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Candida Species Adhesion to Oral Epithelium:
Factors Involved and Experimental Methodology Used
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Due to the increasing prevalence and emergence of Non-Candida
albicans Candida (NCAC) species, especially in immunosupressed
patients, it is becoming urgent to deepen the current knowledge
about virulence factors of these species. Adhesion of cells to epithe-
lium is considered one of the major virulence factors of Candida
species. However, relatively little is known concerning the adhesion
mechanisms of NCAC species to epithelium, as well as about the
factors affecting the adhesion process. This review focuses both the
mechanisms that regulate the adhesion interactions and the factors
involved and the description of the experimental methodology that
has been used to perform the adhesion assays.
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INTRODUCTION
Oral Candidiasis is one of the most common pathologies en-

countered in patients with HIV infection, developing in over
80% of these individuals at some time during their illness. In
non-immunocompromised patients, this infection can often be
eradicated with a short course of topical or oral treatment with
an azole compound. However, because of the profound and sus-
tained immunosuppression in patients with AIDS, persistent or
recurrent oral infection with Candida species is common and
long courses of antifungal treatment are required if remission
from infection is to be achieved and sustained (Jacobs and Nall
1997). According to Odds (1987), most people usually carry a
single strain of Candida at different body sites for a long time,
for instances Candida dubliniensis can be found in the orophar-
ynx or in the upper respiratory tract (Sullivan et al. 2005) while
Candida albicans is most prevalent in the palate, tongue and
gingiva. However, it has been shown that a few individuals may
harbour more than one strain or species of Candida at the same
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time, and that in hospitalized and immunocompromised patients
this occurs more commonly (McCullough et al. 1996).

Although Candida species are commensal, the median re-
ported prevalence of oral yeast carriage in the general pop-
ulation is 34% while in hospitalized patients it rises to 55%
(MacFarlane 1990). The attributable mortality of Candida in-
fections is as high as 38% (Wey et al. 1988).

Whether Candida simply remains as a commensal or prolif-
erates, invading tissues and producing Candidiasis is determined
by changes in the environment of the host. The commensal rela-
tionship is dependent on the maintenance of host tissue integrity
with normal microbial flora as well as on an intact immune sys-
tem. As long as these host conditions are maintained, mucosal
Candidiasis is not observed clinically. However, a breakdown
in anatomic integrity or a change in the resident microbial flora
can lead to environmental conditions that are favourable for the
growth of Candida spp. with potential for host invasion by the
fungus. Such environmental conditions in conjunction with an
imbalance of host cytokine response can lead to increased tissue
colonization and fungal overload resulting in mucosal Candidi-
asis (Calderone 2002a). The infections produced range from the
superficial to the systemic. The latter type is mainly observed in
individuals with immunological deficiencies and represents an
important clinical problem (Pla et al. 1996).

Among the several Candida species, Candida albicans is by
far the most studied. Although, other Candida species are emerg-
ing pathogens, namely: C. parapsilosis, C. tropicalis, C. guil-
liermondi, C. glabrata, C. krusei, C. lusitaniae, C. kefir, and
C. dubliniensis, which are now generally referred to as non-
Candida albicans Candida (NCAC) species. The prevalence of
these species has been changing along the years. In the 1980s,
according to the studies made by Kiehn et al. (1980), C. albicans
constituted 68% of isolates from sites other than blood in can-
cer patients, while C. tropicalis, C. parapsilosis, C. glabrata
and C. krusei accounted for 12.3, 10.3, 3.0, and 1.5% of iso-
lates, respectively. In representative studies of fungemia in im-
munocompromised hosts, diabetics, neonates and surgical pa-
tients C. albicans again accounted for 60–80% of the isolates,
while other Candida species were identified less than 20% of
the time (Butler and Baker 1988). In the same decade it was also
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reported that 70–78% of the isolates were Candida albicans
(Finlay 1986). Nevertheless, studies from the 1990s reported
only 56–57% of the isolates as C. albicans (Jobbins et al. 1992),
revealing the emergence of NCAC species. Davies et al. (2002),
assessed the presence of Candida species in oral rinses from
patients with cancer and found 46% of C. albicans, 18% of
Candida glabrata, 5% of Candida dubliniensis, and less than
5% of other non-Candida albicans Candida species. This value
of approximately 50% of Candida albicans prevalence was also
confirmed by Borst et al. (2003). More recently, 40% of the
fungemia cases reported by Bassetti et al. (2006) were due to
Candida albicans.

