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NIR spectroscopy applied to the determination
of 2-phenylethanol and L-phenylalanine
concentrations in culture medium of Yarrowia
lipolytica
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Abstract

BACKGROUND: This work aims at developing a method, based on near-infrared (NIR) spectroscopy, to quantify 2-phenylethanol
(2-PE) and L-phenylalanine (L-Phe) concentrations during its microbial production by Yarrowia lipolytica. For this purpose, 197
samples obtained from different batch cultures were analyzed using Fourier transform (FT)-NIR transmission spectroscopy in
the range of 200–14 000 cm−1.

RESULTS: A principal components analysis was performed for cluster identification and outlier removal. A partial least squares
regression was next applied to develop the calibration models, by an iterative method. The predictive ability of the models
was confirmed by an external validation procedure with an independent sample set. The obtained results could be considered
promising, with coefficients of determination (R2) of 0.92 for L-Phe and 0.95 for 2-PE, and residual prediction deviation above 3,
for the ensemble data.

CONCLUSION: The described methodology, using NIR spectroscopy and chemometrics, can be seen as a promising fast tool
to determine both studied flavor compounds during biotechnological processes as an alternative to chromatographic methods.
© 2018 Society of Chemical Industry

Supporting information may be found in the online version of this article.
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INTRODUCTION
Monitoring a bioprocess for the production of flavors and fra-
grances may be imperative and will permit enhancing
the production of these compounds. Typical methods to ana-
lyze flavor and fragrances are gas chromatography (GC)
and high-performance liquid chromatography (HPLC),1 presenting
obvious constraints for real-time monitoring of biotransforma-
tion processes. GC techniques have been applied to amino acid
analysis for a long time.2 Nevertheless, this approach always
requires one or several derivatization steps to make the analytes
sufficiently volatile.3 HPLC-based methods often do not need
any derivatization;4 however, no complete chromatographic
separation can be achieved in many cases, making it impossible
to quantify the compounds. Furthermore, these techniques are
often tedious and invasive, requiring sample handling and being
difficult to perform in real time. A rapid and more direct method
of analysis would yield more timely process information and
improved bioprocess control.

In recent years, developments in both chemometrics and instru-
mentation have resulted in rapid methods relating multivariate
spectroscopic and chemical data for predicting the concentra-
tion of specific chemical constituents, thus helping to reduce the

demand for traditional analysis using chemical reagents. In fact,
spectrometry-based analytical methods can be used nowadays
to monitor biotransformation processes.5 The main advantages
of near-infrared (NIR) spectroscopy over reference methods are
its speed, both non-destructive and non-contaminant nature, and
great accuracy.6 Bioprocesses are usually complex, both from the
chemical (ill-defined medium composition) and physical (multi-
phase matrix) aspects, which poses an additional challenge to
the development of robust calibrations.7 As a result, different
studies have been conducted to apply NIR to the monitoring
of bioprocesses in general.8,9 Furthermore, NIR has also been
applied to monitoring of: (i) biomass, glucose, lactic and acetic acid
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content during aerobic fermentations;10 (ii) amino acid concentra-
tion profile during hydrolysis processes;11 and (iii) phenylethanol
in grapes,12 red wine13 and apple wine.14

2-Phenylethanol (2-PE) is an aromatic alcohol with a delicate
fragrance of rose petals,15 widely applied in diverse types of
products, such as perfumes, cosmetics, pharmaceuticals, foods
and beverages.16 The economic importance of 2-PE is quite
significant.17 With the current available information, the global
production of 2-PE is estimated at 10 000 tons per year, being
dominated by chemical synthesis.17,18 Several microorganisms
naturally produce 2-PE as part of their amino acid catabolism.
In yeasts, the 2-PE biosynthesis is connected to the phenylethy-
lamine (de novo synthesis) and Ehrlich pathways (L-phenylalanine
(L-Phe) biotransformation).16,19,20 Among several microorganisms
able to produce 2-PE, the yeast Yarrowia lipolytica appears to be
promising because of its interesting characteristics, such as the
Crabtree-negative trait and absence of ethanol production. Taking
these properties into consideration, the present work addresses
its use for the production of this compound.

