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Abstract

In this paper we give a complete characterization of the nth
roots of a coquaternion q. In particular, we show that the
number and type of roots — isolated and/or hyperboloidal —
depend on the nature of q, on the parity of n and (eventually)
on the sign of the real part of q. We also show how the
coquaternionic formalism can be used to obtain, in a simple
manner, explicit expressions for the real nth roots of any 2×2
real matrix.

1 Introduction

Coquaternions, introduced by Sir James Cockle in 1849, [6], form a four-dimensional hypercomplex real algebra
generalizing complex numbers. Although coquaternions, also known in the literature as split quaternions,
are not as popular as the well-known Hamilton’s quaternions, recent studies show an increasing interest in
these hypercomplex numbers, not only from the theoretical point of view, but also from the perspective of
applications. Algebraic properties of coquaternions and coquaternionic polynomials are considered in e.g.,
[9, 10, 19] while [13] contains a study of coquaternionic analysis based on representation theory. Some
geometric applications of coquaternions can be found in [16, 18, 20] and the relation between coquaternions
and complexified mechanics is discussed in [3]. The use of coquaternions in dynamical systems was recently
considered in [11, 12].

In [17], the author determined some of the roots of a coquaternion and presented a De Moivre’s formula
for coquaternions, under some implicit assumptions. In this paper we give a complete description of the roots
of any coquaternion, extending in this way the work of [17]. Recent results on the structure of the zeros
of coquaternionic unilateral polynomials [9, 10] allow to express the nth roots of a real number in terms of
similarity classes.

The problem of finding the roots of a given square matrix A, i.e., of determining the matrices X such that
Xn = A has attracted the attention of many researchers over the years: see, e.g., [1, 2, 8, 14, 15], where the
case of square roots, i.e., n = 2, is discussed (in some cases, for special types of matrices) and also [4, 5, 7],
where only 2 × 2 matrices are considered, but more general nth roots are determined. In the seminal paper
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by A. Cayley [4], although not explicitly stated, only real roots of real 2 × 2 non-singular matrices satisfying
certain conditions are found.1 In [7] the author finds expressions, involving transcendental function, for the
(complex) roots of 2 × 2 complex matrices with determinant equal to one (i.e., elements in SL2(C)) and
then, using those expressions, describes how to compute the roots of any non-singular 2 × 2 matrix (i.e., an
element of GL2(C)). In the more recent paper by Choudhry [5], the author describes a method for obtaining
algebraic expressions for the (complex) nth roots of any 2 × 2 complex matrix; except in special cases, the
method involves the determination of the roots of certain polynomials of degree n and as such, unless n is of
moderate size, can be considered as quite elaborate.

In this paper we revisit the problem of the determination of the nth real roots of a matrix in M2(R), the
algebra of real 2× 2 matrices, taking into account the well-known isomorphism between this algebra and the
algebra of coquaternions. This allows us to discuss the number and nature of such roots and also to easily
derive their explicit expressions.

2 Basic results on coquaternions

Let {1, i, j,k} be an orthonormal basis of the Euclidean vector space R4 with a product given according to
the multiplication rules

i2 = −1, j2 = k2 = 1, ij = −ji = k.

This non-commutative product generates the algebra of real coquaternions, which we will denote by Hcoq.
We will embed the space R4 in Hcoq by identifying the element in R4 (q0, q1, q2, q3) with the coquaternion

q = q0 + q1i + q2j + q3k. Given q = q0 + q1i + q2j + q3k ∈ Hcoq, its conjugate q is defined as q =
q0 − q1i− q2j− q3k; the number q0 is called the real part of q and denoted by Re q and the vector part of q,
denoted by q, is q = q1i+ q2j+ q3k. The quantity q + q = 2 Re q is referred as the trace of q and denoted by
tr q. We will identify the set of coquaternions with null vector part with the set R of real numbers. We call
determinant of q and denote by det q the quantity given by det q = q q = q2

0 + q2
1 − q2

2 − q2
3 and we endow

Hcoq with the semi-norm ‖q‖ =
√
|det q|. We say that q is a non-singular coquaternion if det q 6= 0 and call

q a unit coquaternion if ||q|| = 1.
A coquaternion q is called space-like, light-like or time-like if det q < 0, det q = 0 or det q > 0, respectively;

the sets of such coquaternions will be denoted by S, L and T, respectively. We will say that two coquaternions
have the same nature if both belong to the same set S, L or T. We also adopt the notations

TS = {q ∈ T : q ∈ S}, TL = {q ∈ T : q ∈ L}, TT = {q ∈ T : q ∈ T},

LS = {q ∈ L : q ∈ S}, LL = {q ∈ L : q ∈ L}.

