural network(MLP), and naïve Bayes. These
algorithms were chosen because they are simple learners, their generated models
can be interpretable and are incremental learners (i.e., they can be retrained with
new data without any model change). A supervised learning was applied and,
therefore, a labeled dataset was built. Data was labeled as elevated workload dur-
ing cognitive demand task periods, and labeled as normal workload if belonging
to driving only periods.

The first field study looked at building individual models to account for
individual differences between drivers. Twenty six subjects were recruited to par-
ticipate in this first experiment. These participants had to drive more than three
times a week, have a valid driver’s license for at least three years and do not report
any accidents for the past year, in order to be able to participate. The experiment
was composed by an approximately 10 minutes of urban traffic driving, until reach-
ing an interstate highway. Then, additional 20 minutes of interstate driving were
provided to subjects in order to familiarize with the vehicle and the environment,
followed by a 2 minute single task driving reference period. Subsequently, 24 task
periods were presented to subjects and consisted of the 2-back cognitive demand
task while maintaining the primary task of driving. Following this 30 second task
period, a 90 second recovery and baseline periods were provided to subjects (Fig-
ure 2.8). During the experiment performance, heart rate, skin conductance, speed
and steering wheel data were being collected.

Figure 2.8: Experimental procedure for the first field study [13].

Since the first field study was interested in individual classification methods,
13 separated datasets were built for each subject and classification was performed
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on each dataset. Each subject dataset was composed by twenty four 30-second
samples of elevated cognitive workload where task periods were performed, and
twenty four 30-second samples of normal cognitive load representing the middle of
recovery and baseline periods.

In order to evaluate the algorithms approaches, a ten-fold cross validation
was implemented. Moreover, an inner ten-fold cross validation process was applied
within the training set in order to choose the best window size and overlap that
yielded the highest algorithm accuracy. Each dataset was divided in training set
and test set, being the training set split into training and validation set.

The mean accuracy and standard deviation for each classifier are shown in
the Table 2.8.

Table 2.8: Mean and standard deviation for classification of elevated workload from
normal driving across 13 subjects using all features and across 20 subjects using heart
rate only [13].

All Features Heart Rate
Mean S.D. Mean S.D.

Decision Tree 75.0 10.8 72.8 12.8
Logistic Regression 75.5 10.9 73.9 11.3
Multilayer Perceptron 75.7 10.9 74.0 12.4
Naïve Bayes 75.0 12.5 74.1 11.8
Nearest Neighbor 69.4 11.6 71.5 10.3

Using the Trukey-Kramer test, the study concludes from the results that, for
all features, the Nearest-Neighbor classifier had a significantly worse performance
when compared with the other four algorithms. Concerning the heart rate only, the
Trukey-Kramer test showed that the Nearest-Neighbor classifier had a significantly
worse performance when compared with logistic regression, multilayer perceptron
and naïve Bayes, except decision tree.

Regarding the first field study, the results showed that a reasonable good
classification accuracy was achieved. Moreover, with only the heart rate, the
accuracy did not decreased substantially when comparing with the all features
approach, showing the high capacity of representing workload changes in drivers.

The second field study went towards the building of general classifiers that
detect high cognitive workload without extensive training on individual drivers.
Data was gathered from 99 participants (age between 20 and 69 years) with the
objective of discovering common features and algorithms that dependably can
classify cognitive load automatically crosswise over drivers. These participants
had to meet some requirements, such as having a healthy condition, driving more
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than three times a week, having held a valid driver’s license for at least three
years and a driving record free of accidents for the past year. In a first moment of
the experiment, 146 subjects were recruited. However, due to heavy traffic, poor
weather conditions, poor measurement quality in at least one signal domain or
missing data, 47 cases were excluded from the final dataset. The age and gender
between subjects were balanced in order to represent a real world scenario.

The experiment encompassed a 10 minutes driving in urban traffic, until
reaching an interstate highway. Then, a 20 minutes driving familiarization period
was provided prior to a 2 minute single task driving period where reference data
was established. Subsequently, three task periods were presented to subjects as a
series of four secondary task segments each (Figure 2.9). These three task periods
were composed by 0-back, 1-back and 2-back task, respectively. However, only the
2-back task periods were classified as elevated workload and, therefore, contributed
to the model’s build. After each task period, a 2 minute recovery period was
introduced to subjects.

Figure 2.9: Experimental procedure for the second field study [13].

Considering that the second field study was involved in evaluate cognitive
workload classification approaches across individuals, similar processing and clas-
sification methodologies used in the first field study were reapplied. Nonetheless, a
dataset from 99 participants was used and the classification was performed across
subjects. Moreover, only the set of four series of 2-back task periods and the sin-
gle task driving periods were used per individual. Sliding windows and overlap
factors aforementioned were also taken into account to see the effects that these
parameters could have on classification accuracy.

The results of the second field study showed different features’ influences on
algorithm’s accuracy. Training classification algorithms with features generated
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from driving performance measures only led to an average classification accuracy
of 64% (i.e., all classification algorithms had a similar average accuracy). Investi-
gating the influence of the heart rate features only, and ignoring skin conductance
features as well as driving data, except for the 1-Nearest Neighbor, all other learn-
ing algorithms achieved an average accuracy of 80%. Applying all features from
physiologic data (i.e., heart rate and skin conductance level), logistic regression
outperformed other classifiers obtaining the highest performance (average accu-
racy of 90%) using a 30 second sliding window. The multilayer perceptron neural
network and naïve Bayes achieved a slightly lower performance with an average
accuracy of 89%. The best classification accuracy came from the physiology and
driving performance approach, being similar to the one obtain using only physi-
ology features. Logistic regression, naïve Bayes and multilayer perceptron neural
network achieved a better accuracy than all other classifiers.

The trade-off between window size and classification was analyzed in order
to find a possible relation. Therefore, was found that increasing the window size
improved classification in all the possible learning algorithm approaches, except
for the case where the vehicle telemetry features were uniquely applied. The win-
dow size takes an important role when applied to real-time classifications where
it sizes imply lag (i.e., the bigger the window size, the more information will be
gathered and later will be the classification operation). However, regarding the
overlap factor, no significant impact was noticed on the classification accuracy.

Through the experiment some considerations were taken regarding the devel-
opment of automatic cognitive workload classifier in real-world driving. The study
found a trade-off between window size and classification accuracy (the bigger the
size, the better the algorithm’s accuracy), not finding any significant effects of win-
dow overlap. Moreover, the second field study proved that physiologic features,
specifically heart rate features, can represent and classify very well the elevated
cognitive workload. The study wants to examine in the future the possibility do
train the algorithm with a large dataset and then verify if it would be able to
classify new system interactions across a different set of drivers when they enter
the vehicle. Furthermore, an hybrid approach could be implement so that, after
being trained with a large dataset, when a new driver entered the car, it would
spend only a short time providing additional specific individual training data in
order to fine-tune the model. Lastly, since the only elevated workload periods that
were classified belongs to 2-back task periods, the study could use the other 0-back
and 1-back task periods in order to classify other levels of cognitive demand.
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2.1.1.4.6 Driver State Estimation by Convolutional Neural Network
using Multimodal Sensor Data

A driver state algorithm that uses multimodal vehicular and physiological
sensor data is proposed by Lim and Yang in [14]. This study estimates states of
driver drowsiness, visual distraction, cognitive distraction, and high workload of
multiple subjects using sensory data collected from a driving simulator. The driver
state algorithm was developed based on deep learning and using physiological and
vehicle data collected in the driving simulator environment. Contrary to what is
normally done, multimodal data was fused into a two-dimensional matrix rather
than treating types of data differently. This matrix is composed by different sen-
sor data in one dimension and on the other is used for time. For performance
evaluation, both correct detection rate (CDR) and false alarm rate (FAR) criteria
were used and the algorithm’s performance was compared with the performance
of the previous study that implemented a driver state estimation algorithm using
a dynamic Bayesian network model [63]. Although the study addresses various
abnormal driver states, only the high workload state will be focused during this
analysis.

Human-in-the-loop experiment was conducted to collect data for the algo-
rithm’s training. This experiment was divide into 3 sub-experiments, each one
varying one of the independent variables and aiming to induce abnormal states on
drivers: drowsiness, distraction and high workload. The high workload experiment
encompasses interaction with other vehicles, such as frequent sudden stops of the
lead car or cars driving in the same section. Therefore, the independent variable
was the interaction with the lead car.

A total of 16 subjects were recruited for the high workload experiment, with
ages between 25 and 29 years old (average age of 27.5 years and a standard de-
viation of 1.23 years). Subjects were divided in two groups, depending on either
or not they carried out the driver high workload induction task. Both groups per-
formed the same driving section and each subject consummated the experiments
in both groups. The experiment procedure encompassed driving along a section of
road in a downtown area at a velocity of 40 km/h without changing lanes, for ap-
proximately 450 meters. The downtown area was composed by complex elements,
like billboards, high buildings, foggy weather and more. During the experiment,
the only primary task given to subjects was the interaction with the lead car,
while avoiding a collision with the lead car that was making frequent and sudden
stops. It was assumed that the atypical states happened amid all study sections in
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which a task had been assigned. Throughout the experiment, vehicle, vision, voice
and physiological data were gathered, using a 30 Hz sampling rate. The vehicle
data encompasses vehicle’s velocity, longitudinal acceleration, lateral acceleration,
steering wheel angle and gas pedal angle. Vision data included participant’s au-
dio amplitudes. The physiological data combined subject’s heart rate, respiration
rate, galvanic skin response and body temperature. The resulting data was split-
ted intro training, validation and test set, where training and validation dataset
were used to train the model and the test set to analyze the its performance.

The deep learning based driver state detection algorithm implemented in the
study was the Convolutional Neural Network (CNN). Its layers were implemented
using rectified linear units (ReLU), max-pooling, dropout and softmax regression.
CNNs are neural network designed to handle large input spaces. This network was
implemented by alternatively arranging convolutional and pooling layers. The
CNN was used in this study due to the intuition that some pattern in time and
between multimodal data could exist. Moreover, this approach prevents the data’s
overfitting and reduces the computational cost.

Forty four model input features collected from sensors were structured in a
2-dimensional matrix where the other dimension represented the number of sam-
ples in 0.1 seconds of time slots. The CNN encompassed two convolution layers
followed by max-pooling layers. For each convolutional layer, ReLu was used as
an activation function. The output of the second layer was connected to a fully
connected layer with a 0.5 dropout rate. In order to obtain the probability of the
driver being in normal state or one of the abnormal states (i.e., drowsiness, visual
distraction, cognitive distraction and high workload), a softmax regression node
was implemented (Figure 2.10).

Figure 2.10: Convolutional Neural Network model [14].
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Before proceeding to the algorithm’s training, 4 hours of driving data collect
from each experiment was divided into training and test sets. Each input was
labelled concerning to which driver state it was gathered. In order to implement
and train the CNN model, the Google’s TensorFlow application interface was used
[17].

The algorithm’s performance was assessed applying the CDR and FAR as
performance metrics. Therefore, the estimation’s average CDR values were 0.966,
1.000, 0.987 and 0.841 fro drowsiness, visual distraction, cognitive distraction and
high workload, respectively. Regarding average FAR values, 0.007, 0.000, 0.089
and 0.158 were respectively the values for each driver abnormal state. The Table
2.9 shows the algorithm’s performance.

Table 2.9: Convolutional neural network model performance results [14].

Driver’s state CNN
CDR FAR

Drowsiness 0.966 0.007
Visual distraction 1.000 0.000

Cognitive distraction 0.987 0.089
High workload 0.841 0.158

Computation time (ms) 0.74

One algorithm characteristic that make it practical for use as an in-vehicle
system is the fact that the inference process takes less than a millisecond to be
computed. This is an big advantage when comparing with other algorithms with
a bigger computational cost.

Concluding, the CNN model was implemented as planned using multimodal
data. The accuracy of the proposed driver state detection method can be con-
sidered as high enough for the domain. Although it is not the main focus of this
analysis, the study CNN model approach showed a significant improvement when
comparing with the results of the previous research using dynamic Bayesian net-
work model. As a future improvement, the study authors want to apply the deep
learning approach to field data gathered in a real driving scenario.

2.1.2 Machine Learning Concepts

The Machine Learning concept will be a significant part of the work devel-
oped within this thesis. It will provide some important tools that will allow to
design and implement the decision-making centers that will be essential for the
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right performance of the sub-systems that compose the assess and manage driver’s
workload. Therefore, it is important to introduce some concepts regarding this
thematic and to explain some available algorithms, in order to build knowledge
and to harden off with these concepts.

Machine learning is a type of artificial intelligence that provides computers
with the ability to learn without being explicitly programmed. It explores the
study and construction of algorithms that can learn from and make predictions on
data. Such algorithms provide the capability to a program to dynamically change
its behavior by making data driven predictions or decisions, through building a
model from sample inputs [64]. These “changes” might be either enhancements to
already performing systems or initial synthesis of new systems. Machine learning
is employed in a range of computing tasks where designing and programming ex-
plicit algorithms is unfeasible or the system needs adaptation to its surrounding
context.

The process of machine learning is similar to that of data mining, analyzing
data in order to find relevant patterns. However, instead of extracting data for
human comprehension, in the case of data mining applications, machine learning
uses that data to detect patterns in it and adjust program actions accordingly
[65]. Machine learning algorithms are often categorized as being (i) Supervised or
Unsupervised, (ii) Active or Passive Learners, and (ii) Online versus Batch Learn-
ing Protocol. Supervised algorithms can apply what has been learned in the past
to new data, instead Unsupervised algorithms can draw inferences from datasets.
Regarding Active and Passive Learners, an active learner interacts with the en-
vironment at training time, while a passive learner only observes the information
provided by the environment [66]. Finally, the Online Learning Protocol defines
that the learner has to respond online, basing its decision in the learning experi-
ence and throughout the learning process. In the other way, the Batch Learning
Protocol has to engage the acquired expertise only after having a chance to process
large amounts of data [66].

Some machine learning algorithms, models and concepts will be described in
the next sub-sections in order to have a general view of some available machine
learning techniques.

2.1.2.1 Naïve Bayes Classifier Algorithm

Naïve Bayes (NB) algorithm is a classification technique based on Bayes’ Theorem
that relies on the independence of assumptions between predictors. Briefly, a NB
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classifier infers that one particular feature in a class is unrelated to the presence
of any other feature [67]. For example, a fruit may be considered to be an apple
if it is red, round, and has a specific diameter. Regardless if these features have
a correlation with each other or upon the existence of other features, all of these
features independently contribute to the probability that this fruit is an apple,
regardless of any possible correlations between the color, roundness, and diameter
features.

Depending on the type of probability models, NB classifiers can be very
efficiently trained when in a supervised learning category. NB model is particu-
larly suited when the dimensionality of the inputs is high. Generally, in practical
applications, parameter estimation for NB models uses the method of maximum
likelihood [68]. Despite their naïve design and apparently oversimplified assump-
tions, NB classifiers have worked quite well in many complex real-world situations
and is widely used because it often outperforms more sophisticated classification
methods, such as boosted trees or random forests [69]. NB classifiers are highly
scalable, requiring a linear number of parameters (i.e., features/predictors) in a
learning problem.

The advantages and disadvantages regarding the NB classifier algorithm en-
compasses the following points:

• Advantages:

– It is easy and fast to train and to classify the test dataset;

– Requires a small number of training data to estimate the parameters
necessary for classification;

– Not sensitive to irrelevant features;

• Disadvantages:

– If a given class and feature never occur together during the process
of training, then the frequency-based probability estimate will be zero.
This will lead to the cancellation of all information in the other probabil-
ities since these zero estimation will be multiplied with them. Moreover,
the model will be unable to make a prediction. This is often known as
"Zero Frequency" [70];

– Is a bad estimator, so the probability outputs from prediction are must
not be considered;
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– Assumes independence of features, meaning that it can’t learn interac-
tions between features. In real life, it is almost impossible that we get
a set of predictors which are completely independent.

2.1.2.2 Artificial Neural Network (ANN)

Artificial Neural Networks are processing algorithms that are inspired by our
present knowledge of biological nervous systems, although they do not realistically
follow it in every detail (i.e., much simpler structure). An Artificial Neural Net-
work consists of an huge group of simple processing elements that take internal
decisions and have a large number of weighted connections between these elements
[71]. They contain a series of mathematical equations that are used to simulate
biological processes such as learning and memory [72]. These elements act as brain
neurons-like nodes that co-operate to perform the desired function, operating in
parallel. The representation of knowledge is distributed over the element connec-
tions and the acquisition of knowledge is obtained through a learning process. The
learning methods still have to be programmed, however, and for each problem, we
must choose a suitable learning algorithm keeping the same general approach in
mind.

As aforementioned, one of the main characteristic of ANNs is the ability to
learn, figuring out how to perform their function on their own and determine what
to do based only on sample inputs [73]. Another feature is the capability to gen-
eralize its decision, producing reasonable outputs for inputs that it had not been
taught how to behave before.

Like other machine learnings alternatives, the Artificial Neural Network has
some advantages and disadvantages that can have a weight when choosing the best
suited machine learning algorithm [72]:

• Advantages:

– Requires less formal statistical training to develop;

– Models can implicitly detect complex non-linear relationships between
independent and dependent variables;

– Can be developed using multiple different training algorithms.
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• Disadvantages [74]:

– Are a "black box" and have limited ability to explicitly identify possible
causal relationships;

– Models may be more difficult to use in the field;

– Modeling requires greater computational resources;

– Are prone to overfitting;

– Model development is empirical, and many methodological issues re-
main to be resolved.

2.1.2.3 Convolutional Neural Network (CNN)

A Convolutional Neural Network (CNN) is a neural network which has at
least one layer that does a convolution between its input and a configurable kernel
that generates the layer’s output. In a simplified definition, a convolution’s goal
is to apply a kernel (a.k.a, filter) to every point in a tensor and generate a filtered
output by sliding the kernel over an input tensor. An example of the filtered out-
put is edge detection in images. A special kernel is applied to each pixel of an
image and the output is a new image depicting all the edges. In this case, the
input tensor is an image and each point in the tensor is treated as a pixel which
includes the amount of red, green and blue found at that point. The kernel is slid
over every pixel in the image and the output value increases whenever there is an
edge between colors.

CNNs follow a simplified process matching information similar to the struc-
ture found in the cellular layout of a human’s striate cortex. As signals are passed
through a human’s striate cortex, certain layers signal when a visual pattern is
highlighted. For example, one layer of cells activate (i.e., increase its output
signal) when a horizontal line passes through it. A CNN will exhibit a similar
behavior where clusters of neurons will activate based on patterns learned from
training (e.g., after training, a CNN will have certain layers that activate when
a horizontal line passes through it). In the context of CNNs, these patterns are
known as filters or kernels and the goal is to adjust these kernel weights until they
accurately match the training data. Training these filters is often accomplished
by combining multiple different layers and learning weights using gradient descent.

A simple CNN architecture may combine a convolutional layer, a non-linearity
layer (e.g., Rectified Linear Unit layer), a pooling layer (e.g., Max pooling layer)
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and a fully connected layer. Without these layers, it is difficult to match complex
patterns because the network will be filled with too much information. A well
designed CNN architecture highlights important information while ignoring noise.

Input Convolutional 

      Layer 1

Convolutional 

      Layer 2
Fully-Connected 

         Layer 1

Fully-Connected 

         Layer 2

Figure 2.11: Convolutional Neural Network base structure example.

Convolutional neural networks, as other machine learning structures, have
some advantages and disadvantages associated and these can be found in the fol-
lowing points:

• Advantages:

– Fewer memory requirements - same coefficients are used across different
locations in the space, so the memory required is drastically reduced;

– Easier and better training - using the standard neural network that
would be equivalent to a CNN, because the number of parameters would
be much higher, the training time would also increase proportionately.
In a CNN, since the number of parameters is drastically reduced, train-
ing time is proportionately reduced;

– Parameter reduction - CNNs use the same shared weights through the
same layer of hidden neurons.

• Disadvantages:

– High computational cost;

– For complex tasks, can be quite slow to train without a good GPU;

– Need of a considerable amount of training data.
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2.1.2.4 Bayesian Networks

Bayesian networks (BNs) (or a belief networks) is a probabilistic graphi-
cal model that represents a set of variables and their probabilistic dependencies.
Formally, Bayesian networks are directed acyclic graphs whose each node in the
graph represents a random variable, while the edges between the nodes represent
probabilistic dependencies among the corresponding random variables [70]. These
conditional dependencies in the graph are often estimated by using known statisti-
cal and computational methods. Therefore, BNs combine principles from multiple
fields: graph theory, probability theory, computer science, and statistics. BNs be-
long to the family of probabilistic graphical models (GMs), known as be used to
represent knowledge about an uncertain domain [75].