The most similar NCAC species to Candida albicans is Can-
dida dubliniensis presenting a very analogous genotype and phe-
notype, which led to their misidentification for years. The most
conclusive evidence demonstrating that Candida dubliniensis
was distinct from other Candida species was generated by phy-
logenetic analysis of nucleotide sequences encoding de V3 re-
gion of the larger rRNA subunit gene (Sullivan et al. 1997). This
species was only identified in 1995 (Sullivan et al. 1995) and it
was primarily associated with oral carriage and infection in HIV-
infected and AIDS patients. The prevalence of Candida dublin-
iensis in these patients indicates that due to severe immunodefi-
ciency this organism can emerge as an opportunistic pathogen,
probably from the patients’ own flora. In this environment, the
ability of C. dubliniensis to adhere strongly to oral epithelial
cells may provide it with a competitive advantage over other,
less adherent, NCAC species (Gilfillan et al. 1998; McCullough
et al. 1995). There are some Candida dubliniensis isolates that
are resistant to fluconazole and this ability may confer a further
selective advantage to C. dubliniensis in HIV-infected individu-
als receiving long-term maintenance therapy for suppression of
oral Candidiasis. However, this antifungal susceptibility is not
as strong as it is in C. krusei and C. glabrata (Pfaller et al. 2002).
The increase in Candida glabrata systemic infections is a sub-
ject of considerable concern due to the tendency of this species
to rapidly develop resistance to azole antifungal agents and due
to the high mortality rate associated with C. glabrata fungemia
(Fidel et al. 1999). Although this species is second only to C.

albicans as a cause of systemic Candidiasis, it is a pathogen of
low virulence and infection is usually associated with severely
debilitated patients (Komshian et al. 1989). Infections caused
by Candida krusei are prevalent in patients receiving prophy-
lactic fluconazole therapy (Rex JH et al. 2000). Some studies
(Chavanet et al. 1994) described the replacement of C. albicans
with C. krusei in the oral cavities of HIV-infected patients fol-
lowing azole therapy. Although C. krusei is inherently resistant
to fluconazole, some authors (Berrouane et al. 1996; Kao et al.
1999) have also noticed reduced susceptibility to other anti-
fungal drugs among isolates of C. krusei, leading to the fact
that C. krusei is a multidrug-resistant pathogen. The other
two Candida species better known are C. parapsilosis and C.

tropicalis: the former is the second most frequently recovered
from blood culture and the latter the second most virulent.

Candida parapsilosis is commonly recovered from human skin
and can adhere strongly to the surfaces of intravascular catheters
and prosthetic devices (De Bernardis et al. 1999; Levin et al.
1998). In contrast to the other NCAC species already described
here, C. parapsilosis is generally susceptible to all of the major
antifungal drugs, as well as C. tropicalis. The latter has been
reported as the NCAC species most commonly recovered from
blood culture in patients with cancer (Komshian et al. 1989;
Wingard 1995). However, it has been shown that during the
recent shifts in the epidemiology of Candidiasis, C. tropicalis
has now been superseded by C. glabrata and C. parapsilosis in
overall importance (Pfaller et al. 2000; Berrouane et al. 1999).

In vitro studies have demonstrated that NCAC species gener-
ally are less adherent to buccal epithelial and vascular endothelial
cells, secreting less proteinases than C. albicans, which may ac-
count for their reduced virulence (Hube 1996; King et al. 1980).
C. albicans is undoubtedly the most virulent Candida species,
followed by C. tropicalis (Ghannoum and Abu-Elteen 1991).
This virulence of C. tropicalis may be due to its greater ability
to adhere to epithelial cells and its ability to secrete moder-
ate amounts of proteinase relatively to the other NCAC species
(King et al. 1980; Zaugg et al. 2001). C. parapsilosis seems to
be less virulent (De Bernardis et al. 1999) followed by the other
NCAC species.

