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Abstract

Signaling is a highly dynamic and context specific process. When cells fail to in-
terpret external stimuli from the environment or emitted by other cells the conse-
quences can be disastrous. Mechanistic signaling models with predictive value have
the potential to help developing new therapheutical strategies targeting molecules
involved in signal transduction. However, the complexity of signaling networks, the
nonlinear nature of these systems and several technological limitations regarding
the ability to manipulate cells in vitro and measure post translational modifica-
tions experimentally, make the task of building quantitative models for signaling
very difficult.

Many interactions in signaling pathways are known but, because they are not
well characterized from the biochemical point of view, it is not straightforward
to turn this information into a model. In this thesis, we present methods for re-
verse engineering mechanistic models combining data from cell-line perturbation
experiments. Here, the model dynamics is described by means of logic-based or-
dinary differential equations, a recent formalism that through a set of reasonable
assumptions describes regulatory mechanisms in a relatively simple, yet, dynamic
and continuous manner. We formulate model selection and network inference as
dynamic optimization problems, which are nonlinear non-convex and, thus very
hard to solve.

Here, we formulate model selection as a mixed-integer dynamic optimization
problem and solve it recurring to state of the art meta-heuristics for optimization
and numerical methods for simulation. We apply the methods to several signaling
case-studies and concluded the method scales up well. In addition, we develop a
relaxation tailored for this problem that improves convergence in large problems.

The network inference problem is tackled with the help of mutual information

and an ensemble approach. To compensate for the lack of prior knowledge, we build
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data-driven networks based in mutual information. With the ensemble approach,
we explore the landscape of possible models, providing more reliable predictions for
trajectories and network inference. The method was applied to several in silico and
experimental case studies including data from the HPN-DREAM Breast Cancer
Network Inference challenge. We were able to generate predictions that were in
some cases significantly better than those provided by the best performers.

To facilitate the implementation and redistribution of dynamic optimization
problems in systems biology, such as those described above, we also develop a C li-
brary. This library is open-source and platform independent. The implementation
and some applications of the library are discussed.

Building dynamic models of signaling with predictive power is possible despite
of a number of well known pitfalls and limitations. The heavy computational cost
of simulating ordinary differential equations models can be palliated by combining
state of the art numerical methods with meta-heuristics and the power of cluster

computing.
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Resumo

A sinalizacao é um processo altamente dinamico e que depende do contexto celular.
Quando as células nao estao aptas a interpretar estimulos ambientais ou emitidos
por outras células, as consequéncias podem ser desastrosas. Os modelos quanti-
tativos com valor preditivo tém o potencial para ajudar no desenvolvimento de
novas estratégias terapéuticas. No entanto, a complexidade das redes de sinaliza-
¢ao, a natureza nao linear destes sistemas e diversas limitagoes tecnoldgicas na
medic¢ao de modificagoes pos tradugao tornam a tarefa de construir modelos para
a sinalizacao muito dificil.

Muitas das interacoes entre proteinas nas vias de sinalizagao sao conhecidas.
No entanto muitas nao estao bem caracterizadas do ponto de vista bioquimico e
a transformacao deste conhecimento qualitativo em modelos nao é trivial. Nesta
tese, apresentamos métodos para realizar engenharia reversa de modelos dinamicos
a partir de dados experimentais obtidos através da introducgao de perturbagoes em
culturas celulares. As dinamicas sao representadas através de equagoes diferenciais
ordinarias.

Nesta tese, formulamos a selecao de modelos e a inferéncia de redes como prob-
lemas de otimizacao dindmica. Estes problemas sao nao lineares e nao convexos e
portanto muito dificeis de resolver.

A selecao de modelos é formulada como um problema de otimizacao dinamica
inteira mista. Para resolver o problema, recorremos a meta-heuristicas. Este
método foi aplicado a varios estudos de caso de sinalizacao e concluimos que o
método se adapta bem a problemas com diferentes tamanhos. Para melhorar a
convergéncia em problemas grandes desenvolvemos uma relaxagao especifica para
esta formulacgao.

O problema de inferéncia de redes é abordado através da combinagao de varios
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modelos. Para compensar a falta de conhecimento prévio, construimos redes
baseadas na informagao mitua entre as variaveis do modelo. Com um conjunto de
modelos conseguimos obter previsoes mais robustas em relacao aos modelos indi-
viduais. O método foi aplicado a varios estudos de caso in silico e experimentais,
incluindo dados do HPN-DREAM Breast Cancer Network Inference Challenge.
Fomos capazes de gerar previsdes que em alguns casos, foram significativamente
melhores que as dos vencedores do desafio.

Para facilitar a implementacao e redistribuicao de problemas de otimizacao
dindmica na &area de biologia de sistemas, tais como os descritos anteriormente,
desenvolvemos uma biblioteca em C. Esta biblioteca é distribuida em c6digo aberto
e independente de plataforma. A sua implementagao e algumas aplicagoes sao
discutidas nesta tese.

A construgao de modelos dinamicos de sinalizacao com valor preditivo é pos-
sivel, apesar de uma série de limitacoes bem descritas na literatura. O elevado
custo computacional de simular modelos de equacgoes diferenciais ordinarias pode
ser atenuados através da combinacao de métodos numéricos eficientes, utilizacao

de meta-heuristicas e o poder de calculo de supercomputadores.
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Chapter 1

Introduction

1.1 Motivation

In complex organisms, signaling pathways play a critical role in the behavior of
individual cells and ultimately in the organism as a whole. Cells adapt to the
environmental conditions through the integration of signals released by other cells
via endocrine or paracrine secretion or other environmental stimuli. The cell de-
cisions to replicate, differentiate or die (apoptosis) are largely controlled by these
signals [3].

Many of the interactions involved in signaling are commonly grouped in path-
ways. Pathways are typically depicted as sequences of steps where the information
is relayed upon activation by an extracellular receptor promoting several down-
stream Post-Translational Modifications (PTMs), which will ultimately end by
modifying gene expression or some other effector. These interactions are non static
in the sense that the behavior of such pathways is known to be highly dependent
on the cell type and context [79], which may change with time [96]. Additionally,
many of these pathways interact with each other in ways that are often described
as analog to a decision making process [64].

Signaling is a very dynamic and fast process specially if compared with gene
expression. In order to build a mechanistic model, given a cell type or tissue,
one should have data obtained from perturbation experiments, ¢.e. the system

assumed to be homeostatic is perturbed with chemicals to which the cell may or not
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react and the variations in the cell chemistry are recorded. When only the initial
and final state are monitored, one is typically bound to assume that the system
has shifted back to a different homeostatic state. The remark to this strategy is
that such assumption might not be always true. Also important information is
contained in the system dynamics acting at different time scales.

Many of the interactions in this network are known, some even quite well
characterized from the biochemical point of view (some examples of this are the
Mitogen-Activated Protein Kinase (MAPK) [114], NFkS [75], JAK-STAT [120]
signaling pathways). However, this network is most certainly incomplete [158] it is
hypothesized that most in vivo phosphorylation sites have not yet been discovered.

There are at least three good reasons to infer a dynamic model of a signaling
pathway. The first, and perhaps most obvious one, is to find novel interactions.
The second is what we will refer throughout the rest of this thesis as the model
selection task. Model selection can be defined as the process of using data to select
(or exclude) a number of model features which are consistent with the current
knowledge about a given system. This is particularly relevant in the case of cell
lines, as different interactions will actively depend on the cell context. The third
one is the usage of such a model to predict how the system will behave in new
conditions that have not been tested before.

Despite enormous progress in high-throughput technologies and modeling ef-
forts [6,158] the fact is model inference is not a solved problem. The ability to grow
and perturb theses systems (individual cells, cell cultures or tissues) and quantify
all the involved molecular states in a precise and well-resolved time and or space
manner are important limiting factors.

All experimental data used in this work was obtained by measuring phos-
phorylation variations in several proteins, after perturbation of one or more cell
lines using anti-body based methods (for a review on the different approaches to
measure phosphoproteomic signals that can be used to model signaling networks
we direct the reader to [158]). Phosphorylation is not the only relevant PTM
for signaling regulation, however, because there are well established experimental
methods to measure it, its prevalence and also because it affects other signaling
subsystems [112] based in different PTMs it is often used to study pathways in a

systematic manner.



1.2 Problem Statement

Many years of basic molecular biology research have provided a reasonable
picture of how many of these parts interact in a individual manner and this infor-
mation is fairly accessible and well summarized in a number of data-bases [163].
Thus, an important part of the effort to develop mechanistic models of signaling
transduction pathways focus in the combination of existing, yet highly context
specific, knowledge with experimental data, modeling frameworks and reasonable
assumptions (e.g. steady-state).

Although diseases like cancer are ultimately caused by mutations at the genome
level, the end result is that abnormalities at the signaling level appear and cells fail
to take decisions correctly. It is not strange that a large group of available targeted
therapies are based on molecules that disrupt signaling, like kinase inhibitors or
monoclonal antibodies which block growth factor receptors on the cell surface
[119]. Understanding how this large number of parts is connected is important
but not sufficient because mammalian signaling is highly dynamic and context
specific. Thus mechanistic models are important to understand cell behavior,
and to ultimately take part in the process of designing new drugs or treatment

strategies (drug combinations, drug scheduling, etc.).

1.2 Problem Statement

In this thesis, all models used will be represented as Ordinary Differential Equa-
tions (ODEs). We assume that the experimental measurements used are from an
average from many cells and that the ODEs can represent the behavior of signal-
ing processes from cultures of a given cell-line with reasonable accuracy. Without
prejudice that some of the methods described in this thesis can be extended (at
least in part) to other applications, in this work we will focus mostly in han-
dling high-throughput phosphoproteomics data from cell-lines of human signaling
pathways.

We solve implicitly three classes of problems: 7) parametric identification, )
model selection and ii7) network inference. What separates the different problems
is the level of available prior knowledge. All three tasks will be handled in this
thesis from an inverse problem point of view: given experimental data, we want

to find a solution (or a set of solutions) that can explain the behavior of the
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biological system subject to a number of assumptions/constraints (derived from

prior knowledge). This can be described as:

miniemize F(z,x)

subject to (1.1)
Ly
x = / (6, ) dt,
lo
where F is a function of the experimental data (z) and the dynamic model output
Z) which quantifies model quality. The Right-Hand Side (RHS) equations (&) are
ODEs that depend on an set parameters (#) and are integrated numerically.

For imposing the previously mentioned set of dynamic constraints, we will rely
in the framework developed by Wittmann et al. [172], called logic-based ODE.
Because signaling is a fast process, compared with gene expression, it is assumed
that overall protein concentrations remain constant and the ODEs represent only
changes in the PTMs, typically phosphorylation. The logic-based ODE model will
be explained with greater detail in Section 2.1.1. The gold standard for building
quantitative dynamic models in biology is the usage of mass action or some other
associated enzyme kinetics (these are derived from mass action). However, this
requires accurate knowledge on the biochemistry and is not compatible with the
incomplete nature of qualitative networks available to derive our dynamic models.

An important aspect to keep in mind while working with cell-line data is that
samples are in fact a lysate of many cells which can, for example, be at different
states of the cell cycle and thus, these lysates might not entirely reflect the state
of single cells and effects such as signal cancellation might exist [124]. Cell-lines
are a convenient, yet not ideal, in vitro model for signaling related diseases.