There are efficient algorithms that perform inference and learning in Bayesian
networks. BNs have two well known types regarding its purpose and computation
methodology: (i) networks that model sequences of variables (e.g., speech signals
or protein sequences) are called Dynamic Bayesian networks and (ii) generaliza-
tions of BNs that can represent and solve decision problems under uncertainty are
called Influence Diagrams [70].

Some advantages and disadvantages regarding the BNs encompasses the fol-
lowing points [76]:

• Advantages:

– Is intuitively easier for a human to understand direct dependencies and
local distributions than complete joint distribution;

– Efficient and principled approach for avoiding the overfitting of data;

– Handling of incomplete data sets (due to variable encoding);

– Predicts result of an intervention before intervening.

• Disadvantages:

– Acyclic nature of BNs. The acyclic property is required to carry out
probability calculus, but implies that feedback effects cannot be in-
cluded in the network;

– It is computationally intensive, specially for models involving many vari-
ables. Regarding a large dataset with many variables being estimated,
it may very well be prohibitively computationally intensive;
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– Despite Bayesian networks can deal with continuous variables, it is done
in a limited manner. Therefore, the usual solution is to discretize the
variables and build the model over the discrete domain. However, dis-
cretization can only capture rough characteristics of the original distri-
bution and statistical power can be loosed.

2.1.2.5 Deep Learning

Deep learning is a branch of Machine Learning, which was introduced with
the goal to approximate Machine Learning to one of its original goals: the Artifi-
cial Intelligence [77]. It is based on a set of algorithms that attempt to model high
level abstractions concerning data by using a deep graph with multiple process-
ing layers, composed of multiple linear and non-linear transformations (i.e., deep
learning allows computational models that are composed of multiple processing
layers to learn representations of data with multiple levels of abstraction) [78]. In
other words, allows the computer to build complex concepts out of simpler con-
cepts. Therefore, it introduces representations that are expressed in terms of other
simpler representations.

Deep learning discovers complex structures in large data sets by using the
backpropagation algorithm to indicate how a machine should change its internal
parameters that are used to compute the representation in each layer from the
representation in the previous layer. [79]

Some representations are better than others at simplifying the learning task
(e.g., face recognition or facial expression recognition). One of deep learning’s
assumption is to replace handcrafted features with efficient algorithms for unsu-
pervised or semi-supervised feature learning and hierarchical feature extraction.

Many deep learning algorithms have been designed to tackle unsupervised
learning problems, but none have truly solved the problem in the same way that
deep learning has largely solved the supervised learning problem for a wide variety
of tasks [80].

The Deep Learning complex architecture and its lifetime confers the attribu-
tion of some advantages and disadvantages. These are the followings:

• Advantages:

– Good classification performance on problems that significantly outper-
forms other solutions in multiple domains;

– Feature engineering process reduced (one of the most time-consuming
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task in machine learning);

– Ease of adaptability to different problems (e.g. Vision, time series, etc).

• Disadvantages:

– Requires a large amount of data, which is unlikely to outperform other
approaches;

– Extremely computationally expensive to train;

– The learned output is not easy to comprehend when comparing to other
classifiers (e.g. decision trees).

2.1.2.6 Machine Learning Frameworks

In this section, an overview of the most used and known machine learning
frameworks will be presented. Moreover, rather than just present its features and
how user can interface with the frameworks, its advantages and disadvantages will
be discriminated for comparison purposes.

2.1.2.6.1 TensorFlow

TensorFlow [17, 22] is an open source software library for machine learning
and is the result of years of lessons learned from creating and using its predecessor,
DistBelief. Developed by Google to meet their needs for systems, TensorFlow is
capable of building and training neural networks to detect and decipher patterns
and correlations, analogous to the learning and reasoning processes which humans
use. It was made to be flexible, efficient, extensible, and portable. Computers
of any shape and size can run it, from smartphones all the way up to huge com-
puting clusters. It comes with lightweight software that can instantly transform
a trained model into a product, effectively eliminating the need to re-implement
models. TensorFlow embraces the innovation and engagement of the open source
community, but has the support, guidance, and stability of a large corporation.
It is currently used for both research and production at Google products, often
replacing the role of its closed-source predecessor, DistBelief. TensorFlow was
originally developed by the Google Brain team for internal Google use before be-
ing released under the Apache 2.0 open-source license on November 9, 2015. Due
to the popularity TensorFlow has gained, there are improvements being made to
the library on a daily basis- created by both Google and third-party developers.
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Its popularity increased at a fast pace, being the most forked Github project in
just two months since its release. As can be seen in Figure 2.12, it emerged bru-
tally comparing with other frameworks. Its increasing popularity lead world-wide
companies like ARM, DeepMind, Airbus, Ebay or Xiaomi to use TensorFlow in
their products and platforms.

Figure 2.12: Graphical statistics regarding the popularity and the questions addressed
to TensorFlow [15].

Instead of calling itself a "library for machine learning", it uses the broader
term "numerical computation". TensorFlow computations are expressed as state-
ful dataflow graphs. While TensorFlow does contain a package, "learn" (a.k.a.
"Scikit Flow"), that emulates the one-line modeling functionality of Scikit-Learn,
it is important to note that TensorFlow’s primary purpose is not to provide out-
of-the-box machine learning solutions. Instead, it provides an extensive suite of
functions and classes that allow users to define models from scratch mathemati-
cally. This allows users with the appropriate technical background to create cus-
tomized, flexible models quickly and intuitively. Additionally, while TensorFlow
does have extensive support for ML-specific functionality, it is just as well suited
to performing complex mathematical computations.

While the reference implementation runs on single devices, TensorFlow can
run on multiple CPUs and GPUs (with optional CUDA extensions for general-
purpose computing on graphics processing units). TensorFlow is available on 64-
bit Linux, macOS, Windows, and mobile computing platforms including Android
and iOS. Moreover, the core of TensorFlow is written in C++, which introduces
a very low overhead, and encompasses different front-ends for specifying the com-
putation, as Python, C++ or Java (however, the Python front-end is the best
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optimized one). Figure 2.13 provides an overview of the holistic TensorFlow ar-
chitecture as well as how the execution platforms are placed regarding it.

Figure 2.13: TensorFlow modular architecture with multiple front-ends and execution
platforms [16].

TensorFlow also provides different types of additional software that can help
to debug the model and to deploy the trained model, TensorBoard and TensorFlow
Serving respectively.

Some of the pros and cons regarding TensorFlow are discriminated in the
following points:

• Pros:

– Diverse language options, with an easy Python based interface;

– Auto-differentiation, by enabling the user to define the computational
architecture of predictive models combined with objective functions,
and handle complex computations;

– Faster compile times than Theano;

– Has extra software, TensorBoard, for model visualization and debug-
ging;

– Highly flexible, by enabling users to write their own higher-level libraries
on top of it by using C++ and Python, and express the neural network
computation as a data flow graph;

– Portable, giving the option to run on varied CPUs or GPUs, and even
on mobile computing platforms. It also supports Docker and running
via the cloud.
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• Cons:

– Slower than other frameworks;

– Much "fatter" than Torch;

– Not many pre-trained models;

– Computational graph is pure Python, therefore slow;

– No commercial support;

– Drops out to Python to load each new training batch;

– Not very toolable;

– Dynamic typing is error-prone on large software projects.

TensorBoard

TensorBoard [22] is a web-based graph visualization software that is in-
cluded with any standard TensorFlow installation and gives the possibility to in-
spect and understand TensorFlow runs and graphs. When a user includes certain
TensorBoard-specific operations in TensorFlow, TensorBoard is able to read the
files exported by a TensorFlow graph and can give insight into a model’s behavior.
The computations used with TensorFlow - like training a deep neural network -
can be complex and confusing. This suite of visualization tools make it easier to
understand, debug, and optimize TensorFlow programs (Figure 2.14).

Figure 2.14: TensorBoard web application interface [17]
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TensorFlow Serving

TensorFlow Serving (TFS) [81] is a software that facilitates easy deploy-
ment of pre-trained TensorFlow models. Using built-in TensorFlow functions, a
user can export their model to a file which can then be read natively by TensorFlow
Serving. It is then able to start a simple, high-performance server that can take
input data, pass it to the trained model, and return the output from the model.
Additionally, TensorFlow Serving is capable of seamlessly switching out old mod-
els with new ones, without any downtime for end-users. While Serving is possibly
the least recognized portion of the TensorFlow ecosystem, it may be what sets
TensorFlow apart from its competition. Incorporating Serving into a production
environment enables users to avoid reimplementing their model, who can instead
just pass along their TensorFlow export. TensorFlow Serving is written entirely
in C++ , and its API is only accessible through C++.

TensorFlow Serving makes it easy to deploy new algorithms and experiments,
while keeping the same server architecture and APIs.

2.1.2.6.2 Caffe

Caffe [82] is a deep learning framework, originally developed by Yangqing
Jia as part of his PhD at U.C. Berkeley and now maintained by U.C. Berkeley’s
Vision and Learning Center (BVLC). It is open-source, under a BSD license. Its
core is written in C++ and provides a Python interface. Caffe is a well-known
and widely used machine-vision library that ported Matlab’s implementation of
fast convolutional networks to C and C++. Caffe is not intended for other deep-
learning applications such as text, sound or time series data.

Caffe is both "cleaner" and more extensible, where models and optimization
are defined by configuration without hard-coding. Switch between CPU and GPU
by setting a single flag to train on a GPU machine and then deploy to commodity
clusters or mobile devices. Moreover, this framework is recommended for research
experiments and industry deployment due to its speed. Caffe can process over
60M images per day with a single NVIDIA K40 GPU. That is 1 ms/image for
inference and 4 ms/image for learning and in more recent library versions and
hardware are faster. Another marking feature about Caffe is the community. It
already powers academic research projects, startup prototypes, and even large-
scale industrial applications in vision, speech, and multimedia.

A summary of pros and cons regarding Caffe is presented in the following
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points:

• Pros:

– Good for feed-forward networks and image processing;

– Good for fine-tuning existing networks;

– Capability to train models without writing any code;

– Python interface.

• Cons:

– Need to write C++ / CUDA for new GPU layers;

– Not good for recurrent networks;

– Cumbersome for big networks (GoogLeNet, ResNet);

– Not extensible;

– No commercial support;

– Decreasing use due to slow development.

Looking further to the future of Artificial Intelligence, and encompassing
a more light-weight and scalable structure is the new version of Caffe that was
already released, Caffe2 [83], on April, 2017.

2.1.2.6.3 Theano

Many academic researchers in the field of deep learning rely on Theano [84],
one of the most known deep-learning framework, which is written in Python.
Theano is a library that handles multidimensional arrays, like Numpy. It is an
open source project released under the BSD license and was developed by the
LISA group at the University of Montreal, Canada. Theano uses C++ as native
code and efficent native libraries in order to run all structures and models created
by the user, in CPUs or GPUs. Used with other libs, it is well suited to data
exploration and intended for research.

The actual syntax of Theano expressions is symbolic, which can be hard to
beginners that are used to normal software development. Specifically, expressions
are defined in the abstract sense, compiled and later actually used to make calcu-
lations.
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It was specifically designed to handle the types of computation required for
large neural network algorithms used in Deep Learning. It was one of the first
libraries of its kind (development started in 2007) and is considered an industry
standard for Deep Learning research and development.

Numerous open-source deep-libraries have been built on top of Theano, in-
cluding Keras [85], Lasagne [86] and Blocks [87]. These libraries attempt to layer
an easier to use API on top of Theano’s occasionally non-intuitive interface.

The following points described some of the pros and cons regarding the
Theano framework:

• Pros:

– Interface in Python.

– Tight integration with NumPy (use of NumPy arrays in Theano-compiled
functions).

– Transparent use of a GPU

– Computational graph has a nice abstraction.

– RNNs fit nicely in computational graph.

– Extensive unit-testing and self-verification.

– High level wrappers (e.g., Keras, Lasagne and Blocks) help the devel-
opment in Theano.

• Cons:

– Raw Theano is low-level.

– Error messages can be unhelpful.

– Large models can have long compile times.

– Much heavy than Torch.

– Patchy support for pre-trained models

– Problems in deployment to Amazon Web Services.

– Single GPU deployment.
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2.1.2.6.4 Other Frameworks

In addition to all the aforementioned machine learning frameworks, there are
many others that are also known in the community of machine learning enthusi-
asts, such as Keras [85], CNTK [88], Torch [89], MXNet [90] and SciKit Learn
[91]. In order to better understand which capabilities each one of the aforemen-
tioned frameworks provide, a brief explanation will be presented in the following
paragraphs.

Microsoft Cognitive Toolkit

The Microsoft Cognitive Toolkit, previously known as CNTK [88], is a unified
deep learning framework developed by Microsoft Research. It describes neural
networks as a series of computational steps via a directed graph. The Microsoft
Cognitive Toolkit can be used to speed-up progresses in areas such as speech and
image recognition and search relevance on CPUs and NVIDIA GPUs, and is avail-
able on GitHub via an open-source license. Its main characteristic is the ability to
scale efficiently across multiple GPUs and multiple machines on massive data sets.
The Microsoft Cognitive Toolkit can be included as a library in Python, C++
programs and, recently in the 2.0 version, Java or used as a standalone machine
learning tool through its own model description language (BrainScript). It is used
by companies like Skype, in its translator, and implemented the Cortana digital
assistant.

Keras

Keras [85] is an open source high-level neural networks API, written in Python
and capable of running on top of either TensorFlow or Theano machine learning
frameworks. It was developed with a focus on enabling fast experimentation with
deep neural networks, and it focus on being minimal, modular and extensible.
Keras supports both CNNs and RNNs, as well as combinations of the two. More-
over, it runs seamleassly on both CPU and GPU. Keras was developed as part
of the research effort of project ONEIROS (Open-ended Neuro-Electronic Intelli-
gent Robot Operating System), and its primary author and maintainer is François
Chollet, a Google engineer.
In 2017, Google’s TensorFlow team decided to support Keras in TensorFlow’s
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core library. The Keras’ primary author explained that it was conceived to be
an interface rather than an end-to-end machine-learning framework. It presents
a higher-level, more intuitive set of abstractions that make it easy to configure
neural networks regardless of the backend scientific computing library. Microsoft
just implemented, in 2017, a CNTK backend to Keras.

Torch

Torch [89] is a scientific computing framework with wide support for machine
learning algorithms that puts GPUs first. It provides a wide range of algorithms for
deep machine learning and is easy to use and efficient, thanks to an easy and fast
scripting language, LuaJIT, and an underlying C/CUDA implementation. Its main
features relies on the popular neural network and optimization libraries which are
simple to use, while having maximum flexibility in implementing complex neural
network topologies. It provides tools to build arbitrary graphs of neural networks,
and parallelize them over CPUs and GPUs efficiently. Another important feature
is the portability, being embeddable with ports to iOS, Android and FPGA back-
ends. Torch comes with multiple community-driven packages in machine learning,
computer vision, signal processing, parallel processing, image, video, audio and
networking among others, and builds on top of the Lua community.

MXNet

MXNet [90] is an open-source deep learning framework used to train, and de-
ploy deep neural networks. It is scalable, allowing for fast model training, and
supports a flexible programming model (both imperative and symbolic program-
ming). MXNet is characterized for the performance based on the optimized C++
backend engine that parallelizes both I/O and computation. Moreover, it provides
multiple languages as front-ends with the same performance (C++, Python, Julia,
Matlab, JavaScript, Go, R, Scala, Perl, Wolfram Language). The MXNet library
is portable and can scale to multiple GPUs, multiple CPUs, servers, desktops or
mobile phones. It is supported by major public cloud providers including Azure
and AWS.
Currently, MXNet is supported by Intel, Dato, Baidu, Microsoft, Wolfram Re-
search, and research institutions such as Carnegie Mellon, MIT, the University of
Washington, and the Hong Kong University of Science and Technology. It was
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developed and is maintained by collaborators from multiple universities and com-
panies.

Scikit Learn

Scikit-learn [91] is an open source machine learning library for the Python pro-
gramming language. It provides various classification, regression and clustering
algorithms including support vector machines, random forests, gradient boosting,
k-means and DBSCAN, and is designed to cooperate with the Python numerical
and scientific libraries NumPy and SciPy, respectively. Briefly, it presents simple
and efficient tools for data mining and data analysis.
The scikit-learn project was created as scikits.learn, a Google Summer of Code
project by David Cournapeau. The original code base was later rewritten by
other developers. Of the various scikits, scikit-learn as well as scikit-image were
described as "well-maintained and popular" in November 2012. Until now, 2017,
scikit-learn is under active development.

2.1.2.6.5 Summary

During the present section, machine learning frameworks were detailed and
its pros and cons presented. Therefore, the Table 2.10 summarizes the frameworks
and their features in order to be possible to have a comparison source and to
easily understand their differences. Moreover, this table can be used as a reference
to justify the application of one of the aforementioned frameworks during the
implementation phase.
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Table 2.10: Machine learning frameworks summary table. [23, 24]

Framework License Core
Language

Front-end
Languages

GPU
support

Graph
Optimization

Graph
construction

Caffe BSD C++ Python, C++,
Matlab Yes - Static

CNTK MIT C++ Python, C++,
C#/.NET, Java Yes - Static

MXNet Apache 2.0 C++

Python, C++,
Julia, Matlab,
JavaScript, Go,
R, Scala, Perl,

Wolfram

Yes - Static

TensorFlow Apache 2.0 C++ Python, C++,
Java Yes Supported Static

Theano BSD Python Python Yes Supported Static

Torch BSD Lua, C
Lua, LuaJIT,
C, C++,
CUDA

Yes - Static

2.2 Industry Concepts and Solutions

In this section, different industry solutions and concepts already developed
are mentioned and described. This allows a better understanding of what was
done or is being doing regarding this thesis field of study.

2.2.1 Motorola Driver Advocate

The Driver Advocate is a driver assistance interface developed by Motorola
and installed in a Chrysler Town & Country minivan, for testing purposes. Its
main vision is to orchestrate the driver’s attention to the most important task
(i.e., driving) in a useful and acceptable way (Figure 2.15).

To achieve this, the Driver Advocate monitors all driver-related controls tak-
ing into account the information originated from telematics, navigation and chassis
control systems [18]. Its purpose is to design and develop an intelligent controller
system capable to integrate, prioritize, and process the information from different
sensors and devices using artificial intelligence technologies (i.e., Machine Learn-
ing), and output the result through a multimodal user-interface [92]. The artificial
intelligence is capable to learn driver models and learn how to give advises in order
to get the best reaction form the driver, without distracting the driver.

Driver Advocate’s goals are, obviously, correlated with its vision and aims
the following assumptions: (i) improve driving safety (i.e., enhancing driver situa-
tional awareness), (ii) reduce driver’s distraction (i.e., directing driver’s attention
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to critical tasks), and (iii) alert the driver to potential road hazards.

Figure 2.15: Representation of the Driver’s task demand interfaces [18].

Driver Advocate system has a Workload Management Center that processes
the information about the driver’s attention and stress levels, measured by driver
actions and vehicle motion information, and determines if a message should be
displayed to the driver or if non-safety-compromising information should be inter-
cepted in order to not disturb the driver from its driving task.

The interface between the driver and the HMI system is possible through
a user-friendly three-button installed on the steering wheel, allowing to access to
incoming cell phone calls, navigation system and vehicle diagnostic information
[93]. If the Workload center decides that the context does not requires a mes-
sage suppression, the information is normally displayed. Moreover, the driver can
determine when is the appropriate time to display the respective message/infor-
mation (e.g., the driver may want to dismiss the navigation system until reaching
a specific part of a route).

2.2.2 SAVE-IT - SAfety VEhicle using adaptive Interface
Technology

SAVE-IT project is a project funded by the United States Department of
Transportation, having Delphi as the prime contractor together with the Univer-
sity of Michigan and Iowa, Ford, General Motors and Seeing Machines as subcon-
tractors. Its goal is to conduct research and develop a new technology that reduce
driver distraction, and resulting crashes, induced by telematics devices (e.g., IVIS
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and ADAS). The project’s main goal is to assess the potential safety benefits and
driver acceptance of a system encompassed with adaptive safety warnings and dis-
traction mitigation strategies [30].

