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A B S T R A C T

Camellia japonica is a valued plant since ancient times throughout the world mostly due to their ornamental
flowers. It has a high number of cultivars, with very similar phenotypic and genotypic characteristics which are
difficult to discriminate, being some of them often rare and with a high price at the market. Their discrimination
is mostly done through visual inspection of the morphologic characteristics which is a hard and inefficient task.
Spectroscopic techniques had already been used for taxonomic purposes at species and sub-species level with
success and could be an alternative for accurate C. japonica cultivars discrimination. Despite the already re-
cognized success of such techniques, most of the studies arises from a single laboratory and little is known about
the robustness of these techniques regarding interlaboratory data transferability. In this context, the work de-
veloped herein presents a double aim: (I) to explore the ability of near infrared (NIR) spectroscopy and partial
least square – discriminant analysis (PLS-DA) to discriminate C. japonica cultivars and (II) to evaluate data
transferability between two independent laboratories (Lab A and Lab B). Air-dried leaves NIR spectra of 43 C.
japonica plants (15 distinct cultivars) were acquired in both laboratories using two similar NIR instruments
(same manufacturer and model). Spectra were further modelled by PLS-DA after exploratory analysis using
principal component analysis (PCA): (I) individually for Lab A and Lab B; (II) using Lab A as calibration and Lab
B as validation set and vice-versa and (III) with using Lab A and Lab B data together. The percentage of C. japonica
cultivars discrimination for both laboratories was nearly the same (around 83%) indicating no significant dif-
ferences between Lab A and Lab B analysis. However, the results were quite poor when spectra were modelled
with data from a single laboratory and validated with the other (65.5 and 63.8%). When data were merged,
85.9% of correct cultivars assignments were obtained. The results herein obtained could benefit of including
additional cultivars and plants; but demonstrated the ability of NIR spectroscopy for C. japonica cultivars dis-
crimination. Regarding data transferability, even when dealing with a similar instrument, some issues arisen
preventing easy and efficient spectral library transfers.

1. Introduction

Since ancient times that plants are used in the form of infusions, to
treat several diseases due to their therapeutic and antioxidant proper-
ties, or as ornamental purposes (Kanth et al., 2014). Camellia japonica is
one of these plants. It was initially found in Korea, Japan, China and
Taiwan between altitudes of 300–1100m (Kanth et al., 2014) but ac-
tually it is disseminated throughout the world. In fact, in the north of
Spain (Galicia), around 2.5million Camellia plants (majority of C. ja-
ponica) are produced and exported to other European countries

(Salinero et al., 2012). These plants present vast phenotypic differences,
more than 32,000 known cultivars (Vela et al., 2013), and possess a
great economical value due to its beautiful flowers (Salinero et al.,
2012). The study of its genetic structure revealed that these plants
maintain high levels of genetic diversity and a high evolutionary po-
tential which make them less susceptible to environmental stresses (Oh
et al., 1996). This could explain with these species are also well adapted
in many other countries. The common methods applied for the dis-
crimination of C. japonica cultivars usually depend on the visual in-
spection of the morphologic characteristics of each plant by an expert.
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However, this method is not very efficient. In this sense, it is essential to
find an easy, low-cost and effective method for the discrimination of C.
japonica cultivars. Near infrared (NIR) spectroscopy presents all these
features and has already been successfully applied in combination with
chemometric models for the discrimination of other plants, namely ci-
trus species (Páscoa et al., 2018), hops varieties (Machado et al., 2018),
Amazonian plant species (Lang et al., 2017), and grapevine varieties
(Gutierrez et al., 2016). In all these works, around 90% of correct
predictions were obtained considering air-dried powdered leaves (with
exception of the latter work where the leaves were scanned directly on
field) which demonstrate the suitability and efficiency of the technique.
However, the robustness of such results was never assessed.