In the parametric inference problem the model structure is assumed to be
known and correct at least in the sense that the ODEs can explain with an error
equal or inferior to the expected noise in the data.

In the context of this work, the inputs to this problem are a Boolean network!,

a data-set consisting of PTMs in proteins measured at different time points and

In a Boolean network direction, sign (activation) and type of interaction/logic gate (AND,
OR, etc.) are known.



1.2 Problem Statement

perturbation experiments and a experimental description of the problem?. Here,
the so-called perturbations should be understood as small-molecule inhibitors and
ligands (e.g. hormones) and are introduced by means of small molecule inhibitors
which are introduced in the model as control variables.

The numerical procedure to simulate these systems is often referred to as the
Initial-Value Problem (IVP) and requires that the initial conditions are provided.
However, it is often the case that due to experimental limitations some of the
modeled proteins cannot be measured. Given this case, initial conditions can also
be estimated.

When solving this problem, three very important aspects have to be kept in
mind. The first is that the problem is nonlinear and non-convex [12]. There is
no method in current literature that is able to solve problems of arbitrary size
with guaranteed solutions in a reasonable amount of time. The second is that the
problems are ill-posed due to so-called called practical® and structural limitations*.
Finally, even if a solution can be uniquely determined, limitations due to the
non-linearity of the problem arise, since often small changes in the data cause
large variations in the estimated parameter values (this characteristic is typically
referred to as ill-conditioning).

The model selection problem is more general than the parameter estimation.
Generally, the goal is to use the experimental data to discriminate a set of hypoth-
esis consistent with the available knowledge about a system [160|. As previously
mentioned the behavior of pathways from each cell-line is highly dependent on the
expression profiles. Thus, even if the possible interactions are well characterized
the signals are relayed differently depending on the cell type.

The inputs to this problem are a Protein Signaling Network (PSN)°, a data-
set consisting of measurements from PTMs in proteins measured at different time
points obtained upon multiple perturbations. In this problem, PSNs are an impor-

tant source of information. However, these can not be used to generate a predictive

2The Boolean gates are not generally known from literature only sign and interaction.

3Unique solutions for the parameters cannot be located because the data does not contain
the necessary information or is corrupted with to much noise.

4Unique solutions for the parameters cannot be located because of deficiencies in the model
structure or poor choice of selected observed.

5A protein signaling network is a directed graph where edges are directed and the sign (acti-
vation) is known.
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mechanistic model model in a straightforward manner [135].

Here, it is assumed that the network provided is correct in the sense that it
should contain at least all the interactions necessary to explain the data. All
potential pitfalls from parameter estimation problems apply here (if one assumes
that the parameters are not known). Besides the potential lack of identifiability
on the parameters, it is also possible that many model structures can explain the
data equally or similarly well. Here, the rule of thumb is to apply Occam’s Razor
principle, i.e. choose the simplest solution possible that explains the data.

Finally the most general problem is to recover the network topology®. However
in order to build a dynamic model from this graph we also need to specify the type
of functional interaction and the parameters defining the quantitative behavior of
the interactions. In this context the network inference can be seen as a sequence

of model selection problems.

1.3 Objectives

In this thesis the main goal was to develop and apply methods for reverse engineer-
ing of signaling networks from experimental data. The focus was put in models
developed using the formalism of logic-based ODEs, which represents systems in
a dynamic manner in cases where the stoichiometry and underlying biochemical
mechanism are unknown. To tackle this problem we identified a number of scien-

tific/technical objectives:

1. To formulate the problem (reverse engineering) as a model selection one and
solve it using an optimization framework in the form a non-linear program-

ming or a Mixed-Integer NonLinear Programming (MINLP) problem.
2. Address cases where prior knowledge is incomplete” or unavailable.

3. Address the lack of identifiability and improve the predictive skills of the

models.

6A direct graph that establishes causality

"Note that incomplete is meant here in a different sense that cell-type or context specific. A
typical Prior Knowledge Network (PKN) is considered to be complete but part of the interactions
might or not be present in the real biological system in a context specific manner.



1.4 Thesis organization and outline

4. Develop software tools to facilitate the usage of dynamic models with control

engineering principles.

1.4 Thesis organization and outline

In the Introduction, we started by motivating and describing the problem of in-
ferring signaling networks from phosphorylation measurements of cell-lines upon
perturbation.

In Chapter 2, we will review the systems biology literature and show how similar
problems have been addressed by other authors. It should become clear why our
problem is in many aspects different from similar problems in the literature which
explains why we applied different optimization strategies to solve these problems.
Chapter 2 will be finished by a brief review of the tools used to solve nonlinear
and MINLP problems.

In Chapter 3, we present an approach to reverse engineer logic-based ODE
models from experimental data. We formulate the problem as MINLP. The meth-
ods are applied to two in silico and one experimental case study and we were able
to scale up to a very reasonable problem size. A detailed analysis of performance
is shown using a number of optimization tools. In addition to the already exist-
ing MINLP methods, we developed a relaxation® specific for this problem which
improved convergence for larger problems.

In Chapter 4, we address the problem of inferring a dynamic model from ex-
perimental data in a purely data-driven manner. In this case, we were particularly
interested in the predictive skill of the model. This can be seen as an extension to
the work presented in Chapter 3. However, as no prior-knowledge was available to
constrain the size of the problem, we had to think of alternative data-driven ways
of doing this. The solution found was to use mutual information to derive an alter-
native to the PKNs which we call Data-Driven Networks (DDNs). These networks
are much denser than necessary and, thus, we combine our method with model
reduction techniques. Additionally, many different solutions gave similar results in

terms of descriptive power. To improve predictions about untested experimental

8The relaxation consists in transforming the more complex problem into an approximated yet
simpler to solve problem.
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conditions, we build a so called ensemble model that consists in combining the
predictions from individual models.

In Chapter 5 we describe a library to facilitate the implementation of dynamic
optimization problems in C. This library was used as means to accelerate the im-
plementation of three different problems; these are briefly discussed. The necessary
inputs to work with this library, its structure and performance gains obtained by
parallelizing certain tasks are also discussed.

In the last chapter, we present the conclusions reached during the development
of this thesis and a critical perspective on the achieved results, limitations of the

techniques and directions for future work.



Chapter 2

State-of-the-art

2.1 Logic models in Systems Biology

Systems Biology combines methods from biology with methods from mathematics,
physics, computer science and engineering to describe and model biological systems
[142] and arises from the need to summarize biological knowledge in a systematic
and holistic way. The idea is to understand systems at a global way and not merely
as the sum of the behaviour of their parts.

An important task in the systems biology field is the model building cycle.
Models are useful to deliver quick and non expensive testable predictions, which
are useful in several applications like developing new therapies [4] or optimizing
mutant strains used to produce metabolites of industrial interest [129]. Perhaps
an even more important feature of models is that they allow researchers to pose
new questions and help in the reasoning process using computational tools, before
performing laborious and often expensive procedures in a laboratory.

A corollary example of how these model formalisms can complement each other
is the work by Covert and Palsson [32], where regulatory and signalling networks
are combined with FBA (FBA). Here, Boolean logic is used for the regulatory layer,
being combined with FBA used for simulating the central carbon metabolism and
with ODEs for a detailed model of carbohydrate uptake control.

In 2012, such efforts culminated in the first whole-cell computational model

on an organism describing the life cycle of the human pathogen Mycoplasma gen-
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italium, in an effort that includes sub-models for all of its molecular components
and their interactions. This tremendous achievement required the integration of
28 submodels and several model formalisms [83].

Despite these efforts, it is imperative to acknowledge that it is yet too soon to
aim for an ODE-based whole cell model. However, interesting work by Kotte et.
al. [89] was recently published showing a medium scale E. coli model (comparing to
other state of the art ODE models in systems biology), which integrates aspects of
regulation with the central carbon metabolism, hypothesizing that metabolic fluxes
might actually have a much more important role in governing the cell homoeostasis
than what was previously thought.

Although these works are of indisputable merit, one major concern after in-
specting the model implementations is that those are typically built in a rather
ad-hoc manner, which makes the implementation of such integrated approaches a
very laborious task.

In the last years, there has been a growing interest in the application of logic
formalisms to systems biology. A recent paper 'Logic modelling and the ridiculome
under the rug’ [20] points out the limitations of sheerly relying on omics data which
is neither complete or fully correct and highlights the importance of using logic
models to complement existing information available in these data-bases.

Logic models were first introduced by by Kauffman in 1969 to model gene reg-
ulatory networks [85]. Since then, diverse adaptations from the original formalism
and methods to reverse engineer these models have been proposed. One example
of early reverse engineering algorithms is the work by Akutsu et. al. which pro-
posed a brute force approach which reverse engineers the Boolean function of only
a few top k regulators in a node by node fashion [1]. Gradually, these methods
evolved to accommodate continuous values (see [4], [21] and [90]) and to treat
these networks in global manner (instead of fitting Boolean functions node by
node) borrowing ideas from optimization and machine learning to avoid excessive
model complexity [21] [135].

Saez-Rodriguez and colleagues have introduced methods for reverse engineering
Boolean networks using sources of prior knowledge, such as PSNs [135], directed
graphs that can be obtained from public repositories of manually curated networks,
including KEGG, WikiPathways, Nature Pathway Interaction Database and Re-
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actome [97]. The point here is that although these curated large-scale PSNs are
useful in exploring complex biochemical pathways, they do not reveal how path-
ways respond to specific stimuli. Also, accumulation of molecular detail per se
does not automatically yield an improved understanding of the ways in which
signalling circuits process complementary and opposing inputs to control diverse
physiological responses [135].

In this work, the authors used a reverse engineering approach, in which the
original PSN was expanded to an hypergraph where all the possible logic gates
were represented and then used a meta-heuristic optimization strategy (in this
case, a genetic algorithm) to find which networks could best reproduce the data
with the smallest number of hyperedges. The basis of this model formalism lies in
the assumption that cells process information of certain stimuli by means of logic
decisions.

The software CellNOptR [158] implements the Boolean logic and related for-
malisms and is designed to reverse engineer Boolean models, mainly in a protein
signalling environment, given data from perturbation experiments. In a recent
review by Macnamara et. al. [97], the different formalisms are explained in detail
and examples are provided, being the main difference the way time is handled.
Amongst these formalisms, the one which is most suited to handle time series in
a precise manner are logic-based ODEs where the main idea is to transform the
logic model into a continuous homologue in the form of ODEs.

Logic based-ODEs, in the form we will use in this thesis (i.e. multivariate
polynomial interpolation), were first introduced by Wittman et.al accompanied
with a software tool called Odefy [90]. Although, to the best of our knowledge, this
is the most successful method for converting logic-models into ODEs, other authors
have developed similar methods (see [103] and [41]), where the main disadvantage
is that these formalisms are not able to represent all the types of logic gates.

The major advantage of using this formalism is that no information about the
biochemistry (e.g. stoichiometry or type of kinetics) is needed. On one hand, we
can use this formalism to represent the same type of mechanistic insight provided
by Boolean logic models and, on the other, we get a model of differential equa-
tions which allows us to do accurate dynamic simulations for the state variables

trajectories.
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Nevertheless, there are several disadvantages when compared with other purely
qualitative approaches like Boolean logic models. The multivariate polynomial
interpolation method generates a large number of free parameters, which have
to be estimated. Obtaining accurate estimates for these parameters is far from
being a trivial task. As opposed to other kinetic models, there is no biochemical
information about the parameter values. In previous work [65] (under the scope
of a master thesis done by the author), we have addressed this problem by using

optimization meta-heuristics, like scatter search, combined with local methods [48].