The SAVE-IT system is composed by two main subsystems: Adaptive Warn-
ings system and Distraction Mitigation system (Figure 2.16). Physically, this sys-
tem integrates several interconnected subsystems that monitor the driver, the driv-
ing environment, and the in-vehicle systems in order to minimize driver distraction,
driving demand, workload, and safety during the driving task. The integration of
these three components induce the capability to the system to direct and redirect
the driver attention to the roadway when the situation demands it (i.e., imminent
crash situations) and accordingly warn the driver when needed [19].

Adaptive Warning system main goals [19] regard the annoyance reduction,
crash reduction potential improvement or minimization degradation, and afford-
ability of the technology.

Figure 2.16: Representation of the SAVE-IT system [19].

Distraction Mitigation system [19] is responsible for the Infotainment Avail-
ability/Advisory adaptation, the Phone Management adaptation and the Trip Re-
port management. These multitude of systems are responsible for the infotainment
system adaptation and the phone communications management, based on the ac-
tual Driving Demand (i.e., driver workload estimation coming from radar, yaw,
path, wipers, etc), providing advertisements in the IVIS and blocking the number
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of features that are available for the driver to interact. For example, if the driving
demand is medium many IVIS features are available and many others are advised
against its use. Finally, the Trip Report Management is responsible to provide to
the driver a concise review after each drive.

2.2.3 AIDE - Adaptive Integrated Driver-vehicle interface

The Adaptive Integrated Driver-vehicle interfacE (AIDE) is an integrated
project funded by the European Commission in the 6th Framework Programme.
It was a 50-month project involving 31 partners from the European automotive
industry, and a range of leading research institutes and universities [2]. It ad-
dresses behavioral and technical issues related to automotive Human-Machine In-
terface (HMI) design, with a particular focus on integration and adaptation. The
project’s basis involves an integrated empirical research approach, driver-behavior
modeling, and methodological and technological development.

The AIDE’s goals somehow correlates with the issues that the P689 project
where this thesis is incorporated. Its main goal is to generate knowledge and de-
velop the methodologies and Human-Machine Interface technologies mandatory
for a safe and adequate integration of multiple ADAS and IVIS functions into
the in-vehicle environment [94]. Precisely, its goal is to design, develop and val-
idate an Adaptive Integrated Driver-vehicle Interface that assures the following
assumptions:

• Maximize the efficiency of individual and combined advanced driver assis-
tance systems, preventing negative behavioral effects (e.g. under-load, over-
reliance and safety margin compensation) and enhancing the safety benefits
of these systems;

• Reduce the workload level and distraction related to the interaction with
in-vehicle information and nomadic devices;

• Enable the potential benefits of new in-vehicle technologies and nomadic
devices in terms of mobility and comfort, without compromising safety.

AIDE project’s features are very similar to the ones presented by the P689
project and, in some points (e.g., forth item of the list of items presented below),
with this thesis proposal. These features are the following [2] (Figure 2.17):

• Multimodal HMI interface devices shared by different ADAS and IVIS (e.g.,
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head-up displays (HUD) and speech input/output);

• Centralized intelligence for decision-making (e.g., by means of information
prioritization, scheduling and HMI personalization);

• Integration of nomadic devices into the on-board driving environment;

• Adaptivity of the HMI system to the current driver/driving context (e.g.,
traffic environment or driver workload level);

• Reconfigurability of the adaptive interface regarding the different drivers’
characteristics and preferences.

Figure 2.17: Illustration of the AIDE concept [20].
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Chapter 3

System Specification

The past chapter presented and exposed the key concepts and tools that
are related to this master’s thesis thematic. Thus, this chapter will firstly outline
the development environment which supports the implementation of the systems
that are specified also within this chapter. Moreover, Chapter 3 describes the
experimental setup designed to collected data in order to build the training dataset.
Lastly, it specifies the preprocessing phase responsible for the dataset balancing
and normalization, preparing it to the training phase.

3.1 System’s Architecture

The thesis’ proposed system is part of a bigger architecture that composes
the P689 project as mentioned in earlier chapters. This project’s architecture
encompasses multiple modules that, holistically, provide and manage HMI features
(e.g., navigation, weather information, music, etc) through different modalities
(e.g., touch, auditory, visual, haptic, aromatic, etc). Different architecture’s layers
were outlined in order to give meaning to system modules that represent different
hierarchical positions comparatively to the main goal of providing HMI features
for the driver (Figure 3.1):

• Data Layer: Includes the modules responsible for providing raw data to
the information layer modules.

• Information Layer: This layer includes modules that provide the Driver
Vehicle Environment (DVE) variables.
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• Context Layer: Includes Information that characterizes the context of each
DVE entity, and employs mechanisms for relevant scenario identification.

• Decision Layer: The Decision layer includes modules responsible for man-
aging and coordinating the HMI system and the vehicle.

• HMI Layer: This layer represents the modalities and channels that allows
the user to interact with (e.g., visual, touch, voice, gestures, etc).

Figure 3.1: Project P689 "The Cockpit of the Future" overall architecture.

The thesis’ proposed system is composed by two main modules: the Work-
load Assessor and the Workload Manager. These two modules are highlighted in
the architecture Figure 3.1 with a gray background.

The Workload Assessor is located in the Information layer and is the module
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responsible to assess the driver’s workload level through a machine learning algo-
rithm. The assessed level is inferred based on the features generated by the other
sub-modules of the Driver Monitor module and by the Simulator module.

The Workload Manager is located in the Decision layer and is the one that,
from the previously assessed workload level, instructs the HMI manager to act on
the HMI system in order to counteract abnormal levels of workload and to restore
its optimal level. Their instructions are based on information from the Context
Assessor in which the driver and the vehicle meet. The Context Assessor is re-
sponsible for the identification of scenarios/situations to which applications should
adapt their behavior to. Therefore, the actions to be applied in the HMI system
are selected to respond in the best way to the situation in which the driver is.
Moreover, these actions have driver-based meaning where each applied action is
the more effective for the actual driving context and for the driver in the abnormal
state.

Further details regarding the two aforementioned modules will be given in
the following sub-chapters.

The project P689 and the thesis’ proposed system architecture were designed
taking into account an autonomous driving environment with 5 levels of automa-
tion. Each level represents incremental differences on the driver’s task control
degree (Table 3.1). As far as this thesis is concerned, these automation levels and
their differences are largely relevant for the Workload Manager methodology and,
more specifically, to the process of instructing the actions since these levels can
influence their specificity.

Table 3.1: Summary of SAE International’s Levels of Driving Automation for On-Road
Vehicle [25].

SAE
Level Name

Execution of
Steering and

Velocity control

Monitoring of
Driving

Environment

Fallback
Performance of

Dynamic Driving Task

System
Capability

(Driving Modes)
Human driver monitors the driving environment

0 No
Automation Human driver Human driver Human n/a

1 Driver
Assistance Human driver and system Human driver Human Some driving

modes

2 Partial
Automation System Human driver Human Some driving

modes
Automated driving system monitors the driving environment

3 Conditional
Automation System System Human Some driving

modes

4 High
Automation System System System Some driving

modes

5 Full
Automation System System System All diving

modes
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The taxonomy and definitions for the automated driving, and its levels, were
based on the SAE (Society of Automotive Engineers) international’s J3016, issued
January 2014 [25].

3.1.1 Workload Assessor architecture

The Workload Assessor is an holistic HMI concept for automotive applica-
tions that estimates the driver’s workload level. This module infers the driver’s
workload level from multimodal data. This data encompasses physiological data,
vehicle data and environment data collected from the DSM (Driver Simulator
Mockup) (e.g., simulated vehicle and environment data) and from physiological
sensors (i.e., extracted from the Driver Monitor module). A data-driven approach
using a machine learning algorithm was applied in order to estimate the driver’s
workload level. The system’s output encompasses the workload level as a scale of
low, normal, and high levels (Figure 3.2).

The Workload Assessor receives information regarding the external Environ-
ment Context, the Driver Context and the Vehicle Context, estimates the workload
in one of the three aforementioned levels and sends this information to the Context
assessor.

Figure 3.2: Workload Assessor I/O diagram.

Deep learning is applied to the fused multimodal data. This type of learning
has been successfully applied in many areas, including computer vision, speech
recognition, and multimodal data fusion [23]. The approach encompasses the use
of a deep learning algorithm, which has rarely been used in this domain to address
the driver state detection problem. Instead of treating types of data differently, the
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multimodal data time sequence was fused using a two-dimensional matrix, where
one dimension is used for the different sensor data and the other is used for time.

A Convolutional Neural Network (CNN) model composes the Workload As-
sessor deep learning algorithm. Although this algorithm is not widely used by the
community that develops machine learning-based workload detection algorithms,
the promising results that were analyzed in the literature review led to its choice.
Combining this with the fact that a deep learning algorithm prevents data over-
fitting and reduces the cost of computing when compared to other types o neural
networks, it makes its choice much more reinforced and valid. Moreover, since the
basic structure of the algorithm is a neural network, it becomes easier to under-
stand its dynamics and structure, which is an important factor due to the lack of
previous experience on the part of those who studied and will developed it. Its
implementation is performed using the machine learning framework recently un-
veiled by Google: the TensorFlow [17]. As stated in the Chapter 2, Section 2.1.2.6,
this framework provides a high-level API that facilitates the process of developing
machine learning algorithms as well as the process of training and deployment.

The CNN model structure (Figure 3.3) to be developed encompasses two
layers of convolution (Convolution Layer 1 and 2), which can be stated as a stan-
dard in this type of algorithm. Max-pooling layers follow and interleave each
convolution layer, making a total of two. After establishing the first four layers
aforementioned, two fully-connected layers, respectively Fully-connected Layer 1
and 2, are then added at the bottom of the structure. The penultimate (Fully-
connected Layer 2) one implements a dropout layer with a dropout rate of 75%.
The dropout is a smoothing technique that allows the reduction of the training
data overfitting in a neural network through the drop of random neurons from it,
at each iteration. The rate means a probability for a neuron not to be dropped
out. Regarding the activation function applied to all layers (except to the last
fully-connected layer), the Rectified Linear Unit (ReLu) is chosen instead of the
Sigmoid function. The Sigmoid activation function is actually quite problematic in
deep networks. It squashes all values between 0 and 1 and when you do so repeat-
edly, neuron outputs and their gradients can vanish entirely. Moreover, modern
networks use the ReLu activation layer. To the last fully-connect layer, a Softmax
regression activation function is selected because it is best suited for classification
problems. This layer will give the probability of the driver being with a certain
workload level: low, normal or high.
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Figure 3.3: Convolutional Neural Network model structure from the Workload Assessor
system.

3.1.1.1 TensorFlow integration

As stated in the Chapter 2, Section 2.1.2.6.1, Tensorflow provides multiple
complementary platforms that helps the process of model training and its deploy-
ment. Therefore, these additional tools are necessary in order to carry out the
process of training and deployment of the trained model throughout the system
development stage. The model training pipeline and the architecture that will
support the clients serving is illustrated in the Figure 3.4.

The Workload Assessor model training and validation will use the collected
experiment data splitted in two different datasets: 70% for the training dataset
and 30% for the test dataset [10, 11, 12, 13, 14, 59, 95]. During the training phase,
the model is adjusted according to its error, while in the validation phase the data
is used to measure the network generalization and to halt training when general-
ization stopped improving. The testing phase will produce no effect on the training
phase, but provides an independent measure of network performance during and
after the training phase.
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Figure 3.4: Model training and production pipelines architecture.

The training procedure will encompass the use of a Cross-Entropy loss func-
tion and an Adam optimizer. The loss function will compute a value that repre-
sents how badly the system predicts and the optimizer will try to minimize the loss
function error by adjusting the neuron weights and biases with such values that
improve the overall model accuracy. The Cross-Entropy is selected as a loss func-
tion because, for classification problems, is more efficient (i.e., faster convergence)
than the Euclidian distance or Mean Square Error (MSE), for example, and can
be considered as ubiquitous in modern deep neural networks [96]. Regarding the
optimizer, the Adam algorithm is selected instead of the classical Gradient Descent
due to the deepness characteristic that the CNN model will present. When dealing
with high dimensional spaces, saddle points are frequent. Although these points
are not local minima, the gradient is, however, zero and the gradient descent op-
timizer remains stuck there. In this way, the Adam optimizer was adopted, which
does not present the above mentioned problem and is able to "navigate" easily
throughout these saddle points [97].

The TensorFlow API [17] provides, programmatically, all the aforementioned
necessary methods during the training loop. Moreover, the training, validation and
test phases will be computed through a GPU interface, in order to obtain a faster
processing pipeline.

After the training, validation, and testing phases are concluded, the train-
ing pipeline will produce a trained and validated Workload Assessor model. This
model has all conditions to proceed to the production deployment in order to as-
sess the driving world, through the TensorFlow Serving platform.

The production deployment will be performed using the TensorFlow Serving
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(TFS) [81] tool that enables the deploy of new algorithms and experiments, while
keeping the same server architecture and APIs. Recapitulating, the TS provides
a direct integration with TensorFlow models, with ease extending to serve other
types of models and data. This is possible due to the flexible, high-performance
serving system that it offers.

A TFS server will be developed to serve model estimations for all clients that
connect to it. This server should include, among others, the submodules that are
in Figure 3.4, delimited by the border of TFS. In TFS, each model is treated as
a servable object. Periodically, the server scans the local file system and loads or
unloads the models (i.e., Loader), according to the local file system itself and the
version policy of the model (i.e., Version Manager). After the appropriate model
version is found, the server is ready to respond to customer requests for workload
level estimation (i.e., Session Bundler). This architecture enables trained models
to be easily deployed by copying exported models to a specific file path during
TFS continuous execution (i.e., while the TS server is running, different versions
of the trained model can be deployed to an anteriorly specified file path and will be
automatically loaded during its execution if, for example, a newer model version
arrives).

In order for clients to perform prediction invocation to the model’s server,
they must respect the communication protocol exposed by TFS. This interface is
the gRPC [98], an open-source, high performance remote procedure call (RPC)
framework that runs on HTTP/2. The gRPC uses Protocol Buffers (i.e., pro-
tocol buffers are Google’s open-source mechanism for serializing structured data
in efficient binary format), also known as Protobuf, as the format of messages
exchanged between server and client. Therefore, as illustrated in Figure 3.4, the
communication will be based on gRPC requests and gRPC responses. The client’s
request encompasses the two-dimension structured matrix with all features that
are collected from the driver’s physiological sensors and the simulator data (i.e.,
vehicle and environment data). It sends this information through a gRPC request,
the TFS server receives it and makes it available to the model for inference. The
result will be then sent back to the client through a gRPC response message with
the inferred workload level.

This TFS architecture (Figure 3.4) allows an horizontal scalability since the
prediction with the TensorFlow models is inherently a stateless operation. There-
fore, more instances of different types of clients (e.g., remote or local Computers,
smartphones, etc) can be added, as long as they meet the communication protocol
requirement.
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3.1.2 Workload Manager architecture

The Workload Manager (WM) supervises the HMI system and provides ac-
tions that are able to adapt it accordingly to the driver’s overload or unverload
level. Based on workload level estimated by the Workload Assessor, this system
provides countermeasures to a specific driver and context of driving, in order to be
possible to adjust and normalize the driver’s cognitive workload. These counter-
measures are action-based and act directly on the HMI system (through the HMI
Manager), influencing indirectly the driver.

Afterward the driver’s workload level assessment, this information is stored
in the Context Assessor. Then, the Workload Manager gathers the workload level
and other variables that define the current driving context (e.g., the trigger that
influenced the driver state of underload or overload and the automation level en-
gaged by the car). The trigger is considered the source that originated or influenced
an abnormal level of workload on the driver.

The fact that the trigger that originated the driver’s abnormal workload level
is taken into account helps in the selection of a possible action or countermeasure
that proves to be more appropriated for the current driving context. Therefore, the
only part of the HMI system that will be affected is the one that is considered most
appropriated to influence the level of the driver’s workload, leaving the remaining
HMI experience unchanged. These triggers encompass driver stress, weather con-
ditions, traffic conditions, driver activity (e.g., HMI interaction), secondary/non-
driving related tasks performance and driver drowsiness.

The WMmodule receives also as input the current vehicle’s automation level.
This input becomes important in defining the strategy of applying the action to
the HMI system, just like the previously mentioned trigger. The automation level
may indicate whether there is no active ACC type (i.e., automation level 0) or
whether there is a full automation level (i.e., automation level 5). In this way,
you can make a selection of the actions that are most appropriate for each level.
At higher automation levels (i.e., between automation level 4 and 5) if the driver
is in an underload state, a possible audible warning may not be issued since the
driver is only in a supervised state and may want to continue in this state (e.g.,
sleeping). On the other hand, at lower levels of automation, this type of warning
may now be considered. Thus, the level of automation becomes a very impor-
tant variable in selecting the best action to be applied in the HMI system and,
indirectly, influencing the driver.
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Figure 3.5: Workload Manager I/O diagram.

Lastly, the driver identification is included as in input of the Workload Man-
ager in order to delegate personalization to this module. Further details regarding
this personalization feature will be presented over this subsection.

The Workload Manager encloses an Artificial Intelligence (AI) agent that is
responsible for the choice of an action, regarding the workload level, driver iden-
tification, driver activity, stress, drowsiness, traffic level and secondary task. The
agent takes the inputs and, regarding their value, it returns all possible actions
that match the input requirements. The AI agent is based on SWI-Prolog [99], a
free implementation of the programming language Prolog. This mechanism follows
a rule-based logic and is simple to apply. Moreover, an approach using reasoners
with a defined ontology could also be applied, both due to the high performance
that could be harnessed and to the potentiality that it presents. However, project
constraints in terms of available resources and a driving context domain with an
average complexity are reasons that lead to this approach to be dropped.

However, the Prolog agent only returns the set of actions that corresponds to
the specified rules in the Prolog file. Thus, no driver-specific action based on the
actual context is indicated. Therefore, the WM has an inner action-reward driver-
specific algorithm that handles with this personalization. Relatively to the driver
that is driving in a specific moment, within the set of actions that is returned by
the Prolog agent, the algorithm manages the best rewarded actions based on the
driver’s past. This is, if an action was previously applied to a driver and resulted
in a driver workload normalization (i.e., driver’s workload changed from an abnor-
mal level to a normal level), a positive reward must be attributed to that action.
On the contrary, if the application of an action did not result in driver’s workload
normalization, then a negative reward will be attributed to it. These informations
are stored in a local driver profile in order to be loaded at any time.
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Figure 3.6: Workload Manager blocks diagram.

A system block diagram is depicted in the Figure 3.6 in order to better
understand its dynamics. The Prolog Engine starts by consulting the file that
gathers all Action Rules, generating after a Prolog Agent that will work as an
interface when a query to the action rules is required. In this module, the Prolog
Agent is queried with the input features (e.g., driver activity, driver stress, driver
drowsiness, traffic level and secondary task) and a set of actions that complies with
the action rules is returned. Furthermore, an action selection is made based on
the aforementioned returned set and the driver’s actions history, in order to apply
the best rewarded action from the returned actions set. Afterwards, the selected
action is sent for the HMI Manager in order to be applied to the HMI system.
Based on the success of the action employment, the Reward Assigner analyzes the
current workload level in order to find out if a normalization level was obtained.
The result of this analysis is then sent to the Profile Manager in order to update
the driver’s profile with the current action rewards.

3.1.2.1 Action rules specification

The countermeasures used by the Workload Manager to normalize the abnor-
mal workload states are the action rules. These actions give specific information
to the HMI system to manage any of the modalities that it controls in order to
make the driver’s workload level return to a normal state. The majority of the
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actions were specified with empirical knowledge and with the notion that they are
plausible to be applied to the HMI system to combat the induced abnormal driver
workload states. The literature does not report palpable results or even solutions,
duly validated, regarding computer algorithms that allow to manage the driver
workload level.

Table 3.2: List of available actions used by the Workload Manager system.