Remark 2.1. We observe that, since det q = q2
0 +det q ≥ det q, if q is space-like, then q is of the same nature

and a light-like coquaternion can not have a time-like vector part. Moreover, if q0 = 0 then q ∈ TT ∪ S ∪ LL.
We refer to [10] for other properties of det q.

The polar form for a non-singular coquaternion q with a non-singular vector part can be found in [17] and
reads as follows:

Lemma 2.2 (Polar forms of a coquaternion). Any coquaternion q = q0 + q1i + q2j + q3k ∈ S ∪ T, such that
q /∈ L, has a polar representation in one of the forms

q =


‖q‖
(

sinhφq + ωq coshφq
)
, if q ∈ S,

‖q‖
(

sgn q0 coshψq + ωq sinhψq

)
, if q ∈ TS,

‖q‖
(

cos θq + ωq sin θq
)
, if q ∈ TT,

(2.1a)

where sgn is the usual sign function,

sinhφq =
q0

‖q‖
, sinhψq =

‖q‖
‖q‖

, cos θq =
q0

‖q‖
, sin θq =

‖q‖
‖q‖

, θq ∈ (0, π) (2.1b)

1In [4], the only matrix of order greater than two for which square roots are found is the identity matrix of third order.
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and

ωq =
q

‖q‖
(2.1c)

is a unit coquaternion satisfying ω2
q = 1, if q ∈ S and ω2

q = −1, if q ∈ T.

We observe that the case q ∈ TS of formula (2.1a) was given in [17] under the implicit assumption that
q0 = Re q > 0. Using the results of the previous lemma, one can easily establish, by induction, De Moivre’s
type formulae for the nth power of q, when n ∈ N, given in the following theorem (cf. Theorems 1-3 in [17]).

Theorem 2.3 (De Moivre’s formulae for coquaternions). Under the conditions of the previous lemma, we
have, for any n ∈ N:

qn =



‖q‖
n
(

sinhnφq + ωq coshnφq
)
, n is odd,

‖q‖n
(

coshnφq + ωq sinhnφq
)
, n is even,

if q ∈ S,

‖q‖n(sgn q0)n−1
(
sgn q0 cosh nψq + ωq sinh nψq

)
, if q ∈ TS,

‖q‖n
(

cosnθq + ωq sinnθq
)
, if q ∈ TT.

(2.2)

Remark 2.4. Relations (2.2) are trivially verified when n = 0; furthermore, since we are considering the case
where det q 6= 0, we know that q is invertible and q−1 = q̄

det q ; from this, it is simple to verify that the relations

are also valid when n = −1 and to conclude that (2.2) hold for any n ∈ Z.

3 Roots of a non-real coquaternion

We are now interested in determining the roots of index n ∈ N, n ≥ 2, of a given non-real coquaternion q,
i.e., in determining x ∈ Hcoq such that xn = q. As was already pointed out, one can find in [17] a similar
study, but with a different goal. In fact, the author of [17] considers only coquaternions q which are neither
light-like nor have a light-like vector part and determines only roots which have the same nature as q. Here we
address the problem of completely characterizing and determining all the roots of any non-real coquaternion.

We first consider the case where q /∈ L and q /∈ L. In the next theorem we give the number and type
of the roots of index n of such a coquaternion q and also give explicit expressions for these roots. As the
theorem shows, the number and type of roots will depend on the nature of q and q, on the parity of n and
(eventually) on the sign of the real part of q.

Theorem 3.1. Let q be a coquaternion admitting one of the representations in (2.1a). For n ≥ 2, the nth
roots of q can be characterized as follows:

1. If q ∈ S and

(a) n is odd, then there is only one root, which is in S:

n
√
||q||

(
sinh

φq

n + ωq cosh
φq

n

)
;

(b) n is even, then there are no roots.

2. If q ∈ TS and

(a) n is odd, then there is only one root, which is in TS:

n
√
||q||

(
sgn q0 cosh

ψq

n + ωq sinh
ψq

n

)
;

(b) n is even and
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i. q0 > 0, then there are four roots, two of which are in TS:

± n
√
||q||

(
cosh

ψq

n + ωq sinh
ψq

n

)
,

and the other two in S:
± n
√
||q||

(
sinh

ψq

n + ωq cosh
ψq

n

)
;

ii. q0 < 0, then there are no roots.