2.1.1 The Logic Based Ordinary Differential Equation For-

malism

Boolean logic models describe the flow of information inside the cell by means of
discrete states that can assume either the values 0 or 1. Each state ¢ is, therefore,
represented by a binary state that is systematically updated according to a Boolean
function B;(z;1, T2, ..., Tin ), applied to another binary state serving as an input to
the specified function.

This model formalism assumes cells process information by means of logic deci-
sions, an approximation that is known to be accurate in some cases. For instance,
if a specific protein is to be phosphorylated in two specific sites by different kinases,
this can be modelled as a logic conjunction (AND gate). On the other hand, if two
different kinases can bind to the same site activating the propagation of a certain
downstream signal independently this can be regarded as a logic disjunction (OR
gate). Furthermore, if a signal inhibits the propagation of another one, this can
be depicted as a negation (NOT gate).

Every possible Boolean function can be represented by means of a truth table.
Such tables represent the input/output relationship of specific Boolean functions.
For instance, the AND, OR and NOT gates would be represented according to the
Tables 2.1, 2.2 and 2.3. Additionally, to represent every possible truth table and,
therefore, every possible Boolean function, only these three gates are necessary.
A graphical representation for these gates is shown with the standard symbols in
Figures 2.1(a) to 2.1(c) and in a hypergraph form in Figures 2.1(d) to 2.1(f).

To represent Boolean functions, it is common to make use of Boolean algebra.
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Boolean algebra is a form of symbolic logic that shows how logic gates operate [159].
The Boolean expression A- B + C' =Y would be read as: (A negated AND B ) OR C
equals the output Y.

L ) o P

(a) The AND gate rep- (b) The OR gate repre- (¢) The NOT gate rep-
resented as digital cir- sented as digital circuit. resented as digital cir-
cuit. cuit.

\/

Y Y Y

—

(d) A AND B activate Y. The (e) A OR B activate Y. The (f) The NOT gate is
AND gate is represent by an OR gate is represent by two represent by an edge
hyperdge. edges. with negative sign.

Figure 2.1: Representation of the different gates

Moreover, there are two canonical forms to represent truth tables with Boolean

Algebra, the Sum of Products (SoP) and the Product of Sums (PoS). In SoP
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Boolean algebra, expressions are represented by the so-called miniterms (products)
composed by logic variables that can appear only once in each product and may
be negated or not. The previously used example A- B +C =Y is an example of
an SoP.

To describe Boolean logic models, CelNOptR uses a graph structure (incidence
matrix), where hyperedges represent miniterms (products) and simple edges de-
scribe sums. In biological terms, each miniterm and therefore each edge, describes
a reaction where a set of conditions must be fulfilled to allow or block the propaga-
tion of a downstream signal. The incidence matrix records the target and direction
of the reaction. Nevertheless, to mark the presence of negations, another matrix is
required [88]. To illustrate this, the example A- B+ C' =Y is represented in the
Tables 2.4 and 2.5.

Reaction 1 | Reaction 2 . .
Reaction 1 | Reaction 2

A -1 0
A 1 0

B -1 0
B 0 0

C 0 -1
v ) 1 C 0 0
Y 0 0

Table 2.4: Hypergraph representation of Table 2.5: Representation of logic nega-

A-B+C =Y. The hyperedge equiva- tions in expression A-B+C =Y. The

lent to reaction 1 goes from A (-1) and o . o .
B (1) to Y(1). The edge equivalent to negation in reaction 1 (A) is encoded with

reaction 2 goes from C to Y. the 1 value.

The idea in logic-based ODE models is to convert each Boolean update function
(B;) into a continuous homologue (B;), where the species ; is allowed to take
continuous values between 0 and 1, x; € [0,1] , and its temporal behaviour is

described by:

) 1, =
T = ;-(Bi(fﬂ,fcﬂ,...,@j) — T;) (2.1)
where 7; can be interpreted as the life-time of the species x; and species Z;; is a
regulator of z;.
In order to achieve a continuous homologue, Krumsiek et al. [90] introduce

HillCubes. These functions are based on multivariate polynomial interpolation
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and incorporate Hill kinetics, which are known to provide a good generalized ap-
proximation of the synergistic dynamics of gene regulation .

To obtain HillCubes, a first transformation method is required to reach a con-
tinuous homologue from the Boolean update function. Tables 2.6 and 2.7 provide
an example on how an AND and an OR gate, respectively, would be transformed
into so-called BoolCubes, which are obtained by multi-linearly interpolating the

Boolean update function:

1 1 1 N
B{(Il, Loy oeny $N) = Z Z Bi(l’l,l‘g, cevy l’N)' H (.Tl.fz + [1 - IZ][I — fz])
z1=021=02zn=0 i=1
(2.2)

T1 | X2 Bz BZI = Z
0(01]O0 0
0(11]0 0
11010 0
1 1 1 T Ty

Table 2.6: Multivariate polynomial interpolation of an AND gate

Although BooleCubes are accurate in the sense that B; and B agree with
the vertices of the unitary cube [90], they fail to represent the typical sigmoid
shape switch-like behavior, often present in molecular interactions. The second

transformation method is the introduction of Hill functions to achieve this goal:

H/—
[ (@) = TR (2.3)
Ty | 2o | By | BI=Y"
0(01]0 0
01| 1]z (1l—a)
110 |1 | (1—xz)
1 1 1 T+ Ty

Table 2.7: Multivariate polynomial interpolation of an OR gate
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The coefficient n is a measure of cooperation of the interaction, since it deter-
mines the slope of the curve, while the parameter k sets the threshold where the
activation is half maximal [172].

Since HillCubes never assume the value 1 (but instead approach it asymptot-
ically), these are not accurate and, therefore, not perfect homologues. A simple
solution for this is to normalize Hill functions to the unit interval:

Hn (- S ()
FME) = (1) (2.4)

In Figure 2.2, it is possible to see how the normalized Hill functions vary
according to the parameters n and k& and the input value z. A further discussion
about continuous homologues and the methodology to obtain logic-based ODE

models can be found in [172].
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Figure 2.2: Normalized Hill function depending on the parameters
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2.2 Methods for reverse engineering

One of the main objectives of this work is to find a suitable formulation that
allows us to infer a Boolean network from a source of prior knowledge within the
logic-based ODE framework. In a first stage, we focused in identifying the logic
gates starting from a source of prior-knowledge which indicates explicitly which
interactions exist. In a second advanced phase, we will expand the methods to
be able to identify potential missing interactions or, as a more ambitious goal, to
be able to fully reconstruct the networks from time-series data. In this section we
offer an overview of the current perspective about these two problems in the field

of computational systems biology.

2.2.1 Parameter estimation: the frequentist and the Bayesian

point of view

Frequentist methods! for estimation of model parameters search for the parameter

vector 6 that minimizes the likelihood function?:

CTITT - e = L (@)
L(xlﬁ)—HH\/m p( 2( - >> (2.5)

k=1 1=1
where 02 is the estimated measurement error expected to be normally distributed
for this version of the likelihood [13|. But what if there are several models or
even parameter configurations which fit the data equally well? In the case of
parameter estimation this is a common pitfall and has been well described in the
literature 8] [10].

For parameter estimation, identifiability problems can be divided in two groups,
structural and practical. Structural identifiability is a feature determined by the
model structure and not the experimental data [31], being often derived from re-
dundant parametrization. As an example consider the following differential equa-

tion:

! Also known as maximum likelihood estimation.
2In fact for computational reasons one typically minimizes the log-likelihood which shares the
same minimizer.
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dx
— = ky- ko 2.6
di 1Ry ( )

where k; and ko appear only once in a given ODE model where Cfi—f describes the
trajectory of x. Here it is obvious that k£ and k5 can assume any value since one can
compensate the other. However this type of problems are usually non-trivial and
typically require the application of methods performing symbolic manipulations.
Chis et. al. highlight that there is no method amenable for every model [31].
Moreover, in order to solve structural identifiability problems modification, of the
model structure is required (e.g. model reduction).

On the other hand, practical identifiability can be addressed with optimal
experimental design. This type of lack of identifiability is originated by insufficient
quality (e.g. mnoise) and/or quantity of data. To solve this problem, we first
need a metric to quantify the lack of identifiability. Ideally, we want to obtain
a confidence interval (or an approximation) for the accuracy of the parameter
estimates. For this purpose, a widely used method is the Fisher Information
Matrix (FIM) [13], [8] [10].

The Bayesian methods for inferring parameters are interesting in the sense that
these allow (under certain conditions) a very precise way to model the propagation
of uncertainty in the parameters to the model predictions. In Bayesian inference,
the key idea is that the posterior distribution P(f|y) is iteratively updated by
sampling parameters vectors () from a prior distribution (P(6)) and computing

the likelihood function (equation 2.5):

L(yl0)P(9)

P(fly) = Py

(2.7)

where y is the experimental data and P(y) is the marginal probability distribution
which is typically treated as a normalizing constant factor since it is only possible
to compute for very low dimensional problems [171]. If the problem is identifiable
and one has narrow distributions for the parameter priors these methods should
work well. However the existence of strong (i.e. constrained) meaningful priors for
kinetic parameters in systems biology is rare. Additionally, specially in the absence
of strong priors and considering a large number of parameters (i.e. the curse of

dimensionality), the computational cost can rapidly become infeasible [126]. If the
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problem is not structurally or practically identifiable there is a risk of applying
great amount of computational effort with little change of convergence.

An interesting view by Raue et. al is that frequentist and Bayesian methods
should work together [126]. More specifically they propose the use of a technique
called Profile Likelihood Analysis (PLA) to first constrain the prior distribution
before using the Markov Chain Monte Carlo (MCMC) methods which allows a
better assessement of the uncertainty in the model predictions. PLA is typically
used for practical identifiability analysis and (arguably) structural identifiability
analysis [125] [150]. The idea in profile-likelihood is not too far from bootstraps or
the jack-knife method. However, instead of perturbing the data, the parameters
are fixed one by one in several different values and the rest of the parameters is
re-optimized. By looking at the profile of the likelihood function it is possible to
draw conclusions about the identifiability of the parameters.

More robust methods are Bootstraps or the Jack-knife method. The parametric
bootstrap method works by repeating parameter estimation a large number of
times introducing noise (equivalent to the assumed experimental error) in the
simulated data®. Assuming that optimal or near optimal solutions are always
achieved it is possible to derive a confidence interval for the parameter estimates
[80]. Jack-knife works similarly but instead of perturbing the data with random
noise a data-point is omitted for each new estimate. Although these methods are
indeed more robust, the price to pay is that due to the need of repeating parameter

estimation a large number of times the computational cost increases very rapidly.