In the present work we explored the potential of NIR spec-
troscopy to determine 2-PE and L-Phe concentrations during
biotechnological processes. A chemometric approach was essen-
tial in that regard, consisting of a boxplot analysis, employed to
identify possible outliers regarding the concentrations of L-Phe
and 2-PE, and a principal component analysis (PCA) establish-
ing the interrelationships, regarding the obtained wavelength
spectra, among the different culture conditions and Y. lipolytica
employed strains, as well as possible sample outliers. Finally,
a partial least square analysis (PLS) was performed in order to
obtain a prediction model suitable for L-Phe and 2-PE monitoring
purposes.

EXPERIMENTAL
Microorganism, media and culture conditions
The strains used in this work were Y. lipolytica W29 (ATCC 20460),
Y. lipolytica CBS 2075 and Y. lipolytica NCYC 1026. These strains
were stored at −80 ∘C and routinely cultivated on YPDA medium
(agar 30 g L−1, glucose 20 g L−1, peptone 20 g L−1, yeast extract
10 g L−1) at 27 ∘C. Cells were cultivated for 16–17 h in a 500 mL
baffled Erlenmeyer flask containing 200 mL YPD medium (glu-
cose 20 g L−1, peptone 20 g L−1, yeast extract 10 g L−1) on a
rotary shaker at 200 rpm and 27 ∘C and further used to inocu-
late shake flasks for 2-PE production experiments for an initial
OD600 of 0.5.

The 2-PE production by de novo synthesis was carried out
in 500 mL shake flasks with 200 mL of the medium containing
10 g L−1 yeast extract and 40 g L−1 glucose, at 27 ∘C and 200 rpm,21

incubated at 200 rpm and 27 ∘C. Bioconversion of L-Phe to 2-PE was
carried out in 500 mL shake flasks with 200 mL modified cultiva-
tion medium (based on Cui et al.22) containing, per liter of deion-
ized water: glucose 60 g, KH2PO4 15 g, MgSO4.7H2O 0.5 g, yeast
nitrogen base without amino acids 0.2 g, thiamine 3 mg, pH 6.5,
supplemented with L-Phe 5 g (biotransformation) incubated at 27
∘C and 200 rpm. Another strategy was also tested with an initial
growth period, without L-Phe supplementation, for 48 h, followed
by the addition of 5 g L-Phe to the culture medium at that time (bio-
transformation + L-Phe). Samples of 2 mL were taken over time,
centrifuged (10 000 rpm for 10 min at 4 ∘C), filtered (Whatman,
PES – 0.2 μm) and stored at−20 ∘C. Prior to analysis, for both HPLC
and NIR, the liquid samples were thawed and homogenized by
vortexing.

HPLC analysis
The 2-PE and L-Phe concentrations were determined using a Shi-
madzu ultra-HPLC system equipped with a diode array detector
(SPD-M20A). LC separation was carried out with a YMC ODS-Aq
(250 mm × 4.6 mm) reverse-phase column at 25 ∘C. For elution,
water (solvent A) and acetonitrile (solvent B) were employed
as the mobile phases at a flow rate of 1 mL min−1. A gradi-
ent was used whereby the amount of solvent A was increased
stepwise: 0 min – 100% A, 10 min – 100% A, 16.7 min – 70% A,
26.7 min – 70% A, 33.3 min – 100% A; 41.7 min – 100% A. A diode
array detector was used at a fixed wavelength of 215 nm.23 The val-
ues of R2 for the calibration curve were 0.99 for both compounds,
root mean square error (RMSE) of 4.72% and standard error (SE) of
10 690.2 mV min−1 for 2-PE and 8.78% and 89 521.3 mV min−1 for
L-Phe, and the limits of detection were 3.6 and 22.9 mg L−1, respec-
tively, for 2-PE and L-Phe.