In order to proliferate in the oral cavity, yeast cells must ad-
here to the oral surfaces otherwise they are washed out by the
salivary flows. So, one of the most important factors of virulence
of Candida species is their ability to adhere using a variety of
mechanisms, permitting the yeast to anchor at a site and the pro-
cess of tissue colonization to commence (Cotter and Kavanagh
2000). After colonizing the host’s mucosal surfaces, Candida
species may then invade beneath the mucosal barrier into the
vascular space, where continued replication causes hematoge-
nously disseminated disease (Hostetter 1994).

Although the importance of NCAC species is everyday more
evident, there are still only few studies concerning them. For
instance, in the recent major Candida meeting, “8th ASM meet-
ing on Candida and Candidiasis, 2006,” only 16% of the work
presented concerned these species.

YEAST-EPITHELIAL CELL INTERACTIONS
The first observation that adherence of C. albicans could be

important for virulence was provided by King et al. (1980).
Adherence to host tissue cannot be explained by one sin-

gle specific event, because it can be ruled by a combination of
specific and non-specific interactions.

Specific Interactions
The components of the organism that promote host recog-

nition and colonization are referred to as adhesins. According
to Calderone and Fonzi (2001), an adhesin can be defined as a
biomolecule that promotes adhesion of microbial cells to host
cells or host-cell ligands. Host cells have some components that
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are recognized by Candida adhesins. These components can be
biomolecules of different classes, namely, carbohydrates or pro-
teins. The adhesins of Candida albicans are usually of polysac-
charide or glycoprotein nature (Calderone and Gow 2002). Sev-
eral types of yeast adhesins, cell receptors and genes, as well as
secreted aspartyl proteinases (SAP) are involved in the yeast-cell
specific interactions.

Epithelial Cell Factors
(i) Fibronectin. Fibronectin was one of the first molecules

to be suggested as a ligand recognized by C. albicans adhesins
(Skerl et al. 1984). Fibronectin is a plasma and interstitial tis-
sue glycoprotein to which a number of microorganisms avidly
adhere (Pendrak and Klotz 1995). This protein ranges in mass
from 37 to 120 kDa. Santoni et al. (1994) found that adhesion of
C. albicans blastospores to immobilized fibronectin containing
the RGD tripeptide was inhibited by monoclonal antibodies and
by the GRGDSP peptide from fibronectin. One year later the
same authors (Santoni et al. 1995) described that a monoclonal
antibody against placental α5β1 and two polyclonal antibod-
ies recognizing vertebrate fibronectin receptors also bound to
NCAC species. These studies provided evidence for fibronectin
receptors in C. albicans and C. tropicalis that resemble the ver-
tebrate integrins α5 and β1. In disseminated Candidiasis, the
fibronectin adhesin may be responsible for the adherence of the
microorganism to intravascular and vascular structures such as
endothelial cells or subendothelial extracellular matrix (Pendrak
and Klotz 1995). The presence of fibronectin as a target protein
for epithelial attachment of Candida tropicalis was also con-
firmed by Bendel et al. (1993).

(ii) Integrins. An integrin or integrin receptor is an integral
membrane protein in the plasma membrane of cells. On verte-
brate cells, integrins serve a multiplicity of functions from ad-
hesion to morphogenesis. Candida proteins exhibiting antigenic
and functional similarities to human complement receptors 3 and
4 (CR3 and CR4) are known as integrin analogs because of the
placement of CR3 and CR4 within the integrin supergene family
(Hostetter 1994).

Included in the C3 ligands are C3b, C3d, and iC3b that are
ligands for CR1, CR2, respectively, and CR4 (for the last two).
The iC3b receptors are present on the surface of C. albicans, and
these share homology with a subunit of the neutrophilic iC3b
receptor (Lee et al. 1997) and it is proposed that a number of
fungal proteins mediate C. albicans adherence to iC3b receptors
(CR3-like). The presence of a receptor for iC3b on the surface of
C. albicans allowed noncovalent binding of this protein, thereby
suggesting that C. albicans was using this form of molecular
mimicry to elude phagocytosis (Hostetter 1999).

The presence of a receptor for C3d on C. albicans and C.

stellatoidea was initially described by Heidenreich and Dietrich
(1985) and later confirmed by Edwards et al. (1986). While
Heidenreich and Dietrich (1985) observed this receptor and a
receptor for iC3b on both yeasts and hyphal forms, Edwards
et al. (1986) only detected it on hyphal forms. Calderone et al.