2.2.2 Finding Logic Gates: a model selection problem

To find the logic gates which best describe the behaviour of a given network given
known interactions, we will be interested in a formulation similar to what was
used by Saez-Rodriguez et. al. [135] within a Boolean logic framework or by
Morris et al. within the constrained fuzzy-logic formalism [111]. The idea here
is that starting from a directed graph containing the interactions and their sign
(activating or inhibitory), we can obtain an expanded hypergraph containing all

the possible gates, where edges with two or more inputs (hyperedges) represent a

3This is equivalent of resampling the residuals.
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logical conjunction (AND gate) and single edges represent a logical disjunction (OR
gate). To calibrate such models (M), the authors formulated the inference problem
as a binary multi-objective problem, where the first objective corresponded to how
well the model described the experimental data and the second consisted in a

complexity penalty to avoid overfitting:

Ffitness(M) + a- Fcomplea:ity<M) (28)

where Fipness(M) is the mean squared error and a- Fiompiexity (M) is the product
between a tunable parameter o and a function denoting the model complexity
(AND gates and OR gates receive twice the penalty of a simple activating or
inhibiting edge). Figure 2.3(a) shows a network containing all possible logic gates
and figure 2.3(b) shows a network after calibrations.

This problem was solved by means of a genetic algorithm implemented in
CellNOptR [158] and previously solved by other authors in more elegant, yet less
accessible formulations, such as Integer Linear Programming (ILP) [109] or Answer
Set Programming (ASP) [165].

Constrained fuzzy logic (also implemented in CellNOptR) searches for a net-
work topology (or more precisely a family of networks) which can best represent
the experimental data. Nevertheless, constrained fuzzy logic, uses normalized Hill
functions in its transfer functions and must also search for a set of k parameters
(the parameters n are fixed). To handle this, the authors discretize the k parame-
ters into low, medium and high values, thus transforming it into a discrete problem.
To solve this problem, Morris et. al. [111] used a discrete genetic algorithm.

Also, Mitsos et. al. proposed a non-linear programming formulation for esti-
mating the parameters and a MINLP for calibrating both parameters and struc-
ture [108]. These formulations are particularly relevant for the problem under
study here and will be further discussed in the following section.

Similarly to what is described in [135], covering the whole search space is, in
most cases, infeasible since the it grows exponentially with the number of decision
variables. Even if we could evaluate the whole search space of binary variables, we
would still need to solve an NonLinear Programming (NLP) sub-problem for each

set of decision variables. In previous work [65], we have addressed the parameter
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(a) An expanded hypergraph contain- (b) An optimized model , as seen in [135].
ing all the possible gates, as seen
[135].

Figure 2.3: Ilustration of the method from Saez-Rodriguez

estimation problem for this kind of problems. Specially for larger models, solving
the parameter estimation problem is difficult due to its highly non-linear and
non-convex nature and, consequently, the large number of evaluations needed.
Furthermore, solving each IVP, tends to be quite expensive and, in the case of the
parameter estimation problem, is usually the main bottleneck.

Rodriguez et al. have proposed a MINLP formulation based in the Akaike
Information Criterion (AIC) to select between several competing hypothesis [131].
The AIC favors simpler solutions (2K — 2L(y|#)). The derivation of the AIC is
relatively complex and we will not detail it here, however for further detail on
theoretical aspects of the AIC we direct the reader to [25]. Besides the statistical
sound arguments provided by the bias-variance framework?, simpler solutions are
typically easier to analyze and it is part of the scientific culture to assume the

simplest solution is the most likely to be true [44].

4There are several other statistical/mathematical frameworks that support the Occam’s Razor
argument (see [44])
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The results of AIC are reliable only under very particular assumptions (when
parameter posteriors are unimodal and almost multivariate normal [87]) and the
Bayesian framework is argued to be a much better tool for this purpose. Never-
theless, in contrast with the parameter inference problem, the computation of the
marginal distribution P(y) for the models (M) and parameter sets 6 requires the

approximate solution of the integral:

/P(y|Mi79i> - P(05| M;)do; (2.9)

something which is only possible for very small problems (less than a few dozen
of parameters®). For larger problems the uncertainty in the model trajectories can
also be predicted by data-resampling methods (e.g. bootstrap) [87,147,171| with
similar assumptions to those made in the Bayesian framework [87]. Note that while
this is extremely computationally demanding, it scales up relatively well compared
with thermodynamic integration procedures used to compute P(y) [27].

Vyshemirsky & Girolami [171] point out that the high order differential equa-
tion models used in biological research can bring about complex nonlinear like-
lihoods rendering the results provided by AIC unreliable. However due to the
existing limitations in computational power and for practical reasons, the AIC
and the Bayesian Information Criterion are still part of the arsenal used to per-
form model reduction and selection of nonlinear biological models and are widely

used [25,87] despite of its known limitations.

2.2.3 The general network inference problem

The previous ideas can be used to some extent in the network inference problem
(beyond finding the logic gates) in the sense that at least in principle it should
be able to tell us which links appear not to be present according to the PKN.
However, it cannot tell us anything on how to expand prior knowledge by means
of experimental data. Additionally, what happens if there is no source of prior
knowledge at all? Then, we would be faced with the more general problem of

network inference which is discussed in detail for gene regulatory networks in the

®See recent studies with approximated Bayesian computations [162], [161], [171]
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reviews [62], [17] and [39].

The Dialogue for Reverse Engineering Assessments and Methods (DREAM)
challenge provides a framework where different research groups can test their algo-
rithms for diverse reverse engineering problems relevant to systems biology in the
form of a competition. In the third edition of the DREAM competition [121], a
particular challenge of interest was the reverse engineering of an in silico network
which is discussed in detail in [100]. The in silico data was generated by lin-
ear and non-linear (Hill type kinetics) dynamics for translation and transcription
respectively.

The DREAM challenge organizers compared the performance of 29 methods,
where most of these achieved predictions were not statistically more significant
than random predictions. Interestingly, there were methods from all the most
common types of inference algorithms, like information-theoretic, Bayesian and
ODE based. Also, there seemed to be no correlation with the type of method used
and the quality of the results implying that results were related with particular-
ities in the implementation done by each team. The winning team combined an
information-theoretic with non-linear differential equations to treat two types of
data (steady-state and continuous) [174]. Also relevant here is that most methods
(with the exception of the best performer) systematically failed to predict combined
regulation, i.e. links with an in-degree greater than 1, thus making a strong point
for the development of network inference methods based on logic-based ODEs.

An approach borrowing ideas from ODEs and Boolean logic is the Inferelator
[21]. This method combined these with information theoretic scores and did very
well in the DREAM 3 [98] and 4 [57]. This method encodes ODEs as:

Wi
dt
where % corresponds to the gene variation depending on its various regulators x;.

Each parameter x;; has a corresponding weight parameter 3;; with a corresponding

= —y+9(Buzit, -, BinTin) (2.10)

weight, and the parameter 7 is related with the species half-life.
In its original version (1.0), Inferelator handles simple Boolean functions (AND,
OR and XOR) with the min/max approach of only two regulators. For instance

the equation:
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9(Binwir) = Bray + Bowa + Bamin (a1, 2) (2.11)

would correspond to an AND gate with § = [1 0 0] and to an OR gate if § =
[—1 1 1]. The ODE is approximated with finite differences:

. Ym+1 — Ym
At,,

Despite some similarities with the logic-based ODE framework, this approach

+ Ym = 9(BaTiry vy BinTin) (2.12)

is in a strict sense closer to a supervised learning problem, like a neural network
rather than typical applications evolving kinetic models or control engineering. In
this framework, all regulators are measured and the model only has to be able
to predict the next step instead of its whole trajectory. Also interestingly, for
predictor selection, the authors used the L1 LASSO shrinkage criterion, where
the shrinkage parameter is determined by cross validation to avoid overfitting.
As long as we are able to keep reasonable computational cost, borrowing ideas
from information-theoretic and machine learning might be helpful. Other similar
methods apply L1 for inferring chemical reaction networks [9] or more recent ideas
such as compressive sensing [115].

A closely related method to the objective of this work is the algorithm Mixed
Optimization for Reverse Engineering (MORE) by Sambo et. al. [139]. Their
authors propose a bi-level optimization where the discrete (binary) level commu-
nicates with the continuous (NLP) level and vice versa. For model representation,
the authors use a structured formalism formally identical to dynamic recurrent
neural networks:

dx ki

dt 1+ e*(Zjﬂ ,,,,, n @i T+, nbilug‘)

producing a sigmoid which depends on other dynamic variables (z;;) and external
inputs (u;;). Parameters a;; and b;; regulate the relative importance of each.
Additionally, there is a linear degradation term depending on the parameter k;,.
The authors point as a major advantage the use of numerical integration instead
of trying to estimate the derivatives directly from temporal data, which amplifies

noise (e.g. the Inferelator). However, it is also true that the introduction of many
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non-linearities and parameters is likely to cause identifiability issues. Still, the bi-
level optimization approach makes it easier to add common biological constraints
such as sparsity and the introduction of prior knowledge. Nevertheless, when
compared to the logic-based ODE, this modeling approach does not handle Boolean
expressions of any type and, thus, the ability to gain mechanistic insight from the
system seems rather limited.

It is important to highlight the importance of using biological constraints like
the assumption of sparsity which can be introduced explicitly (e.g. maximum
number of regulators) or implicitly (e.g. complexity penalties). For instance,
Akutsu et. al. were able to use a brute force approach for reconstructing a Boolean
network simply by assuming a small maximum number of regulators per gene |[1]
(note that here only input/output relations are considered and not the network as

a whole).

2.3 Mixed Integer Programming and Relaxations

Both the model selection and the network inference problem can be handled as
MINLP formulations. Here, we will discuss the state of the art methods to solve
this type of problems putting more emphasis in meta-heuristic approaches and
how to implement the constraints or penalties to solve the problem in an efficient
manner.

An important disclaimer is that most of the methods have been developed to
solve control engineering problems and are deterministic. Additionally, current
technologies for solving this type of problems are not anywhere close to what
has been done for Linear Programming (LP), NLP or integer programming [130].
These problems combine both the difficulties of solving non-linear, non-convex
problems and those typical of combinatorial problems.

Bansal et al [18]| discuss a set of strategies typically used to circumvent the
use of Mixed-Integer Dynamic Optimization (MIDO) methods. A first approach
is trying to transform the problem into a purely continuous NLP which is much
easier to solve. For instance, the integer variable y which can assume the values

of 0 and 1 could be represented in a smooth manner by:
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y = %[t(mgh(ﬁx) + 1] (2.14)

where (3 is a large positive number and y will tend to 1 for x > 0.

This is, in practice, similar to what was implemented by Mitsos et. al. in [108|.

In this sense, the choice of global stochastic optimization methods appears as
a reasonable choice. Although these cannot offer guarantees about the optimality
of the solution, if the problem is not pathologically ill-posed, stochastic methods
are often able to locate its vicinity in reasonable computational times [128]. An
additional feature of these methods is that usually these do not require a trans-
formation of the original problem and we can treat them as a black-box.

Although most MINLP bibliography focuses on deterministic methods, these
authors often end up discussing the previously mentioned benefits and drawbacks
of stochastic methods. Two methods widely referred are Mixed Integer Tabu
Search (MITS) [175] [53] and Ant-Colony for Mixed Integer (ACOmi) [26] [24].
The implementation details of these methods can be found elsewhere [49] [143]. It
is worth highlighting that a key characteristic of both methods is that the stochas-
tic algorithm is combined with a local solver called MISQP, a local method based
on Sequential Quadratic Programming [113]considered to be the state of the art
for this purpose.

A drawback pointed by [33] is that stochastic algorithms often have difficulties
with highly constrained problems. However, this is in many cases caused by inef-
ficient implementation of the constraints which often relies exclusively in the use
of the so-called death penalty, where an extremely large fitness value is given to
an infeasible solution.