State Trigger Actions Automation
Level

Overload

Weather
- Prioritize HMI displayed information
- Propose turn on ADAS
- Limit use of Secondary tasks

0 - 1
Traffic

- Prioritize HMI displayed information
- Propose turn on ADAS
- Limit use of Secondary tasks

Physiological
- Prioritize HMI displayed information
- Propose turn on ADAS
- Play relaxing music

Secondary
task

- Limit/Turn off secondary task
- Limit/Prioritize displayed information

Underload Drowsiness

- Visual and auditory warning
- Play music
- Turn on cockpit ambience lights
- Decrease cockpit temperature
- Visual and auditory warning
- Visual and auditory proposition to
switch back to lower automation levels

2 - 3

- Visual warning
- Visual proposition to switch back to
lower automation levels

4 - 5

Table 3.2 specifies the actions according to the external conditions where they
were intended to be more suitable and have a greater positive impact. Therefore,
they were divided concerning the workload level, the main trigger that induced
the abnormal workload state and the automation level owned by the vehicle.

3.2 Experimental setup

The experiment to be developed will allow the data collection from a driving
simulator, in order to create a database to train the previously specified model.
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Therefore, a human-in-the-loop experiment will be conducted in a Driving Simula-
tor Mockup (DSM). The DSM (Figure 3.7) delivers a very realistic driving experi-
ence, simulating different weather conditions (e.g., day, night, fog, rain) in various
types of roads (e.g., urban roads, highway, etc) with all kinds of environment ele-
ments (e.g., buildings, lampposts, moving and parked cars, trees, pedestrians, etc).
This simulator is used with the goal of validating the HMI system being developed
under the P689 Project, mentioned in the Chapter 1.

The DSM encompasses an off-board projection (three projectors) with a 210°
viewing angle screen in front of a stationary car cockpit mockup and incorporates
the Silab Driving Simulator software1 [100]. The car cockpit is instrumented with
a fully interactive multimodal HMI system, that is composed by (i) one cluster or
dashboard (where the vehicle velocity, engine revolutions and all the standard tell-
tales are displayed), (ii) one lower stack (where the driver can interact with some
minor functions of the HMI system and the car, like the air conditioning) and (iii)
one central stack (where the driver can interact with the holistic HMI system, such
as play music, news visualization or personalize the cockpit environment, and even
receive notifications regarding system’s or vehicle’s significant events). Moreover,
sensors are installed in the cockpit in order to obtain data regarding the driver’s
physiology, activity and response (e.g., eye tracker system by SmartEye, BioPack
system, etc).

Figure 3.7: Driving Simulator Mockup [21].

For the experiment itself, 21 subjects will be recruited with between the ages
of 20 and 30, and each must comply with the following conditions:

• Hold a driver’s license for more than 1 year;

• Aged between the 20 and 30 years old;

• Drive frequently;
1Developed by Würzburg Institute for Traffic Sciences (WIVW)
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• No major medical illness;

• No recent surgery;

Participants will be subjected to two different experiments: the first exper-
iment will be composed by the execution of scenarios in one group (i.e., manipu-
lating only one independent variable) and aim to provoke a high workload state as
well as a normal workload state (in order to have a driver’s reference state), and
the second experiment will be composed by one scenarios aiming to induce a low
workload state. Each experiment will be described later in this section.

Each one of the experiences, and its different scenarios, will adopt a es-
tablished procedure to which the subjects will have to follow. The experimental
procedure flowchart is depicted in the Figure 3.8 and will be applied for both
experiments.

The experiment procedure encompasses an initial familiarization with the
DSM where all the commands and interaction points concerning to the cockpit
will be shown to the subject, due to the possibility of its activation during the
experiment. At the same time, information about the need to use some cockpit
interaction points during the performance of the experiment and a brief summary
about its unfolding will be presented to the participant. Then, a driving training
segment aims to provide familiarization time to the subject with both the cockpit
and the simulated environment, and to check for possible nausea symptoms that
are known in this type of experiment. After the familiarization procedure, the ex-
periment execution will be assigned to the subject. When the experiment period
ends, if in a city scenario, a workload subjective assessment will be conducted,
using the DALI subjective measure. If a highway scenario is being performed, the
subjective questionnaire to be applied is the Karolinska Sleepiness Scale (KSS)
[101]. It was chosen as a subjective measure due to the fact that the project in
which this dissertation is inserted already have all the support to assess with it.
Therefore, the assessment procedure will require the subject to select one of the
nine factors that the measure provides through an Android application that will
pop up every 5 minutes, during the scenario execution. Thus, the KSS application
goal will be to give insight regarding periods where drivers may feel less involved in
the driving task and the low workload level reached, by means of sleepiness levels.

When all scenarios regarding the experiment were already performed, the
next experiment must be introduced if there is still another one not performed.
Otherwise, the experiments session will be terminated.
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Figure 3.8: Experiment procedure flowchart.

The next two subsections will present the various scenarios within each ex-
periment and how they will be introduced to the participant.

3.2.1 Experiment 1

The Experiment 1 will be the first to be presented to subjects. It encom-
passes one group of scenarios where the traffic level will be varied. In this group,
the scenarios presentation order for participants will be done randomly, not allow-
ing it to adapt to the independent variables variation. A possible use-case scenarios
presentation with a gradual increase in traffic level could lead to the adaptation
to the difficulty of the scenario by the subject.
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The experiment will consist of a defined structure regarding the simulated
scenario. This structure consists in four types of road elements: an adaptation
road, a straight road, a roundabout and an intersection. In all scenarios of this
experiment, their disposition throughout the simulated course will be static. How-
ever, from use-case in use-case, the visual aspect (e.g., the landscape, the house
types, etc.) and morphological (e.g., roundabout size) will be changed, in order
to not allow the driver to become familiarized to the scenario characteristics. The
flowchart that translates the Experiment 1 simulation is shown in Figure 3.9.

Figure 3.9: Experiment 1 simulation flowchart.

The subjective assessment questionnaire regarding the completed use-case
will be done at the beginning of the next use-case adaptation road.

In order to increase the chances of having high workload level periods on
subjects during the experiment execution, a N-back test will be applied as a non-
driving related task (i.e., a Secondary task). As mentioned in early sections (Sec-
tion 2.1.1.4.2, Chapter 2), this task encompasses a sequence of stimuli (in this case,
number between 0 and 9) presented one at a time and asked to compare the cur-
rent stimulus to one presented n items prior in the sequence [102]. For example, if
performing a 2-back test, the current number is a target if it matches the number
presented two numbers ago. Therefore, a 2-back test will be applied to subjects
during the high traffic scenario execution, in complex sections (e.g., roundabouts
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and intersections).

3.2.1.1 Traffic scenarios group

As aforementioned, the traffic group will cover different use-case scenarios,
where the traffic level in the simulation will vary. Details regarding these use-case
scenarios are depicted in the Figure 3.10.

Figure 3.10: Traffic scenarios group details.

Traffic scenarios have their baseline well established. For all use-cases, the
experiment will be in a simulated city environment during the day and with a
variable traffic density between use-cases. Moreover, in all these cases, the level
of automation that the car handles is fixed to zero. Furthermore, it is assumed
that the driver presents the ideal conditions for the execution of the experiment,
which means having a well rested condition (i.e., 8 or more hours of sleep), thus
ensuring that no fatigue issues arise and influence this type of experience.

Participants will have to complete three laps in the driving course that is
outlined for each of the cases. However, cases that are executed in second place,
will have, as a complement, a period of 2 minutes of driving with the conditions
applied to the preceded case, at the beginning of the current case. The reason
is that, since the subjective measure survey is presented to the driver at the end
of each scenario case, this period allows that a real transition between scenarios
takes place. Moreover, as aforementioned, among these cases, traffic will be varied
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in three different levels: Free flow, Stable flow and Forced or Breakdown flow2.
These different cases will be applied in a random order, as already explained.

3.2.2 Experiment 2

The Experiment 2 will be the second and last to be presented to subjects.
It will be composed by only one use-case scenario. The experiment simulated
scenario will essentially encompass a very uncomplicated highway environment,
abstaining from the presence of billboards, the abundance of nature elements or
road signs. Moreover, stimulant substances or products cannot be used by partic-
ipants, during or before the experiment, in order to enable a fatigue state to affect
the subject during the experiment.

The main goal of this experiment is to induce a low workload level in the
participant. Apart from the visual elements that make up the experiment scenario,
the most important points for the induction of the underload state is the monotony
characteristic that a highway presents and the duration that the experience itself
will take. The use-case duration will be about 40 minutes. Furthermore, one
variable to take into account in the experiment is the level of automation, which
will range from zero to two in the use-case scenario. Thus, the ease in driving
by the subject, allowed by the ADAS, will also influence the driving demand and
performance (i.e., the commitment that the driver presents to the driving task),
allowing to drag the subject to lower workload levels.

The experiment simulation will encompass a highway scenario, as aforemen-
tioned. During the scenario execution, a tablet will will increase the screen bright-
ness and a KSS scale will appear (see Appendix C.1). The participant will have
to select the value of the KSS scale that best suits the drowsiness level that he
presents.

Globally, it will be possible to allow a low level of workload to be achieved by
the subject. The details about the Highway scenario are presented in the Figure
3.11.

2The definition of each traffic level is explained in the glossary chapter.
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Figure 3.11: Highway use-case scenarios details.

3.2.3 Experiment data collection

The experiment data collection to be performed during the experiments will
allow the dataset creation in order to be used during the WA model training. The
experiment data collection will allow the database construction for training the
Workload Assessor model. As mentioned in earlier sections, the model input fea-
tures are derived from three different categories: driver physiological data, vehicle
data and environment context data. These features are organized by category and
source system in the Table 3.3, and also which values from each feature will be
considered as inputs for the algorithm.

Data will be gathered at a sampling frequency of 30 Hz, due to project con-
straints and also because it is largely used by the literature regarding this domain.
Although the entire Experiment 1 will be recorded in a database, the gathered
data holding the most important information regarding workload are those that
are collected during the most demanding road sections (i.e., roundabouts and
intersections). Therefore, points of interest were placed in the simulation environ-
ment five meters before and fifty meters after these demanding sections, so that
these points are easily identified during the post-experiment analysis. Regarding
the Experiment 2, the analysis strategy will go through processing the data that
is further away in time from the beginning of the experiment and that presents
the higher KSS scale value. The close to the final part of the experiment is where
the level of workload is believed to be low because of the long driving time in a
monotonous environment.

During the experiment, all types of data coming from different sensory sources
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will be continuously collected (e.g., eye-related data from the eye tracking system,
environment and vehicle context data from the simulator, and heart rate data from
the smartwatch). Therefore, a central data management system will be built, aim-
ing the synchronous join of data from different sources so that a training database
is built and presents all the synchronized components in a single repository. In
this way, the construction of the training database will be less error prone than
using a manual process of joining these large amounts of data.

As mentioned in earlier sections, the subjective assessment questionnaire will
be taken after the completion of each use-case scenario, in the beginning of the
adaptation road of the next scenario. The DALI subjective questionnaire will be
presented to the participant and, with the help of a collaborator, it will be fully
answered (see Appendix B). In the post-experiment analysis, scores given by the
participant to the 6 DALI factors regarding each scenario will be taken in consid-
eration and a global workload score will be generated. Based on this value, the
data collected during the experiment (i.e., physiological, vehicle and environment
data) will be properly labeled. Later, this labeled dataset will be used to train the
workload model, following a supervised learning approach as aforementioned.

3.3 Data Preprocessing

In order to enhance the best knowledge discovery during the training phase, a
pre-processing step will be performed. From this step it will be possible to obtain
the final dataset for training the model. A technique for balancing the dataset
will be applied so that the distribution of the minority classes is adjusted (i.e.,
SMOTE). Further, before processing the dataset itself, an analysis of the features
that compose it will be performed (i.e., P-value). This step will allow to perform
a feature selection based on the correlation between features and workload levels
(i.e., the ground-truth). Allied to this feature parsing is the Error Incremental
analysis that will be adopted during the training phase of the model.
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Table 3.3: Experiment features collection.

Category Parameter Values Source
System

Driver

Heart Rate Bpm

BioPack
system,

Smartwatch
and Radar

Respiration
Rate

Breaths
per minute Radar

Blinking
Rate

Blinks
per second

Eye
Tracker

PERCLOS Percentage of
eyelid closure

Eye
Tracker

Vehicle

Velocity Km/h SciLab
Simulator

Longitudinal
acceleration (Ax) m/s2 SciLab

Simulator
Lateral

deviation (Ay) Meters SciLab
Simulator

Lateral
acceleration m/s2 SciLab

Simulator

Steering wheel Angle (Degrees) SciLab
Simulator

Brake Pedal Angle (Degrees) SciLab
Simulator

Environment

Traffic Density Low, normal
and high

SciLab
Simulator

Road type City
and highway

SciLab
Simulator

Road
Characteristics

Straight,
roundabout and
intersection

SciLab
Simulator

Time of
Day

Darkness/Nocturnal,
daytime and twilight

SciLab
Simulator

Weather
conditions

Clear, rain, fog,
fog and rain, and

snow/glaze

SciLab
Simulator

3.3.1 Dataset Balancing

Due to the fact that the dataset is unbalanced, a balancing process must
be applied. The dataset unbalancing comes from the fact that it is composed by
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more samples representing certain classes when compared with the other classes.
Therefore, the algorithm will have difficulties in learning and distinguishing data
relative to a certain class.

To address this problem, an oversampling technique will be applied. The se-
lected approach is called SMOTE (Synthetic Minority Over-sampling Technique)
[103]. It is one of the most adopted approaches due to its simplicity and effec-
tiveness. The SMOTE oversampling approach generates new minority class data
instances via an algorithm, instead of replicating minority class samples (i.e., copy
and paste existing samples in order to fill the gap). The problem of just copying ex-
isting sample is that it causes overfitting because repeated instances causes the de-
cision boundary to tighten. Alternatively, this algorithm creates synthetic samples
that are similar to the minority class existing instances. Briefly, the oversampling
algorithm takes an instance from the dataset, and look at its k nearest neighbors
(regarding the feature space). Therefore, to generate a synthetic instance, it takes
the vector between one of those k neighbors, and the current instance, multiplying
this vector by a random number ranging between 0, and 1. Finally, it adds this
value to the current instance in order to create the new synthetic data point.

The SMOTE algorithm implementation will not be performed in this disser-
tation due to the fact that there are already implementations of it. Instead, the
Imbalanced-learn API will be used since it is highly recommended by the commu-
nity as a good implementation and it is built as a Python package [104].

3.3.2 Dataset Normalization

Due to the fact that the dataset collected from the experiment encompasses
multimodal data, the existence of different units and scales between independent
variables is quite normal. Furthermore, it is necessary to normalize the dataset
so that all data have only one scale (i.e., Feature Scaling). Due to the nature of
almost classifiers, the range of all features should be normalized in order to each
feature to contribute proportionally to the algorithm learning process.

This type of normalization prevents the neurons of a neural network from
saturating due to variant scales of data. Moreover, in specific optimizers, it helps
in a much faster convergence with feature scaling.

The normalization method to apply is the min-max algorithm. It simply
rescales the range of features to scale a specific range (commonly scaled to [0, 1]
or [-1, 1]). The normalization range selected for this preprocessing step is between
0 and 1. The formula for the dataset normalized calculation is as follows:
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x′ = x − min(x)
max(x) − min(x) , (3.1)

where x is the unnormalized feature vector and x′ is the normalized feature
vector.

3.3.3 Feature Selection

The objective of the feature selection process is to assess which of the col-
lected variables are statistically significant, contributing to a best classification
performance. The ranking of the statistically significant variables provides an in-
sight on the discriminative power of each variable. By selecting the optimal number
of top-ranked features, a reduction of the dimensionality problem will be possible.
Therefore, the best classification performance and efficiency could be achieved.

The statistical significance of each feature will be obtained through the com-
pute of the P-value [105]. This measure indicates how likely a given outcome is
under the null hypothesis. That said, the p-value represents the probability that
the coefficient between the feature and the ground-truth (in this application sce-
nario, could be between any other features) is actually zero. Briefly, p-value helps
in the process of decision if there is a relationship between two variables or not.
Therefore, the smaller the p-value, the more positive is the existence of a relation-
ship between the two variables. The p-values origin comes from hypothesis testing
in statistics. In this field, two hypothesis can be discriminated: (i) H0, the null
hypothesis, where there is no relationship between two variables; and (ii) H1, the
alternative hypothesis, where exists in fact a relationship between two variables.
If the p-value is less than a specific threshold (often used 0,05 or 0,10), then the
null hypothesis, H0, can be rejected, meaning that can be concluded that there is
a relationship between the two variables (as the alternative hypothesis, H1, dic-
tates).

The threshold specified and that differentiate features that are statistically
significant for the workload level is 0,05 (i.e., p<0,05).

Based on the most significant variables, a set of top-ranked features will be
obtained. In order to selected the optimal number of top-ranked features, an error
incremental analysis will be performed. It will start from the inclusion of the top-
ranked features in the training dataset, and incrementally adding the next best
ranked feature until all significant variables are included.
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3.4 Development Environment

The development environment will allow the implementation of the previ-
ously specified systems. This environment encompasses both hardware and soft-
ware platforms that will be specified throughout this section.

3.4.1 TensorFlow

The TensorFlow was selected as a machine learning framework, firstly, due
to its support to beginners in the machine learning domain and the support com-
ing from the community. Its support is based in well structured tutorials which
introduce its API and how to use its various abstraction layers, and also helps on
the development of some machine learning topologies. Moreover, the popularity
and adherence by the community that TensorFlow is gaining since its release in
November 2015, was an additional point that strengthened its choice for the im-
plementation of the driver workload model. This is important in order to obtain
the support directly from the community when problems with recent TensorFlow
versions occur. Another crucial detail of TensorFlow is its performance that it
presents regarding the computational graph construction and training. Therefore,
a fast and efficient performance in the overall computation was an important fea-
ture for its selection. Lastly, the add-ons that integrate TensorFlow are considered
as very useful tools: the TensorBoard and TensorFlow Serving. With these add-
ons, the debugging and the algorithm health monitoring, and the deployment for
production of the developed model can be easily and efficiently performed. Both
tools were already mentioned and explained in earlier sections (Section 2.1.2.6.1).

3.4.2 NXP i.MX6 series platform

The NXP i.MX6 series platform is the required hardware platform by the
P689 Project. Therefore, in order to not spend resources and as it was considered
suitable platform to include the modules developed during this thesis. Moreover,
the platform possesses high CPU clock speeds (up to 1.2 GHz in quad-core archi-
tectures) and GPU components to succumb to the most demanding performance,
which is important for a fast processing of the input features coming from the
aforementioned external sources, and a consequent efficient model inference. This
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platform as contains a set of consumer- and automotive-used connectivity proto-
cols (e.g., Ethernet, FlexCAN, MOST), reveling an important feature for its use
in an automotive domain. As security, nowadays, became more and more a con-
cern, advanced security support (e.g., high assurance boot, cryptographic cipher
engines, random number generators) is implemented by the platform. Finally, the
i.MX6 platform is supported by a Linux BSP as well as multiple third party op-
erating systems and reference implementations that allow fast time to market and
rapid prototyping. Since the thesis system development will be entirely performed
using the Linux operating system, the aforementioned feature has a solid point
regarding the choice of this platform.
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System Development

After the system’s specification in the previous chapter, this chapter describes
the implementation and the work involved in the development of the same system.
Chapter 4 is divided into two major subsections, contrasting with the two stages
of development that were required to implement the final systems.

Firstly, the Workload Assessor implementation is presented. A description of
the model construction and the implementation of each layer is given. Moreover,
the model training procedure is explained in order to understand which were the
steps followed during this process. The deployment procedure is also described
during the chapter, encompassing the model export, the model loading from the
server, the client and server setup, and the communication between these two en-
tities, through a queries exchange mechanism.

The second phase encompasses the Workload Manager implementation pro-
cess description. In this phase, the mechanism built for the action rules loading
based on a Prolog approach is described, as well as how the action rules file was
implemented. Furthermore, the Profile Manager module that takes care of the load
and save of the driver profile is properly presented. Lastly, both Action Selector
and Reward Assigner modules are described in implementation terms.