NIR scanning
NIR spectra were recorded on a Fourier-transform NIR spectrom-
eter (FTLA 2000, ABB, Thermo Electron Corporation) equipped
with an indium–gallium–arsenide (InGaAs) detector, from 14 000
to 200 cm−1, in transmittance mode, using a flow cell with a 0.7 mm
path length. For each sample, 64 scans were obtained with a spec-
tral resolution of 8 cm−1 and then averaged. Samples were temper-
ature equilibrated at 23 ∘C (approximately 3 min) within the spec-
trometer before scanning. The integration time was adjusted until
the peaks at 1100–1200 nm for NIR were close to 60 000 inten-
sity units. Grams/AI software (Thermo Electron Corporation) was
used for spectrometer configuration, control, and data acquisition.
Distilled water was used as background. A typical NIR spectrum
is presented as supplementary material (supporting information,
Fig. S1).

Chemometrics and data analysis
The 2-PE and L-Phe concentrations, from samples collected
throughout the different experiments in this work, were employed
as the Y dataset in the chemometric analyses, whereas the
collected NIR spectra, ranging from 14 000 to 200 cm−1, were
employed as the X dataset. A number of different chemometric
techniques were employed to process these data, namely: (i)
boxplot analysis to identify Y dataset outliers; (ii) PCA to identify
sample interrelationships (clusters) and X dataset outliers; and (iii)
PLS regression to derive the models for each studied compound.

A boxplot analysis returns a box graph, for normally distributed
data, with the central mark being the median, the edges being
the 25th and 75th percentiles, and the whiskers extending to
the most extreme data points not considering the outliers. The
maximum whisker length allowed can be defined as a factor of
the interquartile distance between the 25th and 75th percentiles,
covering a chosen percentage of a normally distributed data. As a
result, outliers are plotted individually, outside the box, and can be
identified by visual inspection. For the employed boxplot analysis,
the maximum whisker length allowed was 1.5, resulting in the
identification of the outliers falling outside a 99.3% coverage of
normally distributed data.

PCA reduces high-dimensional, and strongly correlated, X
datasets by extracting the most relevant information onto latent
variables (LVs), representing a linear combination of the original
variables. Each new LV accounts for less explanatory power than
the previous one, given that this technique aims at maximizing the
explained variance for each new orthogonal space. As a result, the
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Table 1. Calibration and validation dataset size for the 2-PE and L-Phe studies

L-Phe estimation 2-PE estimation

Samplea Calibration Validation Calibration Validation

Ensemble 127 64 131 66
W29 45 23 46 24
CBS 2075 46 24 46 24
NCYC 1026 35 18 38 20
de novo 44 22 43 22
Biotransformation 43 22 44 23
Biotransformation + L-Phe 40 20 43 22

a The strain-based experiments encompass the data for the different conditions (de novo synthesis, biotransformation and biotransformation + L-Phe)
studied for each strain, and the condition-based experiments encompass the three different strains (W29, CBS and NCYC) studied for each condition.

interrelationships between the original X variables and samples,
in the new LVs space, can be identified as clusters in the loadings
and scores map, respectively.

For the PCA study, as well as for the PLS, three different datasets
were employed: [D1] – ensemble dataset containing all the data
samples; [D2] – strain-based partial datasets, divided into three
groups representing the three different strains studied (W29, CBS
and NCYC); and [D3] – conditions-based partial datasets, divided
into three groups representing the three different conditions
studied (de novo synthesis, biotransformation and biotransforma-
tion + L-Phe). Hence, in the performed analysis, the total number
of samples varied, regarding L-Phe estimation, between 191 for the
ensemble dataset and 68 (W29), 70 (CBS 2075), 53 (NCYC 1026), 66
(de novo synthesis), 65 (biotransformation), and 60 (biotransforma-
tion + L-Phe). With respect to the 2-PE prediction, the number of
samples was 197 (ensemble), 70 (W29), 70 (CBS 2075), 58 (NCYC
1026), 65 (de novo synthesis), 67 (biotransformation), and 65 (bio-
transformation + L-Phe). Furthermore, two thirds of the samples
were used for modeling (calibration) purposes and one third for
validation, as presented in Table 1.