A final note is that the access to computing clusters with many cores is nowa-
days something common amongst research groups (including the host groups of
this work). Specially within the framework of stochastic (black-box) algorithms, it
makes sense to use high performance computing methods to increase the portions
of the search space we can explore. A method published recently [167| applies
an iterative communication schema between different parallel optimization runs.
In order to ensure proper exploration and exploitation, each optimization run has

its own fine tuning parameters. An interesting feature of this approach is that
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it appears to be highly extensible to most stochastic optimization methods with

reasonable effort.






Chapter 3

Reverse engineering of logic-based
differential equation models using a
mixed-integer dynamic optimization

approach

This chapter reproduces integrally the work accepted for publication in Bioinfor-
matics in May 2015.

3.1 Introduction

In recent years, there has been a growing interest in the application of logic for-
malisms to systems biology, and in particular to model signal transduction [2,138§].
The basis of this model formalism lies in the assumption that cells process infor-
mation of certain stimuli approximately by logic circuits, and their simplicity, and
their simplicitly makes them particularly amenable to model large networks and in-
tegration of pathway knowledge from databases and high-throughput experimental
data [20].

Logic models were first introduced by [85] to model gene regulatory networks.
Since then, diverse modifications from the original formalism were developed. In

particular various extensions have been developed to accommodate continuous val-
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ues(e.g. [4,19,21,38,103,172]). Amongst these formalisms, logic-based ODEs are
well suited to handle time series in a precise manner. The main idea is to trans-
form the logic model into a continuous homologue in the form of ODEs. Since
it is based on a logic circuit, this formalism does not require information about
the biochemistry (e.g. stoichiometry or type of kinetics), and at the same time,
since it provides a model of differential equations, we can accurately perform dy-
namic simulations for the state variables trajectories. Several methods have been
proposed in the literature to transform Boolean logic model into ODE approxi-
mations [21,103,172|. CellNOpt, relies in multivariate polynomial interpolation
introduced by [172].

Logic formalisms has been used to reverse engineer biochemical networks from
data. One early example is the work by [1] which proposed a brute force ap-
proach that infers the Boolean function of a few top k regulators, node by node.
Other methods treat these networks in a global manner (instead of fitting logic
functions node by node) borrowing ideas from optimization and machine learning
to avoid excessive model complexity [21,135]. In [135] networks derived from of
prior knowledge, from e.g. public repositories of manually curated networks, are
expanded into an hypergraph, where all the possible logic gates are represented
and optimization strategies are used to find which networks could best reproduce
the data with the smallest number of hyperedges. This method is implemented in
the software CellNOpt [157| for various logic formalisms and is designed to reverse
engineer Boolean models, mainly in a protein signaling environment, given data
from perturbation experiments.

Here, we present a mixed-integer global optimization approach for the prob-
lem of reverse engineering signalling and regulatory networks as logic-based ODEs
from a source of prior-knowledge containing multiple possible regulation links and
experimental data. In this work, we formulate the problem of identifying the
logic gates as a simultaneous model selection and parameter identification prob-
lem. From the optimization point of view, this corresponds to a MIDO problem.
Although MIDO problems are typically hard, we show here that solutions can
be achieved for rather complex networks by applying certain global optimization
meta-heuristics.

Only a few authors have considered the use of MINLP for reverse engineer-
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ing purposes. [139] proposed the algorithm MORE, which consists in a bi-level
optimization where the discrete (binary) level communicates with the continuous
(NLP) level and vice versa. For model representation, a structured formalism,
formally identical to dynamic recurrent neural networks, is used. [59] have pre-
sented a deterministic method for identification of regulatory structure and kinetic
parameters in biochemical networks, transforming the MIDO problem into an ap-
proximated large-scale MINLP, which was then solved by a nonlinear branch and
bound method. To avoid local minima the authors provided high quality initial
solutions to the solver. These solutions were obtained by solving a set of relaxed
problems from different starting points. Despite these advances, the major draw-
back of deterministic global methods is that the computational effort increases
very rapidly with problem size. More recently, [134] have shown how to apply
MINLP to perform simultaneous model discrimination and parameter estimation
in dynamic models of cellular systems.

This paper is organized as follows: first, we present the formulation of the
MIDO problem making use of logic-based dynamic models. Then we present a
solution strategy based on global optimization metaheuristics. Next, the perfor-
mance and capabilities of the new approach are illustrated with several reverse
engineering case studies: a synthetic pathway of signaling regulation, a signal
transduction pathway in bacterial homeostasis, and a signaling pathway in live

cancer cells. Finally, the main conclusions are outlined.

3.2 Methods

3.2.1 Problem formulation

In order to find the logic gates which best describe the behavior of a given net-
work, we will be interested in a formulation similar to what was used by [135]
within a Boolean logic framework or [111] within the constrained fuzzy-logic for-
malism. The idea here is that starting from a directed graph containing only the
interactions and their signs (activating or inhibitory) we can obtain an expanded
hypergraph containing all the possible gates where edges with two or more in-

puts (an hyperedge) represent a logical conjunction (AND gate) and single edges
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represent a logical disjunction (OR gate).

The problem can be formulated as the following:

ne
on.s

minimize  F(n, k, T, w) E g
n,k,m,w

e=1 o=1 s=1

subject to  Egup = {eilw; =1}, i =1,. .., Nhyperedges
Houwr = (V, Esuv)
LB, <n < UB,
LB, <k < UBy
LB, <7 < UB-,
T = f(Heup, T, k, T, 1)
z(ty) = Zo

Yy = g(Hsubafunu k77—7 t)

(3.1)

where H g, is the subgraph containing only the hyperedges (Eq.p) , defined by the
binary variables w. Additionally n, k and 7 are the continuous parameters needed
for the logic-based ODE approach. These parameters are limited by upper and
lower bounds (e.g. LBy). The model dynamics (Z) are given by the function f.
This set of differential equations varies according to the subgraph (and therefore
also according to the integer variables vector w). Finally, the system of differential
equations has to be solved to obtain the simulated data. The objective function is
the squared difference between the simulated data (y) and the experimental data
(g) and our goal is to minimize this value for every experiment (¢€), observed species
(0) and sampling point (s). The simulation data y is given by an observation

function g of the model dynamics at time ¢.

3.2.2 Solving the mixed integer dynamic optimization prob-
lem
The problem considered in this work belongs to the category of network reverse

engineering, where the objective is to simultaneously determine network topology

and continuous mode parameters which explain a given set of data. The network
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contains a series of possible regulatory mechanisms and our goal is to find the
set that best describes the data. Our dynamic formulation, shown in the previous
section, makes use of logic-based ODEs. Essentially, the binary variables define the
structure of the system of ODEs describing the dynamic behaviour. Additionally,
a set of continuous parameters modulating those dynamics need to be estimated.
From the optimization point of view, this problem belongs to the class of MIDO.

In general, model calibration of a nonlinear dynamic model is a difficult task.
Due to the nonlinear and constrained nature of the system dynamics, these prob-
lems are multi-modal (non-convex) [12,166]. The MIDO considered here augments
the difficulties of solving non-linear, non-convex problems with those typical of
combinatorial problems.

MIDO problems can be solved using deterministic or stochastic global optimiza-
tion methods. Regarding deterministic methods, these offer guarantees of global
optimality, and significant advances have been made recently(for example, [59]).
However, these still suffer from the major drawback of deterministic global meth-
ods, i.e. computational effort increases extremely rapidly with problem size.

Stochastic algorithms for global optimization can not offer guarantees of global
optimality, but usually converge to the vicinity of the global optimum in reason-
able computation times, at least for small and medium scale problems. However,
for larger problems their computational cost is very significant [110]. Hybrid ap-
proaches try to combine the best of the two worlds by combining global stochastic
methods with efficient (local) deterministic optimization methods [16,133]. In this
context, metaheuristics (i.e. guided heuristics) have been particularly successful,
ensuring the proper solution of these problems by adopting a global optimization
approach, while keeping the computational effort under reasonable values thanks
to efficient local optimization solvers [132].

In this work, we have chosen a recent metaheuristic based on the combination
of an enhanced Scatter Search (eSS) method as global solver [47] with a Mixed-
Integer Sequential Quadratic Programming (MISQP) [50] local solver. eSS is an
evolutionary algorithm for complex-process optimization that employs some ele-
ments of scatter search and path relinking. MISQP is a trust region sequential
quadratic programming solver adapted to solve MINLP problems. In this code,

instead of solving continuous quadratic programs, the solution is approximated by
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a series of mixed-integer convex quadratic programming problems. In addition,
MISQP accepts black-box problems and, thus, does not require the problem to be
transformed into an algebraic form, a typical requirement of most MINLP meth-
ods. As shown below, we compared the performance of eSS with two other modern
metaheuristics, ACOmi [143] and MITS [49]. For the class of problems considered

here, we found that eSS consistently provided the best results.

3.2.3 A multi-phase scatter search with relaxed MINLPs

The MIDO problem formulated above is extremely challenging to solve. Although
the initial results obtained with the eSS method [47] were promising, a second
objective of this work was to improve the algorithm in terms of convergence speed
while keeping robustness in order to ensure a good scale-up for realistic applica-
tions. For this purpose, we have devised a Multi-Phase enhanced Scatter Search
(MPeSS) strategy which, in a first phase, computes intermediate solutions of re-
laxed MINLPs and, in a second phase, uses them as initial points for solving the
original MINLP.

In order to reformulate a relaxed problem, we consider each hyperedge to be
associated with a continuous weight instead of a binary variable. Each weight will
appear as an additional term in its corresponding minterm from the truth table.
When several weights affect a single minterm, then we can apply the multivariate
polynomial interpolation of an OR gate. Table 3.1 and Figure 3.1 illustrate the
problem formulation where variables #7 and 75 represent two different inputs: only
w, activates Y'; only ws activates Y'; w; and wsy are required to activate Y.

When solutions are of a binary nature this formulation holds exactly the same
solution as the previously shown for the MINLP case. So far, this reformulation
produces an over-parameterized problem which does meet the basic constraint that
each hyperedge can only be present or not present. Thus, to enforce that solutions
for w tend to be of a binary nature, we add a penalty. The objective function to

be minimized becomes:

Fpy= (0 —v)*+ P (3.2)
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P=a> pu, (3.3)
1=0
Doy = (3.4)

1 —w;, if w; > 0.5,

where P,, is the penalty associated with the deviation of each w; from the

nearest binary value (0 or 1).

T | T2 Bl(fl,f2> = ...
0100 (1—ay)(—mz)+
0|1 wy- (1 —2)- oo+
1 0 Ujg'.fl'(]_—fg)—}—
1 1 OR(wl,wg,wg)-fl-:Eg

Table 3.1: Truth table with weights representing the presence of hyperedges in
a continuous formulation for the graph shown in Figure 3.1. The multivariate
polynomial interpolation of the OR gate is used to make a smooth approximation
of a logical disjunction for the weights w,, wy and ws.

Figure 3.1: Diagram illustrating the association of the used weights (w) with each
hyperedge. There are essentially four options in this example: if w; is equal to one
Z7 activates y. If ws is equal to one, 5 activates y. If ws is equal to one and both
wy and wy are zero, 1 and Xy are required to activate y. If wy, we and ws are
equal to zero y is never activated. OR gates are implicitly represented as simple
edges.