3. If q ∈ TT then there are n roots, which are in TT:

n
√
||q||

(
cos

θq+2kπ
n + ωq sin

θq+2kπ
n

)
; k = 0, . . . , n− 1.

Proof. Given a coquaternion q ∈ S ∪ T, with q /∈ L and n ≥ 2, we aim to determine coquaternions x such
that xn = q. We first observe that, as is well known, any coquaternion x = x0 + x1i + x2j + x3k satisfies its
characteristic equation

x2 − 2x0 x + det x = 0

or x2 = 2x0 x − det x. Using this, we can easily prove, by induction, that xn ∈ spanR(1, x) and, naturally,
spanR(1, x) = spanR(1, x). In other words, there exists α, β ∈ R such that xn = α + βx. If x is such that
xn = q, we must have α + βx = q0 + q and so we get βx = q, β 6= 0, x 6= 0, which in turn implies that

det(βx) = β2 det x = det q. Therefore

sgn(det x) = sgn(det q). (3.1)

Since det(xn) = (det x)n, we also have
(det x)n = det q. (3.2)

Relations (3.1)-(3.2) lead at once to the following remarks on the set Rnq = {x ∈ Hcoq : xn = q}:

i. if q ∈ S, then Rnq ⊂ S, when n is odd, while for n even, Rnq = ∅;

ii. if q ∈ TS, then Rnq ⊂ TS, when n is odd and Rnq ⊂ TS ∪ S, for even n;

iii. if q ∈ TT, then Rnq ⊂ TT.

Taking into account the above considerations, the proof follows easily from the use of De Moivre’s formulae
(2.2) for xn and of the appropriate formula (2.1) for q.

We focus now on the expression of the nth roots of non-real coquaternions q which are light-like or with
a light-like vector part.

Theorem 3.2. Consider a non-real coquaternion q such that q ∈ L or q ∈ L. For n ≥ 2, the nth roots of q
can be characterized as follows:

1. If q ∈ TL and

(a) n is odd, then there is only one root, which is in TL:

n
√
q0 +

q

n( n
√
q0)n−1

=
q + (n− 1)q0

n( n
√
q0)n−1

;

(b) n is even and

i. q0 > 0, then there are two roots, both in TL:

±
(

n
√
q0 +

q

n( n
√
q0)n−1

)
= ±q + (n− 1)q0

n( n
√
q0)n−1

;

ii. q0 < 0, then there are no roots.

2. If q ∈ LS and



M.I. Falcão, F. Miranda, R. Severino and M.J. Soares 5

(a) n is odd, then there is only one root, which is in LS:
q

( n
√

2q0)n−1
;

(b) n is even and

i. q0 > 0, then there are two roots, both in LS: ± q

( n
√

2q0)n−1
;

ii. q0 < 0, then there are no roots.

3. If q ∈ LL, then there are no roots.

Proof. Observe that we are considering coquaternions q such that q ∈ LL or q ∈ TL or q ∈ LS (cf. Re-
mark 2.1). Then it follows easily that x and x have the same nature of q and q respectively (relations
(3.1)-(3.2) are also valid here). The proof follows taking into account that the powers of a coquaternion under
the assumptions of the theorem can be written in one of the forms

xn =


xn0 + nxn−1

0 x, if x ∈ TL,

(2x0)n−1x, if x ∈ LS,

0, if x ∈ LL and n ≥ 2.

(3.3)

4 Roots of a real number

To discuss the coquaternionic roots of a real number, it is convenient to review some more results on co-
quaternions.

We first recall the concepts of similarity and quasi-similarity for coquaternions; see, e.g., [9, 10] and
references therein. We say that a coquaternion q is similar to a coquaternion p if there exists an invertible
coquaternion h such that q = h−1ph. This is an equivalence relation in Hcoq, partitioning Hcoq in the so-called
similarity classes. We denote by [q] the similarity class of q ∈ Hcoq. It is easy to show that [q] = {q} if and
only if q ∈ R.

We say that two elements p, q ∈ Hcoq are quasi-similar if and only if tr p = tr q and det p = det q. This
is also an equivalence relation in Hcoq; the class of an element q ∈ Hcoq with respect to this relation will
be denoted by JqK and referred to as the quasi-similarity class of q. It can be shown that for two non-real
coquaternions, the concepts of quasi-similarity and similarity coincide, i.e., two non-real coquaternions are
similar if and only if they are quasi-similar. However, if q = q0 ∈ R, then q is only similar to itself but
quasi-similar to all the coquaternions of the form q0 + p with det p = 0. Observe that

JqK = {x0 + x1i + x2j + x3k : x0 = q0 and x2
1 − x2

2 − x2
3 = det q}

can be identified with an hyperboloid in the hyperplane {(x0, x1, x2, x3) ∈ R4 : x0 = q0}: an hyperboloid of
two sheets, if q ∈ T, an hyperboloid of one sheet, if q ∈ S and a degenerate hyperboloid, i.e., a cone, if q ∈ L.
Note that, if q /∈ L, then JqK = [q].