The robustness of a technique can be evaluated through the com-
parison of the results obtained in different laboratories once each
analytical method depends on different factors (e.g. analytical instru-
ments, operators, laboratory conditions) (Yoon et al., 2000). In fact,
little is known about the influence of the instrument, operators and
laboratory conditions in results obtained in a given procedure. Bartl and
collaborators in 1996 explored this topic through the analyses of aqu-
eous solutions using different Fourier transform instruments (Bartl
et al., 1996). Despite the data produced by different workers and in-
struments being different, the results were very similar. Nevertheless,
these authors found that the collection of background spectra can be
uneven and to transfer the data from one instrument to another can be
very difficult. Yoon and collaborators reported the same problems
about the transference of spectral libraries from one instrument to an-
other because each instrument manufacturer tend to use their own file
formats (Yoon et al., 2000). These authors pointed also some difficulties
when transferring spectral libraries from one instrument to another of
the same manufacturer but with different sampling accessories. In ad-
dition, interlaboratory studies including chemometric models were
barely explored and, to the best of our knowledge, only one work was
published exploring this topic. It used the determination of crude pro-
tein and water in forages (Ruisanchez et al., 2002). The results obtained
showed some differences in terms of the outliers detected and the PLS
parameters (e.g. root mean square error of prediction, slope). In this
sense, this work proposes an interlaboratory study using the same NIR
instrument (same manufacturer and model) present in two different
laboratories exploring different chemometric tools, namely PCA as an
exploratory tool and PLS-DA for the discrimination of C. japonica cul-
tivars. Thus, the contribution of different operators and laboratory
conditions will be evaluated as well as the ability of NIR spectroscopy to
discriminate C. japonica cultivars.

2. Material and methods

2.1. Camellia japonica leaves

Leaves of 43 different plants of C. japonica belonging to 15 cultivars
were collected in two distinct locations (Viveiro da Câmara Municipal
do Porto, GPS: 41.155830, −8.558920 and Jardim Botânico do Porto,
GPS: 41.153650, −8.642528). Details are presented in Table 1. Ten
leaves per plant were collected twice within one month, making a total
of 20 leaves per plant. After collection, fresh leaves were transported to
the laboratory and air-dried at room temperature, avoiding daylight
exposure, until no difference in mass. The air-dried leaves collected for
each plant were milled through a coffee mill (MS 50, Taurus, Spain) and
sieved. This was repeated for each one of the 43 C. japonica plants. The
fine powder obtained for each plant was transferred to borosilicate
flasks prior spectral acquisition and stored avoiding daylight exposure
and at room temperature. Therefore, each flask contains all the leaves
collected for each plant (20 leaves per plant).

2.2. Near infrared spectra collection

Near infrared spectra were collected in diffuse reflectance mode, in

two Fourier transform near infrared spectrometers (FTLA 2000, ABB,
Canada), of the same model present in two different laboratories
(Laboratory A and Laboratory B), equipped with an indium-gallium-
arsenide (InGaAs) detector, quartz halogen as light source and He-Ne
laser. Both instruments were controlled through Bomen-Grams software
(version 7, ABB, Canada). At laboratory A (Lab A), each flask was
analysed in triplicate and the spectrum of each analysis was obtained
within 10,000 and 4000 cm−1 with a resolution of 8 cm−1 and resulted
from an average of 64 scans. Then, the borosilicate flaks were trans-
ported to the other laboratory (Laboratory B) in the day after avoiding
temperature change and light exposure. At laboratory B (Lab B), the
procedure for spectral acquisition performed at Lab A was repeated.
The background was performed using the same reference material
(Teflon) at both laboratories.

2.3. Data analysis

The spectra collected at both laboratories were modelled PCA and
PLS-DA. PCA was used to detect outliers and the formation of clusters
(Naes et al., 2004). PLS-DA was used as a supervised model to develop
discrimination models (Barker and Rayens, 2003). In this case, all
samples were classified considering each C. japonica cultivar as a dif-
ferent class. Data was divided into two data sets (70% for calibration
and 30% for validation) in a random mode but avoiding unbalanced
classes in the calibration and validation sets and guaranteeing that all
C. japonica cultivars were included in both sets. Therefore, from the
three spectra obtained for each sample, two spectra were used to cali-
brate and one spectrum to validate. The leave-one-sample-out proce-
dure was used to estimate the optimum number of latent variables (LVs)
using only the calibration set. The optimum number of LVs was selected
based on a compromise between the highest percentage of correct
predictions and the lowest number of LVs (when the variation in the
percentage of correct predictions between two consecutive LVs was
lower than 5%, the lowest number of LVs was selected). Aiming to
identify the best spectral region, NIR spectra were divided in five
spectral regions: R1 from 4956 to 4030 cm−1, R2 from 5376 to
4960 cm−1, R3 from 6076 to 5380 cm−1, R4 from 7466 to 6080 cm−1

and R5 from 10,000 to 7470 cm−1. All these regions were tested in-
dividually and in all possible combinations, which give a total of 31
possible combinations. Several pre-processing techniques, namely
standard normal variate (SNV) and a Savitzky-Golay (SG) filter (x,y,z;
where x is the filter width, y is the polynomial order, and z is the

