Acknowledgements

To my supervisors, all my colleagues, all my friends, the technicians at the university, the technicians from CMG, all my students, to my dear wife, my father, mother and brother, all of my family and also to Gaspar (my cat), I wish to express my deepest gratitude for having helped me - in one way or the other - to complete this work and take the next important step in my life.

Helder Carvalho
Chapter I Introduction and Objectives

1. TRENDS IN THE SEWING INDUSTRIES RELEVANT TO THE DEVELOPMENT OF HIGH-TECH SEWING MACHINES AND SYSTEMS ... 2
2. STATE-OF-THE-ART ... 4
 2.1. PRESENTATION OF THE OVERALL RESEARCH PROJECT .. 4
 2.2. BRIEF REVIEW OF OTHER RESEARCHER’S WORK .. 5
 2.3. COMMERCIAL APPLICATIONS AVAILABLE ... 8
 2.4. THE SEWING TEST RIG .. 9
 2.4.1. Sensors ... 9
 2.4.2. Conditioning hardware .. 11
 2.4.3. Software – General description .. 11
3. OBJECTIVES OF THE PRESENT WORK .. 13
 3.1. STUDY OF NEEDLE-BAR FORCE .. 14
 3.2. DEVELOPMENT OF THE SEWING TEST RIG ... 14
4. STRUCTURE OF THE THESIS ... 16
5. REFERENCES ... 17
 5.1. PUBLICATIONS WITHIN THE RESEARCH GROUP AT THE UNIVERSITY OF MINHO 17
 5.2. OTHER PUBLICATIONS .. 20

Chapter II Overview of sewing process related topics

1. SEWING MACHINES ... 2
 1.1. PRINCIPLES OF OPERATION ... 2
 1.1.1. Stitch and seam type classification .. 2
 1.1.2. Stitch Formation .. 3
 1.2. MACHINE SUBSYSTEMS ... 7
 1.2.1. Stitch formation .. 7
 1.2.2. Material feeding .. 9
 1.2.3. Needle penetration .. 13
 2. REFERENCES .. 16
Chapter III

Improvements in the sewing test rig

1. CHRONOLOGICAL SUMMARY .. 2
2. PRESSER-FOOT DISPLACEMENT MEASUREMENT ... 4
3. THREAD CONSUMPTION MEASUREMENT ... 5
 3.1. GENERAL SET-UP .. 5
 3.2. CALIBRATION ... 5
 3.3. USER INTERFACE ... 6
4. SET-UP OF A SECOND SEWING TEST RIG ... 7
 4.1. HARDWARE DRIVERS FOR THE NEW SIGNAL CONDITIONING BOARD 7
 4.2. SERVICE TO THE NEW PCI-6025E ACQUISITION BOARD 7
5. GENERAL IMPROVEMENT OF FUNCTIONALITY .. 8
 5.1. ACQUISITION FUNCTIONS .. 8
 5.1.1. Panel for multiple acquisitions ... 8
 5.1.2. New continuous acquisition mode ... 8
 5.1.3. Quasi-static thread tension measurement ... 10
 5.1.4. Presser-foot displacement reference cycle acquisition 10
 5.1.5. Sample label generation and printing ... 11
 5.1.6. Restructuring of the acquisition subroutines 12
 5.2. CALIBRATION FUNCTIONS .. 12
 5.3. TIME AND ANGLE SCALE CALCULATION AND CONVERSION 13
 5.4. TIME-DOMAIN MEASUREMENTS: PHASE PROCESSING 13
 5.4.1. Signal subsets based on stitch cycle phases ... 13
 5.5. FREQUENCY-DOMAIN MEASUREMENTS AND PROCESSING 15
 5.5.1. Extraction of frequency components ... 15
 5.5.2. Spectral filtering and reconstruction ... 17
 5.6. DESCRIPTIVE STATISTIC TOOLS ... 18
 5.6.1. Mean with confidence interval ... 19
 5.6.2. Standard deviation with confidence interval .. 20
 5.6.3. Coefficient of variation .. 21
 5.7. DISPLAY FUNCTIONS .. 21
 5.8. FILE I/O .. 23
 5.9. USER INTERFACE .. 24
 5.9.1. Improvements of general nature ... 24
 5.9.2. Data manipulation and analysis: An approach to exploratory data analysis 26
6. WORK UNDER DEVELOPMENT ... 29
7. REFERENCES .. 30

Chapter IV

Preliminary experiments and analysis

1. INTRODUCTION .. 2
2. NEEDLE PENETRATION VARIABLES ... 3
 2.1. ANALYSIS OF NEEDLE PENETRATION EFFICIENCY 3
 2.2. PHYSICAL SET-UP OF THE SENSING DEVICE, CONSEQUENCES 10
 2.2.1. Forces related to needle-bar motion ... 10
 2.2.2. Needle penetration and withdrawal forces ... 12
Chapter V
Automatic processing tools for sewing parameter analysis

1. INTRODUCTION ... 2
 1.1. DEFINITIONS .. 2
 1.2. SUMMARY OF PARAMETERS, PROCESSING TECHNIQUES AND COMPUTATIONS FOR SEWING EFFICIENCY ASSESSMENT ... 2
 1.2.1. Needle penetration .. 3
 1.2.2. Stitch Formation .. 6
 1.2.3. Feeding system .. 8
 1.3. LIMIT TESTING ... 9