(1988) identified, in extracts of C. albicans pseudohyphae, two
proteins of approximately 62 and 70 kDa that bind the C3d
fragment of C3. The finding of C3 receptors, exclusively on
the more pathogenic Candida spp. is highly suggestive of their
involvement in disease processes (Calderone et al. 1988).

According to Bendel and Hostetter (1993) epithelial adhesion
of C. tropicalis is not significantly inhibited by iC3b and iC3b-
RGD peptides, however, two peptides in the group—I-RGDQD
and RGDQDATMS—were more inhibitory than the remainder.

Yeast Factors
(i) Genetic regulation. It was proposed by Staib et al.

(1999) that a developmentally regulated gene (HWP1),
expressed in germ-tube and hyphal forms of C. albicans,
encodes an outer cell-wall mannoprotein that interacts with
epithelial cell transglutaminase, forming a non-dissociable
complex. Tsuchmori et al. (2000) demonstrated that an HWP1-
deficient mutant of C. albicans caused reduced mortality in
mice, germinated less readily in the kidneys of infected mice
and caused less endothelial cell damage. This confirms the role
of HWP1 in adherence and virulence.

Agglutin-Like Sequence (ALS) of Candida albicans is a fam-
ily of seven glycosylated proteins with homology to the S. cere-
visae α-agglutinin protein that is required for cell-cell recogni-
tion during mating (Calderone and Fonzi 2001). For C. albicans,
both ALS1p and ALS5p appear to provide an adhesive function
(Gaur et al. 1999; Fu et al. 1998). ALS genes are differentially
regulated in C. albicans by physiologically relevant conditions
such as growth medium changes (ALS1) (Hoyer et al. 1995;
Hoyer 2001), morphological form (ALS3/ALS8) (Hoyer et al.
1998b; Hoyer and Hecht 2000) and stage of growth (ALS4)
(Hoyer et al. 1998a). Hoyer et al. (2001) observed differences
in ALS gene expression by C. albicans and C. dubliniensis.
In C. albicans, it is typical to observe one or two ALS genes
concurrently expressed under a specific in vitro growth condi-
tion. By contrast, more ALS cross-hybridizing messages were
observed on C. dubliniensis northern blots. Hoyer et al. (2001)
demonstrated that ALS gene families are found in C. dublinien-
sis and C. tropicalis, although they are not identical to that in
C. albicans. Studies of ALS genes in C. dubliniensis suggest
differences in regulation of the gene family and in production of
cell wall proteins.

Studies of the ALS family revealed many significant parallels
to the C. albicans SAP family (Hoyer et al. 2001; Hube et al.
1994; Hube 1996). Both families appear to have similar numbers
of genes in C. albicans. Genes in each family are differentially
regulated by similar mechanisms and ALS and SAP are largely
co-localized on the same C. albicans chromosomes. This co-
localization trend continues in species such as C. dubliniensis
and C. tropicalis. The number of ALS genes is roughly equal to
the number of SAP genes in these species (Hoyer 2001).

In C. glabrata, adherence is mediated largely by the EPA
(Epithelial Adhesion) family of genes, which, like HWP1 or the
ALS genes encode GPI-anchored cell wall proteins. Epa1 is a
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lectin that binds to N-acetyllactosamine-containing glycoconju-
gates (Kaur et al. 2005; Cormack et al. 1999).

The Candida glabrata genome encodes many EPA-related
genes. Despite the large number of EPA genes, deletion of just
EPA1 reduces adherence in vitro to background levels because
the other EPA genes are expressed at low levels when grown
in laboratory broth (Castano et al. 2005; De Las Penas et al.
2003). The deletion of the EPA1 gene reduces adherence by
95% (Cormack et al. 1999).

(ii) SAP. Secreted Aspartyl Proteinases (SAP) also appear
to contribute to adhesion of Candida albicans to buccal epithelial
cells (BEC) and other substrates (Watts et al. 1998; Cannon and
Chaffin 1999). SAP were first described by Staib in 1965 (Staib
1965) and originally designated as CAP (Candida aspartyl pro-
tease). SAP 1 was described by Hube et al. (1991) and SAP2 de-
scribed by Wright et al. (1992). According to White et al. (1993),
there are at least three SAPs. The three proteinases isoenzymes
described differ in the primary sequence, pI and pattern of ex-
pression and are products of three separate genetic loci. These
differences suggested that the different proteinases may have
unique roles in the interaction between Candida and its host.
Some more SAP were identified later, including SAP4 (Miyasaki
et al. 1994), SAP5, SAP6 and SAP7 (Monod et al. 1994), SAP8
(Morrison et al. 1993), and SAP9 (Monod et al. 1998).