Table 1
Details about the C. japonica cultivars leaves included in this study.

Cultivar N° of plants Collecting local

Albino botti 1 VMP
1 JBP

Alba plena 1 VMP
1 JBP

Augusto leal gouveia pinto 2 VMP
3 JBP

Bella milanese 2 JBP
Bella portuense 1 VMP

2 JBP
Camurça 2 VMP
Colletti 2 VMP

1 JBP
Conde do bonfim 3 JBP
Duchesse de nassau 3 JBP
Etoile polaire 2 JBP
Fimbria alba 2 VMP
Maria irene 2 JBP
Roi des belges 2 JBP
Saudade martins branco 4 VMP
Sophia 1 VMP

2 JBP

VMP-Viveiro da Câmara Municipal do Porto; JBP – Jardim Botânico do Porto.
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derivative used) were tested as well, individually and in all possible
combinations to find the best pre-processing technique (creating a total
of 8 possible combinations). After finding the best spectral region and
re-processing technique, the validation set was projected in the PLS-DA
calibration model to assess the percentage of correct predictions for
each C. japonica cultivar. The predictions of PLS-DA models were ex-
pressed in the form of confusion matrices, where the sum of the diag-
onal elements gives the total percentage of correct predictions (Pascoa
et al., 2016). All the calculations were performed in Matlab version
R2009b (MathWorks, Natick, USA) and PLS Toolbox version 5.5.1
(Eigenvector Research Incorporated, Manson, USA).

3. Results and discussion

3.1. Unsupervised analysis

Spectra of air-dried C. japonica leaves obtained in reflectance mode
are depicted in Figs. 1a and 1b, respectively for Lab A and Lab B.
Globally, there was no naked-eye differences in the spectra obtained at
both laboratories. With the objective of highlighting some possible
differences between the spectra obtained at both laboratories, it was
decided to plot the average spectra of each laboratory (Fig. 1c). Re-
garding the average of spectra (Fig. 1c), it can be noticed that the
spectra baseline from Lab A has a slightly higher absorbance and that

the beginning of region R3 of Lab B spectra possess higher noise. The
herein obtained differences in spectra baseline of both laboratories
were already denoted in other previous studies (Bartl et al., 1996).

The PCA (through Q residuals and Hotelling’s T2 statistics) revealed
the presence of some outliers in the spectra of both laboratories, which
were further removed. Moreover, the PCA showed no significant dif-
ferences between the scores obtained at both laboratories (data not
shown) pointing to quite similar spectral data.

3.2. Supervised analysis

3.2.1. Optimization of spectral region and pre-processing technique
PLS-DA was applied in data sets from Lab A and Lab B to find the

best spectral region and pre-processing technique. The number of LVs
was tested until a maximum of 20, using different spectral regions and
pre-processing techniques as referred previously. A total of 4960 (31
spectral regions combinations× 8 pre-processing techniques combi-
nations× 20 LVs) PLS-DA models were developed for each laboratory
data set. As the number of PLS-DA models developed is vast, only the
results obtained for the best pre-processing techniques were shown
(Table 2). The best spectral regions and pre-processing techniques were
selected based on the highest result of correct predictions obtained. The
best spectral regions were R1 and R3, and the combination of both
these regions yielded the best results for both laboratories. This was
consistent for the majority of the pre-processing techniques tested.
Regarding the best pre-processing technique, SG filter (x,2,1) combined
with SNV produced the best results (Table 2). Most of the PLS-DA
models developed needed more than 15 LVs, however each PLS-DA
model developed included 15 different classes (C. japonica cultivars).