2. IMPLEMENTATION ... 11
 2.1. DATA STRUCTURES – THE SEWING EFFICIENCY TEST ... 11
 2.1.1. Machine setup and material characterization .. 11
 2.1.2. Stitch formation subtest configuration .. 12
 2.1.3. Feeding efficiency subtest configuration ... 13
 2.1.4. Needle penetration subtest configuration ... 13
 2.2. DATA STRUCTURES – MODIFICATIONS TO THE EXISTING AST DATA STRUCTURES .. 14
 2.3. USER-INTERFACE STRUCTURE ... 15
 2.4. PRODUCING TESTS ... 17
 2.4.1. Sewing efficiency test main panel .. 17
 2.4.2. Sewing efficiency Test Configuration .. 19
 2.4.3. Machine setup and material properties ... 20
 2.4.4. Stitch formation subtest configuration .. 21
 2.4.5. Feeding efficiency subtest configuration ... 22
 2.4.6. Needle penetration subtest configuration ... 22
 2.5. DISPLAY OF TEST RESULTS ... 23

2.6. OPTIMISATION OF SPECTRAL FILTERING AND RECONSTRUCTION USING THE FOURIER TRANSFORM 36
 2.6.1. Introduction .. 36
 2.6.2. Experiment plan ... 37
 2.6.3. Filtering of void signals ... 39
 2.6.4. Filtering of simulated penetration signals .. 42
 2.6.5. Conclusions and definition of final feature extraction methods 45

2.7. USE OF ARTIFICIAL NEURAL NETWORKS TO CORRECT RESULTS 46

3. STITCH FORMATION VARIABLES ... 48
4. FEEDING SYSTEM VARIABLES .. 54
5. REFERENCES ... 58
Chapter VI
Experimental analysis of sewing efficiency using the developed tools

1. EXPERIMENT PLANNING ... 3
 1.1. KEY ISSUES IN THE EXPERIMENT PLAN 3
 1.2. ANALYSIS OF RESULTS .. 4
 1.3. INITIAL EXPERIMENT PLAN .. 4
 1.3.1. General set-up and test conditions .. 4
 1.3.2. Part 1: Influence of needle size ... 6
 1.3.3. Part 2: Influence of fabric finishing 7
 1.3.4. Part 3: Defective needles ... 8

2. RESULTS - PART 1 ... 9
 2.1. EXPERIMENT PREPARATION .. 9
 2.2. RESULTS - FEEDING SYSTEM EFFICIENCY 13
 2.2.1. Preliminary analysis ... 13
 2.2.2. Presser-foot displacement .. 15
 2.2.3. Force on presser-foot .. 20
 2.2.4. Defect Detection ... 25
 2.2.5. Conclusions ... 27
 2.3. RESULTS - STITCH FORMATION .. 28
 2.3.1. Preliminary analysis ... 28
 2.3.2. Thread consumption .. 37
 2.3.3. Thread tension peaks .. 39
 2.3.4. Thread tension peak ratios ... 43
 2.3.5. The Stitcheck method ... 45
 2.3.6. Defect Detection ... 48
 2.3.7. Conclusions ... 52
 2.4. RESULTS – NEEDLE PENETRATION ... 53
 2.4.1. Preliminary analysis ... 53
 2.4.2. Needle-bar force signals obtained without thread, processed with spectral filtering ... 61
 2.4.3. Needle-bar force signals obtained with thread, processed with spectral filtering ... 68
 2.4.4. Needle-bar force signals obtained without thread, processed with referenced subtraction .. 74
 2.4.5. Needle-bar force signals obtained without thread, processed with spectral filtering and corrected by the neural network ... 76
 2.4.6. Summary and conclusions ... 78

3. RESULTS - PART 2 ... 80
 3.1. EXPERIMENT PREPARATION .. 80
 3.2. RESULTS - FEEDING SYSTEM EFFICIENCY 81
 3.2.1. Fabric compressibility and its effect on feeding behaviour 81
 3.2.2. Conclusions ... 84
 3.3. RESULTS - STITCH FORMATION .. 85
 3.3.1. Effect of needle size and fabric finishing on stitch formation 85
INDEX OF FIGURES

Chapter I

Figure I-1 Needle penetration force profile predicted by Mallet with its FEM 7
Figure I-2 Structure of the sewing test rig (1998) ... 9
Figure I-3 Sensor set-up for needle and presser foot bar force measurement 10
Figure I-4 Piezoelectric sensors fit to the machine ... 10
Figure I-5 New thread tension sensors ... 11
Figure I-6 Interaction between tasks, with tasks assigned to the present work marked with a grey shade ... 13

Chapter II

Figure II-1 Seam examples, 3D and 2D representation, classified according to [9] 2
Figure II-2 Interlacing of threads (lockstitch) vs interlacing of loops (chainstitch) 3
Figure II-3 The shape of an overlock machine shape compared to a lockstitch with a regular arm .. 4
Figure II-4 Stitch formation cycle for overlock stitch type 504 (Source: [10]) 6
Figure II-5 Schematic representation and final appearance of the 504 stitch (N: Needle - LL: Lower Looper - UL: Upper looper threads) .. 6
Figure II-6 Schematic representation and final appearance of the 505 stitch (N: Needle - LL: Lower Looper - UL: Upper looper threads) .. 7
Figure II-7 Tensioners on an overlock machine ... 8
Figure II-8 Seam Pucker Example .. 8
Figure II-9 Skipped stitch (a) and stitch distortion (b) examples 9
Figure II-10 Basic components and principle of operation of a simple drop feed system ... 10
Figure II-11 Differential bottom feed system ... 11
Figure II-12 Several combinations of feeding elements .. 12
Figure II-13 Typical sewing machine needle ... 13
Figure II-14 Cutting point examples. From left to right: Triangular, diamond, right cut, pearl. Arrow shows threading direction ... 14
Figure II-15 Cloth points. Normal or round point (left) and ball point (right) 14
Figure II-16 Examples of defects produced by wrong needle choice or defective needles ... 15