We now present very briefly some results on the zeros of coquaternionic polynomials. We consider only
monic unilateral left polynomials, i.e., polynomials of the form

P (x) = xn + an−1x
n−1 + · · ·+ a1x+ a0, ai ∈ Hcoq, (4.1)

with addition and multiplication of such polynomials defined as in the commutative case where the variable is
allowed to commute with the coefficients.

Given a quasi-similarity class JqK = Jq0 + qK, the characteristic polynomial of JqK, denoted by ΨJqK, is the
polynomial given by

ΨJqK(x) = x2 − 2q0 x+ det q.

This is a second degree monic polynomial with real coefficients whose discriminant is −4 det q. This means
that ΨJqK is an irreducible polynomial (over the reals), if q ∈ T and a polynomial of the form (x−α1)(x−α2),
with α1, α2 ∈ R, if q ∈ S ∪ L. Reciprocally, any second degree monic polynomial S(x) with real coefficients
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is the characteristic polynomial of a (uniquely) defined quasi-similarity class; if S(x) is irreducible with two
complex conjugate roots z, z, then S = ΨJzK; if S has real roots α1 and α2 (with, eventually, α1 = α2), then
S = ΨJqK with q = α1+α2

2 + α1−α2

2 j.

Given a polynomial P of the form (4.1), its conjugate polynomial is the polynomial defined by P (x) =
xn+ an−1x

n−1 + · · ·+ a1x+ a0 and its companion polynomial is the polynomial given by CP (x) = P (x)P (x).
The following theorem contains an important result relating the characteristic polynomials of the quasi-

similarity classes of zeros of a given polynomial P and the companion polynomial of P .

Theorem 4.1 ([10, Theorem 3.8]). Let P be a polynomial of the form (4.1). If z ∈ Hcoq is a zero of P , then
ΨJzK is a divisor of CP .

It can be shown that CP is a polynomial of degree 2n with real coefficients and, as such, considered as
a polynomial in C, has 2n roots. If these roots are z1, z1, . . . , z`, z` ∈ C \ R and α1, α2, . . . , αs ∈ R, where
s = 2(n − `), (0 ≤ ` ≤ n), then it follows from the above considerations that the characteristic polynomials
which divide CP are the ones associated with the following quasi-similarity classes:

JzkK; k = 1, . . . , `, (4.2a)

JrijK; i = 1, . . . , s− 1, j = i+ 1, . . . , s, (4.2b)

with

rij =
αi + αj

2
+
αi − αj

2
j. (4.2c)

We thus have that the zeros of the polynomial P belong to the union of the classes (4.2) which are called
admissible classes for P .

Another known result on coquaternionic polynomials is the following: if the coefficients of P are real and
q ∈ Hcoq \ R is a zero of P , then the whole class JqK is made up of zeros of P . When JqK contains no other
zeros of P , we say that q is an isolated zero; if all coquaternions in JqK are zeros of P , then q is called an
hyperboloidal zero of P . When a zero q is hyperboloidal, we treat, for simplicity, the whole class as a single
zero and talk about the hyperboloidal zero JqK. Since the nth roots of a coquaternion q are the roots of the
equation xn = q, we will also adopt the same nomenclature for these roots.

Remark 4.2. An admissible class of a general polynomial of the form (4.1) may also contain an infinite
number of zeros forming a strict subset of the class. As proved in [10], this set of zeros (considered as points
in R4) form a straight line, and are therefore called linear zeros. However, as we will see, linear zeros never
occur in the case of polynomials of the form xn − q that we are considering here.

We have proved in the previous section that all the roots of a non-real coquaternion are isolated. The
situation is quite different for the roots of real numbers, as the result contained in the next theorem reveals.

In what follows, for a given n ∈ N, n ≥ 2, we use ζk and ηk to denote the complex nth roots of 1 and
−1, respectively, i.e.,

ζk = cos 2kπ
n + i sin 2kπ

n ; k = 0, 1, 2 . . . , n− 1 (4.3a)

and
ηk = cos (2k+1)π

n + i sin (2k+1)π
n ; k = 0, 1, 2 . . . , n− 1. (4.3b)

Theorem 4.3. Let α ∈ R. For n ≥ 2, the nth coquaternionic roots of α can be characterized as follows.