3.2.2. Discrimination of Camellia japonica cultivars
After the selection of the best spectral region (R1+R3 for both

laboratories) and the best spectral pre-processing technique [Lab A:
SG(17,2,1)+ SNV and Lab B: SG(19,2,1)+ SNV] the discrimination of
C. japonica cultivars were assessed with spectral data from both la-
boratories independently.

Regarding Lab A, the optimum developed PLS-DA model with 17
LVs yielded a percentage of correct predictions of 83.4%. The confusion
matrix obtained for the PLS-DA model is shown in Table 3. The con-
fusion matrix besides giving the percentage of correct predictions also
shows the best and worst C. japonica cultivars predicted. From its
analysis, it is clear that not all C. japonica cultivars were well classified.
Indeed, “Bella milanese” cultivar was misclassified with “Bella por-
tuense” and “Roi des belges” cultivars; “Bella portuense” cultivar was

Fig. 1a. Camellia japonica air-dried leaves raw spectra collected at Lab A.

Fig. 1b. Camellia japonica air-dried leaves raw spectra collected at Lab B.

Fig. 1c. Mean spectra of Camellia japonica air-dried leaves collected at both
laboratories.
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misclassified with other cultivars and “Duchesse de Nassau” cultivar
was misclassified with “Bella milanese” cultivar. On the other hand,
“Conde do bonfim” and “Saudade martins branco” cultivars were well
classified with almost 100% of correct predictions.

The best PLS-DA model for Lab B (Table 2) was achieved with 15
LVs yielded a percentage of correct cultivars predictions of 82.7%. The
corresponding confusion matrix is shown in Table 4. The results were
quite similar to those obtained for Lab A. In this case, the worst pre-
diction involved “Bella portuense” cultivar that was misclassified with
other cultivars and “Bella milanese” cultivar was misclassified with
“Roi des belges” cultivar. The cultivars that were better predicted were
“Colletti” and “Conde do bonfim”.

These results indicate that there are no significant differences be-
tween the results obtained at Lab A and Lab B. Therefore, the use of
different laboratory conditions and operators seems to have no impact
on the results obtained. This is in agreement with the conclusions
pointed by Bart and collaborators (Bartl et al., 1996) where it was
mentioned that the results obtained by different workers were very si-
milar.

Moreover, the results obtained in the best PLS-DA models for both
laboratories (approximately 80% of correct predictions) demonstrate
the capacity of NIR spectroscopy to discriminate C. japonica cultivars.
These results were slightly lower than the results obtained in similar
works referred in the introduction section (Gutierrez et al., 2016; Lang
et al., 2017; Machado et al., 2018; Páscoa et al., 2018) but in this work
several cultivars from different locations were included. In this sense, it
is known that different types of soil have a significant impact over the
leaves of the plant (Pascoa et al., 2016) and this could somewhat

explain the lower percentage of correct predictions.
Regarding the confusion matrices obtained (Tables 3 and 4) there

are some congruencies among the best and the worst predicted cultivars
for both laboratories. Despite the absence of any genotypic data re-
garding the cultivars similarity, the congruency among laboratories
allow us to hypothesize that the misclassifications are probably among
cultivars with higher genotypic and /or phenotypic similarity.

3.2.3. Assessing data transferability between both laboratories
With the objective of assessing data transferability between Lab A

and Lab B two different strategies were tested: (I) using data from Lab A
as the calibration set and data from Lab B as the validation set and vice-
versa; and (II) mixing all data together (Lab A+Lab B) and randomly
select a calibration and a validation set but ensuring that both cali-
bration and validation sets possess data from both laboratories.

3.2.3.1. Calibration and validation sets from different laboratories. In this
analysis, the best pre-processing techniques found previously for Lab A
and Lab B sets were maintained but different regions and LVs were
tested. The best results obtained are shown in Table 5. It seems that no
significant differences arise from using Lab A data to calibrate and Lab
B to validate or vice-versa. In addition, the results indicate that data sets
from both laboratories should be quite different once the percentage of
correct cultivars predictions was lower when compared with the
previous results. If both data sets were similar, the percentage of
correct predictions should also be similar. Even discarding region R3,
for possessing higher noise (Lab B data), the results were worse than
those obtained independently for each laboratory. The results herein

Table 2
Percentage of correct predictions of the best PLS-DA models obtained at Lab A and Lab B with the validation data set.