The symbiotic interaction between the modules described during this chap-
ter is also depicted in order to better understand the workflow that each overall
system (i.e., Workload Assessor and Manager) presents during their execution in
the deployment environment.
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4.1 Workload Assessor

The implementation process of the Workload Assessor system was the core
stage regarding this dissertation and its focus. The literature review performed in
the beginning of this dissertation brought the necessary knowledge to design this
system and to do it the most stable and robust possible way. Understanding how to
build a model using machine learning in the TensorFlow (Subsections 4.1.1.1 and
4.1.1.2) development environment as well as how to deploy the trained model to a
production environment using TensorFlow serving and TensorBoard (Subsections
4.1.1.3 and 4.1.2), helped substantially the implementation phase and allowed the
design of a scalable architecture. Also, the interaction with Workload Manager
module was simplified alongside the adopted approach (Subsection 4.1.2.2).

4.1.1 Workload Assessor model

In order to recall the previous chapter with regard to this module, some
aspects about it are presented here. Therefore, the model structure was built based
on a Convolutional Neural Network (CNN). It was implemented and trained using
the Google’s framework TensorFlow [17], and it follows the structure depicted in
Figure 3.3, presented in the Section 3.1.1.

4.1.1.1 Model implementation

The Workload Assessor implementation begins with the development of its
model that estimates the driver’s workload level, between low, normal and high.
As aforementioned, the Figure 3.3 depicts faithfully the structure of the imple-
mented model and its layers as well as in terms of quantity and representativity
within the model’s architecture.

The first layer that encompasses the model is the Input layer (Listing 4.1).
Its responsibility is to hold the input matrix that has the input features and,
therefore, it will be used for the training and classification. The multidimensional
matrix allows the application of a mini-batch approach during the training phase.
It will enable to have a commitment between the computational resources needed
to calculate the model parameters and the speed at which the model can learn and
generalize.
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Listing 4.1: Input holder definition.
1 def __init__ (self , input_data_batch , label_batch ):
2 #(...)
3 self. X_input = tf. placeholder (tf.float32 , [None , 48, 6, 1],
4 name='Input ')
5 #(...)

After the Input layer processes its data, the layer that follows is the Convolu-
tion layer 1 (ConvLayer 1). This layer takes as input the result from the previous
layer (i.e., Input layer) and performs convolution on the input layer matrix. In
this layer, each "neuron" does a weighted sum of the cells just above it, across
a small region of the matrix. Therefore, each neuron reuses the same matrix of
weights throughout the input matrix, sliding over it (Figure 4.1).

Figure 4.1: Convolution’s process illustration.

Then, it adds a bias and feeds the result through its activation function. The
Listing 4.2 represents the ConvLayer 1 definition.

Listing 4.2: Definition of both weights and bias used for the Convolution layer 1 and
the activation function, followed by a Max-pooling layer.

1 def __init__ (self , input_data_batch , label_batch ):
2 #(...)
3 with tf. name_scope (" ConvLayer1 "):
4 W1 = tf. Variable (tf. truncated_normal (shape =[6, 6, 1, 32],
5 stddev =0.1 , name='Kernel_Conv1 ')
6 tf. Variable (tf. constant (0.1 , tf.float32 , shape =[32] ,
7 name='Bias_Conv1 ')
8 Conv1 = tf.nn. conv2d (self.X, W1 , strides =[1, 1, 1, 1],
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9 padding ='SAME ', name='Conv1 ')
10 Y1 = tf.nn.relu(Conv1 + B1)
11 Y1_pool = tf.nn. max_pool (Y1 , ksize =[1, 2, 2, 1],
12 strides =[1, 2, 2, 1],
13 padding ='SAME ', name='Y_Conv1_pool ')
14 #(...)

The output from the first Convolution layer is provided by a Max-pooling
operation. This layer is responsible to down-sample the ConvLayer 1 output ma-
trix, reducing its dimensionality and also the computational cost by decreasing
the number of parameters to learn. The strides value in the Y1_pool definition
(Listing 4.2, Line 11) indicates a reduction in half of the output matrix from the
ConvLayer 1. Using the padding value as SAME in both layers means that the out-
put size is the same than the input size. Therefore, it requires the weight window
to slip outside the input map, hence the need to pad it evenly left and right (i.e.,
add extra columns in order to obtain a odd columns number).

Following the previous layer is the Convolution layer 2 (ConvLayer 2). This
layer has the same operational purpose than the previous one. However, it has
a higher depth but receives inputs with smaller dimensions. Moreover, this Con-
vLayer will generate outputs with higher information relevance due to the stage
where it appears. The ConvLayer 2 implementation is described on Listing 4.3.

Listing 4.3: Definition of both weights and bias used for the Convolution layer 2 and
the activation function, followed by a Max-pooling layer.

1 def __init__ (self , input_data_batch , label_batch ):
2 #(...)
3 with tf. name_scope (" ConvLayer2 "):
4 W2 = tf. Variable (tf. truncated_normal (shape =[5, 5, 32, 64],
5 stddev =0.1 , name='Kernel_Conv2 ')
6 B2 = tf. Variable (tf. constant (0.1 , tf.float32 , shape =[64] ,
7 name='Bias_Conv2 ')
8 Conv2 = tf.nn. conv2d (Y1_pool , W2 , strides =[1, 1, 1, 1],
9 padding ='SAME ', name='Conv2 ')

10 Y2 = tf.nn.relu(Conv2 + B2)
11 Y2_pool = tf.nn. max_pool (Y2 , ksize =[1, 2, 2, 1],
12 strides =[1, 2, 2, 1],
13 padding ='SAME ', name='Y_Conv2_pool ')

The layers that follow the aforementioned Convolution layers, are the Fully-
Connected (Listings 4.4 and 4.5). They take as input volume, an output coming
from the previous layer, and maps it to an N dimensional output vector, where N

102



Chapter 4. System Development

is the number of classes that the model has to choose from. However, these layers
compute weighted multiplications in a two-dimensional form. Therefore, assuming
that the output from the Convolution layers are matrices with a four-dimensional
shape, the Fully-Connected layer implementation definition starts with a reshape
of its input to a two-dimensional output. Then, the weighted multiplication is
added to a bias that later feeds a ReLu activation function.

Listing 4.4: Fully-Connected layer 1 and activation function definition, followed by a
Dropout operation.

1 def __init__ (self , input_data_batch , label_batch ):
2 #(...)
3 with tf. name_scope (" FullyConn1 "):
4 Y2_pool_flat = tf. reshape (Y2_pool , shape =[-1, 12 * 2 * 64],
5 name='Y_Conv2_reshaped ')
6 W3 = tf. Variable (tf. truncated_normal (shape =[12 * 2 * 64 ,512] ,
7 stddev =0.1 , name='Kernel_FC1 ')
8 B3 = tf. Variable (tf. constant (0.1 , tf.float32 , shape =[512] ,
9 name='Bias_FC1 ')

10 Y3 = tf.nn.relu(tf. matmul ( Y2_pool_flat , W3) + B3)
11 Y3_drop = tf.nn. dropout (Y3 , self.pkeep)
12 #(...)

Before the output is sent to the next layer, it must be processed by a Dropout
layer. It is a regularization technique that prevents the so-called phenomena of
overfitting. This technique randomly drops some neurons that compose each Fully-
Connected layer based on a pkeep value that represents the probability to one
neuron to be kept or not. Then, at each iteration of the training loop, neurons are
randomly removed with all their weights and bias. This probability value varies
between 0.5 and 0.75, as a widespread acquired fact when using the Dropout tech-
nique. When proceeding to the model testing stage, the pkeep value is restored
to 1 in order to put all neurons back to the network.

Recalling the previously presented consideration, this type of layer outputs a
N dimensional vector, where N represents the number of classes that the model has
to choose from. The second Fully-Connected layer definition (Listing 4.5, Lines
4 and 6) demonstrates the output of three classes. These classes, as specified in
previous chapters, encompass the low, normal and high workload levels.
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Listing 4.5: Fully-Connected layer 2 definition.
1 def __init__ (self , input_data_batch , label_batch ):
2 #(...)
3 with tf. name_scope (" FullyConn2 "):
4 W4 = tf. Variable (tf. truncated_normal (shape =[512 , 3],
5 stddev =0.1 , name='Kernel_FC2 ')
6 B4 = tf. Variable (tf. constant (0.1 , tf.float32 , shape =[3] ,
7 name='Bias_FC2 ')
8 Y_logits = tf. matmul (Y3_drop , W4) + B4
9 #(...)

The two previously described Fully-Connected layers can be compared as a
feed-forward neural network.

After the last Fully-Connected layer outputted a vector with information
regarding the three aforementioned classes low, normal and high, as previously
mentioned during the Fully-Connected layer 2 implementation description, the
Softmax activation function is fed by this output vector. This function will al-
low to define the last step of the algorithm classification, indicating which of the
classes presents the highest probability of representing the input data of the model,
hence which workload level better represents the driver state (a brief explanation
regarding how the Softmax function works is presented in Glossary, on page 155).
The Softmax Readout’s implementation can be consulted in the Listing 4.6.

Listing 4.6: Softmax Readout definition.
1 def __init__ (self , input_data_batch , label_batch ):
2 #(...)
3 with tf. name_scope (" SoftmaxReadout "):
4 self. Y_final = tf.nn. softmax (Y_logits , name='Y_final ')
5 #(...)

Despite the symbiotic relationship, the second Fully-Connected layer and
the Softmax Readout implementation definitions were separated for representa-
tion purposes. Therefore, the classification moment could be clearly identified in
the model’s computational graph.

The TensorBoard platform allowed to visualize the previously described im-
plemented model. As mentioned in the beginning of this section, methods like
name_scope() or method’s parameters as name (e.g., tf.name_scope("SoftmaxReadout")
and tf.nn.softmax(Y_logits, name=’Y_final’)), aim to identify layers, mod-
ules or layer properties (i.e., weights and bias) in the graph generated by Tensor-
Board and that, in some way, represents the structure of the model implemented.
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Thus, the resulting model graph representation generated by TensorBoard is de-
picted in Figure 4.2.

Figure 4.2: Model graph representation generated by TensorBoard, in a bottom-up
fashion.

4.1.1.2 Model training

Before proceeding to the model export and, consequently, its deployment in
the final system, a training phase was introduced in order to allow the model to
understand the experimental collected data, learn with it and, posteriorly, estimate
driver workload level in an after-experimental phase. TensorFlow was also used
during this phase. This section describes the implementation of all algorithms and
functions necessary for the training phase and the loop that allowed the model to
learn from the experimental collected data.

The first function implemented was the Cross-Entropy error. This loss func-
tion was already described in the previous chapter (Chapter 3, Section 3.1.1.1)
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and also why it was selected. Therefore, recalling the previous explanation, this
function measures how good the model estimations are good, i.e., the distance
between what the network estimates and what is known to be the truth. The
ground-truth is provided through the Supervised learning approach applied to the
model implementation, as already exposed in earlier chapters. Labels introduced
in the experimental collected data (i.e., the labeling of data process) allows to
know the real truth regarding each data chunk. Briefly, this loss function com-
pares the model prediction with the truth presented by labels on the data used for
prediction. The Listing 4.7 presents the Cross-Entropy error function implemen-
tation.

Listing 4.7: Cross entropy definition.
1 def __init__ (self , input_data_batch , label_batch ):
2 #(...)
3 with tf. name_scope (" Entropy "):
4 self. cross_entropy = tf.nn. softmax_cross_entropy_with_logits (
5 logits =Y_logits , labels =self. Y_groundTruth )

6 self. cross_entropy = tf. reduce_mean (self. cross_entropy ) * 20
7 ce_summ = tf. summary . scalar ("cross entropy ",
8 self. cross_entropy ,
9 collections =['train ', 'test '])

10 #(...)

As aforementioned, the error calculation is well noticeable in Line 5 (Listing
4.7). The Y_logits represents the model estimated class (i.e., low, normal or
high workload level) and the Y_groundTruth embodies the true classification class
taken from labels on the labelled experimental collected data. Then, the Line 7
allows to bring the test and training cross-entropy error value to the same scale
for their posterior display, using the summary.scalar() method. It allows the
visualization of the cross-entropy value evolution throughout the training and test
phases over TensorBoard (Figure 4.3).

After knowing how good the estimation was, a algorithm must be introduced
in order to understand how weights and bias must be changed and then obtain
correct estimations. This algorithm is the optimizer and, in this case, its name is
Adam optimizer. Its role is to, based on partial derivatives of the error provided
by the previously calculated cross-entropy, thus obtaining the gradient, update
weights and biases by a fraction of the gradient, specified by the learning rate, and
do the same thing again using the next batch of training images. The optimizer
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Figure 4.3: TensorBoard cross-entropy visualization example [22].

goal is to enable the cross-entropy to reach its minimal value while updating model
weights and bias values. The loss function definition is presented in the Listing
4.8.

Listing 4.8: Optimizer definition.
1 def __init__ (self , input_data_batch , label_batch ):
2 #(...)
3 with tf. name_scope (" Training "):
4 self. train_step = tf.train. AdamOptimizer ( learning_rate =
5 self.lr). minimize (self. cross_entropy )

6 #(...)

Precedent considerations are visible in the optimizer definition. The Line
5 in Listing 4.8 shows that it takes as input the learning rate, which indicates
how long the training phase will take (i.e., smaller learning rates lead to a slower
training), and the cross entropy error, that represents how good the model is doing
estimations. Based on these values, the optimizer updates accordingly all model’s
weights and bias.

With regard to keep trace of model’s accuracy, a evaluation segment was
implemented. It starts with the computation of the prediction correctness by
comparing the estimated workload level with the label on each data chunk, that
represents the true classification (Line 4 in Listing 4.9). The model accuracy is
then calculated by performing a continuous mean on all correct_prediction
values (Line 6). As defined in the cross-entropy implementation, the accuracy
mean value is recorded during the training phase and a graphic illustration with
its evolution can be accessed using TensorBoard. This visualization is possible
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with the tf.summary.scalar method definition (Line 8).

Listing 4.9: Evaluation definition.
1 def __init__ (self , input_data_batch , label_batch ):
2 #(...)
3 with tf. name_scope (" Evaluating "):
4 correct_prediction = tf.equal(tf. argmax (self.Y_final , 1),
5 tf. argmax (self. Y_groundTruth , 1))
6 self. accuracy = tf. reduce_mean (tf.cast( correct_prediction ,
7 tf. float32 ))
8 accuracy_summary = tf. summary . scalar (" accuracy ",
9 self. accuracy )

10 #(...)

Posteriorly to the learner methods definition, the training loop must be ad-
dressed (Listing 4.10). It encompasses a training_step method that has auxiliary
methods that manage how input data is used during training and at which pace
the model learns.

Listing 4.10: Evaluation definition.
1 def launchSession (self , export , model_version ):
2 #(...)
3 for step in range (1000+1) :
4 self. training_step (step , test_data =( step %100==0) ,
5 training_data =( step %10==0) )
6 #(...)

In order to tell the optimizer which learning rate it should adopt during
training, a learning rate decay is computed (Listing 4.11). This methodology is
applied in order to prevent noisy results, with accuracy values going up and down.
Therefore, as a prior adjustment of this variable to lower values which can cause
the training to take a excessive time, a good solution encompasses a fast start
(i.e., higher learning rate) and a exponentially learning rate decay to 0.0001. The
formula for the exponential learning rate decay is presented in the listing below
(Line 7).

Listing 4.11: Learning rate decay definition.
1 def training_step (self , step , test_data , training_data ):
2 batch_size = 20
3 batch_X , batch_Y = self. next_batch ( batch_size )
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4 max_learning_rate = 0.003
5 min_learning_rate = 0.0001
6 decay_speed = 1000.0
7 learning_rate = min_learning_rate + ( max_learning_rate -
8 min_learning_rate ) * math.exp(-step / decay_speed )
9 #(...)

As showed in training loop listing (Listing 4.10), a test is performed at each
100 training steps. Therefore, it will be possible to understand how well the model
is learning and how accuracy and cross-entropy error are performing. In this test
phase, data not used for training is applied in order to obtain results that are not
biased. Listing 4.12 shows the test step definition.

Listing 4.12: Test step definition.
1 def training_step (self , step , test_data , training_data ):
2 #(...)
3 if test_data :
4 result = sess.run ([ self.accuracy , self. cross_entropy ,
5 self.s_test , self.prediction , self.label],
6 feed_dict ={ self. X_input : testData ,
7 self. Y_groundTruth : testLabels ,
8 self.pkeep: 1.0})
9 writer . add_summary ( summary_test , step)

10 writer .flush ()
11 #(...)

The method that deserves the attention from the step function in this loop
is run (Line 7 in Listing 4.13). This method belongs to the TensorFlow API (more
precisely from class Session) and runs over a session object. Since the session
has the implemented model graph, launched in it, the run method will interact
and influence the Workload Assessor model. It takes two arguments: fetches
and the optional feed_dict. The fetches argument is a graph element (in this
case train_step) that tells to TensorFlow which is the wanted output node and
to run all necessary operations to calculate that node. On the other hand, the
optional argument feed_dict is a dictionary that indicates to the caller which are
the variables that are intended to override the value of tensors in the graph. In
this implementation, X_input (i.e., the model input), Y_groundTruth (i.e., the
labelled classification), lr(i.e., the learning rate) and pkeep (i.e., the probability
that one neuron has to be kept on the network) are tensors owned by the imple-
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mented model that are supposed to be overridden by the values held by the input
tensors batch_X, batch_Y, learning_rate and dropout_keep, respectively. The
method run performs the backpropagation training and is the main method that
enables the model to learn. The training_step method executes only one step of
TensorFlow computation, meaning that it will execute as many times as the loop
runs.

Listing 4.13: Training step definition.
1 def training_step (self , step , test_data , training_data ):
2 #(...)
3 if step % 500 == 0:
4 self. save_checkpoint (sess , checkpoint_prefix , step)
5

6 sess.run(self. train_step , feed_dict ={ self. X_input : batch_X ,
7 self. Y_groundTruth : batch_Y , self.lr: learning_rate ,
8 self.pkeep: 0.75})

At the end of each test iteration, values of the assigned variables with the
method summary.scalar are updated. Therefore, at the end of training phase, a
graphic of each variable evolution, regarding each test iteration, is generated by
TensorBoard and can be analyzed on the platform provided for this purpose. The
method add_summary (Line 9) is responsible for this feature (Listing 4.12).

In order to prevent some kind of disaster that could interrupt abruptly the
training cycle, during the loop, checkpoints are saved with model characteristics
and current state (Line 3, Listing 4.13). Therefore, when some kind of phenom-
ena break the training loop, the model’s state, characteristics and property values
when it was stopped can be restored, and the training loop can be resumed and
continued. This preventive measure is performed at each half epoch.

4.1.1.3 Model export

Recalling the Figure 3.4 from Chapter 3, the model and deployment pipelines
are divided from the end of the model training. This border encompasses the model
export to a TensorFlow Serving repository to be loaded by a specific server that
handles all queries to the model. Accordingly, the process of export was imple-
mented and it comprehended some steps.

The export step definition is presented in the code snippet below (Listing
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4.14). Its responsibility is to export the model for a specific repository path. The
SavedModelBuilder (Line 11) creates the export destination directory if it does
not exist. This directory is composed by the directory base path, export_path_base,
and also by the model version, FLAGS.model_version, that determines the cur-
rent model version. As new model versions are exported, sub-folders are created
for each one.

Listing 4.14: Export final stage definition.
1 def export_model (self , dropout_keep , export ):
2 #(...)
3 legacy_init_op = tf. group(tf. tables_initializer (),
4 name='legacy_init_op ')
5 export_path_base = "/tmp/ workloadAssessor "
6

7 export_path = os.path.join(
8 tf. compat . as_bytes ( export_path_base ),
9 tf. compat . as_bytes (str(FLAGS. model_version ))

10 )
11 builder = saved_model_builder . SavedModelBuilder ( export_path )
12 builder . add_meta_graph_and_variables (sess ,
13 [tf. saved_model . tag_constants . SERVING ],
14 signature_def_map ={
15 'prediction ':
16 prediction_signature ,
17 tf. saved_model . signature_constants .

DEFAULT_SERVING_SIGNATURE_DEF_KEY :
18 classification_signature ,
19 },
20 legacy_init_op = legacy_init_op )
21 builder .save ()
22 #(...)