1. If α > 0 and

(a) n = 2m, then there exist:

• two real roots: ± n
√
α;

• one hyperboloidal root of elements in S: J n
√
α jK;

• if m > 1, m− 1 hyperboloidal roots of elements in TT:

J n
√
α ζkK; k = 1, . . . ,m− 1.



M.I. Falcão, F. Miranda, R. Severino and M.J. Soares 7

(b) n = 2m+ 1, then there exist:

• one real root: n
√
α;

• m hyperboloidal roots with elements in TT:

J n
√
α ζkK; k = 1, . . . ,m.

2. If α < 0 , then there exist:

• m = bn2 c hyperboloidal roots of elements in TT:

J n
√
|α|ηkK; k = 0, . . . ,m− 1;

• if n is odd, one extra real root : n
√
α.

3. If α = 0, then there exists one hyperboloidal root of elements in LL: J0K.

Proof. Consider first the case 1. (a), where α > 0 and n = 2m. As observed before, the nth roots of α are
the zeros of the real polynomial P (x) = xn−α. The companion polynomial of P is CP (x) = (xn−α)2 whose
roots in C are the nth roots of α (all double roots), i.e., are the real roots

− n
√
α, − n

√
α, n
√
α, n
√
α

and, if m > 1, the roots in C \ R

zk, zk, zk, zk; k = 1, . . . ,m− 1, where zk = n
√
α ζk.

We thus have the following three admissible classes for P :

J− n
√
αK, J n

√
αK,

q
n
√
α jK,

and, if m > 1, also the m− 1 classes

J n
√
α ζk

y
; k = 1, . . . ,m− 1.

Since n is even, ( n
√
αj)n = α, i.e., n

√
αj is a nth root of α. We thus have a non-real zero of the real

polynomial P , the zero n
√
αj, and so we may conclude that all the elements in its quasi-similarity class are

also zeros of P , hence nth roots of α. The same type of reasoning applies to the classes

J n
√
α ζk

y
; k = 1, . . . ,m− 1.

Let us now show that the only roots of P in the two classes of real elements are these real elements. Assume
that x ∈ J n

√
αK (the other case being similarly proved). Then x = x0 + x where x0 = n

√
α and x ∈ TL, i.e.,

x ∈ TL. Then, as already observed (cf. (3.3)), we will have

xn = xn0 + nxn−1
0 x = α+ n( n

√
α)n−1x.

This shows that xn = α if and only if x = 0, i.e., that n
√
α is the only nth root of α in its quasi-similarity

class, which concludes the proof.
The proofs of cases 1. (b) and 2. are totally analogous to the proof of 1. (a). In case 3., naturally, there

is only one admissible class, the class J0K; recalling formula (3.3), we immediately conclude that any element
in LL — i.e., any element in J0K — is a nth root of α = 0, which concludes the proof.

Remark 4.4. It is important to observe that the quasi-similarity classes referred to in the previous theorem
always coincide — with the exception of case 3. — with similarity classes.

In [17, Theorem 6], the author was aware of the possibility of the existence of infinitely many roots of the
equation xn = α, but did not fully discuss this case. The key ingredient to solve this problem was the use of
the recent results obtained in [9, 10].

Example 4.5. We consider now examples illustrating the conclusions of the previous theorems. Table 1
contains several coquaternions with different natures and the corresponding roots.
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Table 1: Number and nature of nth roots of some coquaternions.

q nature n n
√
q

i + 2j S 2
3

—
3

√
1
3
(i + 2j)

3 + 2j TS

2

3

±( 1+
√
5

2
− 1−

√
5

2
j); ±( 1−

√
5

2
− 1+

√
5

2
j)

1+ 3√5
2
− 1− 3√5

2
j

−3 + 2j TS
2

3

—

− 1+ 3√5
2
− 1− 3√5

2
j

1 + i TT

2

3

± 1√
2
(
√

1 +
√

2 +
√
−1 +

√
2i)

1
3√2

(−1 + i); 1

2 3√2
(1±

√
3 + (−1±

√
3)i);

1 + i + j TL\R
2

3

±(1 + 1
2
i + 1

2
j)

1 + 1
3
i + 1

3
j

−1 + i + j TL\R
2

3

—

−1 + 1
3
i + 1

3
j

4 + 3i + 5j LS
2

3

±
√

2(1 + 3
4
i + 5

4
j)