Chapter III

Figure III-1 Set-up of LVDT for presser-foot displacement measurement 4
Figure III-2 Digital encoders for thread consumption measurement 5
Figure III-3 New scale selector for AST graph ... 6
Figure III-4 Bar graph for thread consumption display ... 6
Figure III- 5: Multiple acquisition panel ... 8
Figure III- 6: Dialog box for continuous acquisition mode .. 9
Figure III- 7: Measurement of static thread tensions ... 10
Figure III- 8: Presser-foot reference cycle acquisition ... 11
Figure III- 9: Zero calibration utility ... 12
Figure III- 10: Phase definition with initial angle and zero correction 14
Figure III- 11: Frequency bands and measurement of component values 17
Figure III- 12: Processing sequence for spectral filtering ... 18
Figure III- 13: Statistical analysis panel ... 19
Figure III- 14: Representation of confidence interval for the mean of a data set 19
Figure III- 15: Presser-foot displacement at 2000 (blue) and 4700 spm (red), two stitch cycles [mm] ... 22
Figure III- 16: Example of X-Y graph - Peak in phase 1 (x-axis) versus peak in phase 2 (y-axis) for two sewing speeds ... 22
Figure III- 17: 3-D Graph Panel showing feature values for needle penetration with 70 (blue) and 90 needle (red) ... 23
Figure III- 18: Standard Windows menubar .. 25
Figure III- 19: Tab control, allowing grouping and simultaneous display of related controls ... 25
Figure III- 20: Oscilloscope panel in version 1.2a .. 25
Figure III- 21: Oscilloscope panel in version 3.2: Besides the new 3-D controls, other features have been added .. 26
Figure III- 22: Signal control registers in the first and later versions of the AST application 27

Chapter IV

Figure IV- 1: Pre-processed needle-bar signal, three penetrations represented. Shaded areas represent the phases in which the needle is inside the fabric .. 3
Figure IV- 2: Typical needle penetration. Penetration phases represented 4
Figure IV- 3: 3-dimensional representation of peaks/valley extracted from needle penetration signal. Needle size 70 (blue) and 90 (red) on a light plain weave (left) and on a denim fabric (right) .. 5
Figure IV- 4: Penetration peak force patterns for 2 plies (blue) and 4 plies (red) obtained with an interlock knitted fabric. Sewing speed 3700 spm, 90 needle size ... 6
Figure IV- 5: Penetration peak force patterns for two different finishing processes (blue and yellow) obtained with an interlock knitted fabric. Sewing speed 3500 spm, 90 needle size, two plies .. 7
Figure IV- 6: Penetration peak force patterns with a damaged (red) a new needle (green) obtained with an interlock knitted fabric. Sewing speed 3500 spm, 90 needle size, two plies .. 8
Figure IV- 7: Ratio of power values between phases 1 and 2, new and damaged needle 9
Figure IV- 8: Ratio of power values between phases 1 and 3, new and damaged needle 9
Figure IV-9: Ratio of power values between phases 1 and 2, new and damaged needle

Figure IV-10: Force on needle-bar, acquired at 649 s.p.m, without fabric and thread ..

Figure IV-11: Force on needle-bar, acquired at 4818 s.p.m., without fabric and thread

Figure IV-12: Normalized spectra of signals acquired at three different speeds. Harmonics 2 to 17 represented, amplitudes normalized relative to the amplitude of the fundamental component

Figure IV-13: Force on needle-bar, acquired at low speed, with one layer of a fine jersey knitted fabric without thread (red), compared to former situation (blue)......

Figure IV-14: Force on needle-bar, acquired at low speed, with same fabric, but with thread (green) compared to former situation (red)

Figure IV-15: Fluctuations of the signal when fabric is present ..

Figure IV-16: Structure of the Anfil program..

Figure IV-17: The Anfil’s user interface ..

Figure IV-18: A typical penetration signal, obtained by the subtraction method

Figure IV-19: SinCons and TriCons signal models, base amplitude 1000 for all three phases, 4 periods represented ...

Figure IV-20: SinVar signal model, base amplitude 1000 for all three phases, 4 periods represented ...

Figure IV-21: SinVar3 signal model, base amplitude 1000 for all three phases, 4 periods represented ...

Figure IV-22: SinVar4 signal model, base amplitude 1000 for all of the phases, 4 periods represented ...

Figure IV-23: SinVar5 model, base amplitude 1000, 23 periods represented

Figure IV-24: Half-cosine pulse as a multiplication of a square pulse with a cosine

Figure IV-25: Spectrum of half-cosine pulse as sum of two sinc functions

Figure IV-26: Spectrum of half-cosine pulse with different pulse widths

Figure IV-27: Periodic signal composed of repeating half-cosine pulses

Figure IV-28: Spectrum of a periodic half-cosine pulse ..

Figure IV-29: Relative error in peak measurement over 30 penetrations, SinCons vs SinVar4 signals ...