Spectral region Pre-processing technique

SG (15,2,1)+ SNV SG (17,2,1)+ SNV SG (19,2,1)+ SNV SNV

Lab A Lab B Lab A Lab B Lab A Lab B Lab A Lab B

R1 80.0% (16 LV) 75.7% (13 LV) 81.4% (16 LV) 77.3% (14 LV) 80.8% (16 LV) 77.2% (13 LV) 80.7% (16 LV) 80.0% (16 LV)
R2 57.2% (16 LV) 50.7% (9 LV) 58.9% (15 LV) 50.8% (11 LV) 58.3% (15 LV) 51.1% (11 LV) 62.2% (14 LV) 51.5% (9 LV)
R3 78.5% (16 LV) 69.0% (12 LV) 77.8% (15 LV) 69.2% (14 LV) 77.9% (16 LV) 69.3% (13 LV) 78.7% (16 LV) 79.1% (15 LV)
R4 63.4% (17 LV) 48.5% (11 LV) 63.0% (15 LV) 49.0% (12 LV) 62.1% (16 LV) 50.3% (11 LV) 68.1% (14 LV) 53.7% (12 LV)
R5 54.7% (19 LV) 36.3% (14 LV) 64.3% (14 LV) 38.1% (11 LV) 57.4% (17 LV) 40.7% (14 LV) 66.2% (16 LV) 49.1% (9 LV)
R1+R3 81.1% (16 LV) 81.0% (15 LV) 83.4% (17 LV) 81.7% (15 LV) 79.6% (15 LV) 82.7% (15 LV) 82.1% (16 LV) 80.8% (16 LV)

Table 3
Confusion matrix for the best PLS-DA discrimination model based on the NIR spectroscopy technique applied to leaves samples at Lab A considering both regions R1
and R3 with SG (17,2,1) followed by SNV (83.4% overall correct prediction rate and 17 LVs, n= 252).

Predicted cultivars Real cultivars

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 3.2 0.6 0.6 0 0.5 0 0 0 0 0.4 0 0 0 0 0
2 0.4 4.0 0 0 0.4 0 0 0.1 0 0.2 0 0 0 0 0.1
3 0.2 0.3 10.5 0.1 0.5 0 0 0 0.2 0 0 0 0.1 0.1 0
4 0 0 0 3.3 0 0 0 0 1.6 0 0 0 0.2 0 0
5 0.6 0.1 0.1 1.2 3.5 0 0 0 0.3 0.4 0 0.5 0.1 0 0.2
6 0 0.4 0 0 0.1 6.3 0 0 0 0 0 0 0 0.1 0
7 0 0 0 0 0 0 6.9 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 10.2 0 0 0 0 0.2 0 0
9 0 0 0 0.3 0.4 0.5 0.5 0 3.3 0.1 0 0.1 0 0 0.1
10 0.1 0 0 0 0 0 0 0 0 3.3 0 0 0 0 0
11 0 0 0 0 0.1 0 0 0 0 0 6.8 0 0 0 0
12 0 0 0 0.3 0.2 0 0 0 0 0 0 4.7 0 0 0
13 0.2 0 0.6 0.9 0 0 0 0 0.3 0 0.4 0 2.7 0 0.1
14 0 0.3 0 0.1 0.1 0 0 0 0 0 0 0 0 9.9 0
15 0 0 0 0.1 0.2 0 0 0 0 0 0 0 0.1 0 4.9

Legend: 1 – “Albino botti”; 2 – “Alba plena”; 3 – “Augusto leal gouveia pinto”; 4 – “Bella milanese”; 5 – “Bella portuense”; 6 – “Camurça”; 7 – “Colletti”; 8 – “Conde do
bonfim”; 9 – “Duchesse de nassau”; 10 – “Etoile polaire”; 11 – “Fimbria alba”; 12 – “Maria irene”; 13 – “Roi des belges”; 14 – “Saudade martins branco”; 15 –
“Sophia”; Values are in %.
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obtained reflect the same problems reported by other authors (Bartl
et al., 1996; Yoon et al., 2000) being in this case even more problematic
since the instruments used belong to the same manufacturer, model and
sampling accessories. An explanation to this can be found in
(Bouveresse and Massart, 1996) where the authors refer that
differences in the age of the instruments can be responsible for the
differences found in instrumental response. The results of this study
point that the possibility of building an universal NIR spectral library as
suggested by some authors (Bouveresse and Massart, 1996) could be a
very complex task as advised by others (Yoon et al., 2000).