1 + 3
4
i + 5

4
j

−4 + 3i + 5j LS

2

3

—
−1 + 3

4
i + 5

4
j

i + j LL
2
3

—
—

1 R

2

3

4

5

±1; [j]

1; [− 1
2

+
√
3

2
i]

±1; [i]; [j]

1;
[−1+

√
5

4
+

√
5
8

+
√
5

8
i
]
;
[−1−

√
5

4
+

√
5
8
−
√
5

8
i
]

−1 R

2

3

4

5

[i]

−1; [ 1
2

+
√
3

2
i][

1+i√
2

]
;
[−1+i√

2

]
−1;

[
1−
√
5

4
+

√
5
8

+
√
5

8
i
]
;
[
1+
√
5

4
+

√
5
8
−
√
5

8
i
]

5 Real roots of 2× 2 matrices

It is well-known that the algebra of coquaternions is isomorphic toM2(R), the algebra of real 2× 2 matrices,
with the map

Φ :M2(R)→ Hcoq (5.1a)

defined by

A =

(
a b
c d

)
7→ a =

1

2

(
(a+ d) + (c− b)i + (b+ c)j + (a− d)k

)
, (5.1b)

establishing the isomorphism. The inverse of Φ is the map

Ψ : Hcoq →M2(R) (5.2a)
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defined by

q = q0 + q1i + q2j + q3k 7→ Q =

(
q0 + q3 q1 + q2

q2 − q1 q0 − q3

)
. (5.2b)

This means that all the results contained in the previous sections can be interpreted in terms of 2 × 2 real
matrices; in particular, this will allow us to fully discuss the problem of the determination of the (real) nth roots
of a given matrix A ∈M2(R), i.e., the determination of all the matrices X ∈M2(R) such that Xn = A, by
making use of the results for coquaternions that we derived in the previous sections.

Note that we have Ψ(1) = I, where I denotes the identity matrix of order 2. Let us now denote by J and
L the images under Ψ of the coquaternions, j and i, respectively, i.e.,

J = Ψ(j) =

(
0 1
1 0

)
and L = Ψ(i) =

(
0 1
−1 0

)
.

In what follows, A will be a given 2 × 2 real matrix of the form considered in (5.1b) and a will denote its
image under the map (5.1), i.e., a = a0 + a1i + a2j + a3k = Φ(A). It is also convenient to introduce the
following notation, associated with the matrix A:

α0 =
trA

2
and A = A− α0I. (5.3)

It is very simple to verify that detA = det a and trA = tr a and therefore α0 = tr a
2 = Re a = a0. Finally,

denoting by ‖A‖ the semi-norm given by
√
|detA|, we observe that ‖A‖ = ‖a‖.

The results contained in the following theorems — Theorem 5.1, Theorem 5.2 and Theorem 5.3 — are
the matrix counterparts of the results on roots of coquaternions given in Theorem 3.1, Theorem 3.2 and
Theorem 4.3, respectively, and are obtained easily having in mind the following observations:

• The nth roots of the matrix A are the images, under the map Ψ, defined by (5.2), of the nth roots of
the coquaternion a;

• The relations in (2.1b) can be written as

sinhφa =
a0

‖a‖
=

α0

‖A‖
, sinhψa =

‖a‖
‖a‖

=
‖A‖
‖A‖

, cos θa =
a0

‖a‖
=

α0

‖A‖
, sin θa =

‖a‖
‖a‖

=
‖A‖
‖A‖

;

• Ψ(ωa) = Ψ( a
‖a‖ ) = 1

‖a‖Ψ(a) = 1
‖A‖A, where ωa is given by (2.1c);

• Ψ(ζk) = cos 2kπ
n I + sin 2kπ

n L, where ζk is given by (4.3a);

• Ψ(ηk) = cos (2k+1)π
n I + sin (2k+1)π

n L, where ηk is given by (4.3b);

• The images under Ψ of coquaternions belonging to the same quasi-similarity class are matrices char-
acterized by having the same trace and determinant, which, in the case of non-scalar matrices, i.e.,
matrices not of the form αI, correspond to similar matrices.2

The following theorem concerns the roots of non-scalar, non-singular matrices A such that A is also
non-singular (cf. Theorem 3.1).

Theorem 5.1. Let A ∈ M2(R) be a non-scalar matrix such that both A and A are non-singular. Also, let
φA, ψA , θA be the values given by

sinhφA =
α0

‖A‖
, sinhψA =

‖A‖
‖A‖

, cos θA =
α0

‖A‖
, sin θA =

‖A‖
‖A‖

, θA ∈ (0, π),

where α0 and A are given by (5.3) and define the matrix

ΩA =
1

‖A‖
A.