Line 12 introduces the builder implementation. This module saves a replica
of the trained model to a predefined repository so that it can be loaded later for in-
ference. The model snapshot is defined by calling the add_meta_graph_and_variables
method. This method takes as parameter the TensorFlow session sess that holds
the trained model that is going to be exported. Since it was intended to use
the graph in serving , the SERVING tag from tag_constants is used as a pa-
rameter to prepare the exported model to be loaded by a TensorFlow server.
The signature_def_map parameter specifies the map of user-supplied key for
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a signature to a default signature in order to add to the meta graph. Signa-
ture specifies what type of model is being exported, and the input/output to
bind to when running inference. This parameter is composed by two fields: the
prediction_signature and classification_signature. The prediction_signature
defines which are the inputs and outputs that must be also defined in the client
side, in order to be possible to perform a query to the server. Listing 4.15 shows
the result of this signature implementation.

Listing 4.15: Predict signature definition.
1 def export_model (self , dropout_keep , export ):
2 #(...)
3 tensor_info_x = tf. saved_model .utils. build_tensor_info
4 (self. X_input )
5 tensor_info_y = tf. saved_model .utils. build_tensor_info
6 (self. Y_final )
7 tensor_info_dropout = tf. saved_model .utils. build_tensor_info
8 (self.pkeep)
9 prediction_signature = (

10 tf. saved_model . signature_def_utils . build_signature_def (
11 inputs ={ 'input ': tensor_info_x ,
12 'dropout ': tensor_info_dropout },
13 outputs ={'level ': tensor_info_y },
14 method_name =tf. saved_model . signature_constants .
15 PREDICT_METHOD_NAME )
16 )
17 #(...)

The inputs argument specifies the input tensor info, outputs argument
specifies the workload level classification info and the method_name argument is
the method used for the inference, and since the intention is to make predict
requests, it was assigned to the key PREDICT_METHOD_NAME. It is important to
note that input and level are tensor alias names. From this point on, these
names are logical names of tensor X_input and Y_final for tensor binding when
sending prediction requests later on the process.

The TensorFlow Serving uses lookup tables for embedding or vocabulary
lookups. Therefore, the tables initialization needs to be performed as a separate
operation (in TensorFlow versions prior to 1.2). This operation is performed by
the legacy_init_op argument.

Finally, a save method is defined in order to write the SavedModel protocol
buffer to the export directory in serialized format.
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4.1.2 Deployment

Preceding implementation phases where responsible for the model implemen-
tation, training and export to a specific repository. What follows in this imple-
mentation chain is the deployment of the exported model to its final environment
from where it can be accessed.

The frameworks and their configuration that made possible the model deploy-
ment is described during this section. Therefore, it was divided in two sub-sections,
concerning the TensorFlow model server and the client.

4.1.2.1 TensorFlow model server

The deployment to production dynamics owns much to the TensorFlow server
that serves the aspired models. For this purpose, TensorFlow provides a standard
server that can serve any type of model: the TensorFlow model server.

The server’s role is to dynamically discover and serve new versions of a trained
TensorFlow model. One of its main features regards to the model versioning man-
agement. When two different model versions are dynamically generated at run-
time, due to the implementation of a new algorithm or to the model training
with a new dataset, it is intended that the newer model version is the one in the
process of loading by the server while the older still serves before being unloaded.
This paradigm is fully supported by the TensorFlow server. It dynamically discov-
ers, loads and monitors newer versions of trained models and reverts older versions
without breaking the serving service. The module that materialize this mechanism
is the ServerCore (Listing 4.16).

Listing 4.16: ServerCore module definition.
1 int main(int argc , char ** argv) {
2 #(...)
3 ServerCore :: Options options ;
4

5 if ( model_config_file .empty ()) {
6 options . model_server_config =
7 BuildSingleModelConfig (model_name , model_base_path );
8 }
9 else {

10 options . model_server_config =
11 ReadProtoFromFile < ModelServerConfig >( model_config_file );
12 }

113



4.1. Workload Assessor

13 #(...)
14 options . custom_model_config_loader = & LoadCustomModelConfig ;
15 options . aspired_version_policy =
16 std :: unique_ptr < AspiredVersionPolicy >( new

AvailabilityPreservingPolicy );
17 options . file_system_poll_wait_seconds =

file_system_poll_wait_seconds ;
18

19 :: google :: protobuf :: Any source_adapter_config ;
20 SavedModelBundleSourceAdapterConfig
21 saved_model_bundle_source_adapter_config ;
22 source_adapter_config . PackFrom (

saved_model_bundle_source_adapter_config );
23 (*(* options . platform_config_map . mutable_platform_configs ())
24 [ kTensorFlowModelPlatform ]. mutable_source_adapter_config

()) =
25 source_adapter_config ;
26

27 std :: unique_ptr < ServerCore > core;
28 TF_CHECK_OK ( ServerCore :: Create (std :: move( options ), &core));
29 RunServer (port , std :: move(core), use_saved_model );
30

31 return 0;
32 }

The method Create() creates the TensorFlow server and takes a
ServerCore::Options parameter that enables its configuration (Lines 3 and 28).
It enables the specification of models that are intended to be loaded and maps
them with their base paths (Line 6). The SavedModelBundle is a key component
of TensorFlow Serving. It composes a TensorFlow model that was already loaded
from a provided path and supplies a Session::Run interface to run inference,
like in TensorFlow. The export path is then provided to the Loader component
that enables its lifetime management by the Manager module. The ServerCore
instantiates a specific implementation of Manager, the AspiredVersionsManager
module. Therefore, whenever a new model version is discovered under the export
path, this module loads the new version and unloads the old one.

Another feature implemented by the model server is the batching (Listing
A.1). This mechanism allows the batching of multiple requests into a single re-
quest, reducing the cost of performing inference. It is an optional feature that can
be turned on whenever desired. Therefore, providing a SessionBundleConfig
when creating the SavedModelBundleSourceAdapter turns on this functionality
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(Line 9). Batching has some parameters, BatchingParameters, that enables the
customization of its mechanism, such as timeout, batch size, etc (Line 4).

Listing 4.17: ServerCore module definition.
1 SessionBundleConfig session_bundle_config ;
2

3 if ( enable_batching ) {
4 BatchingParameters * batching_parameters =
5 session_bundle_config . mutable_batching_parameters ();
6 batching_parameters -> mutable_thread_pool_name () ->set_value (
7 " model_server_batch_threads ");
8 }
9 * saved_model_bundle_source_adapter_config .

10 mutable_legacy_config () = session_bundle_config ;

When the batch is fully completed, the inference requests are internally em-
bedded into a single large request, and a tensorflow::Session::Run() is invoked
(where the GPU efficiency gain comes from).

After the model input batch arrives and it was already handled by the Tensor-
Flow model server, a estimation request runs. The estimation process uses a pre-
dict implementation, TensorFlowPredictImpl::Predict. This function requests
the SavedModelBundle, that has all information regarding the loaded model, to
the Manager, through the ServerCore module. Then, it uses the generic signa-
tures to map logical tensor names in PredictRequest to real tensor names and
bind values to tensors, as already explained in Section 4.1.1.3. Lastly, it runs in-
ference in order to classify the model input data.

Afterwards the model server inference process ends, the inference result is
replied to the right client. A huge part of the server behavior can be customized
according to user’s needs, such as the model discover method, the model manage-
ment and so on.

4.1.2.2 TensorFlow Serving client

The entity that performs the inference requests and is interested in receiving
the model classification result is the client. It is fully built and customized by the
user. However, the client’s communication structure must comply with the gRPC
framework in order to establish a request-reply connection with the TensorFlow
model server.

The client implementation begins with the connection definition that targets
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the TensorFlow model server (Listing 4.18). After the channel conception, a pre-
diction service is created through where all prediction requests are sent (Line 5).
This service complies with the gRPC framework in terms of how the request is seri-
alized to a protobuf structure and how it is communicated with the correspondent
server.

Listing 4.18: Connection structure implementation.
1 def do_inference (hostport , num_batch ):
2 #(...)
3 host , port = hostport .split(':')
4 channel = implementations . insecure_channel (host , int(port))
5 stub = prediction_service_pb2 .
6 beta_create_PredictionService_stub ( channel )
7 #(...)

Since the client is now connected to the TensorFlow model server, the pre-
diction request must be created and prepared (Listing 4.19). It starts with the
creation of the predict request object that defines the request details regarding the
model name and the signature identification that was defined during the model
export implementation (Section 4.1.1.3). These details must follow the model ex-
port definition so that the client request sent to the server can be accepted. Then,
the input data is reshaped in order to meet the model input requirements and
communicated to the request object. The request message is now completed and
ready to be sent to the model server.

Listing 4.19: Request creation and preparation.
1 def do_inference (hostport , num_batch ):
2 #(...)
3 request = predict_pb2 . PredictRequest ()
4 request . model_spec .name = 'workloadAssessor '
5 request . model_spec . signature_name = 'prediction '
6

7 data = test_data_set [int( num_batch )]. reshape (1, 544)
8 request . inputs ['input ']. dtype = types_pb2 . DT_FLOAT
9 request . inputs ['input ']. CopyFrom (tf. contrib .util.

10 make_tensor_proto (data , dtype=tf. float32 ))
11 #(...)

The prediction result is given by the Predict.future() method (Line 5
in Listing 4.20). It takes as parameters the request message, previously built,
and a number that specifies the maximum time that the inference response can
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take until a timeout is reached. The inference result is a structured message with
information about the model’s output tensor, namely the result of the prediction
obtained by the Workload Assessor model. Furthermore, the prediction request-
response temporal duration was computed in order to have an estimative measure
regarding the time that the request from the client, the model inference and the
arrive of the predict result take (Lines 3 and 7).

Listing 4.20: Prediction request establishment.
1 def do_inference (hostport , num_batch ):
2 #(...)
3 start_time = datetime . datetime .now ()
4

5 result_future = stub. Predict . future (request , 5.0)
6

7 duration = datetime . datetime .now () - start_time
8 #(...)

Since the response from the server is a complex message, it must be decom-
posed (Listing 4.21). For this purpose, the message is processed and returned only
the part related to the prediction probabilistic result (Line 3). It is composed by
an array with three columns that represents the probability attributed to each
workload level. Since the last layer is composed by a Softmax activation function,
the model output values are very close to 1, or even 1, if one output class (i.e., low,
normal or high) is chosen by the model as being the most correct, and very close
to 0 if the other output classes are not the model prediction choice. Therefore, the
decomposed message is processed in order to find which is the most scored class,
and, consequently, which workload level the driver holds.

Listing 4.21: Prediction result and computation implementation.
1 def do_inference (hostport , num_batch ):
2 #(...)
3 prediction = result_future . result ().
4 outputs ['level ']. float_val
5 prediction_result = numpy. argmax ( prediction )
6 return prediction_result

Knowing which workload level the driver currently holds, the next step is to
transmit this information to the Workload Manager so that if it is at abnormal
levels it can be normalized.

117



4.2. Workload Manager

4.2 Workload Manager

The Workload Manager system represents one of the most challenging com-
ponent due to the lack of information and literature report concerning workload
management developed systems. Therefore, both design and implementation ap-
proaches were performed from scratch and without literature support. However,
it turns out that this system represents an important role in managing the driver
workload level and in providing solutions (i.e., actions) to the HMI systems in
order to normalize possible abnormal workload levels.

As mentioned in 3.1.2, the system role is to propose actions to the HMI sys-
tem in order to normalize levels of workload considered not normal (i.e., overload
or underload). Based on driving context, driver workload level, driver activity, and
driver profile, the Workload Manager system selects a set of actions and chooses
one to send to the HMI system for its application, taking into account the driver’s
history and the current driving context.

In order to better understand the workflow and the interface between all
components that will be addressed during this section, the Figure 4.4 recalls the
previously specified Workload Manager diagram.

Figure 4.4: Workload Manager blocks diagram.

This system implements a group of components that provides all aforemen-
tioned features. The Prolog mechanism implemented will be described in Subsec-
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tion 4.2.1. The Driver’s Profile management and the action historic construction
are explained in detail in 4.2.2. Moreover, the action selection behavior and criteria
will be presented in 4.2.3. Lastly, Rewards assignment structure implementation
and what influenced the choice of this approach will be described in Subsection
4.2.4.

4.2.1 Action Rules access

For the purpose of assigning a directive to the HMI system for its application,
actions were specified and rules to access them were also described. The first step
was to specify all concepts regarding the domain in which this systems works.
Prolog programs describe relations mainly defined by means of two clauses: facts
and rules. Facts are the basic unit in Prolog and represent a predicate, which is
postulated true. This unit is composed by a head and a set of arguments. For
example:

father(daniel)

father → head

daniel → argument

Therefore, the example above represents knowledge that can be accessed
when desired. This fact informs to the knowledge base that ‘daniel’ is a ‘father’,
being ‘father’ the fact’s head and ‘daniel’ its argument.

The implemented action rules file is composed by a first part where a set of
facts are specified as a knowledge base addressed to its domain of use. A snippet
of this file is presented in Listing 4.22.

Listing 4.22: Knowledge base file snippet where facts are specified.
1 wlLevel ( overload ).
2 wlLevel ( underload ).
3

4 trigger ( weather ).
5 % (...)
6

7 cause(weather , overload ).
8 % (...)
9

10 automationLevel ( zeroOne ).
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11 % (...)
12

13 action ( prioHMIinfo , weather , zeroOne ).
14 action ( switchForAS , weather , zeroOne ).
15 action ( switchForAS , traffic , zeroOne ).
16 action ( turnONmusic , physiologic , zeroOne ).
17 action ( turnONmusic , drowsiness , zeroOne ).
18 action ( prioHMItasks , traffic , zeroOne ).
19 % (...)

The set of facts that can be noticed from the presented file encompass
wlLevel, trigger, cause, automationLevel and action. Although most of facts
are self-explanatory, the meaning of each one is described in the following points
(see Section 3.1.2.1 and consult Table 3.2):

• wlLevel - represents the knowledge regarding driver workload levels that are
considered abnormal states (e.g., overload or high workload, and underload
or low workload).

• trigger - represents the set of abnormal workload levels triggers (e.g.,
weather, traffic, physiologic, drowsiness, and non-driving related tasks).

• cause - specifies for each trigger which workload level it can induce (e.g.,
bad weather can be induce an overload state in the driver).

• automationLevel - represents the automation levels gap that the car can
present (e.g., zero to one, two to three and four to five).

• action - represents the set of available actions that can be attributed re-
garding a specific trigger and automation level.

Afterwards the definition of all domain concepts (i.e., facts), rules had to
be assigned in order to specify the Prolog agent behavior. In Prolog, the second
predicate type is the rule or clause. It encompasses a head and a body. A rule
example is:

Head : −Body

The rule is read as "Head is true if Body is true". Both the rule’s body can
be composed by facts.

In fact, in this case, rules were aimed to be used as a validation technique,
verifying if some sets of facts could be used together to get the list of actions to
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send to the HMI system. For example, in this domain and in the created knowl-
edge base file, it can not be possible to a driver to hold an overload state and the
trigger is drowsiness. These types of anomalies are barred by this mechanism. The
rules specification is part of the knowledge base file were all the facts are described
and is presented in Listing 4.23.

Listing 4.23: Validation rules.
1 % (...)
2 simple_validation (X,Y,Z) :- wlLevel (X), trigger (Y),
3 automationLevel (Z).
4

5 cause_validation (X,Y) :- cause(X,Y).
6 % (...)

In the first statement (Line 2), a simple validation is performed in order to
check if the arguments from the facts wlLevel, trigger, and automationLevel
were previously specified as part of the knowledge. Lastly, Line 5 represents the
cause validation step, which verifies if the trigger and workload state are a valid
pair.

For the purpose of getting a list of actions, a simple rule was also specified
in this knowledge base file. Listing 4.24 represents the rule implementation. It
simply takes three arguments: X is the argument that will return the possible ac-
tion based on the arguments Y and Z, Y is the argument that holds the received
driver’s workload level trigger, and Z represents the automation level range where
the vehicle is operating.

Listing 4.24: Get action rule.
1 % (...)
2 get_action (X,Y,Z) :- action (X,Y,Z).
3 % (...)

A Prolog engine, the PySWIP - a Python-SWI-Prolog bridge enabling to
query SWI-Prolog in Python programs, was used in order to implement the ac-
cess to the Prolog file that has all actions specified and represents a knowledge
database. The interface implementation between the engine and the Prolog file is
quite straightforward (Listing 4.25).
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Listing 4.25: Prolog interface implementation.
1 def main(_):
2 #(...)
3 prolog = Prolog ()
4 prolog . consult (" dwmKnowledge .pl")
5 #(...)

Initially, a Prolog agent is created and the Prolog knowledge file is associated
to it. Thus, when queries are sent to this agent, it will aim the associated knowledge
database.

Afterwards, all queries are built with proper values and ready to be sent to
the Prolog agent (Lines 3, 5 and 7). Their implementation is described in Listing
4.26.

Listing 4.26: Prolog validation process.
1 def main(_):
2 #(...)
3 validation_query = " simple_validation (" + wlLevel + "," +
4 trigger + "," + automationLevel + ")."
5 cause_query = " cause_validation (" + trigger + "," +
6 wlLevel + ")."
7 getAction_query = " get_action (X," + trigger + "," +
8 automationLevel + ")."
9

10 actions_list = []
11

12 if bool(list( prolog .query( validation_query ))) & bool(list(
prolog . query ( cause_query ))):

13 for soln in prolog .query( getAction_query ):
14 actions_list . append (soln["X"])
15 print actions_list
16 else:
17 try:
18 raise ValueError ('----->ERROR !!!! Prolog validation was

unsuccessfully taken.<-----', wlLevel , trigger ,
automationLevel )

19 except ValueError as err:
20 print (err.args)
21 error_flag = True
22 break
23 #(...)

As mentioned earlier in this section, the Prolog agent is queried in order
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to evaluate if the received arguments are valid (Line 12). If the validation is
performed without any problem, the list of actions is returned to an array that
holds all possible actions regarding the driving context (Line 14). If the validation
do not pass, an error is raised in order to terminate the actions search and to
report it (Line 18).

Since the list of actions is already known, it will be used to later discriminate
the best suited action to apply to a specific driver base on the current context.

4.2.2 Driver Profile Manager

The driver profile manager component role is responsible to address all issues
related to the driver profile (e.g., creating a driver entry, update the driver profile,
etc). Programmatically, the component is represented by a class, DriverProfile
Manager, that encompasses methods for the driver’s profile management. The
driver’s name is used to create a DriverProfileManager object (Listing 4.27,
Line 5). Then, the driver’s profile is restored in order to be used during the action
choice and the workload management (Line 7).

Listing 4.27: Driver profile management.
1 def main(_):
2 #(...)
3 while 1:
4 #(...)
5 driverProfileManager = DriverProfileManager ( driver_name )
6

7 driverProfileManager . restoreProfile ()
8 #(...)

The process starts by verifying the profiles file tree in order to check if a
driver has already a created profile and, in case it does not have, a new one is
created (Listing 4.29, Line 4). In case the driver profile already exists, a JSON
file is loaded. This file has registered all action decisions sent to the HMI system
convoluted with the context variables captured in that moment (i.e., when an
action is selected and sent to the HMI system, the result from its application in
the driver workload level is saved as form of rewards). Its structure is described in
Listing 4.28. All keys and values used in the JSON file structure are defined in the
Prolog knowledge database file, excepting the "rewards" and "profile" keys.
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Listing 4.28: JSON file example representing driver rewards in a specific driving con-
text.

1 {
2 " profile ":
3 {
4 " wLevel ":
5 [
6 "name": " overload "
7 " trigger ":
8 [
9 "name": " weather "

10 " automationLevel ":
11 [
12 "name": " oneTwo "
13 " rewards ": [0,1,2,2] ...
14 ]
15 ],
16 (...)
17 ],
18 (...)
19 }
20 }

After the JSON file loading, the data contained by it is parsed in order to
restore all values from keys into a personalized structure. This structure is then
appended to an HashTable and mapped to the reward vector (Line 18). This
vector represents the reward score that each action from the result Prolog query
list has attributed, and regarding a specific driving context. After the execution
of the driver profile restore, restoreProfile(), the driver’s history is known and
can be used in further action selections.

Listing 4.29: Driver’s profile restore.
1 class DriverProfileManager :
2 #(...)
3 def restoreProfile (self):
4 restore_profile = self. checkRestore ()
5

6 if restore_profile :
7 file = open(self. driver_profile_path + "/ profile .json", 'r')
8 profile_data = json.load(file)
9

10 for i in profile_data ['profile_actions ']:
11 for j in profile_data ['profile_actions '][i]:
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12 #(...)
13 rewards = np. array(tmp['rewards '])
14 wLevel_name = tmp_wl ['name ']
15 #(...)
16 trigger_name = tmp_tr ['name ']
17 automationLevel = tmp_al ['name ']
18 self. hashTable [ struct ( wLevel_name , trigger_name ,
19 automationLevel )] = tmp_rewards
20 #(...)