White and Agabian (1995) studied the influence of grow-
ing conditions and cell type in the production of SAP. In their
study, they defined the culture conditions that control the levels
of SAP mRNAs and Sap proteins, and they indicate that both
yeast/hyphal transition and phenotypic switching can determine
which of the Sap isoenzymes is produced.

Some authors (Hube et al. 1997; Sanglard et al. 1997) found
that in guinea pig and murine models of invasive disease, dele-
tions in SAP1-6 attenuate virulence. Thus, it would appear that
SAP1-6 is required for invasive disease. An in vitro model of
human oral Candidiasis has been used to follow the temporal
transcription of SAP1-8. SAP4 and SAP5 were never detected
and SAP1 and SAP3 were expressed within 42 h of tissue post-
infection, followed by SAP6 and SAP2 and SAP8 (Calderone
and Fonzi 2001).

Genes encoding aspartyl proteinase have been cloned in C.

albicans and C. tropicalis (Hube et al. 2006; Togni et al. 1991;
Wright et al. 1992). Borg and Ruchel (1988) found that evidence
implicating a role for aspartyl proteinase includes the demon-
stration of the proteinase in both blastospores and invading germ
tubes of C. albicans and C. tropicalis but not in C. parapsilosis.

Non-Specific Interactions
Besides specific interactions, there are other types of inter-

actions, named non-specific, which can rule the adhesion phe-
nomenon. These interactions are directly related to cell surface
properties, and are mediated by hydrophobic and electrostatic
forces.

Some studies in bacteria lead to the finding that hydrophobic
interactions are believed to contribute to adherence by maintain-

ing the fidelity of the adhesin-receptors bonds (Beachey 1981;
Rosenberg and Kjelleberg 1986). In relation to yeast Candida
cells, Rotrosen et al. (1986) and Hazen (1989), described that
cell surface hydrophobicity (which increases at lower growth
temperature) contributes to, adherence to BEC, but not as the
predominant mechanism. Jones et al. (1995) also described that
a decrease in hydrophobicity may contribute partially to the de-
crease in binding.

The influence of Candida krusei surface hydrophobicity on
the adhesion to HeLa cells was compared to that of Candida
albicans by Samaranayke et al. (1995). These authors found
a positive correlation between cell surface hydrophobicity and
adherence of C. krusei to HeLa cells but no such relationship
was observed for C. albicans. Henriques (2005) also found no
relationship between Candida albicans and Candida dublinien-
sis adhesion to HeLa cells and cell surface physico-chemical
properties.

Kltotz (1994) studied the contribution of electrostatic forces
to the adherence of Candida albicans to substrates and con-
cluded that electrostatic forces although present in the process
of adherence of yeast cells to some substrata, is a minor force
which makes only a modest, at best, contribution to adherence.

ENVIRONMENTAL FACTORS AFFECTING ADHESION
Yeast Morphogenesis

Candida albicans undergoes reversible morphological tran-
sitions between ovoid, unicellular budding cells (yeast cells or
blastospores) and chains of filamentous cells. The latter cell mor-
phism displays different degrees of filamentation, ranging from
slightly elongated ovoid cells to significantly extended tube-like
cells. Filamentous cells are classified either as pseudohyphae
or hyphae depending on their morphology. Although the de-
gree of elongation of pseudohyphal cells can vary considerably,
from relatively short to significant extended cells, they always
display constrictions at their septa between individual cellular
compartments. In contrast, true hyphae and their progenitors
(germ tubes) show no constrictions, having parallel walls at their
septa (Calderone 2002c).

Candida albicans ability to switch from yeast to hyphal
growth in response to various environmental signals is directly
related with its pathogenicity (Liu 2001). Prasad (1991) studied
the contribution of dimorphic growth to virulence, determining
the virulence of mutants that can grow only in either the yeast or
filamentous form. Although virulence is decreased for such mu-
tants, the strains used in those studies were produced by classical
genetic methods and are likely to carry multiple genetic lesions.