For n ≥ 2, the real nth roots of A can be characterized as follows:

2Since we are working in M2(R), when writing that A and B are similar matrices, this must be understood as meaning that
B = S−1AS with S a real invertible matrix.
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1. If detA < 0 and

(a) n is odd, then there is only one root:

n
√
||A||(sinh φA

n I + cosh φA

n ΩA);

(b) n is even, then there are no roots.

2. If detA > 0, detA < 0 and

(a) n is odd, then there is only one root:

n
√
||A||(sgnα0 cosh ψA

n I + sinh ψA

n ΩA);

(b) n is even and

i. α0 > 0, then there are four roots:

± n
√
||A||

(
cosh ψA

n I + sinh ψA

n ΩA
)
, ± n

√
||A||

(
sinh ψA

n I + cosh ψA

n ΩA
)
;

ii. α0 < 0, then there are no roots.

3. If detA > 0, then there are n roots:

n
√
||A||

(
cos θA+2kπ

n I + sin θA+2kπ
n ΩA

)
, k = 0, . . . , n− 1. (5.4)

The next result concerns the roots of a non-scalar matrix A ∈ M2(R), in case A or A are singular (cf.
Theorem 3.2). Note that, since detA = detA−α2

0, the matrix A under consideration is such that detA = 0
or detA = α2

0.

Theorem 5.2. Let A ∈ M2(R) be a non-scalar matrix such that detA = 0 or detA = 0. For n ≥ 2, the
real nth roots of A can be characterized as follows:

1. If detA = α2
0, α0 6= 0 and

(a) n is odd, then there is only one root:

1

n( n
√
α0)n−1

(A+ (n− 1)α0I). (5.5)

(b) n is even and

i. α0 > 0, then there are two roots:

± 1

n( n
√
α0)n−1

(A+ (n− 1)α0I); (5.6)

ii. α0 < 0, then there are no roots.

2. If detA = 0, α0 6= 0 and

(a) n is odd, then there is only one root:

1

( n
√

2α0)n−1
A. (5.7)

(b) n is even and

i. α0 > 0, then there are two roots:

± 1

( n
√

2α0)n−1
A; (5.8)
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ii. α0 < 0, then there are no roots.

3. If detA = α0 = 0, then there are no roots.

Our last theorem concerns the roots of scalar matrices (cf. Theorem 4.3).

Theorem 5.3. Let A = αI ∈M2(R). For n ≥ 2, the real nth roots of A can be characterized as follows.

1. If α > 0 and

(a) n = 2m, then the roots are:

• the two scalar matrices: ± n
√
αI;

• all the matrices similar to the matrix n
√
αJ , i.e., the matrices

n
√
α

(
u v
w −u

)
, (5.9)

with u, v, w ∈ R such that vw = 1− u2;

• if m > 1, all the matrices similar to each of the m − 1 matrices n
√
α
(

cos kπm I + sin kπ
m L

)
;

k = 1, . . . ,m− 1, i.e., the matrices

n
√
α

(
cos kπm + u v

w cos kπm − u

)
,

with u, v, w ∈ R such that vw = −
(
u2 + sin2 kπ

m

)
.

(b) n = 2m+ 1, then the roots are:

• the scalar matrix n
√
αI;

• all the matrices similar to each of the m matrices

n
√
α
(

cos 2kπ
n I + sin 2kπ

n L
)
; k = 1, . . . ,m,

i.e., the matrices

n
√
α

(
cos 2kπ

n + u v
w cos 2kπ

n − u

)
,

with u, v, w ∈ R such that vw = −
(
u2 + sin2 2kπ

n

)
.

2. If α < 0, then the roots are:

• all the matrices similar to each of the m = bn2 c matrices

n
√
|α|
(

cos
(2k + 1)π

n
I + sin (2k+1)π

n L
)
; k = 0, . . . ,m− 1,

i.e., the matrices

n
√
|α|

(
cos (2k+1)π

n + u v

w cos (2k+1)π
n − u

)
,

with u, v, w ∈ R such that vw = −
(
u2 + sin2 (2k+1)π

n

)
;

• if n is odd, the extra root n
√
αI.

3. If α = 0, then the roots are all the matrices with null trace and null determinant, i.e., are the matrices(
u v
w −u

)
, with u, v, w ∈ R such that v w = −u2.