In order to select the most unbiased calibration and validation
datasets, a screening of 500 possible random combinations, for
these datasets, was employed. In this way, the best overall (cal-
ibration + validation) results were chosen, reflecting the most
unbiased datasets combination. This procedure ensured that both
calibration and validation datasets were distributed along the full
range of the 2-PE and L-Phe concentrations.

The next employed PLS analysis shares some common ground
with the PCA, also constructing LVs from the original X dataset
in new (and orthogonal) spaces, although the main aim here is
maximizing the captured predictive power of the X-space with

regard to the Y-space. In PLS, a standard normal variate (SNV)
methodology is usually employed to remove undesirable the X
data matrix variations, alongside cross-validation (CV) techniques
to test its predictive significance.

Two different methodologies were employed regarding the PLS
approach, one employing the raw dataset [M1] and the other
based on an iterative method [M2], first determining the weights
of each wavelength for the entire wavelength values, next group-
ing the wavelength values together according to the weight
similarity and, finally, recalculating the PLS with the averaged
wavelength values.24 A procedure was next implemented, for
both approaches, to select the most unbiased calibration and
validation datasets, by screening at a maximum of 500 possible
random combinations for these datasets selection. Thus the best
overall (calibration + validation) results were chosen, reflecting
the most unbiased dataset combination. For all PLS analyses, the
maximum number of PLS components allowed was set at half of
the calibration data.

All of the above procedures and calculations were performed in
MATLAB 7.11 (MathWorks, Inc. Natick, MA, USA). Further details for
these techniques can be found in Einax et al.25

RESULTS AND DISCUSSION
Analytical data
The minimum, average and maximum values in the ensemble
and strain-based samples are presented in Table 2. Each of these
samples was then divided into two groups: the calibration (model-
ing) group with two thirds of the samples and the validation with
the remaining one third of the samples.

Table 2. Number of samples and minimum (Min.), maximum (Max.) and average (Avg.) values of the 2-PE and L-Phe compounds

2-PE (mg L−1) L-Phe (mg L−1)

Sample No. Min. Max. Avg. No. Min. Max. Avg.

Ensemble 197 0 1057.9 114.8 191 0 4789 1112.5
W29 strain 70 0 1057.9 137.0 68 0 4655.1 1083.3
CBS strain 70 0 818.4 103.5 70 0 4789 1229.2
NCYC strain 58 0 819.3 101.3 53 0.7 4539.3 995.8
de novo synthesis 65 0.3 37.0 5.1 66 9.0 819.3 147.5
Biotransformation 67 0 1057.9 244.8 65 13.0 4712.8 1885.8
Biotransformation + L-Phe 65 0 676.7 90.4 60 0 4789 2336.3

wileyonlinelibrary.com/jctb © 2018 Society of Chemical Industry J Chem Technol Biotechnol 2019; 94: 812–818
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Figure 1. Boxplot analysis of the Y datasets: (a) L-Phe; (b) 2-PE.

Boxplot analysis
In order to identify possible Y data (L-Phe and 2-PE concentra-
tions) outliers, a boxplot analysis was performed and is presented
in Fig. 1. For this boxplot analysis, the maximum whisker length
allowed was 1.5, i.e. 1.5 times the interquartile distance between
the 25th and 75th percentiles. This resulted in the identifica-
tion of samples falling outside a 99.3% coverage of a normally
distributed data. Taking into consideration the results obtained,
roughly 10% of the L-Phe dataset and 15% of the 2-PE dataset
fell outside this limit. Given the fact that these values are signifi-
cant, a Kolmogorov–Smirnov test was employed in order to deter-
mine whether the Y datasets were normally distributed. In fact, the
Kolmogorov–Smirnov test for both the L-Phe and 2-PE datasets
allowed confirmation that both distributions were not normal and
thus the obtained results for the boxplot analysis had to be put
into perspective. In that sense, and given that no singular values
appeared to be quite apart from the rest, it was decided to proceed
with further chemometric analysis without any outlier exclusion.