There are evidences suggesting that yeast-hypha morpho-
genesis is co-regulated with other virulence factors. For in-
stance, SAP4-6 genes, members of a large family of secreted
aspartyl proteinase genes, that promote the virulence of C. albi-
cans (Hube et al. 1997; Brown 2002), are expressed specifically
during hyphal development. Of all the Candida spp., only C.

albicans and C. dubliniensis form both types of filamentous
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growth (Calderone and Fonzi 2001), although, some species,
as C. glabrata, can form pseudohyphae in response to nitrogen
starvation (Csank and Haynes 2000).

Sugars
One of the main causes of oral Candidiasis is the presence

of great amounts of carbohydrates in the oral cavity. Pizzo et al.
(1999) studied the effect of some carbohydrates on the adhe-
sion of some Candida species to epithelial cells. Their results
indicate that incubation in sucrose or glucose significantly pro-
motes adhesion of Candida albicans to epithelial cells. This
is in agreement with previous studies by Samaranayke and
MacFarlane (1982). They also found that diets rich in glucose
or sucrose could influence the development and outcome of oral
Candidiasis by enhancing Candida albicans adhesion, as well
as C. tropicalis and C. krusei. The effect of glucose can be
due to the production of a mannoprotein surface layer, which
is known to enhance adhesion (McCourtie and Douglas 1985).
Other studies (Samaranayake et al. 1986; McCullough et al.
1996) lead also to the conclusion that glucose can promote acid
production and lower the pH, with consequent activation of acid
proteinases and extracellular phospholipases, factors involved
in yeasts adhesion. Other two important carbohydrates are fruc-
tose, which is present in fruits and honey and is used as a sucrose
substitute in confectionery and maltose that is found in starchy
foods accumulating on dental and prosthetic surfaces. These
two carbohydrates, as well as glucose and sucrose, also enhance
Candida adhesion to epithelium (Pizzo et al. 1999), although
the extent of adhesion appeared to be lower in the presence of
maltose. Besides the differences in the carbohydrates present
in the growth media, adhesion is also dependent on the type of
culture conditions (broth or solid media).

Temperature
Temperature of growth is known to affect cell morphology

of dimorphic fungi including C. albicans (Ghannoum and Abu-
Elteen 1991), thus affecting yeast cell-surface composition. The
adhesion of C. albicans to BEC can be significantly modified by
the temperature at which cells grow. Growth at 25◦C increases
the extent of adhesion when compared to cells grown at 37◦C
(Kennedy and Sandin 1988). According to Kennedy and Sandin
(1988), C. albicans grown on Sabouraud Agar at 37◦C was sig-
nificantly more adhesive than when grown in Sabouraud broth.
Growth phase of C. albicans has a marked influence on its adher-
ence ability. Stationary phase yeasts, those cultured for periods
longer than 18 h, were found to adhere to a greater degree than
logarithmic-phase blastospores. However prolonged growth of
the culture does not significantly enhance adherence (Calderone
2002b).

Inoculum Concentration
The inoculum concentration is determinant to the adhesion

assays. There is no detectable yeast attachment at concentrations

bellow 104 yeast ml−1. In fact, 107 yeast ml−1 is the most used
inoculum concentration. It has been reported that attachment
of C. albicans to BEC/VEC (vaginal epithelial cells) gradually
increases as the ratio of yeasts to epithelial cells in incubation
mixtures is raised from 10:1 to 10000:1 (Kimura and Pearsall
1978; Lee et al. 1997). Kennedy and Sandin (1988) also reported
that as the number of Candida that attached to epithelial cells
increased, the percentage of BEC which had attached yeasts
increased as well.

ASSESSMENT OF “IN VITRO” ADHESION
The study of Candida adhesion to epithelium involves three

major steps, the preparation of the epithelial cells, the adhe-
sion assay and the quantification of the adhesion extent. Table 1
presents a summary of the Candida species, epithelial cells ori-
gin, adhesion assays, and adhesion quantification methods used
by different authors.

Adhesion Assays
Yeast adherence to epithelial cells varies considerably with

the origin of the epithelium. The most used sources of epithelium
are exfoliated samples like BEC. The method of BEC prepara-
tion was developed in 1978 by Kimura and Pearsall (1978) and
is still being used today (McCarron et al. 2004) by most of the
authors (see Table 1). Accordingly, BEC are obtained by gen-
tly rubbing the oral mucosa with sterile cotton swabs, followed
by dispersion in sterile PBS. Cells are immediately used after
centrifugation and washing with PBS.