Theorems 5.1–5.3 illustrate clearly the benefits from using the coquaternionic formalism in the derivation
of the real roots of a 2×2 real matrix. This leads, in particular, to a systematic procedure for determining the
roots, which is not present in the literature that we came across. However, some of the results here derived
can be found in the work of other authors using a direct matrix approach, as we now emphasize:
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• Formula (5.4) for the n roots of a non-scalar, non-singular matrix A such that A is also non-singular
already appears in the paper by Cayley [4, Sec.49, p.34] (with a slight different expression). Although
not explicitly stated, when determining the roots of a non-scalar matrix A, it is assumed by Cayley
that detA > 0 and detA > 0, i.e., the other two cases in Theorem 5.1 and the cases contained in
Theorem 5.2 are not discussed in [4].

• The paper by Damphousse [7] contains results from which one can derive some of the results presented
in Theorem 5.3. However, the roots given by formula (5.9) corresponding to case 1. and n even are
left out of the study.3 Expressions (5.5) and (5.6) are also given in [7]; this same paper also contains
a general formula for the roots of a non-scalar matrix in SL2(C) for which detA 6= 0, explaining later
how to deal with the more general case of A ∈ GL2(C). The referred formula allows complex matrices
and involves the use of transcendental functions of complex variables, making it difficult to identify the
number and expressions of the real solutions.

• Expressions (5.5) and (5.6) can be seen as a particular case of a more general formula (involving complex
solutions) given in the paper by Choudhry [5]. In the same reference, formulae containing (5.7) and
(5.8) for the case of a singular matrix such that detA < 0, and formulae for the complex roots of a
scalar matrix are also given; in this last case, the real solutions written in the forms given in Theorem 5.3
are, however, not easily identifiable.

Example 5.4. To illustrate the results obtained in this section, we reconsider here two examples studied in
[5]. The first one consists on the determination of the 5th roots of the matrix

A =

(
25 7
−7 39

)
.

Note that for this matrix, we have α0 = 32 , detA = 1024 = α2
0. Hence, we are in case 1. (a) of Theorem 5.2,

with α0 = 32. We thus conclude that there exists only one real 5th root of A, given by formula (5.5):

1

5( 5
√

32)4

(
A+ 4× 32I

)
=

1

80

(
153 7
−7 167

)
,

which, as expected, is exactly the matrix found in [5].
The other example is concerned with finding the 4th roots of the matrix

A =

(
−179 390
−130 276

)
.

In this case, α0 = 97
2 , A =

(
−455/2 390
−130 455/2

)
, detA = 1296 > 0, detA = − 4255

4 < 0. Hence, we are in

case 2. (b) i. of Theorem 5.1 and have ‖A‖ = 36, ‖A‖ = 65
2 and ψA = sinh−1 65

72 = log 9
4 . By using the

results of Theorem 5.1, we find that there are four different 4th roots of A, given by

±
√

6
(

cosh(log 9
4
)I + sinh(log 9

4
)ΩA

)
= ±

(
5

2
I +

1

2

(
−7 12
−4 7

))
= ±

(
−1 6
−2 6

)
and

±
√

6
(

sinh(log 9
4
)I + cosh(log 9

4
)ΩA

)
= ±

(
1

2
I +

5

2

(
−7 12
−4 7

))
= ±

(
−17 30
−10 18

)
.

These coincide with the four roots belonging to M2(R) given in [5].4

It should be remarked that the computation of the nth roots of this last matrix, for values of n > 4, using
the technique proposed in [5], would be rather involved and none of the previous work to obtain the fourth
roots would be useful. However, the results of Theorem 5.1 would give us explicit expressions for any of these

3In particular, this leads the author of [7] to conclude that the identity matrix has only two square roots, which is clearly not
true.

4We should observe that in [5], other 12 roots of A are found; these roots, however, have complex entries.
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roots, using the already computed values of ψA, ‖A‖ and ΩA. For example, we would obtain the following
four real 6th roots of this matrix:

±
(

4× 22/3 − 3× 32/3 −6(22/3 − 32/3)
2(22/3 − 32/3) −3× 22/3 + 4× 32/3

)
and

±
(
−4× 22/3 − 3× 32/3 6

(
22/3 + 32/3

)
−2
(
22/3 + 32/3

)
3× 22/3 + 4× 32/3

)
,

as can be easily verified.

6 Conclusion

In this paper we derive and present in a systematic form, the nth roots of a coquaternion and consider, as an
application, the determination of the real roots of a real 2 × 2 matrix, illustrating in this way the power and
simplicity of the coquaternion language.

Mathematica codes to classify and determine the roots of any coquaternion are available at the webpage:
http://w3.math.uminho.pt/CoquaternionsRoots.
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