The current driving context information (i.e., driver workload level, trigger
and automation level) are stored in a personalized data structure and used during
the driver’s session until new context information arrives (Listing 4.30, Line 5).
This structure is then used as an argument in the getRewards() method in order to
get the action rewards vector for the current context (Line 7), from the HashTable.
If no action rewards vector is returned, it means that there is no driver’s history
stored in the profiles file tree and, therefore, will have to be later saved in it.

Listing 4.30: Driver’s profile restore.
1 def main(_):
2 #(...)
3 while 1:
4 #(...)
5 driver_struct = struct (wlLevel , trigger , automationLevel )
6

7 rewards = driverProfileManager . getRewards ( driver_struct ,
8 len( actions_list ))
9 #(...)

4.2.3 Action Selector

The Action Selector module works has a moderator, deciding which action
is selected to be sent to the HMI manager. It uses the rewards attributed to each
action from the returned list of actions obtained from the driver profile history.
Then it returns the index of the action that was selected as the best suited to be
applied by the HMI system (Listing 4.31). The method that deals with the action
selection is the getAction().
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Listing 4.31: Driver’s profile restore.
1 def main(_):
2 #(...)
3 while 1:
4 # (...)
5 action_index = driverProfileManager . getAction (rewards ,
6 len( actions_list ))
7 chosen_action = actions_list [ action_index ]
8 # (...)

As aforementioned, the getAction() method takes as argument the action
rewards array taken from the driver profile history (Listing 4.32). Therefore, if
actions were already applied during a driver session, its rewards history will present
different values for each action. Applying a Reinforcement learning principle, an
exploration process is performed in order to propose actions that maybe not be
frequently chosen due to its low reward rank. This process is performed in a
established frequency (Line 4), and a random action index is chosen (Line 6) and
returned later. On the other hand, when the exploration method is not used, the
chosen action is the one that has the higher reward score, meaning that is the
action that had the best results in the normalization process (Line 9).

Listing 4.32: Driver’s profile restore.
1 class DriverProfileManager :
2 #(...)
3 def getAction (self , rewards , actions_len ):
4 e = 0.1
5 if np. random .rand (1) < e:
6 action_index = np. random . randint ( actions_len - 1)
7 print "Doing some exploration ."
8 else:
9 action_index = np. argmax ( rewards )

10 print action_index
11

12 return action_index
13 #(...)

After the action discover, it must be sent back to the HMI Manager in
order to be posteriorly applied to the HMI system. The decision to select which
modality (i.e., auditory, haptic, visual) to apply or when to apply is entirely the
responsibility of the HMI Manager to decide. Therefore, it is possible to keep
an independent relation between components and, therefore, achieve an holistic
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modular architecture. Recalling the earlier mentioned in the specification chapter,
the Workload Manager only proposes actions or directives to the HMI Manager.

It is expected that after the application of the proposed action in the HMI
system, the driver’s workload level changes to a normal state. Therefore, the
resulting workload level must be assessed in order to evaluate if the applied action
caused impact in the driver’s workload. The next sub-component is responsible
for this process.

4.2.4 Reward Assigner

Reinforcement learning concepts also influenced the mechanism that deals
with driver’s workload level change after the HMI Manager applies it to the system.
Furthermore, a reward approach was implemented in order to classify how good
the driver workload level change occurred. The reward conceptualization was
implemented through a flexible structure that allows out-of-the-box improvements.
When the new driver’s workload level is received, it is processed by a function,
givereward() (Listing 4.33), that verifies if the current level is ‘normal’, meaning
that the abnormal level was normalized, or remains in an not desirable workload
state. If the normalization process was successfully performed, a positive reward is
attributed to the applied action. When the contrary is verified, negative rewards
are also attributed to the previously proposed action. Lastly, the rewards action
array is updated with the action reward returned by the aforementioned function.

Listing 4.33: Driver’s profile restore.
1 def main(_):
2 #(...)
3 while 1:
4 #(...)
5 rewards [ action_index ] += driverProfileManager . giveReward (
6 result_state )
7 #(...)

Regarding errors reported by the HMI manager after the proposed action
application, if this system find some kind of problems regarding the action itself
and the impossibility to its application, this anomaly is sent back to the Workload
Manager system in order to propose a new action to the HMI Manager. This mech-
anism is performed until no errors are reported by the injured system. When
the driver exits the car, its session is closed and the profile saved with the new
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information generated during the driving time. The driver’s profile is mapped
using its identification method (e.g., driver’s name, generated ID, etc) and, when
necessary, the consequent load is performed using this same method.
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Experimental Results

In the previous chapter, the system’s development process was explained.
Regarding the present chapter, the results obtained after the implementation

phase will be presented. Regarding the Workload Assessor system, results focus
mainly on the model performance, using classification performance metrics for
the purpose, and also on the model serving (i.e., Model Server). Concerning the
Workload Manager, qualitative results will be presented regarding the effectiveness
of the Actions Provider mechanism after the driver workload assessment.

Therefore, the first section (5.1) starts by presenting (5.1.1) the significance
of the set of features used in the model training step. In the second section (5.1.2)
the Workload Assessor model performance is evaluated through specific metrics,
following an error incremental analysis approach. The last section (5.1.3) presents
the server loading and serving the Workload Assessor model to possible clients.

In the second part, the Workload Manager system will be addressed (5.2).
The first and second sections (5.2.1 and 5.2.2, respectively) describes the selection
of a countermeasure for abnormal workload levels normalization and the reward
assignment based on how effective the action was.

Lastly, the third part (5.3) briefly presents some results and considerations
regarding the subjective workload assessment questionnaire, DALI. A statistical
approach is addressed to all subjects answers in order to verify the presence of
relevant patterns among them.
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5.1 Workload Assessor

The Workload Assessor component has a key role in the overall system.
As such, an analysis regarding the model assessment quality was performed and
specific machine learning metrics used in order to evaluate its performance. These
metrics encompass accuracy, precision, and recall. In machine learning, accuracy
can be seen as the fraction of correct predictions in relation to the total predictions
made. Moreover, precision is the fraction of relevant retrieved instances (i.e., true
positives) among the retrieved instances (i.e., true positives and false positives),
also known as positive prediction rate, while recall, also known as sensitivity, is
the fraction of the retrieved relevant instances (i.e., true positives) over the total
amount of relevant instances (i.e., the total of true positives and false negatives
for a given class).

The model accuracy across all training steps was computed using a method
provided by TensorFlow API. Regarding precision and recall, they were computed
manually using the confusion matrix obtained in each training step, using the
following equations:

Precision = tp

tp + fp
(5.1)

Recall = tp

tp + fn
, (5.2)

where tp is the number of true positives, fp is the number of false positives
and fn is the number of false negatives.

All training trials were based on a partial dataset division, meaning that the
collected dataset during the experiment was divided in two sets: training (70%)
and test (30%) [10, 11, 12, 13, 14, 59, 95].

5.1.1 Rank of Variables

Based on the methodology described in the Chapter 3 (Section 3.3.3), the
p-value was computed to each of the 15 features and their significance level was
found. Therefore, all features that had a significance level above 0.05 (i.e., > 0.05)
were considered as not significantly influence in the driver’s workload level. The
group of features with significance level below 0.05 are ranked as shown in Table
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5.1.
After the model training with the most significant features, an accuracy in a

range of 98 to 99% was obtained. This result was analyzed post-training and the
level of significance between the features duly compared. It was noticed that the
p-value of the 5 most significant features (Table 5.1) was very close to, if practically
equal, zero. Thus, due to the fact that the experiment was carried out with very
little diversity of scenarios and situations, there were eventually features that in a
way indicated too explicitly the conditions where the few scenarios occurred and
that indirectly revealed the conditions for the creation or imposition of a certain
level of workload on the subject. For example, the high workload experiment was
performed in a high traffic level environment. Therefore, the feature that trans-
lates the traffic level will erroneously represent the driver’s high level of workload
and significantly influence the model’s training.

Table 5.1: Ranking of the top 12 features with significance levels less than 0.05, from
the training dataset.

Feature Rank
Road Characteristics 1
Traffic Level 2
Road Type 3
Weather Conditions 4
Time of Day 5
Velocity 6
BioPack Heart Rate 7
PERCLOS 8
Blink Rate 9
Brake Pedal 10
Longitudinal Acceleration 11
Radar Respiration Rate 12

In order to avoid this issue, the first 5 most significant features were removed.
Moreover, although the Velocity feature does not have a p-value equal to zero, its
value is also very low (< 0.0001). The influence that this feature presents can be
equally comparable to the 5 most significant due to the scenarios and conditions
where these were collected. For example, the low workload scenario occurred in
a highway environment where the car velocity is usually much higher than in
the other two scenarios. Thus, this feature presents a greater magnitude in this
scenario wrongly influencing the model during its training and should be removed
from the training dataset.
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The final set of features that compose the ranking and that was used to
produce the dissertation’s results is ordered by level of significance in Table 5.2.

Table 5.2: Ranking of the top 6 features with significance levels less than 0.05, from
the training dataset.

Feature Rank
Biopack Heart Rate 1

PERCLOS 2
Blink Rate 3
Brake Pedal 4

Longitudinal Acceleration 5
Radar Respiration Rate 6

5.1.2 Error incremental analysis

As stated in the previous chapter, an error incremental analysis was per-
formed in order to verify and evaluate which group of ranked features (Table 5.2)
produces the best classification results. The objective of the incremental error
analysis is to determine the number of top-ranked features that should be used in
order to obtain the best classification results. The analysis procedure had as its
starting point the top-ranked feature, adding to the training dataset, iteratively,
the next best-ranked feature until all significant features were included.

Therefore, for each group of top ranked features, six training trials were per-
formed and the aforementioned metrics were computed for each one. The average
of all six trials concerning to each group of top ranked features included in the
dataset is depicted in Figure 5.1. In this step, the test dataset was used to compute
the accuracy scores.

The graph shown in the Figure 5.1 represents the average accuracy, in per-
centage, of the training performed with different numbers of top ranked features
included in the dataset. Moreover, at each vertex in the graph line, an error bar
is appended and represent the standard deviation regarding the obtained training
accuracy for a specific dataset.

After the model accuracy computation, precision and recall were obtained
in order to examine how training occurred and how well the model classifies. In
the end of each training trial, the confusion matrix was generated and the afore-
mentioned metrics calculated from it. The Figure 5.2 represents an example of a
confusion matrix over a training trial with the best overall statistics when com-
paring with others. The matrix confronts the model’s predictions and the ground
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Figure 5.1: Incremental error analysis performance of accuracy with standard deviation
indicated as error bar.

truth present in the training dataset. It represents in its diagonal the true positives
in regard to each class (low, normal and high workload).

Figure 5.2: Normalized confusion matrix obtained from the best training of all trials,
with 6 top-ranked features.

In this training trial (Figure 5.2), the model predicted correctly as low work-
load 87% of the time, according to the ground truth present in the training dataset.
Regarding normal and high workload, the model had an accuracy ratio of about
89% and 92% respectively. The model classification was well performed since the
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confusion matrix diagonal presents the most contrasting color when comparing to
its remaining blocks (i.e., the training trial generated a higher rate of true positives
for each class, than false negatives or positives).

As aforementioned, based on the confusion matrix, the classification precision
and recall metrics were calculated. These values and a summary of the classifica-
tion accuracy is presented in Table 5.3, for each training performed with different
groups of features.

Table 5.3: Results obtained from datasets with different number of features (error
incremental analysis). Between parentheses are the minimum and maximum values
obtained.

Nº of Features Accuracy (%) Precision (%) Recall (%)
Low Normal High Low Normal High

1 Feature 59.0 (54.4-70.8) 57.5 46.5 65.8 49.9 50.8 72.5
2 Features 78.0 (75.7-80.9) 87.2 69.6 64.3 86.7 68.1 68.5
3 Features 80.1 (76.5-81.3) 85.0 79.8 63.6 85.6 69.7 76.6
4 Features 82.0 (79.7-82.5) 82.6 74.5 74.8 93.6 73.1 70.8
5 Features 87.3 (84.6-89.9) 87.7 84.6 74.5 89.3 75.8 85.1
6 Features 90.0 (88.2-94.5) 87.7 81.5 82.1 90.8 81.1 81.9

Analyzing the figure and table above it is possible to verify the influence
that the increment of top-ranked features in the training dataset has on the model
performance and consequently in its classification assertiveness. As much features
are included, the model accuracy increases reaching a maximum of 90%, in av-
erage, when all 6 top-ranked features were included. However, it takes only two
top-ranked features to be included in the training dataset in order to obtain a rea-
sonable average accuracy percentage (i.e., the training dataset with 2 top-ranked
features). Regarding precision and recall, from the 4 top-ranked features included
interesting values were generated, achieving good results with 6 top-ranked fea-
tures included, in what these two metrics relate to (i.e., precision and recall with
values above the 80%).

5.1.3 Model Server

As aforementioned in the previous Chapter 3, Section 3.1.1, the Model Server
holds the exported trained model and works as an intermediate when one or various
components of the overall architecture want to classify a specific batch of data.

After the training step, the model with trained parameters was exported in
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order to be loaded by the server. The model loading process can be visualized in
Figure 5.3.

Figure 5.3: Model Server searching in the repository path for a model exported and
loading it. Blurred image section concerns to extremely verbose information resulting
from the model configuration setup and the reservation of resources for the model loading
process.

The figure above shows the searching mechanism that the model server im-
plements, verifying a repository (in this example is pointing to the /tmp/workload
Assessor path) and loading the model trained. A continuous scan in the pointed
path is performed in order to check if a new model version was exported and, if
so, load it (Figure 5.4).

Figure 5.4: Model Server successfully detects a new model version and starts the allo-
cation of new resources for the new loading. The blurred sections represent excessively
verbose informations and concerns to the creation of a new model configuration and the
unloading of the previous model version.
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Afterward the model loading, Model Server is ready to receive queries from
clients. Therefore, a batch of data was isolated and queried by a custom created
client. The query sent by the client and received by the Model Server is depicted
in the figure below (Figure 5.5).

Figure 5.5: Representation of two different client requests encompassing two distinct
data batches: high and low workload data, respectively.

When the Model Server receives the query with the data batch, the trained
model receives it and classifies that data. As a response, the server sends back to
the client an array of probabilities regarding each model class (i.e., low, normal
and high). The class with the highest probability represents the most likely class
to represent the data batch previously sent. This behavior is proven by the below
illustration (Figure 5.6).

Figure 5.6: Representation of the Model Server reply from the two client requests
presented in the previous figure, respectively (Figure 5.5). This reply encompasses the
probability for each class and the correspondent classification.

5.2 Workload Manager

Regardless the fact that this system is tightly linked to the results dropped
by the WA, the Workload Assessor, it still has a crucial role in the final stage
of normalizing unwanted abnormal workload levels. As its operation was already
described in Chapter 3, Section 3.1.2, the goal is to propose actions to the HMI
system in order to normalize abnormal workload levels. Therefore, one of the most
important inputs comes from the Workload Assessor and gives information about
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the driver’s workload level. From this information and additional knowledge given
by other systems in the holistic HMI system architecture, the Workload Manager
proposes a set of actions that are personalized for each different driver and sends
it to the HMI system in order to be later applied. Depending on how well the
action application occurred, the system behaves accordingly.

This section aims to evaluate the communication between these three systems
(i.e., Workload Assessor and Manager, and the HMI system) and if the Workload
Manager correctly purposes actions to the HMI system and behaves to possible
responses from it.

In order to test the Workload Manager system, the driver’s workload level
classified in the Model Server component will be directly sent to it. Despite the
fact that in the project’s architecture this system acquires the workload level and
driving context information from the Context component, this test approach proves
the concept.

5.2.1 Action Selection

One of the Workload Manager cores relies on the action selection and its
communication to the HMI system. Therefore, for the results that will be later
presented, driving context information was simulated and the driver workload level
was obtained using the previously data batch example (Section 5.1.3).

Figure 5.7 shows the results regarding the Workload Manager system and
the output actions that best counteract a possible abnormal workload level.

Figure 5.7: Action selection based on the array of actions returned by the Workload
Manager. In this high workload example, the selected actions dictates to prioritize the
information displayed in the HMI (i.e., abbreviation of prioHMIinfo).
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By the above illustration, the set of actions that this system considers to
be the best suited to combat the abnormal workload level. In this example, the
driver workload level is high (i.e., overload), the abnormal driver workload trigger
is the traffic and he is driving in an automation level between 0 and 1. As can
be verified, the system creates the profile directory if a new user entered the car.
Moreover, it correctly returns all possible actions (i.e., represented in the figure
in form of an array) when comparing to the rules from the Prolog file with the
knowledge base (Appendix A). Moreover, since just one action can be suggested,
the system understands which one has the highest reward score, based on the
driver history, and selects it to be sent to the HMI system. This can be visualized
in the figure above by the action index chosen from the returned array of actions
and, literally, by the terminal sentence field that is enclosed in quotation marks.
Since the driver’s profile does not have any reward assigned, the first action is the
chosen one.

5.2.2 Reward Mechanism

The other component of the Workload Manager system relies on the reward
mechanism that enables the assignment of positive or negative rewards whereas
the driver workload level normalizes or not, respectively.

Afterwards the action dispatch to the HMI system in the previous section, it
is necessary to understand if the suggested action took effect in the driver and act
accordingly. Therefore, in the following example, the driver holds a new abnormal
workload level: the Underload or Low workload. Moreover, a new set of actions
is presented and, due to the fact that none reward was previously assigned, the
first action is selected. Figure 5.8 depicts the system behavior after the new driver
workload level classification.

Analyzing the result from Figure 5.8, the last figure section shows the recently
new driver workload assessment. However, the abnormal state, underload, remains
and, therefore, the Reward Mechanism must assign a reward discount to this ac-
tion. Figure 5.9 shows the reward assignment result and, also, the Driver1 profile.
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Figure 5.8: Action selection based on the array of actions returned by the Workload
Manager (Underload context).

Based on the figure below (Figure 5.9), it can be concluded that the Reward
Mechanism correctly attributes the reward factor in each situation. This profile
information can be visualized when restoring the driver’s profile.

Figure 5.9: Driver’s profile showing the set of abnormal workload levels detected and
the correspondent array of rewards.

5.3 DALI questionnaire

The subjective workload assessment questionnaire was introduced in this dis-
sertation as an extra workload measure. As already mentioned in previous chapters
(Chapter 2, Section 2.1.1.3.1), this measures can produce different types of answers
to a specific stimulus due to the fact that is a subjective measure and, therefore,
different sensitivities are involved.

The following figure shows a statistical plot with information about the sub-
jects that performed the experiment:

The figure 5.10 illustrates that the overall mean age range between 24 to 27
years. The ideal scenario would be to have a wider range in terms of subjects age
but that was not possible due to time and project resources constraints. Moreover,
about 21 subjects performed with success the designed experiment (14 male and
7 female subjects).
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Figure 5.10: Chart representing the information about the average age between sub-
jects and differentiating its gender.

Regarding the questionnaire itself, DALI was applied to each subject presents
a specific set of factors and are used in a diverse range of scenarios. Appendix B
(Figure B.1) shows the questionnaire format that was presented during the exper-
iment. The methodology application specification of this questionnaire is properly
described in Section 3.2 of Chapter 3.

5.3.1 Statistical Analysis

An analysis regarding the questionnaire reliability and based on the subjects
answers was performed using the most common measure of internal consistency
(i.e., reliability): Cronbach’s Alpha. It is widely used for multiple Likert ques-
tions1 in questionnaires that form a scale and that intends to determine if the
scale is reliable. Therefore, the aim of this step is to compute the Chronbach’s
alpha factor. A commonly-accepted assumption is that an alpha of 0.7 (others
say 0.6) indicates acceptable reliability and 0.8 or higher indicates good reliability
[107].

Two statistical analysis were performed in order to encompass the question-
naire answers from the Experiment 1 that encompassed the high and low traffic

1 A Likert scale is a psychometric scale widely used for research reasons and that employs
questionnaires. It is the most widely used approach to scaling responses in a questionnaire
research [106].
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scenarios, where each one intended to impose and analyze a high and normal
workload level, respectively. Only the questionnaire answers regarding the sce-
nario sections used to build the training dataset were included in this analysis.