PCA analysis
A PCA analysis was further performed on the X dataset (wave-
lengths values), as depicted in Fig. 2 depicting the different
2-PE production conditions, namely the de novo synthesis, bio-
transformation, and biotransformation with the later addition of
L-Phe. Analyzing Fig. 2(a), no distinction between the different
conditions was noticeable; thus no interrelationship between
the wavelength values (X dataset) and the different production
conditions was apparent.

Figure 2(b) depicts the different Y. lipolytica strains (W29, CBS and
NCYC). In both cases, the first, second and third principal compo-
nents (or latent variables, LV) explained, respectively, 21.2%, 17.4%
and 15.6% of the X dataset variability, for a total of 54.2%. The
analysis of Fig. 2(b) led to the identification of strain-based sample
interrelationships, regarding the X dataset, as a number of clus-
ters presenting the homogeneous sample markers are evident. A
closer analysis allowed us to establish that the stream (cluster) of
gray circles (CBS strain) further apart from the remaining clusters
(higher in the PC1 and PC3 axes) belonged to the samples repre-
senting experiment times of 96 h and above (thus with potential
larger 2-PE and smaller L-Phe values). A second cluster, of white
circles (NCYC strain), was also found to be quite apart from the
remaining clusters (higher in the PC2 and PC3 axes) and repre-
sented the de novo synthesis and biotransformation conditions
from 96 h and beyond in the experiment. However, it should be
noted that the biotransformation + L-Phe samples, from 96 h and
beyond, did not fall into this cluster. This may be because half of the
points beyond 96 h were not available regarding the NCYC sam-
ples in the biotransformation + L-Phe conditions, and only two

Figure 2. PCA analysis of the X dataset, showing the first (LV1), second
(LV2) and third (LV3) latent variables. (a) Black circles represent the de novo
synthesis dataset, gray circles represent the biotransformation + l-Phe
dataset, and white circles represent the biotransformation dataset. (b)
Black circles represent the W29 dataset, gray circles represent the CBS
dataset, and white circles represent the NCYC dataset.

points (at 168 h) presented L-Phe values below 3000 mg L−1, being,
therefore, quite apart from the corresponding de novo synthesis
and biotransformation samples (always below 1300 mg L−1).

Although the PCA results pointed clearly towards a strain-based
X dataset dependency, both the different conditions and strains
dependencies were further studied in the subsequent PLS anal-
ysis, with three different datasets employed: [D1] – ensemble

J Chem Technol Biotechnol 2019; 94: 812–818 © 2018 Society of Chemical Industry wileyonlinelibrary.com/jctb
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Table 3. Equation (Eq.), coefficient of determination (R2), root mean square error (RMSE, %), number of PLS components (n) and residual predictive
deviation (RPD) of the PLS analysis for the studied model results regarding the L-Phe prediction

Eq. (tr + val) R2 (tr + val) RMSE (tr + val) RMSE (val) RPD (tr + val) RPD (val) n

D1 M1 y = 0.933x 0.8115 13.61 23.68 2.27 1.31 32
M2 y = 0.9355x 0.7974 13.82 23.51 2.24 1.32 17

D2 M1 y = 0.9749x 0.8425 12.25 21.34 2.53 1.45 13 + 22 + 13
M2 y = 0.9621x 0.8293 12.86 20.66 2.41 1.50 10 + 12 + 10

D3 M1 y = 0.9935x 0.9203 8.78 15.16 3.52 2.04 17 + 17 + 22
M2 y = 0.9992x 0.8834 10.85 16.53 2.85 1.87 10 + 11 + 13

Tr-training (calibration); val- validation.