The usage of this relaxed formulation to find MIDO solutions can be summa-

rized as follows:
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e In a first phase we solve the relaxed problem without any penalty to find a

set of continuous parameters which are able to describe the data well.

e The solution found in the previous iteration is used to restart eSS with a
given « penalty. Depending on the difficulty of the problem, this step might
consist on only one iteration or multiple phases with increasing o. If « is
increased too sharply, the penalty (P) will dominate over the goodness of
fit and we risk guiding the metaheuristic towards uninteresting areas of the

search space.

e In a final step, we apply eSS to solve the pure MINLP problem, where the
best solution from the previous steps is used as an initial guess (rounding

the previously relaxed variables).

3.2.4 Remarks on the tuning and performance assessment

of metaheuristics

Meta-heuristics for global optimization are approximate stochastic methods which
in general do not have proofs of convergence. Thus it is not possible to obtain an
analytical prediction of the effort it will take to arrive to a solution of a certain
quality. Similarly, it is not possible to ensure that the metaheuristic will arrive to
near-global solutions in every run. A related problem is the tuning of the internal
search parameters of the method. Although the eSS metaheuristic is mostly self-
adapting in that sense, we still need to choose a stopping criterion.

Due to this lack of theoretical guarantees and the stochastic behaviour of these
methods, one must resort to empirical tuning and performance assessments. We
have performed this tuning and assessment based on repeated runs of the methods
for each problem and the subsequent analysis of the convergence curves (objective
function values versus number of function evaluations) and the distributions of the
solutions found (see general discussion in [30]).

The analysis of these distributions for a number of trial runs allow us to choose
the stopping criteria. In general, stopping criteria for metaheuristics are based on
3 metrics [55]: (i) after a fixed number (budget) of Function Evaluations (FEs) (or,

similarly, computation time, or iterations) (ii) after a fixed number of iterations
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without improvement in the cost function (iii) when the cost function arrives to a
pre-set value-to-reach.

These criteria can be combined. In our study, we have chosen (i) because
criteria (ii) can be reached with premature stagnation in local optima, and criteria
(iii) requires a priori knowledge about the global solution. Criteria (i) is widely
used [144] and is particularly useful when the evaluation of the cost function is
computationally expensive (as in our study), since it also directly reflects practical

limits on computation time.

3.3 Results

3.3.1 Case study 1: Synthetic Signaling Pathway

In order to illustrate the methodology we now turn to a published model used
by [97]. This dynamic model is composed by 26 ODE and 86 continuous parame-
ters. It was initially used to illustrate the capabilities and limitations of different
formalisms related with logic-based models. Although this is a synthetic model, it
was derived to be a plausible representation of a signaling transduction pathway.
This model was used to generate pseudo-experimental data for 10 combinations
of experimental perturbations of 2 ligands (TNFa and EGF) and two kinase in-
hibitors (for PI3K and RAF1). From a total of 26 dynamic states, 6 were observed
(NFKB, P38, AP1, GSK3, RAF1 and ERK) and 5% of Gaussian noise was added
to the data.

Following the methodology described in [135], we obtained an expanded version
of this model containing every possible AND/OR logic gate given the initial graph
structure. This so-called expansion procedure generated a nested model comprising
34 additional variables, one for each hyperedge (Figure 3.2).

The model and experimental setup were implemented using Advanced Model
Identification using Global Optimization (AMIGO) [11]. The method of choice for
the simulation of the IVP was CVODES [145].

As described previously, when using stochastic methods the recommended prac-
tice is to run each optimizer a number of times to assess their performance based

on a distribution of results. This problem was solved in 30 runs by each method,
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Figure 3.2: Case study 1 (synthetic signaling pathway): Hypergraph showing every
possible logic gate consistent with the prior knowledge network. Strong red and
dark hyperedges correspond to gates present in the original model used to generate
the in silico data while gray and light red hyperedges show links not present in
this model.

ACOmi, MITS, eSS and MPeSS, using a budget of 6-10* FEs. In the case of
MPeSS this budget was equally distributed among three phases, with the first two
using relaxations with @ = 0 and o = 6, and with the third solving the original

problem.



3.3 Results

39

a) X 14 ‘
% 12 I VTS i
o) BN eSS
o 10r I ACO I
'_g 8 I \PeSS
S 6
> 4
e 2
[0}
3 0
4 10 20 30 40 50 60
I F(x)
b) 1.00 — o coemm @@ 00D OO0 :
° °
- 0.95} ® ec00 e ®0 ¢ aDE® 7
S 0.90+ A -
5 0.85} eme o ° ° i
8 ®@e o
2 0.80t -
0757 ® 6 o0 [ X o |
0.70 . . o _
065 I I I I I I
10 20 30 F(x) 40 50 60

Figure 3.3: Case study 1 (synthetic signaling pathway): (a) Histogram of the
final objective function achieved by each method across the multiple independent
optimization runs. (b) The accuracy of the obtained solutions as a function of the
objective function. Each dot describes the results of an independent optimization
run.

Figure 3.3b represents the accuracy of the obtained solution as a function
of the final objective function value achieved. Each dot describes the result of
an independent optimisation run. Near-globally optimal solutions, with a final
objective function value below a certain threshold, are always able recover the
correct solution. The accuracy is computed as (TP+TN)/(TP+TN+FP+FN),
where TP is the number of true positive, T'N the number of true negative, F'P the
number of false positive and F'N the number of false negative hyper edges when
compared with the correct solution (an accuracy of 1). Since the data has been

generated in silico with known structure (see Figure 3.2) and parameters we can
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compute the accuracy of the recovered model structures.

In Figure 3.3a, the histogram represents the distribution of final values achieved
by each method, by combining both problem formulations (relaxed and MINLP),
eSS is able to arrive to near-globally optimal values in approximately 47% of the
runs. Additionally the time-course simulations (Figure 3.4) indicate a very good
agreement with the pseudo-experimental data, which is also indicated by its low

root mean square error (Root Mean Squared Error (RMSE)) of 0.099, defined as:

>3 S — s
RMSE = | ===l . (3.5)

€
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Albeit no solver/configuration was able to recover the correct solution in every
run, the MPeSS, where relaxed solutions are initially generated to help conver-
gence, proved the most reliable. eSS was the second best method in terms of
locating the vicinity of the optimal solution, although it was closely followed by
ACOmi. MITS systematically failed to solve the problem for the considered FE
budget. Convergence curves for the tested methods can be found in the supple-

mentary materials (Figures S.2 and S.3);
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Figure 3.4: Case study 1 (synthetic signaling pathway): predicted versus observed
time-series for the best solution found (experiments 1 to 3), showing a very good

agreement of the simulation with the pseudo-experimental data used to calibrate
the model.
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3.3.2 Case Study 2: Application to the KdpD/KdpE two-

component signal transduction pathway

In this section, we consider a model of K regulation of the Kdpd/Kdpe two-
component signal transduction pathway in E. coli. The main components of this
system are the high-affinity K transporter KdpFABC and two regulatory pro-
teins, KdpD (sensor kinase) and KdpE (response regulator) [92|. The two proteins
regulate the kdpFABC operon, which is activated in response to K* limiting con-
ditions |63], restoring the intracellular K* concentration [81].

Recently, new experimental data has been generated using mutant strains with
impaired K© properties and diverse K™ stimulation conditions. Based on these
data, [134] have postulated the possible existence of two new possible feedback
loops and an alternative expression for a previous description of the stimuli coun-
teraction responsible for restoring K™ homeostasis. These new two feedback loops
affected the translation and proteolysis of KdApFABC. Here, we write the differen-
tial equation describing the dynamics of KdpFABC as a logic-based ODE:

dKdpFABC

- (3.6)
(W 1= g (BN 1y g o)
+0. [1 _ fHn (%ﬂ I (K dpF ABC)
+ OR(wi, ws, ws)- f1 (%)- (1 f#(KdpF ABO)|
g (NN, o gpp By
NOTMmRN A
— deFABC’)-TdeFABC, (3.7)

where norm,, gy 4 is a parameter, used to scale mRNA to values between 0 and

The expression for R3 controls the dephosphorylation of KdpEp:
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dR
d—tg = [wy fT(KdpFABC) — R3] g, (3.8)
where it is assumed that an the increase in the KdpFABC transporter will
decrease internal K concentration leading to an lower dephosporylation rate of
KdpEp. More information about the model structure and context of this model

can be found in the supplementary materials.
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Figure 3.5: Case study 2 (FE. coli homeostasis): The recovered model is depicted
by strong red and dark hyperedges. Excluded hyperedges are represented in gray
and light red.

To evaluate the ability of our method to describe and calibrate a model in
a realistic scenario where multiple hypothesis are postulated, we used the model
derived by Rodriguez-Fernandez and colleagues to generate pseudo-experimental
data. We considered 10 different scenarios by varying the external concentration
of K™ and by considering a wild-type and a mutant strain. The mutant strain
is modelled by removing the influence R3 in the dephosphorylation of KdpEp. In
the 10 experimental scenarios KdpFABC and mRNA were observed and perturbed
with 5% of Gaussian noise.

We executed 30 optimization runs for each solver, eSS, ACOmi and MITS. The
same budget of objective function evaluations was given to every run. In this case
due to the smaller size of the problem we did not see any improvement by using
MPeSS over eSS. The most robust method was clearly eSS (see Figures S.9 and

S.10 in the supplementary materials). ACOmi was also able to solve the problem
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in a few instances. MITS consistently failed to solve the problem for the allowed
FE budget.

After redundant hypereges were filtered, all solutions showing a final objective
function value below a given threshold (a total of 26) located the same solution.
CellNOpt [157] was used to illustrate this solution (see Figure 3.5). In this problem
4 binary variables were considered; wq, ws , w3 and wy4. The hyperedges w3 and wy
were present in every of the top performing solutions while w; and wy were always
absent.

When comparing the time course simulation of the best solution with the
pseudo-experimental data we see that there is an excellent agreement between
the two (normalised RMSE values of 0.0168 and 0.0191 for kdpFABC and mRNA,

respectively).

3.3.3 Case Study 3: Signaling application to transformed

liver hepatocytes

In this section, we explore the reverse engineering of a logic-based ODE model
using liver cancer data (a subset of the data generated by [5]). It consists of
phosphorylation measurements from an hepatocellular carcinoma cell line (HepG2)
at 0, 30 and 180 minutes after perturbation.

To preprocess the network, we used CellNOptR, the R version of CellNOpt
[157]. Basically, the network was compressed (see Figures S.16 and S.17 in the sup-
plementary materials) to remove as many non-observable /non-controllable species.
Subsequently, it was expanded to generate all possible hyperedges (AND gates)
formed by a pair of inputs. The obtained full network (Figure S.18 in the supple-
mentary materials) has a total of 109 hyperedges and 135 continuous parameters.
To transform this model into a logic-based ODE model, we developed a parser
that generates a C model file and Matlab scripts compatible with the AMIGO
toolbox [11].

Although the data-set covers only three sampling time points it includes a large
combination of 64 perturbations comprising 7 ligands stimulating inflammation
and proliferation pathways as well as 7 small-molecule inhibitors blocking the

activity of key kinases (see supplementary Figure S.15). To use logic-based ODE
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models, all data should be in the [0, 1] range and thus we simply normalised the
data by rescaling it to this range . From the total 25 states present in the model,
16 corresponded to observed species. The initial conditions for the other 9 species
are not known and were therefore estimated. In order not to increase the problem
size and multi-modality unnecessarily estimated initials conditions were assumed
the same for every of the 64-experiments.