The main problem is that BEC vary with the donor, the period
of the day and other problems can arise, as a high number of non-
viable cells, bacterial contamination and different degrees of en-
zymatic modifications of the cell surface (Cotter and Kavanagh
2000). These drawbacks were overcome by monolayer cultures.
However, such cultures mimic neither the differentiation of cells
during maturation, nor their interactions encountered in situ. A
more realistic model seems to be reached with the combina-
tion of stromal equivalent and epithelial cells, commonly called
organotypic cultures (Papaioannou 1998). Although this type of
cells is convenient to use, invariably consists of heterogeneous
mixtures of viable and non-viable cells and substantial cell-to-
cell variation in the number of adhered yeast is always observed.
Such preparations may also vary according to the donor, the time
of sampling, the extent of colonization by the normal flora and
the degree of exposure to various secretions. Therefore, it is
more convenient to use a uniform cell population obtained by
culturing epithelial cells. The most common cultured cells are
HeLa (derived from cervical cancer cells taken from a woman
named Henrietta Lacks) and KB (derived from an epidermal
carcinoma of the mouth).

Recently, Schaller et al. (1998) used a model for recon-
stituted human oral epithelium (RHOE), maintained as multi-
layer natural cell cultures. It has been used as a satisfactory
model for experimental Candidiasis (Jayatilake et al. 2005).
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TABLE 1
Several parameters used in Candida adhesion to epithelium, including the source of epithelial cells, the Candida species adhered

to that cells, the adhesion assay performed and the method used to quantify the adhered Candida and respective references

Source of Method for adhesion
epithelial cells Candida species Adhesion assay quantification Ref.

BEC C. albicans Suspended coculture1 Scintilation (Pla et al. 1996)
C. albicans Suspended coculture1 Safrannin staining (Hazen 1989)
C. albicans Suspended coculture1 Gram staining (Bailey et al. 1995)
C. albicans Suspended coculture1 Crystal violet staining (Skoutelis et al. 1995)
C. albicans Suspended coculture1 Gram staining (Sweet et al. 1995)
C. albicans,

C. krusei
Suspended coculture1 Gram staining (Nair and Samaranayke 1996)

C. albicans Suspended coculture1 Crystal violet staining (Jones and Gorman 1997)
C. albicans Suspended coculture1 Gram staining (Ellepola and Samaranayke 1998)
C. albicans Suspended coculture1 Papanicolau stain (Williams et al. 1999)
C. albicans,

C. tropicalis,
C. krusei,
C. parapsilosis,
C. glabrata,
C. guilliermondi

Suspended coculture1 Gram staining (Ellepola et al. 1999)

C. albicans Suspended coculture1 Crystal violet staining (Pizzo et al. 2001)
C. parapsilosis Suspended coculture1 Gram staining (Panagoda et al. 2001)
C. dubliniensis Suspended coculture1 Direct observation (Jabra-Rizk et al. 2001)
C. albicans Suspended coculture1 Crystal violet staining (McCarron et al. 2004)

HeLa C. albicans 24 well plates2 CFU determination (Hazen 1989)
C. krusei 24 well plates2 Gram staining (Samaranayke et al. 1994)
C. albicans,

C. tropicalis,
C. krusei

24 well plates2 Gram staining (Pizzo et al. 1999)

C. albicans 96 well plates3 CFU determination (Bektic et al. 2001)
C. albicans,

C. glabrata
24 well plates2 Gram staining (Dorocka-Bobkowska et al. 2003)

C. albicans,
C. tropicalis,
C. glabrata,
C. krusei,
C. dubliniensis

24 well plates2 CFU determination (Gruber et al. 2003)

HSC-3 C. albicans,
C. glabrata

24 well plates2 Gram staining (Dorocka-Bobkowska et al. 2003)

SCC4, SCC15,
OKF6/TERT-2

C. albicans 6/12 well plates3 Tryptan blue (Dongari-Bagtzoglou and
Kashleva 2003)

KB (CCL-17) C. albicans Suspended coculture1 [3H]glucose (Steele et al. 2001)
Human Epidermal

keratinocytes
C. albicans 96 well plates3 Inverted microscope (Ollert et al. 1993)