Table 4. Equation (Eq.), coefficient of determination (R2), root mean square error (RMSE, %), number of PLS components (n) and residual predictive
deviation (RPD) of the PLS analysis for the studied model results regarding 2-PE prediction

Eq. (tr + val) R2 (tr + val) RMSE (tr + val) RMSE (val) RPD (tr + val) RPD (val) n

D1 M1 y = 0.9797x 0.8069 9.18 15.95 2.20 1.26 30
M2 y = 0.9521x 0.7802 9.74 16.50 2.07 1.22 19

D2 M1 y = 1.0124x 0.8893 6.99 12.12 2.89 1.66 14 + 17 + 14
M2 y = 0.9762x 0.8712 7.56 11.86 2.67 1.70 12 + 10 + 10

D3 M1 y = 1.0071x 0.9491 4.72 8.23 4.27 2.45 17 + 19 + 20
M2 y = 0.9714x 0.8978 6.60 8.86 3.06 2.28 11 + 10 + 8

Tr-training (calibration); val- validation.

dataset containing all the data samples; [D2] – strain-based
partial datasets, divided into three groups representing the
three different strains studied (W29, CBS and NCYC); and
[D3] – conditions-based partial datasets, divided into three
groups representing the three different conditions studied
(de novo synthesis, biotransformation and biotransforma-
tion + L-Phe). Moreover, in Fig. 2, no significant sample outliers
could be found and, therefore, the entire original data were
employed (apart from 2-PE or L-Phe missing data points).

PLS regression
PLS regressions were performed on the L-Phe and 2-PE data
obtained by HPLC analysis as the Y dataset and the FT-NIR spectra
(14 000–200 cm−1) as the X dataset. In order to determine the
best model results for L-Phe and 2-PE, the obtained equation,
coefficients of determination (R2) and RMSE values (as a relative
percentage of the sample range) were obtained and are presented
in Tables 3 and 4.

Regarding L-Phe prediction, the best results were obtained by
the raw dataset [M1] methodology with an R2 value of 0.9203
and an RMSE value of 8.78% for the overall samples (and 0.7308
and 15.16%, respectively, for the validation samples), for the
conditions-based [D3] dataset. In fact, the [M1] methodology
could be considered, in the present case, to be slightly better than
the iterative [M2] methodology, especially when concerning the
overall samples. Furthermore, when comparing the ensemble [D1],
strain-based [D2] and conditions-based [D3] datasets, the last one
presented the best prediction results, whereas the ensemble [D1]
attained the worst.

The same overall conclusions could be drawn for the 2-PE predic-
tion, although with best prediction abilities. Again, the best results
were also obtained by the raw dataset [M1] methodology, with
an R2 value of 0.9491 and an RMSE value of 4.72% for the overall
samples (and 0.8391% and 8.23%, respectively, for the validation

samples), for the conditions-based [D3] dataset. Once again, the
[M1] methodology presented slightly better results than the itera-
tive [M2] methodology, concerning the overall samples, although
for the validation data this was not always the case. Confirming
the previous L-Phe results, the conditions-based [D3] dataset pre-
sented the best prediction ability and the ensemble [D1] attained
the worst. As such, the final methodology took into account the
individual PLS analyses for each experimental condition, further
assembled as a final single prediction.

The residual predictive deviation (RPD) was also calculated and
is presented in Table 3. This parameter is defined as the ratio
between the standard deviation (SD) of a population and the SE of
cross-validation (SECV) for a prediction. An RPD value greater than
3 is considered fair and recommended for screening purposes.26

The RPD values calculated for the best model regarding the L-Phe
prediction ensemble data was 3.52 (2.04 for the validation data),
whereas for the 2-PE prediction ensemble data it was 4.27 (2.45 for
the validation data). Although falling short of the value 3 regarding
the validation data, when considering the ensemble data the
potential of the developed models for L-Phe and 2-PE prediction
was confirmed.