Figure IV-30: Relative error in peak measurement over 30 penetrations, SinVar signal. Left graph zoomed in, right graph zoomed out..

Figure IV-31: Relative error in peak measurement over 30 penetrations, SinVar3 signal

Figure IV-32: Spectrum of half-period of a sine wave for a width of w=0.9°, w=9° and w=90°. Normalised energy..

Figure IV-33: Harmonics of SinVar4 vs SinVar7 signal models. Normalised energy........

Figure IV-34: Original (blue) and filtered (red) SinVar4 signal over three periods...........

Figure IV-35: Peak values extracted in phase 2 of a SinVar5 signal. Features extracted from original (black) and filtered (red) signals ...

Figure IV-36: Input/Output gain(%) obtained for a SinVar5 signal (left), compared to a SinVar4 signal (right)..
Figure IV-37: Input/Output gain (%) for peak/valley. SinCons type signals with different amplitude ratios... 33
Figure IV-38: Amplitude correction in the Anfil program... 34
Figure IV-39: Relative error produced on peak measurement of a SinVar4 signal with (right) and without amplitude correction (left).. 35
Figure IV-40: Amplitudes of peak values in SinCons signal with amplitude combinations in 4 levels.. 39
Figure IV-41: Residual peak value detected in phase 1 with different processing methods... 39
Figure IV-42: Residual peak value detected in phase 2 with different processing methods... 40
Figure IV-43: Residual peak value detected in phase 2 with different processing methods... 40
Figure IV-44: Residual power value detected in phase 1 with different processing methods... 41
Figure IV-45: Residual power value detected in phase 2 with different processing methods... 41
Figure IV-46: Residual power value detected in phase 3 with different processing methods... 42
Figure IV-47: Input/Output Correlation of the peak values extracted in the three penetration phases using different processing methods.. 43
Figure IV-48: Mean relative error of the peak values extracted in the three penetration phases using different processing methods.. 43
Figure IV-49: Standard deviation of relative error of the peak values extracted in the three penetration phases using different processing methods... 43
Figure IV-50: Input/Output Correlation of the power values extracted in the three penetration phases using different processing methods... 44
Figure IV-51: Mean relative error of the power values extracted in the three penetration phases using different processing methods... 45
Figure IV-52: Standard deviation of relative error of the power values extracted in the three penetration phases using different processing methods... 45
Figure IV-53: Needle thread tension over two stitch cycles. Two (blue) and four (red) plies of a jersey knitted fabric... 48
Figure IV-54: Waveform of lower looper thread tension in a normal and a slip stitch..... 49
Figure IV-55: Peak tension values in phases 1 to 3 of lower looper thread tension in a seam in which a skip stitch occurred.. 49
Figure IV-56: Peak3/Peak1 ratio of lower looper thread tension for seam containing a skip stitch.. 50
Figure IV-57: Peak3/Peak1 ratio of needle thread tension in seams with different thread tension adjustments.. 51
Figure IV-58: Thread Consumption balance when increasing needle thread tension (left to right).. 51
Figure IV-59: Presser-foot displacement waveforms at a low-speed (200 spm, green) and a high speed-situation (4700 spm, red) ... 54
Chapter V

Figure V- 1: Calculation of average tension waveform .. 6
Figure V- 2: Dimensions of 504 stitch. Needle thre... 7
Figure V- 3: Limits for sewing variables... 10
Figure V- 4: Structure of the sewing efficiency test modules’ user interface 16
Figure V- 5: Sewing efficiency test main panel... 17
Figure V- 6: “Tests” submenu ... 17
Figure V- 7: “Results” submenu ... 18
Figure V- 8: Result copy dialog box ... 18
Figure V- 9: Sewing Efficiency Test Configuration Panel.. 19
Figure V- 10: Status window for test processing .. 20
Figure V- 11: Machine setup and material properties configuration dialog box 20
Figure V- 12: Stitch formation subtest configuration .. 21
Figure V- 13: Feeding efficiency subtest configuration .. 22
Figure V- 14: Needle penetration subtest configuration .. 23
Figure V- 15: Stitch Formation Test, Section 1 - Tension Adjustment (Stitchcheck) 24
Figure V- 16: Stitch Formation Test, Section 2 - Thread Tensions 25
Figure V- 17: Stitch Formation Test, Section 3 – Average tension waveform and static thread tensions ... 26
Figure V- 18: Stitch Formation Test, Section 4 – Multifunction graph 27
Figure V- 19: Stitch Formation Test, Section 4 - Thread consumption 27
Figure V- 20: Feeding Efficiency Test, Section 1 - Force on presser-foot 28
Figure V- 21: Feeding Efficiency Test, Section 2 - Presser-foot displacement 29
Figure V- 22: Feeding Efficiency Test, Section 3 - Presser-foot displacement features using an alternative representation ... 30
Figure V- 23: Feeding Efficiency Test, Section 4 - Presser-foot average trajectories and reference cycles .. 30
Figure V- 24: Needle Penetration Test, Section 1 - 3-D analysis of features 31
Figure V- 25: Needle Penetration Test, Section 2 – Chronological analysis of features... 32
Figure V- 26: Needle Penetration Test, Section 2 – Chronological analysis of features... 32