3.2.3.2. Calibration and validation with all data. Another interesting
approach was to combine all data obtained at both laboratories in just
one matrix and randomly select a calibration and validation data sets.
In this case, the best pre-processing techniques found previously at
Section 3.2.1 were tested, as well as the best spectral regions (R1, R3
and R1 combined with R3) and LVs (up to 20). The combination of
regions R1 and R3 with the application of SG (19,2,1) followed by SNV
and 18 LVs yielded the best PLS-DA model with 85.9% of correct
predictions (Table 6). This result is in agreement with the results
obtained in Section 3.2.2 in terms of the best processing technique,

spectral regions and percentage of correct predictions. However, it does
give any indication if the spectra obtained at Lab A and Lab B
laboratory can be considered similar or different. The confusion
matrix is shown in Table 7. In this case, the worst predictions
involved “Bella portuense” cultivar, which was misclassified with
“Albino botti” cultivar, and the best predictions were obtained with
“Conde do bonfim” and “Saudade martins branco” cultivars. This is in
agreement with the results found when using only the spectra obtained
at Lab A.

4. Conclusions

The results obtained in this work (around 85% of correct predictions
for the validation sets of both laboratories) demonstrate that NIR
spectroscopy coupled to PLS-DA can be a reliable tool to discriminate C.
japonica cultivars. Despite the results obtained in Lab A and Lab B being
similar (in terms of correct predictions), when the PLS-DA models ca-
librations were performed with spectra obtained in one laboratory and
validated with the spectra obtained in the other, the results get worst.
These findings indicate that even using an instrument of the same
manufacturer and model it will be difficult to transfer the spectral li-
brary. This reinforces the idea that to build a universal spectral library
using NIR technique can be quite challenging and several precautions
should be previously considered (e.g. the instrument manufacturer, the
sampling mode as well as the maintenance and the age of the instru-
ments).
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Table 7
Confusion matrix for the PLS-DA discrimination model based on the NIR spectroscopy technique applied to leaves samples using all the data combined (Lab A and Lab
B) considering both regions R1 and R3 with SG (19,2,1) followed by SNV (85.9% overall correct prediction rate and 18 LVs, n= 504).

Predicted cultivars Real cultivars

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 3.0 0.7 0.4 0 1.0 0.1 0 0 0 0.2 0 0 0 0 0
2 0.1 4.9 0 0 0.3 0 0 0 0 0.2 0 0 0 0 0
3 0.3 0.7 10.1 0 0.2 0 0.1 0 0.3 0 0.1 0 0 0 0
4 0 0 0.2 4.1 0.1 0 0 0 0.8 0 0 0 0.3 0 0
5 0.3 0 0 1.0 3.9 0 0 0 0.4 0.1 0 0.9 0 0.1 0.5
6 0 0.2 0 0 0 7.1 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 7.2 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0
9 0.1 0 0 0 0.4 0.1 0.1 0 4.2 0 0 0.5 0 0 0
10 0.2 0 0 0 0 0 0 0 0 3.4 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 7.3 0 0 0 0
12 0.1 0 0 0 0.5 0 0 0 0 0 0.3 4.5 0 0 0
13 0 0 0.4 0.8 0.2 0 0 0 0 0 0.1 0 3.9 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 9.1 0
15 0 0 0 0 0.1 0 0 0 0 0 0 0 0.1 0 3.4

Legend: 1 – “Albino botti”; 2 – “Alba plena”; 3 – “Augusto leal gouveia pinto”; 4 – “Bella milanese”; 5 – “Bella portuense”; 6 – “Camurça”; 7 – “Colletti”; 8 – “Conde do
bonfim”; 9 – “Duchesse de nassau”; 10 – “Etoile polaire”; 11 – “Fimbria alba”; 12 – “Maria irene”; 13 – “Roi des belges”; 14 – “Saudade martins branco”; 15 –
“Sophia”; Values are in %.
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