The best prediction model results, regarding the raw dataset
[M1] methodology, for the L-Phe and 2-PE concentrations, are
presented in Fig. 3. In both cases there seems to be an overfitting of
the calibration data, which can be explained by the shear amount
of the X dataset original variables (3578 different wavelengths in
both cases). This being the case, it can occur that the selected
wavelengths for the chosen LVs regarding the calibration dataset
may not be the best regarding the validation dataset. In fact, as
the iterative [M2] methodology employs only a fraction of the X
dataset variables (X dataset original variables transformed prior
to fewer averaged wavelength values), it comes as no surprise
that, regarding the validation RMSE values, better results were
obtained, in most cases, for this methodology. Figure 4 presents an

wileyonlinelibrary.com/jctb © 2018 Society of Chemical Industry J Chem Technol Biotechnol 2019; 94: 812–818
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Figure 3. Best model results for l-Phe (a) and 2-PE (b) prediction. Gray circles
represent the calibration data and white circles represent the validation
data.
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Figure 4. l-Phe (a) and 2-PE (b) concentrations for the W29 strain biotrans-
formation experiment. Gray markers represent the observed values, white
the predicted values, round l-Phe and square 2-PE.

example of the L-Phe and 2-PE concentration monitoring by HPLC
and NIR for the W29 strain biotransformation experiment.

Over the past decade, many studies have explored the poten-
tial of NIR spectroscopy for bioprocesses monitoring. However,
these studies’ main focus relied on the quantitative monitoring
of substrate consumption and biomass concentration.5,9 The
quantification of 2-PE and L-Phe by FT-NIR, in fermentative pro-
cesses, is not usual, owing to the diversity and complexity of the
fermentative matrix. Lorenzo et al.13 tested the determination
of fermentative volatile compounds in aged red wines by this

technique and obtained an R2 value of 0.36 for 2-PE estimation, for
240 samples and full cross-validation. Comparing these authors’
results with those obtained by the current methodology, a large
improvement is obtained regarding 2-PE determination. In fact,
an R2 value of 0.95 (considering both the training and validation
samples) was obtained, which compares quite favorably with
the 0.36 value of Lorenzo et al.13 Another interesting study was
developed by Ye et al.14 These authors tested the detection of
volatile compounds, including 2-PE, in apple wines using FT-NIR
spectroscopy; the calibration results, using 42 different samples,
presented an R2 value of 0.84, to which, again the obtained value
in the current study compares favorably.

The quantification of amino acids, as L-phenylalanine, using
FT-NIR spectroscopy was also tested by a number of authors in
different matrices. Escuredo et al.27 studied the amino acid profile
of the quinoa (Chenopodium quinoa Willd.) using NIR spectroscopy
and chemometric techniques. Twelve amino acids (arginine, cys-
tine, isoleucine, leucine, lysine, phenylalanine, proline, serine,
threonine, tryptophan, tyrosine and valine) were analyzed. For
L-Phe a coefficient of determination (R2) of 0.78 was obtained.
Another work, developed by Shen et al.,28 can be highlighted.
These authors evaluated the amino acid content in Chinese rice
wine by FT-NIR spectroscopy and found an R2 value of 0.89 for
L-Phe. Taking into consideration that the current study obtained
an R2 value of 0.92, for L-Phe determination – higher than that
obtained by the previous authors – this reinforces the higher
performance of the developed methodology.

It should be emphasized that this methodology presents sev-
eral advantages over classical analytical techniques, offering a
practical alternative to time-consuming methods such as liquid
chromatographic techniques. Nowadays, NIR can be taken into
consideration as a versatile technique, with no sample prepara-
tion, decreased costs and analysis time, and the ability to sample
through glass and packaging materials.

CONCLUSIONS
The potential of NIR transmission spectroscopy was tested for the
quantification of 2-PE and L-Phe concentrations during its produc-
tion with Y. lipolytica. A chemometric approach was used employ-
ing first a PCA analysis for outlier removal and cluster identifica-
tion. Next, a PLS analysis was performed in order to obtain a pre-
diction model suitable for L-Phe and 2-PE monitoring purposes.
This procedure resulted in relatively high coefficients of deter-
mination (R2), and low RMSE, for the prediction ability of both
compounds. Furthermore, the RPD was above three, showing its
adequacy towards these compounds monitoring. Therefore, we
believe this methodology to be of future practical implementa-
tion, for fast 2-PE and L-Phe monitoring in bioprocesses, given fur-
ther robustness improvement, namely in dealing with overfitting
issues.
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