The problem was solved in 20 independent instances by each solver: ACOmi,
eSS and MPeSS. For this problem we considered a larger budget of 1.5-10° FEs.
The budget for MPeSS was split int 6 phases. The first 5 with increasing values
for o and a final round with eSS configured as MINLP solver.

ACOmi and eSS were occasionally able to find reasonable solutions. In con-
trast to previous cases, ACOmi found slightly better results (see Figure S.21 in
the supplementary materials). However, the MPeSS strategy was again the win-
ner, showing the best distribution of results (convergence curves are given in the
supplementary materials, Figures S.19 and S.20).

In Figure 3.6 we show, for the best solutions (cost function under 65.0) the
goodness of fit (cost function) obtained by each independent optimisation run as
a function of the of the number of active variables, 7.e. the number of binary
variables plus the number of continuous parameters. Here we considered solutions
in which the final objective function value is up to two times worse than best
found. In general, one applies Occam’s razor, i.e. we seek the simplest model
which can explain the available data satisfactorily. The best model structure (see
Figure 3.7) achieved a RMSE of 0.1211. Comparing with other solutions, it shows
a good balance between goodness of fit and complexity (see Figure 3.6). Model
structures for models B,C,D,E and F (Figures S.27 to S.31) along with goodness
of fit measures (Figure S.25) are given in the supplementary materials.

Despite the uncertainty in the completeness of the PKN and the uncertainty
in the experimental data, we are able to find relatively simple mechanistic models
which explain the data. The agreement between the simulation and the experi-
mental data is qualitatively and quantitatively good with the transient behaviour
of phosphorylated proteins being well captured by the dynamic model depending
on the different stimuli and inhibitors (trajectories available in the supplementary
materials, Figures S.32 to S.35).
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Figure 3.6: Case study 3 (HepG2): This figure shows the Pareto front for the
trade-off between the goodness of fit obtained by each independent optimisation
run and the number of active variables (number of active binary variables plus the
number of active continuous parameters), which is a proxy for model complexity.
The chosen solution shows a good balance between goodness of fit (RMSE of 0.121)
and complexity.

3.4 Conclusion

In this contribution, we apply a mixed-integer global optimization approach to
reverse engineer logic-based ODE models from time-course data. The problem is
stated as simultaneously finding the binary variables that determine the model
structure and its associated continuous parameters. Further, to improve compu-
tational efficiency, we present a relaxed non-linear programming reformulation of
the problem that allows us to find good initial points for the MINLP problem.

With our approach, we are able to find a number of solutions which describe the
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Figure 3.7: Case study 3 (HepG2): The network of solution A presents a good
balance between goodness of fit and complexity (see Figure 3.6). The network was
plotted with the CellNOptR software [157]. This solution has a squared error of
30.228 and RMSE value of 0.1211. Trajectories for all the states can be found in
the supplementary materials in Figures S.23 to S.26.

data satisfactorily. It is important to highlight that the lack of unique solutions
is common in reverse engineering problems. Even in the utopian case of large
amounts of perfect data available, the reverse engineering of dynamic models can
have non-unique solutions, and this is independent of the method used to recover
them. For example, in the case of chemical reaction networks it has been shown

that many network configurations can describe the same dynamical behavior [154].
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Although the metaheuristic approach we present does not provide guarantees
about the global optimality of the solutions, we show, by solving synthetic prob-
lems (case studies 1 and 2), that problems of realistic size can be successfully
solved with a reasonable effort.

In the third case study, we apply the methods to a large signaling network
given real experimental data from a liver cancer cell line (HepG2). Due to its
size (109 binary variables and 135 continuous parameters) this is, from the opti-
mization point of view, an extremely challenging problem and illustrates well the
capability of the method regarding problems of realistic size. Here we did not re-
cover unique solutions, as was expected due to the lack of structural identifiability
typical of these problems: their underdetermined nature [148] and the correspond-
ing indistinguishability and non-uniqueness [154]. Instead, we did find a family
of solutions much simpler than the original superstructure containing all likely
interactions, with a very good fit to the experimental data. This is illustrated by
supplementary Figures S.18 (initial expanded superstructure) and S.23 (family of
obtained solutions). This family of solutions has the potential to be exploited by
approaches like ensemble modeling [91].

Although the obtained results are very encouraging, future work will focus on
further improving the efficiency of the metaheuristic optimization methods by ex-
ploiting multi-method cooperation and high-performance computing (paralleliza-

tion).






Chapter 4

SELDOM: enSEmbLe of Dynamic
logic-based Models

This chapter reproduces integrally a work submitted for publication and currently

under review process.

4.1 Introduction

Inferring the molecular circuits of the cell from experimental data is a fundamen-
tal question of systems biology. In particular, the identification of signaling and
regulatory networks in healthy and diseased human cells is a powerful approach to
unravel the mechanisms controlling biological homeostasis and their malfunction-
ing in diseases, and can lead to the development of novel therapies [86,137|. Given
the complexity of these networks, these problems can only be addressed effectively
combining experimental techniques with computational algorithms. Such network
inference (or reverse engineering) efforts [166] have been largely developed for gene
regulation [17,39], and to a lesser extent for signal transduction [86]. Extensive
work has been published on the inference of molecular circuits, either as a static
network—that is, recovering only the topology of interactions— [17,39,169| or as
dynamical system [21,28|. It can be beneficial to tackle this network inference in
conjunction with the prediction of data for new conditions, since a precise topol-

ogy should help in the generation of high quality predictions, and the inability of
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model topology to describe a given set of experiments suggests that the model is
in some sense wrong or incomplete.

Signal transduction is a very dynamic process, and the identification and anal-
ysis of the underlying systems requires dynamical data of the status of its main
players (proteins) upon perturbation with ligands and drugs. These experiments
are relatively complex and expensive, and there is a trade-off between coverage and
throughput [137], so that the problem is often ill-posed, leading to identifibility
issues. The problem of handling parametric and structural uncertainty in dynamic
models of biological systems has received great attention in systems biology and
biotechnology [54,82,107,140]. Inference and identification methods can be used to
find families of dynamic models compatible with the available data, but in general
these models will still suffer from lack of identifiability in a certain degree [166].

Ensemble modeling can be used to improve the predictive capabilities of models,
helping to overcome the fundamental difficulties associated with lack of structural
and /or practical identifiability. The usage of ensemble methods is widespread in
fields such as machine learning [42|, bioinformatics [173], and weather forecasting,
but not so much in computational systems biology, although it has been suc-
cessfully applied in the context of regulatory [84, 164], metabolic [77,155|, and
signaling [91| networks. Although there is no universally agreed explanation of the
success of ensemble methods as classifiers in machine learning [127], it has been
shown that they can improve generalization accuracy by decreasing variance [22],
bias [141] or both [23], and the reasons for this are relatively well understood [42].
A common approach for building an ensemble is to train a number of so-called
base learners in a supervised manner, using data re-sampling strategies. An exam-
ple of the application of such methods in biology can be found in |73], where the
inference of gene regulatory networks is formulated as a feature selection problem,
and regression is performed using tree-based ensemble methods. This approach
was recently extended to accommodate dynamics [74].

Ensembles of dynamic systems have been used for many years in weather fore-
casting. In that community, sets of simulations with different initial conditions
(ensemble modeling) and/or models developed by different groups (multi-model
ensemble) are combined to deliver improved forecasts [61,156]. In the context of

metabolism, Lee et al [94] have shown how to use ensembles to assess the robust-
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ness of non-native engineered metabolic pathways. Using the ensemble generation
method proposed in [77], a sampling scheme is used to generate representative
sets of parameters/fluxes vectors, compatible with a known stoichiometric matrix.
This approach is based on the fact that this problem is typically underdetermined,
i.e. there are more reactions/fluxes than metabolites. Thus, model ensembles
may be generated by considering all theoretically possible models, or a represen-
tative sample of it. The use of an ensemble composed by all models compatible
with the data has been applied to gene regulatory [84] and signal transduction
networks [60].

If the model structure is unknown, the ensemble generation needs to be com-
pletely data-driven. A common approach for inferring network structures from
data is to use estimations of information-theoretic measures, such as entropy and
mutual information. The central concept in information theory is entropy, a mea-
sure of the uncertainty of a random variable [146]. Mutual information, which
can be obtained as a function of the entropies of two variables, measures the
amount of information that one random variable provides about another. The
mutual information between pairs of variables can be estimated from a data-set,
and this can be used to determine the existence of interactions between variables,
thus allowing the reverse engineering of network structure. For early examples of
this approach, see e.g. the methods reviewed in [37,52|, which covers different
modeling formalisms used in Gene Regulatory Network (GRN). The use of these
techniques is not limited to GRNs; they can be applied to cellular networks in
general [102]. Detailed comparisons of some of these methods can be found in
several studies |7,17,71,149|.

De Smet et al [39] have studied the advantages and limitations of several net-
work inference methods, stressing the strategies used to deal with underdeter-
mination. For a recent review of information-theoretic methods, see [169]. Some
state-of-the-art information-theoretic methods for network inference are Algorithm
for the Reconstruction of Accurate Cellular NEtworks (ARACNE) [101], and its
extensions Time-Delay Algorithm for the Reconstruction of Accurate Cellular NEt-
works (TDARACNE) [177] and high-order Algorithm for the Reconstruction of
Accurate Cellular NEtwork (R ARACNE) [76], Context Likelihood of Relatedness
(CLR) [51], Maximum Relevance minimum redundancy NETwork (MRNET) [106],
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three-way Mutual Information (MI3) [95] and Mutual Information Distance and
Entropy Reduction (MIDER) [170], to name a few. All of them are based on
estimating some information-theoretic quantity from the data and applying some
criterion for determining the existence of links between pairs of variables. While
the details vary from one method to another, it is difficult to single out a clearly
“best” method. Instead, it has become clear in recent years that every method has
its weaknesses and strengths, and their performance is highly problem-dependent;
hence, the best option is often to apply “wisdom of crowds” methods, akin to the
ensemble approach described above, as suggested by the results of recent DREAM
challenges [99,122|. In this spirit, recent software tools aim at facilitating the
combined use of several methods [72].

Here, we present enSEmbLe of Dynamic LOgic Models (SELDOM), a method
developed with the double goal of inferring network topologies, i.e. finding the set
of causal interactions between a number of biological entities, and of generating
high quality predictions about the behaviour of the system under untested exper-
imental perturbations (also known as out-of-sample cross-validation). SELDOM
makes no a priori assumptions about the model structure, and hence follows a
completely data-driven approach to infer networks using mutual information. At
the core of SELDOM is the assumption that the information contained in the
available data will not be enough to successfully reconstruct a unique network.
Instead, it will be generally possible to find many models that provide a reason-
able description of the data, each having its own individual bias. Hence SELDOM
infers a number of plausible networks, and uses them to generate an ensemble of
logic-based dynamic models, which are trained with experimental data and un-
dergo a model reduction procedure in order to mitigate overfitting. Finally, the
simulations of the different models are combined into a single ensemble prediction,
which is better than the ones produced by individual models.