Chapter VI

Figure VI- 1: Example of fabric samples obtained during this experiment 6
Figure VI- 2: Part 1 of initial experiment plan ... 7
Figure VI- 3: Part 2 of initial experiment plan ... 8
Figure VI- 4: Part 3 of initial experiment plan ... 8
Figure VI- 5: Static thread tensions measured in the 4 adjustments (left to right: needle, lower looper and upper looper tensions) ... 12
Figure VI- 6: Thread consumption of needle, lower and upper looper threads for the 4 adjustments, compared with the theoretical value .. 12
Figure VI- 7: Typical waveform of presser-foot force at 1000 and 3500 spm (one stitch cycle) .. 13
Figure VI- 8: Typical waveform of presser-foot displacement at 1000 and 3500 spm (one stitch cycle) .. 14
Figure VI- 9: Displacement features at 1000 and 3500 spm .. 15
Figure VI- 10: Displacement features at 1000 and 3500 spm, projections of the graph ... 16
Figure VI- 11: Means of displacement peak 1 with confidence intervals represented 16
Figure VI- 12: Displacement features for seams obtained at 1000 spm, stretching and not stretching the material. Chronological sequence (left) and mean values with confidence intervals (right) ... 17
Figure VI- 13: THD of displacement waveforms at 1000 and 3500 spm 18
Figure VI- 14: Typical displacement waveforms obtained with woven fabric at 700 and 2500 spm ... 19
Figure VI- 15: THD of displacement signals obtained at 700 and 2500 spm with a woven fabric ... 19
Figure VI- 16: Presser-foot displacement - Difference to reference cycle at 1000 and 3500 spm ... 20
Figure VI- 17: Harmonic distortion of force signals at 1000 and 3500 spm 21
Figure VI- 18: Typical force waveforms obtained with woven fabric at 700 and 2500 spm22
Figure VI- 19: Harmonic distortion of force signals obtained with woven fabric at 700 and 2500 spm ... 22
Figure VI- 20: Amplitude of force signals obtained in the course of phase 1 23
Figure VI- 21: Force amplitude in seams obtained at 1000 spm, stretching the fabric and trying an even feeding of the material ... 24
Figure VI- 22: Force amplitude chronologically compared with displacement peaks 1 and 2 (Finished fabric, 1000 spm) ... 25
Figure VI- 23: Curled fabric edge due to improper handling .. 26
Figure VI- 24: Displacement peaks in a normal seam and with the fabric edge curled (Finished fabric, 3500 spm) ... 26
Figure VI- 25: Static thread tensions measured for the indicated needle/thread combinations in the course of acquisitions taken at 1000 spm ... 28
Figure VI- 26: Unbalanced seam, obtained at 1000 spm with 120/30 needle/thread combination: Looper thread interlacing points slipped to an incorrect position 29
Figure VI- 27: Static thread tensions at the beginning of acquisitions at 3500 spm, measured with initial setting and two readjustments ... 29
Figure VI- 28: Thread consumptions measured with initial setting and the two readjustments (two seams represented in readjustment 2) ... 30
Figure VI- 29: Static thread tensions measured for the indicated needle/thread combinations in the course of acquisitions taken at 3500 spm.

Figure VI- 30: Seam obtained at 3500 spm with 120/30 needle/thread combination: although the needle thread is quite loose, skipped stitches occur. The remaining seam is reasonably balanced.

Figure VI- 31: Average waveform of needle thread tension for each needle/thread combination, at 1000 spm.

Figure VI- 32: Detail of phases 2, 3 and 4 of needle thread tension for each needle/thread combination, at 1000 spm.

Figure VI- 33 Average waveform of lower looper thread tension for each needle/thread combination, at 1000 spm.

Figure VI- 34: Average waveform of upper looper thread tension for each needle/thread combination, at 1000 spm.

Figure VI- 35: Detail of average waveform of needle thread tension for each needle/thread combination, at 3500 spm.

Figure VI- 36: Thread consumptions [cm/stitch] for the needle/thread combinations used in part 1 of the experiment, at 1000 spm.

Figure VI- 37: Thread consumptions [cm/stitch] for the needle/thread combinations used in part 1 of the experiment, at 3500 spm.

Figure VI- 38: Measured (solid) vs predicted (dashed) thread consumptions [cm/stitch] for the needle/thread combinations used in part 1 of the experiment, at 1000 spm.

Figure VI- 39: Measured (solid) vs predicted (dashed) thread consumptions [cm/stitch] for the needle/thread combinations used in part 1 of the experiment, at 3500 spm.

Figure VI- 40: Average needle thread tension peaks.

Figure VI- 41: Average lower looper thread tension peaks.

Figure VI- 42: Average upper looper thread tension peaks.

Figure VI- 43: CV% of needle thread tension peaks.

Figure VI- 44: CV% of lower looper thread tension peaks.

Figure VI- 45: CV% of upper looper thread tension peaks.

Figure VI- 46: Average needle thread tension peak ratios.

Figure VI- 47: Average lower looper thread tension peak ratios.

Figure VI- 48: Average upper looper thread tension peak ratios.

Figure VI- 49: Stitcheck based on needle thread.

Figure VI- 50: Stitcheck based on lower looper thread.

Figure VI- 51: Stitcheck based on lower looper thread (legend not shown for clearness, please refer to previous figures).

Figure VI- 52: Lower looper thread tension in normal and defective seam.

Figure VI- 53: Upper looper thread tension in normal and defective seam.

Figure VI- 54: Needle thread tension in normal and defective seam.

Figure VI- 55: Lower looper thread tension peak ratios in normal and defective seam.