5.3.1.1 High Traffic scenario

The high traffic scenario statistical analysis upon the subjects questionnaire
answers is presented in the Table 5.4.

Table 5.4: Results regarding the ranks given by subjects for each DALI factor. The
N column represents the number of subjects that performed the respective High Traffic
scenario.

Factor Statistics
Factors Mean Std. Deviation N

Effort of Attention 7.68 1.600 19
Visual Demand 7.32 1.797 19
Auditory Demand 6.21 2.175 19
Temporal Demand 6.26 1.939 19

Interference 7.42 1.644 19
Situation Stress 6.37 2.432 19
Overall Workload 2.79 0.419 19

Based on the table above, the mean values for each factor presents a fairly
normal distribution. Moreover, the overall workload factor is not part of the DALI
set of factors but was added in order to understand the perception that each sub-
jects had regarding their inherent workload. The Cronbach’s alpha computation
is presented in form of a table (Table 5.5).

Table 5.5: Results regarding Cronbach’s alpha computed for the subjects answers
during the High Traffic scenario.

Reliability Statistics

Cronbach’s Alpha Cronbach’s Alpha based
on Standardized items N of items

0.867 0.859 7

The reliability statistic shows a Cronbach’s alpha value above 0.85, which is
considered a good value. Moreover, analyzing all statistics computed based on the
subjects answers (Table 5.6), it can be understood that the Cronbach’s alpha value
increases if the factor OW (i.e., Overall Workload) is removed from the analysis.
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Table 5.6: Overall statistics regarding values from the questionnaire answered by sub-
jects performing the High Traffic scenario.

Item-Total Statistics

Factor Mean if
item deleted

Variance
if item deleted

Corrected item-Total
Correlation

C. A. if item
deleted

EA 36.37 65.468 0.863 0.824
VD 36.74 64.427 0.672 0.830
AD 37.84 63.363 0.668 0.853
TD 37.79 62.842 0.732 0.831
INT 36.63 67.801 0.824 0.840
SA 37.68 59.561 0.572 0.854
OW 41.26 88.205 0.368 0.889

After removing this factor from the statistics, the new Cronbach’s alpha value
takes the rate of 0.889.

5.3.1.2 Low Traffic scenario

The low traffic scenario statistical analysis upon the subjects questionnaire
answers is demonstrated in the Table 5.7.

Table 5.7: Results regarding the ranks given by subjects for each DALI factor. The
N column represents the number of subjects that performed the respective Low Traffic
scenario.

Reliability Statistics
Factor Mean Std. Deviation N
EA 3.45 1.432 20
VD 3.60 1.273 20
AD 3.05 1.191 20
TD 3.55 1.395 20
INT 3.45 1.669 20
SS 3.00 1.622 20
OW 1.45 0.510 20

The table above presents mean values with a similar distribution. Based on
the values described in Table 5.7, the Cronbach’s alpha value is presented in the
following table:
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Table 5.8: Results regarding Cronbach’s alpha computed for the subjects answers
during the Low Traffic scenario.

Reliability Statistics

Cronbach’s Alpha Cronbach’s Alpha based
on Standardized items N of items

0.926 0.925 7

The reliability statistic shows a Cronbach’s alpha value above 0.90, which is
considered a really good value. Moreover, analyzing all statistics computed based
on the subjects answers (Table 5.6), there is no need to delete the OW factor
because the increment in the Cronbach’s alpha is not significant.

Table 5.9: Overall statistics regarding values from the questionnaire answered by sub-
jects performing the Low traffic scenario.

Item-Total Statistics

Factor Mean if
item deleted

Variance
if item deleted

Corrected item-Total
Correlation

C. A. if item
deleted

EA 18.10 42.832 0.899 0.901
VD 17.95 45.629 0.842 0.908
AD 18.50 47.316 0.793 0.914
TD 18.00 44.632 0.813 0.910
INT 18.10 40.832 0.849 0.908
SS 18.55 41.839 0.823 0.911
OW 20.10 58.305 0.406 0.944

5.3.2 Global DALI score

Founded on the scores provided by the subjects, a global workload score
was computed based on the NASA-TLX method [108]. This global score aimed
to give an orientation regarding the workload level that each subject perceived
for each experiment and for its road sections. Therefore, a specific methodology
was applied. All DALI factors were confronted with each other and whenever it
was understood that one was more important than the other for the imposition
of workload on the driver, a point was attributed to the same. In this way, we
obtained factors that were most significant in relation to the imposition of high
workload in scenarios designed for such. From these factors, a weight for each was
assigned so that its contribution to the overall workload score was concordant.
This weight is called the Tally. The Table 5.10 shows the tally distribution between
factors.
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Table 5.10: Tally computed for each factor based on its level of influence in the driver
workload level.

DALI Factor Tally Score

Effort of Attention 5
15 = 0.333

Visual Demand 4
15 = 0.267

Situation Stress 3
15 = 0.2

Temporal Demand 2
15 = 0.133

Interference 1
15 = 0.067

Auditory Demand 0
15 = 0.0

The tally score of each factor was then multiplied with the rank given by the
subject for that same factor, during the experiment. Then, each one of the five
weighted ranks are summed up and a global score is obtained. The mathematical
statement that represents the global DALI score computation is presented in the
equation 5.3.

DaliScore =
6∑

i=1
rankfactor ∗ tallyfactor, (5.3)

where factor represents each DALI factor, rank is the score given by the
subject and tally is the weight computed for each factor.

The results computed for the DALI score, and concerning to each experiment
(i.e., Low and High Traffic scenarios), is presented in the table below (Table 5.11):

Table 5.11: Results regarding the global DALI score for the Low and High Traffic
scenario.

Global workload score
Scenario Average DALI score Std. Deviation
Low traffic 3.41 1.32
High traffic 6.96 1.69

Based on the results provided by the table above, it can be confirmed that
a coherent outcome was accomplished. Since the average DALI score for the High
traffic achieved a value of approximately 7, it is coherent to obtain a near 3.4
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value for the low traffic scenario due to the fact that a normal workload level was
imposed and desirable.
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Chapter 6

Conclusions

Lastly, in the final dissertation’s chapter, conclusions obtained from all the
performed work are presented (section 6.1) and suggestions for future improve-
ments are proposed (section 6.2).

6.1 Discussion

For the beginning of this section of discussion, the dissertation’s author in-
tends to emphasize the challenging nature that work had both in the acquisition
and understanding of demanding concepts, as well as in personal and work man-
agement. These thematics range from (i) obtaining knowledge regarding the appli-
cability and structure of different Machine Learning algorithms in specific domains;
(ii) the assimilation of concepts regarding different agents that make up a machine
learning algorithm; (iii) a direct contact with a framework designed to develop
algorithms in this area (i.e., TensorFlow); (iv) and to the acquisition of concepts
and techniques for analysis and enhancement of data for algorithm training.

Regarding this dissertation, it described all steps taken during the devel-
opment of a coupled system capable of (i) classify the driver workload level and
(ii) propose actions to counteract abnormal workload levels, achieved through the
implementation of a Machine Learning algorithm and using concepts of Reinforce-
ment Learning and Artificial Intelligence in general. The classification algorithm
that classifies driver workload, denominated as Workload Assessor, is based on
a Convolutional Neural Network properly trained in combination with a system
(i.e., Model Server) that allows it to be horizontally scalable, allowing several other
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systems to require the classification of their data. This characteristic is enhanced
due to the implemented batching mechanism that makes possible the simultaneous
querying of different clients. The workload management (i.e., Workload Manager)
is taken by an algorithm inspired in Reinforcement Learning and implemented us-
ing Artificial Intelligence (i.e., Prolog), where actions are proposed to an actuator
(i.e., HMI system) and rewards given based on the effectiveness in normalizing
abnormal workload levels.

In what concerns to the goals proposed in the beginning of this dissertation,
the author considers that these were successfully fulfilled. The design and develop-
ment of the Workload Assessor system proved to be a difficult and time-consuming
task. This task was composed by the model implementation which encompassed
the application of the previously assimilated Machine Learning concepts and the
selection of the best approach for each layer. Moreover, the other goal’s part em-
braced the model training and training data processing. This last part proved to be
a time-consuming stage due to the extensive research that was necessary in order
to improve the algorithm’s performance as well as the meaning and relevance of the
previously collected data for the training step. In the other hand, regarding the
design and development of the Workload Manager, the design of the management
mechanism turned out to be challenging due to the lack of information in litera-
ture regarding systems implemented with the same purpose. The inspiration in
a Machine Learning field (i.e., Reinforcement Learning) enabled the continuation
of the application of concepts related to this domain and gave the base structure
to the action selector mechanism as well as the reward provider component. In
order to continue in the Artificial Intelligence domain, Prolog was used in such a
way that it was possible to represent the actions to be proposed and their relation
to the other context variables. In this way, the creation of a knowledge base that
enables an iterative updating or addition of actions or relation between these and
the context variables, was feasible. Therefore, this second goal was accomplished
with success.

Regarding the experimental results, the values obtained in relation to the
Workload Assessor, rather to the algorithm of Machine Learning, proved to be
very positive and promising. This is verified by the fact that it presents an accu-
racy percentage of around 90%, and sensitivity and recall values above 80%. One
of the crucial factors for the model to reach a very high level of precision, besides
having a direct influence of the algorithm, was the application of the oversampling
technique. This made it possible for samples of the minority class represented
in the training database (i.e., high workload samples) to be added and, therefore,
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build a balanced database. In this way, the model was allowed to better distinguish
between the samples of the various classes and thus increase the aforementioned
metrics values. Comparing the results of the algorithms presented in the literature
review section (Chapter 2, Section 2.1.1.4), it is believed to present a similar or
even superior performance, in some cases. The author believes that with better
quality samples and with more resources, it is possible to present even better re-
sults. Moreover, concerning to the most significant features for the workload level
classification, the group of 6 features achieved the highest accuracy score. How-
ever, it was proved that with only 2 top-ranked significant features in the training
database the model achieved interesting results in terms of accuracy (i.e., accuracy
of 78%) and with 4 top-ranked features included it achieved good results in gen-
eral (i.e., accuracy of 83%, approximately, and precision and recall above 70%).
Furthermore, the most significant group of variables found in the training dataset
and that were not wrongly influenced by the scenario, refer to the physiological
data (i.e., heart rate, PERCLOS, blink rate and respiration rate). This result is in
agreement with what the literature considers to be the type of measure that best
represent the workload state changes in a human driver [7, 10, 11, 12, 13, 59, 109].

Concerning to the Workload Manager, all experimental results were accom-
plished successfully as expected. The communication between the Workload Asses-
sor was established with success, allowing an effective message exchange between
systems. Moreover, as already mentioned in this chapter, this system presents a
high capability of adaptation in what concerns to the set of actions available in
the knowledge base (i.e., new actions can be added or old ones deleted) and also
regarding the addition of different policies for the action selection and the reward
attribution.

As a way of evaluating the experiment, the presented results were based on
the reliability level of the answers with the aim to obtain a global scale. The re-
sults obtained, both in the DALI questionnaire related to the High and Low traffic
scenarios, proved to be good. However, as explained when presenting the results,
answers considered were related to experiment course sections that were used to
train the Machine Learning algorithm. Thus, there were answers regarding the
remaining course sections that were neither presented nor considered for analysis.
Allied to the questionnaire analysis presented in chapter of results (Chapter 5), the
dissertation’s author empirically observed that the answers to the remaining ques-
tionnaires were dubious. This is intended to be true because the scores attributed
by subjects to each DALI factor are, most of the time, very close or superior in the
Low than the High Workload experiment. Such a conjugation is considered not
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normal due to the much less complex environment and context when comparing
the Low traffic versus the High traffic scenarios. In this way, a possible conclusion
may be that subjects did not have the clearest perception of what each factor
means when answering the questionnaire.

In conclusion, the author considers that the system and the architecture de-
veloped form a viable solution that corresponds in a reliable way to classify and
manage the driver workload and with considerably good and promising results.

6.2 Future Work

Although the goals of this dissertation have been achieved, the author con-
siders that after acquiring a thorough knowledge about the implemented system,
and also some knowledge regarding the Machine Learning domain, there are indeed
some points where it can be improved and extended with other functionalities.

The first suggestion is to construct a new database for training the algorithm.
This new iteration would be composed of data collected in new scenarios conducted
during the experiment, where the abnormal states of workload would be provoked
in several situations during the trajectories. Therefore, it would be possible to
obtain more data on changes in conductor workload and in more comprehensive
situations, allowing a greater generalization of the workload states. Moreover, a
more balanced database would be achieved.

The second suggestion relates to the fact that, for example, velocity and
environment features wrongly influences when the model is training. A possible
solution could be to embed the information that these features present in other
features, through the calculation of addition facts or as a discount in the latter.
Therefore, it would be possible to continue to include the information that these
features hold concerning the driving scenario.

A third suggestion would be to deploy the model server to a Cloud environ-
ment. Although the current implementation does not require a lot of processing
power from the host machine, it would be a way to increase the reach with poten-
tial clients and to free up a development board from this task. Also, the training
process of new trained versions of the model would not need to be in contact with
the final environment (i.e., in this case, the car). This approach was somehow
already explored by the dissertation’s author but it considers that there is still
margin of exploration.

The forth suggestion would be to restructure the model implementation us-
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ing a higher abstraction layer that TensorFlow provides. Instead of building the
algorithm layer by layer, it can be built by using a single method that highly ab-
stracts the implementation but could somehow introduce some optimization that
were not the focus of this dissertation. Then, a comparison in terms of memory
used or time of compilation and other aspects could be performed.

Finally, the last suggestion is the integration of the system developed in this
dissertation in the P689 project final system. This step would be important to an-
alyze the communication effectiveness between all components that compose the
P689 project architecture (Figure 3.1). After this integration has been performed,
a validation phase would be applied to a specific scenario, where it would be pos-
sible to verify if the Driver Workload system had an acceptable performance and
fulfilled the requirements that the scenario imposed.
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Boosting Implements an iterative learning process. In other words, after a de-
cision tree’s training upon a training set, a resubstitution test is done in
order to find out what are the mis-categorized samples. After that, a second
round of training is done by increasing the percentage of exposure of the
mis-categorized sample. Each step of retraining is called boosting [110]. 28

Dynamic Driving Task This task ncludes the operational (i.e., steering, brak-
ing, accelerating, monitoring the vehicle and roadway) and tactical (i.e.,
responding to events, determining when to change lanes, turn, use signals,
etc.) aspects of the driving task, but not the strategic (determining destina-
tions and waypoints) aspect of the driving task [25]. 75

Electrocardiogram Records the heart electrical activity through small electrode
patches that attached to chest, arms, and legs skin [111]. 20

Electrodermal activity Is the property of the human body that causes contin-
uous variation in the electrical characteristics of the skin, also been known
as skin conductance, galvanic skin response (GSR), electrodermal response
(EDR), psychogalvanic reflex (PGR), skin conductance response (SCR), sym-
pathetic skin response (SSR) and skin conductance level (SCL). Nowadays,
it is standardized to electrodermal activity (EDA) [112]. 20, 24

Electroencephalogram Measures and records the brain electrical activity through
special sensors called electrodes attached to subject’s head [113]. xiii, 20, 24

Electromyogram Measures the muscles electrical activity when they are at rest
and when they are being used [114]. 24

Electrooculogram Is an elecrophysiologic test that measures the existing elec-
trical potential between the cornea and Bruch’s membrane [115]. xiii, 22,
24
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Forced or Breakdown flow Every vehicle moves in lockstep with the vehicle in
front of it, with frequent slowing required. Travel time cannot be predicted,
with generally more demand than capacity. 89

Free flow Traffic flows at or above the posted speed limit and motorists have
complete mobility between lanes. The average spacing between vehicles is
about 167 m or 27 car lengths. 89

Multiple-layer perceptron neural network A class of feed-forward artificial
neural network. An MLP consists of at least three layers of nodes, with
each node using a nonlinear activation function (except for the input nodes).
MLP are known as "vanilla" neural networks [116, 117]. 34, 41

Session A Session object encapsulates the environment in which operation objects
are executed, and tensor objects are evaluated. It posesses the model graph
launched in a session [22]. 109, 111

Softmax It is an activation function commonly used in classification problems.
The exponential is a steeply increasing function, and therefore the differences
between the elements of the vector will increase, rapidly producing large
values. Then, as the vector is being normalized, the larger element, which
dominates the norm, will be normalized to a value close to 1, while all the
other elements will end up divided by a large value and its normalized value
will be close to zero. The resulting normalized vector clearly shows what
was its greatest element, the "maximum", but maintains the original relative
order of its values, hence the "soft" [118]. 104

Stable flow Ability to maneuver through lanes is noticeably restricted and lane
changes require more driver awareness. Minimum vehicle spacing is about
67 m or 11 car lengths. 89

Support Vector Machines Supervised learning models with associated learn-
ing algorithms that analyze data used for classification and regression anal-
ysis. Given a set of training examples, each marked as belonging to one
or the other of two categories, an SVM training algorithm builds a model
that assigns new examples to one category or the other, making it a non-
probabilistic binary linear classifier [116, 119]. 30

Trukey-Kramer test Single-step multiple comparison procedure and statistical
test that can be used on raw data to find factors that can be significantly
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different from each other [120]. 44
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Appendix A

Action rules file

Listing A.1: ServerCore module definition.
1 % States that characterize driver
2 wlLevel ( overload ).
3 wlLevel ( underload ).
4

5 % Possible triggers
6 trigger ( weather ).
7 trigger ( traffic ).
8 trigger ( physiologic ).
9 trigger ( ndrtasks ).

10 trigger ( drowsiness ).
11

12 % Cause tuple that represents wich principal
13 % trigger caused the wlLevel
14 cause(weather , overload ).
15 cause(traffic , overload ).
16 cause( physiologic , overload ).
17 cause(ndrtasks , overload ).
18 cause( drowsiness , underload ).
19

20 % Driving automation level
21 automationLevel ( zeroOne ).
22 automationLevel ( twoThree ).
23 automationLevel ( fourFive ).
24

25 % Actions to apply
26 action ( prioHMIinfo , weather , zeroOne ).
27 action ( prioHMIinfo , traffic , zeroOne ).
28 action ( prioHMIinfo , ndrtasks , zeroOne ).
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29 action ( switchForAS , weather , zeroOne ).
30 action ( switchForAS , traffic , zeroOne ).
31 action ( switchForAS , physiologic , zeroOne ).
32 action ( limitUseNDR , weather , zeroOne ).
33 action ( limitUseNDR , traffic , zeroOne ).
34 action ( limitUseNDR , ndrtasks , zeroOne ).
35 action (aromatic , physiologic , zeroOne ).
36 action (aromatic , drowsiness , zeroOne ).
37 action ( turnONmusic , physiologic , zeroOne ).
38 action ( turnONmusic , drowsiness , zeroOne ).
39 action ( prioHMItasks , traffic , zeroOne ).
40 action ( prioHMItasks , ndrtasks , zeroOne ).
41 action (visualWarn , drowsiness , fourFive ).
42 action ( visualAuditoryWarn , weather , zeroOne ).
43 action ( visualAuditoryWarn , traffic , zeroOne ).
44 action ( visualAuditoryWarn , physiologic , zeroOne ).
45 action ( visualAuditoryWarn , ndrtasks , zeroOne ).
46 action ( visualAuditoryWarn , drowsiness , zeroOne ).
47 action ( visualAuditoryWarn , drowsiness , twoThree ).
48 action ( turnONlights , drowsiness , zeroOne ).
49 action ( turnONlights , drowsiness , twoThree ).
50 action ( switchBackAL , drowsiness , twoThree ).
51 action ( switchBackAL , drowsiness , fourFive ).
52

53 % Simple Validation
54 simple_validation (X,Y,Z) :- wlLevel (X), trigger (Y),

automationLevel (Z).
55

56 % Cause validation
57 cause_validation (X,Y) :- cause (X,Y).
58

59 % Get action based on wl level , automation level and trigger
60 get_action (X,Y,Z) :- action (X,Y,Z).
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Appendix B

DALI subjective measure

Figure B.1: DALI questionnaire presented to subjects throughout the city experiment.
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Appendix C

Karolinska sleepiness scale (KSS)

Figure C.1: KSS questionnaire presented to subjects though an Android application,
throughout the highway experiment.
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