Epithelium from
gingival tissues

C. albicans,
C. tropicalis,
C. glabrata

48 well plates3 ATP measurement (Nikawa H. et al. 2002)

Gingival
keratinocytes

C. albicans 6/12 well plates3 Tryptan blue staining (Dongari-Bagtzoglou and
Kashleva 2003)

Oral epithelial cells C. albicans Suspended coculture1 [3H]glucose (Steele et al. 2001)

1Epithelium and yeast cells adhering in suspension.
2Epithelium adhered to glass immersed on the well plates.
3Epithelium adhered to the bottom well plates.
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According to Jayatilake et al. (2005), the advantages of this
model are: its multilayer structure closely resembling the oral
epithelium, the ability to artificially reproduce the internal mi-
lieu of the oral cavity and its ready off-the-shelf use for time-
limited experiments. Schaller et al. (1998) showed that, histo-
logically, RHOE resembles the normal human oral epithelium
and the pathological changes that accompany Candidal invasion
are akin to human disease.

Quantification Methods
The attachment of Candida albicans to buccal cells from rats

was first measured by Liljemark and Gibbons (1973). A few
years later Kimura and Parsall (1978) proposed a method for the
study of Candida adhesion to BEC. This assay included the mix
of equal amounts of BEC cells and yeast cells and incubation
for 1 h at 37◦C. After adhesion, cells were filtered and the filters
were stained and the number of Candida adhered per 100 BEC
was enumerated. After several modifications, Kennedy (1990)
proposed a standardization of that method, allowing uniformity
of the results obtained by different researchers. Although this
method is still being used (Table 1), Samaranayke and
MacFarlane (1981) described a new method in 1981 for studying
adhesion to epithelium that includes the adhesion of epithelial
cells to the bottom of the wells of tissue culture well plates or to
glass coupons (inserted on the wells) prior to the addition of mi-
crobial cells. In this method, mammalian cells must be adherent
to the supporting surface.

Among the methods used to enumerate yeast cells adhered to
epithelium are: the visual counting, using light, fluorescence, and
electron scanning or transmission microscopy and the Coulter
counting of the radiolabelled yeast. The visual method allows
to follow the adhesion to individual epithelial cells but is a very
time consuming technique. The radiolabelling method seems
to offer an attractive alternative in some situations, although
it should always be remembered that leachable isotopes can
produce misleading results.

The quantification of the adhesion extent varies with the type
of epithelial cells used and consequently with the adhesion assay
performed (Table 1). When yeast cells adhere in suspended co-
cultures with epithelial cells usually a direct microscopic method
is used and the percentage of epithelial cells with adhered Can-
dida is determined. Both gram staining and CFU determination
are applied to cells grown in well plates. In the first case cells
are observed under the microscope and the number of Candida
is determined per mm2. More recently a method involving ATP
measurement was proposed (Nikawa et al. 2002). The authors
developed an in vitro assay technique to extract cellular and
fungal ATP separately, allowing a quantitative evaluation of the
adhesion of Candida to monolayers of epithelial cells.

CONCLUSIONS
The large range of host tissues that can be colonized and in-

fected by Candida species suggests that these organisms possess

a large number of adhesive surface factors, very few of which
have actually been characterized or their role is not yet well
understood. Another point worth noting is that adhesion assays
have been performed with a limited number of strains of each
species and it is already well established that adhesion is strain
dependent. Therefore, in order to deepen the understanding of
the adhesion phenomenon, the studies should be conducted with
different clinical isolates of Candida species and using different
types of epithelium.

The prevalence of non-Candida albicans Candida (NCAC)
species is emerging today. In opposition to Candida albicans,
only few yeast-cell interaction mechanisms were found and de-
scribed for NCAC species. So, as adhesion is considered one
of the most relevant Candida virulence factors, it is becoming
increasingly more important to understand the mechanisms that
are involved and their role in the adhesion process of each NCAC
species.

Different methodologies have been used to perform adhesion
assays and to quantify the extent of adhesion. Consequently, it
is difficult to meaningfully compare the results reported in liter-
ature because different cells and culture conditions were used in
each case. Therefore, it is of utmost importance to standardize
the methodologies used to assess yeast-epithelium adhesion.
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