Figure VI- 56: Average waveform of needle-bar force signals at 1000 spm, signals acquired without thread. X-scale adjusted to phases in which needle is inside the fabric.
Figure VI- 57: Average waveform of filtered needle-bar force signals at 1000 spm, signals acquired without thread. X-scale adjusted to phases in which needle is inside the fabric ... 55

Figure VI- 58: Average waveform of filtered and offset-corrected needle-bar force signals at 1000 spm, signals acquired without thread. X-scale adjusted to phases in which needle is inside the fabric .. 56

Figure VI- 59: Average waveform of penetration signal, at 1000 spm, obtained with the referenced subtraction method, signals acquired without thread. X-scale adjusted to phases in which needle is inside the fabric.. 57

Figure VI- 60: Average waveform of filtered and offset-corrected needle-bar force signals, at 1000 spm with a 120-needle, obtained with and without thread, compared to needle thread tension signal. X-scale adjusted to show the whole stitch cycle. .. 57

Figure VI- 61: Closest match of the shape of the needle-bar force signal with thread, by adding the correspondent scaled thread tension signal to the needle-bar force signal without thread (120 needle, 1000 spm).. 58

Figure VI- 62: Typical samples produced in part1 of the experiment, stitching the finished fabric without thread at 3500 spm ... 59

Figure VI- 63: Detail of typical sample produced with the 120 needle, stitching the finished fabric without thread at 3500 spm.. 59

Figure VI- 64: Detail of typical sample produced with the 60 needle, sewing the finished fabric with a 150 thread at 3500 spm .. 60

Figure VI- 65: Detail of typical sample produced with the 120 needle, sewing the finished fabric with a 30 thread at 3500 spm .. 61

Figure VI- 66: Needle penetration force peaks obtained without thread, spectral filtering, 3-D representation ... 62

Figure VI- 67: Average values of peak penetration forces (no thread - spectral filtering with zero correction).. 62

Figure VI- 68: Comparison of measured penetration peaks and valleys with previously obtained residual error values on void signals... 63

Figure VI- 69: Sequence of values of peak 2 obtained in series of 6 to 7 seams performed with different needles... 64

Figure VI- 70: Coefficient of variation of values of peak penetration forces (no thread - spectral filtering with zero correction) .. 65

Figure VI- 71: Average of peak ratios (no thread - spectral filtering with zero correction)66

Figure VI- 72: Sequence of peak ratios at 1000 spm (no thread - spectral filtering with zero correction) .. 67

Figure VI- 73: Correlation between peaks and valleys (no thread - spectral filtering with zero correction) .. 68

Figure VI- 74: Needle penetration force peaks obtained with thread, spectral filtering, 3-D representation ... 69

Figure VI- 75: Detail of needle penetration force peaks obtained with thread at 1000 spm, spectral filtering, 3-D representation... 69

Figure VI- 76: Comparison of peaks and valleys produced with and without thread 70

Figure VI- 77: Percentage increase of peak1, unthreaded vs threaded needle, 1000 and 3500 spm.. 71
| Figure VI- 78: Percentage increase of peak1, unthreaded vs threaded needle, 1000 and 3500 spm ... 71 |
| Figure VI- 79: Average with confidence intervals for 120/3500 seam before (I) and after (II) thread tension reduction .. 72 |
| Figure VI- 80: Coefficient of variation of peaks and valleys in signals acquired with thread. CV% of the case 100/1000 is very high (1618%), the scale has been reduced to highlight the remaining values .. 73 |
| Figure VI- 81: Comparison of peak ratios produced with and without thread 74 |
| Figure VI- 82: Needle penetration force peaks obtained without thread, referenced subtraction, 3-D representation .. 75 |
| Figure VI- 83: Average values of peak penetration forces (no thread – referenced subtraction with zero correction) .. 75 |
| Figure VI- 84: Average of peak ratios (no thread – referenced subtraction with zero correction) .. 75 |
| Figure VI- 85: Peaks and valleys of penetration force (no thread – values corrected by neural network) .. 76 |
| Figure VI- 86: Average of peaks and valleys of penetration force, original values obtained by spectral filtering versus values with neural correction (NC) .. 77 |
| Figure VI- 87: Average of peak ratios, original values obtained by spectral filtering versus values with neural correction (NC) .. 77 |
| Figure VI- 88: Presser-foot reference cycle for finished, dyed, and raw fabric, 2 plies...... 82 |
| Figure VI- 89: Thickness measured at different pressures... 83 |
| Figure VI- 90: Difference between reference cycle and average presser-foot trajectory for raw, dyed, and finished fabric, at 3500 spm ... 84 |
| Figure VI- 91: Distortion of presser-foot force (left) and displacement (right) signals at 3500 spm, obtained with fabric in three different finishing states.............................. 84 |
| Figure VI- 92: Average peak ratios measured with 70 and 120 needle at 1000 spm 86 |
| Figure VI- 93: Thread consumptions measured with 70 and 120 needle at 1000 spm........... 86 |
| Figure VI- 94: Raw fabric, stitched with a 120 needle at 1000 and 3500 spm...................... 87 |
| Figure VI- 95: Dyed fabric, stitched with a 120 needle at 1000 and 3500 spm..................... 88 |
| Figure VI- 96: Comparison of average peaks and valleys in part 2 of the experiment (no thread - spectral filtering with zero correction) ... 89 |
| Figure VI- 97: Comparison of peak 1 of penetration force from raw to finished/dyed fabric .. 90 |
| Figure VI- 98: Comparison of peak 2 of penetration force from raw to finished/dyed fabric .. 90 |
| Figure VI- 99: Comparison of average peak ratios in part 2 of the experiment (no thread-spectral filtering with zero correction) ... 91 |
| Figure VI- 100: Sequence of peaks and valleys in acquisition obtained with dyed fabric, 120 needle, at 3500 spm .. 92 |
| Figure VI- 101: Photograph of the new (left) vs damaged (right) needle tips 94 |
| Figure VI- 102: Samples of dyed fabric stitched with unthreaded damaged 80 needle 96 |
| Figure VI- 103: Samples of dyed fabric stitched with unthreaded damaged 80 needle 96 |
Figure VI-104: Needle penetration force peaks obtained without thread, spectral filtering, 3-D representation

Figure VI-105: Comparison of average peaks and valleys in part 3 of the experiment

Figure VI-106: Comparison of average peak ratios in part 3 of the experiment

Figure VI-107: Comparison of dyed and finished fabric when increasing needle size from 70 to 80
INDEX OF TABLES

Chapter III
Table III-1: Chronological outline of the AST software evolution up to version 3.2............. 2

Chapter IV
Table IV-1: Phase intervals used for the simulated penetration signals.........................23
Table IV-2: Conditions for study of void signal filtering ..38
Table IV-3: Conditions for study of SInVar4 penetration signal filtering........................38

Chapter V
Table V-1: Example of limit table for one sewing variable ..9
Table V-2: Data structure for sewing efficiency test ..11
Table V-3: Data structure for machine setup and material characterization11
Table V-4: Data structure for stitch formation subtest configuration12
Table V-5: Data structure for feeding system subtest configuration13
Table V-6: Data structure for needle penetration subtest configuration13
Table V-7: Modification to the analogue channel configuration structure14

Chapter VI
Table VI-1: Pre-experiment checklist for part 1 ...9
Table VI-2: Needle-thread combinations ..10
Table VI-3: Experimental Procedure ..10
Table VI-4: Angular resolutions in the conditions of the experiment34
Table VI-5: Phase limits used in part 1 of the experiment for thread tension signals.......36
Table VI-6: Stitch length data obtained in part 1 of the experiment38
Table VI-7: Phase limits used in part 1 of the experiment, for thread tension signals......55
Table VI-8: Pre-experiment checklist for part 2 ...80
Table VI-9: Experimental Procedure ..81
Table VI-10: Pre-experiment checklist for part 3 ..94
Table VI-11: Procedure for execution of acquisitions ..95
Abstract

The industrial production of garments and similar textile end products is an activity that has roots back to the 19th century, and that has profited immensely from continuous technological developments since its first emergence. However, several characteristics of the materials that are processed give rise to technical issues that are difficult to objectively manage and control.

The limpness and elasticity of textiles make automated material handling and transportation within the shopfloor, and at the individual assembly operations, very difficult to automate. Another important aspect is the unpredictable behaviour of the materials when they undergo the manufacturing operations. Particularly in sewing operations, most of the process design is still based on subjective and empirical judgement. The machines, although often equipped with complex devices to aid in material handling, are blind regarding the process itself; they run with an initial set-up and are neither capable of adapting to varying sewing conditions nor can they detect anomalous operation.

The current market trends, with an increasing variety of materials and styles, combined with small production runs, stress the significance of machine and production system set-up times. The importance of better control over quality at both the design and manufacturing stages is also much greater now than in the past. Another motivation for objective process control is the growing need to quantitatively monitor and even document sewing conditions concerning high-tech seams (air bags, safety belts, technical textiles), in the framework of quality certification.

This work is integrated in a project that intends to measure and analyse several sewing variables in-process, in order to develop objective tools to plan, monitor and control the process. A sewing test rig has been set up in previous work, based on an industrial overlock machine. Several variables related to stitch formation, material feeding and needle penetration, are being measured dynamically.

This thesis has been developed according to two fundamental objectives, namely:
> Development of specific tools for sewing parameter measurement and analysis;
> Study the effect of needle penetration and the possibility of its automatic monitoring.

To accomplish these two objectives, it was necessary to fulfil a series of tasks of different nature.

The development of the sewing test rig involved in the first place the cooperation with the other researchers in the project. Support to the design of new measurement devices was provided, and these devices were added to the sewing test rig and integrated into its software. Processing tools were developed.

In the course of this work, the sewing test rig was extensively enhanced with new functions related to acquisition, analysis, graphical display, sensor calibration, file I/O and data management. The ease of use was greatly increased by these functionalities and by redesigns of the user interface. In the background, a constant evaluation and revision of the software code’s structure allowed an ordered expansion of the system.

Ultimately, all the relevant processing tools were gathered and integrated into a set of test modules, allowing an automatic computation and quick display of a collection of parameters describing sewing efficiency in all aspects. During this development process, new functions beyond those already existing in the initial software versions were conceived.
The study of needle penetration, by its turn, involved in first place the study of the measurement set-up, with all effects involved. A careful examination of needle-bar force signals led to a new software application with which the measurement process could be simulated. This application would serve to study the accuracy of the processing methods and to optimise them. Other approaches to signal processing were evaluated, but it was not possible to find any advantage over the adopted spectral filtering method. A trial to increase measurement accuracy was made training a neural network to correct the results provided by the existing processing methods. The network was trained and tested with data generated by the simulation program.

Finally, an experimental plan was designed to study needle penetration forces related to various factors, and to evaluate the effectiveness of the measurement method. Although this experiment was specifically designed to analyse needle penetration variables, the feeding system and stitch formation performance were also evaluated. The results found point to the possibility of designing monitoring and control algorithms for several sewing parameters, concurrently with process planning and material testing tools. A brief insight into possible industrial applications and suggested future work is also presented.
Resumo

A produção industrial de vestuário e outros produtos têxteis confeccionados tem raízes no século 19, tendo desde então beneficiado extraordinariamente de um constante desenvolvimento tecnológico nos sistemas e equipamentos de produção. No entanto, as características dos materiais processados nesta indústria originam diversas questões técnicas cuja resolução objectiva é difícil.

Devido à flexibilidade e elasticidade dos materiais têxteis, a sua manipulação nas operações de montagem, bem como o seu transporte na linha de produção, são extremamente difíceis de automatizar. Outro aspecto a realçar é a imprevisibilidade dos materiais quando sujeitos às operações de fabrico. O planeamento do processo e a configuração e ajuste dos equipamentos baseiam-se sobretudo em processos empíricos e de avaliação subjectiva, especialmente nas operações de costura. As máquinas de costura, embora em alguns casos equipadas com complexos dispositivos de manipulação, não têm qualquer controlo sobre o processo de fabrico em si. São utilizadas com um ajuste e configuração definidas antes do início de produção, não tendo a capacidade de se adaptarem a condições de costura变áveis ou de detectarem anomalias de funcionamento.

No contexto actual do mercado, em que se assiste a uma crescente variedade de materiais e modelos, combinada com séries pequenas, o significado dos tempos de reconfiguração e ajuste dos sistemas e equipamentos de produção torna-se cada vez mais relevante. Assiste-se assim a um crescimento da importância do controlo sobre a qualidade, tanto nas fases de desenvolvimento como nas do fabrico do produto. Outro factor de relevância é a crescente necessidade de monitorizar quantitativamente e documentar as condições de costura em aplicações técnicas (airbags, cintos de segurança, outros têxteis técnicos), no contexto da certificação de qualidade.

Este trabalho insere-se num projecto em que se pretende medir e analisar diversas variáveis do processo de costura em tempo real, de modo a desenvolverem-se ferramentas para planeamento objectivo do processo, bem como métodos para monitorização e controlo do mesmo. Em trabalho anterior, foi criado um banco de ensaios baseado numa máquina industrial tipo corta-e-cose. Este banco de ensaios efectua a medida dinâmica de variáveis relacionadas com a formação de ponto, alimentação de tecido e penetração da agulha.

O trabalho de investigação documentado nesta tese foi desenvolvido tendo em conta dois objectivos principais:

> O desenvolvimento de ferramentas específicas para a medição e análise de parâmetros de costura;
> O estudo do efeito da penetração da agulha e da possibilidade de implementar a sua monitorização automática.

Para cumprir estes objectivos, foram realizadas tarefas de âmbitos diversos.

O desenvolvimento do banco de ensaios envolveu em primeiro lugar uma cooperação estreita com os restantes investigadores no projecto. Foi desse modo possível desenhar novos dispositivos de medida e ferramentas de análise, que foram integrados no sistema existente.

No decurso dessa tarefa, o banco de ensaios foi extensivamente complementado com funções relacionadas com aquisição, análise, visualização gráfica, calibração de sensores, e armazenamento e gestão de dados. A facilidade de utilização do sistema
foi significativamente melhorada com estas funções, como também com constantes revisões da interface com o utilizador. Em paralelo, uma avaliação e reformulação constante da estrutura do código-fonte do software permitiu uma expansão ordenada do sistema.

As funções de processamento relevantes foram finalmente integradas num conjunto de módulos de cálculo específicos. Estes possibilitam um rápido cálculo e visualização de parâmetros que descrevem a eficiência do processo em diversos aspectos.

Por sua vez, o estudo da força de penetração da agulha visou em primeiro lugar a implementação física da medição, com todos os efeitos envolvidos. O estudo detalhado dos sinais de força sobre a barra de agulha permitiu o desenvolvimento de uma aplicação para simular todo o processo de medição, que viria a ser utilizada para a avaliação e optimação do mesmo. Foram analisados vários processos de filtragem alternativos ao da filtragem espectral, criado no início deste trabalho, mas não se conseguiram demonstrar vantagens evidentes sobre este. Uma tentativa final para melhorar a exactidão da medida foi empreendida utilizando redes neuronais. Para o efeito, foram criadas redes com o propósito de corrigir os resultados fornecidos pelos métodos de processamento existentes. O seu treino foi efectuado com dados gerados pelo programa de simulação.

Finalmente, foi feito o planeamento de uma experiência para avaliar a relação da força de penetração da agulha com diversos factores, bem como a eficiência do processo de medição. Apesar de esta experiência ter sido projectada com o intuito de analisar a força da penetração da agulha, foi também possível estudar o comportamento dos parâmetros relacionados com a alimentação dos tecidos e com a formação de ponto. Os resultados encontrados indicam que é possível o projecto de dispositivos de monitorização e controlo automático, concorrentemente com ferramentas de teste de materiais e planeamento do processo. O trabalho apresenta por fim uma breve resenha de aplicações futuras que poderão daí resultar.