The remaining of this paper is organised as follows. First, the Methods section
provides a step by step description of the procedure followed by SELDOM. Then a
number of experimental and in silico case studies of signaling pathways of different
sizes and complexity are presented. In the Results and Discussion section the
performance of SELDOM is tested on these case studies and benchmarked against

other methods. We finish by presenting some conclusions and guidelines for future
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work.

4.2 Methods

The SELDOM workflow, outlined in Figure 4.1, combines elements from informa-
tion theory, ensemble modelling, parametric dynamic model identification, logic-
based modeling and model reduction. The final objective is to provide high quality
predictions of dynamic behavior even for untested experimental conditions. The
method starts from time-course continuous experimental data (7) and uses DDNs
as intermediate scaffolds. The workflow can be roughly divided into the following

5 steps:

e Dense DDN inference using Mutual Information (MI) from experimental data
g: build an adjacency (dense DDN) matrix based on the mutual information

of all pairs of measured variables.
e Sampling of DDNs: sample ny; DDNs based on the MI.

e Independent model training: parametric identification of a set of ODE mod-
els based on the DDNs.

e Independent model reduction: iterative model reduction procedure of the

individual models via a greedy heuristic.

e Ensemble prediction: build ensemble of models to obtain predictions for state

trajectories under untested experimental conditions.

The term network topology is defined here as a directed graph G. A directed
graph (digraph) is a graph where all the edges are directed. The term node or
vertex refers to a biological entity such as a protein, protein activity, gene, etc. A
directed edge (interaction) starting from node v; and pointing to v; implies that
the behavior of node v; interferes with the behavior of node v;. In this case, v;
is said to be adjacent to v;. The in-degree of node v; (deg™(v;)) is the number
of edges pointing to v;. The directed graph G is composed by the ordered pair
G(V(G), E(Q)), where V(G) is the set of n vertices and E(G) is the set of m
edges.
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The input to the SELDOM algorithm is an experimental data-set formatted as
a Minimum Information for Data Analysis in Systems biology (MIDAS) file [136]
and the maximum in-degree (deg™(v;)) allowed for each node in the networks sam-
pled. The MIDAS file should specify for each experiment the observed signals, the
observation times and the treatments/perturbations applied. Two types of per-
turbations are currently supported: inhibitors and stimuli. These are typical in
most experimental studies of signaling pathways, where inhibitors are e.g. small
molecules blocking kinase function, and stimuli are upstream ligands (e.g. hor-

mones) whose initial concentration can be manipulated.

4.2.1 Mutual Information

The mutual information MI(g;, J;) between two random variables g; and g; is a
measure of the amount of information that one random variable contains about
another. It can also be considered as the reduction in the uncertainty of one

variable due to the knowledge of another. It is defined as follows:

N e p(G;°, 75
yzay] Zzp yz 7yj log—{es (41)

g o p(g;")p(55”)

where g; and g; are discrete random vectors with probability mass functions p(g;)
and p(7;), and log is usually the logarithm to the base 2, although the natural
logarithm may also be used.

Since mutual information is a general measure of dependency between variables,
it can be used for inferring interaction networks: the stronger the interaction
between two network nodes, the larger their mutual information. If the probability
distributions p(7;) and p(g;) are known, MI(7;,9;) can be derived analytically.
In network inference applications, however, this is not possible, so the mutual
information must be estimated from data, a task for which several techniques have
been developed [151].
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Figure 4.1: SELDOM workflow. The experimental data is used to build an
adjacency (a dense DDN) matrix based on the mutual information of all pairs of
variables. Through a simple sampling scheme, and limiting the maximum in-degree
for each node, a set of more sparse DDNs are generated. Each individual DDN
is then used as an scaffold for independent model training and model reduction
problems. The resulting models are used to form an ensemble which is able to
produce predictions for state trajectories under untested experimental conditions.

4.2.2 Sampling Data-Driven Networks

Whatever the approach used to estimate the MI, estimation leads to errors, due
to factors such as limited measurements or noisy data. Therefore, it is often the

case that MI is over-estimated, which results in false positives. Network inference
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methods usually adopt strategies to detect and discard false positives. For example,
ARACNE uses the data processing inequality, which states that, for interactions
of the type X — Y — Z, it always holds that MI(X,Y) > MI(X, Z). Thus, by
removing the edge with the smallest value of a triplet, ARACNE avoids inferring
spurious interactions such as X — Z. However, this in turn may lead to false
negatives.

In the present work, we are interested in building DDNs that are as dense
as possible, in the sense that these should ideally contain all the real interactions,
this leads to containing some false positives too (the issue of the false positives will
be handled in the independent model reduction step). However, the subsequent
dynamic optimization formulation used to train the models benefits from limiting
the number of interactions (i.e. the number of decision variables grows very rapidly
with the in-degree).

To find each DDN, we build an adjacency matrix using the array MI(g;, ;).
Each column j represents the edges starting from v; and pointing to v;. From
this vector we iteratively select as many edges as the maximum in-degree (a pre-
defined parameter of the method). In each selection step, an edge is chosen with

a probability proportional to MI(g;, ;). This process is repeated for every node.

4.2.3 Independent Model Training

The DDNs obtained in the previous step represent a set of possible directed inter-
actions. In order to obtain an objective function for model calibraton (parametric
identification) a mathematical description of the model dynamics must be chosen.
Here, we rely in multivariate polynomial [90,172] interpolation as it is particularly
well-suited to represent signaling pathways.

This technique was initially developed with the aim of facilitating the transfor-
mation of Boolean models into ODE based time-course descriptions and is able to
describe a wide range of behaviours. A multivariate polynomial is able to represent
any type of combinatorial interaction (OR, AND, XOR, etc).

For each edge e;; € E(G), a function Hy,, describes the type of nonlinearity
that governs the relation between an upstream regulator x(t) and the behaviour of

a downstream variable x; described by ;. Nevertheless, we have chosen to use the
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normalized Hill function because, apart from being able to describe other simpler
behaviours (such as Michaelis Menten type kinetics), it is also able to represent
the switch-like behaviour seen in many molecular interactions [172].

This framework is very general and requires very few assumptions about the
system under study. This comes at the cost of a large number of parameters that
need to be estimated. Formally, we describe the parametric identification problem

(parameter estimation in dynamic models) as:
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(4.2)
where w, n, k and 7 are the continuous parameters needed for training the dynamic
model. These parameters are limited by upper and lower bounds (e.g. LB). The
model dynamics (Z) are given by the function f. This set of differential equations
varies according to the network derived from the mutual information. Finally, the
system of differential equations has to be solved to obtain the simulated data. The

objective function is the squared difference between the model predictions (y) and
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the experimental data (7). The goal is to minimize this cost function for every
experiment (¢€), observed species (0) and sampling point (s). The model prediction
y (obtained by simulation) is a discrete data set given by an observation function
g of the model dynamics at time t.

The variables w define the model structure. We highlight that this represen-
tation can reproduce several behaviours of interest (see Table 4.1). For example,
if we consider that a signaling state in the model is controlled by two regulators,
an AND type behaviour would be defined by setting w; 11 to 1 and the other w’s
(wi00,wi01 and w;10) to 0. On the other hand, the OR gate can be represented
by setting w; 1 0,w;01 to 1 and w; ;1. and w;gp to 0. By linear combinations of
these terms it is possible to obtain any of the 16 gates that can be composed by
two inputs.

Recently we have shown [66] how to train a more constrained version of this
problem using MINLP. Here, due to its size, the problem is first relaxed into a
NLP problem. The corresponding parameter estimation problem is non-convex, so
we use the scatter search global optimization method [46] as implemented in the
MEtaheuristics for bloinformatics Global Optimization in R (MEIGOR) toolbox
[45].

Several studies that have considered simultaneous network inference and pa-
rameter estimation have chosen discretization methods for the solution of the
IVP [21,28]. This has some advantages regarding the computational tractabil-
ity, but forces the & values to be estimated directly from noisy measurements,
which is specially challenging when samples are sparse in time. Here, to avoid
this problem, the IVP is solved with the CVODE solver from the SUNDIALS
package [68].

4.2.4 Independent Model Reduction

Model reduction is a critical step in SELDOM. The underlying rationale is twofold:
(i) we are interested in reducing the network to keep only interactions that are
strictly necessary to explain the data (feature selection); (ii) following Occam’s
razor principle, it is expected that the ideal model in terms of generalization is the

one with just the right level complexity [43].
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Here, we have chosen a simple heuristic that has proved very effective. This
heuristic is partially inspired by the work of Sunnaker et al [152], where a search
tree starting from the most complex model is used to find the complete set of
all the simplest models by iteratively deleting parameters. In contrast, here we
use a greedy heuristic which does not guarantee that the simplest model is found.
Nevertheless, this helps to maintain diversity in the solutions and guarantees that
spurious edges are not considered. Furthermore, it drastically reduces the compu-
tational time needed to find the simplest solution. The iterative model procedure
is described in Algorithm 1. At each step (edge), the constraint H,, is set to 0
(see Table 4.1) and the model is trained with a local search using Dynamic Hill
Climbing (DHC). To avoid potential bias caused by the model structure, edges are

deleted in a random order.

0 0 Wi,0,0° (1 - Hdm)' (1 - H(biz) + o | Wi,0° [1 — H¢i1]' 1+
0 1 wi’o’l.(l_H¢i1)'H¢i2+“-' 0+ ...

]_ O wz,l,OH¢21(1—H¢z2)+ wi,l,O'H¢il'1+...
1 1 wi,l,l'qu“'H@Q 0

Table 4.1: The function multivariate polynomial interpolation B; is simplified by
setting Hy,, to 0 which results in function By. In practice this is the equivalent
of removing the edge e;;. The remaining parameters are then estimated starting
from the best known solution. If the new simpler solution is better from the AIC
point-of-view, it is accepted and the heuristic proceeds on trying to reduce the
model further.

To decide about the new simplified model, we use the AIC, which for the
purpose of model comparison is defined as:
AIC =2K +n-In(F), (4.3)

where K is the number of active parameters. The theoretical foundations for this

simplified version of the AIC can be found in [25].
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Data: Time-course continuous data g, a graph G,(V, E') and the optimal
parameters (n, k, 7, w)

Result: A simplified graph G,(V, E)*

for each ey, € G, do

Ne TL ’I’LS

minimize F'= 3 Z Z( yo°)?

n* kT W e=1o0=1s=
subject to

H¢ik =0

if AIC(n*, k*, 7%, w*) < AIC(n, k, T,w) then
E, < E, \ Eoin
{n,k, 7, w} < {n* k* ™ w*}

end

end
Algorithm 1: Greedy heuristic used to reduce the model. At each step of the
model reduction the new simpler solution is tested against the previous more

complex one using the AIC.

4.2.5 Ensemble Model Prediction

To generate ensemble predictions for the trajectories of state x;, SELDOM uses
the median value of z; across all models for a given experiment 4., and sampling
time t,. This is the simplest way to combine a multi-model ensemble projection.
More elaborate schemes for optimally combining individual model outputs exist.
Gneiting et al. [56] point out that such statistical tools should be used to ob-
tain the full potential of a multi-model ensemble. However, the selection of such
weights requires a metric describing the model performance under novel untested
conditions (i.e. forecasting), and finding such metric is a non trivial task. For ex-
ample, in the context of weather forecasting, Tebaldi et al [156] point out that, in
the absence of a metric to quantify model performance for future projections, the
usage of simple average is a valid and widely used option that is likely to improve

best guess projections due to error cancellation from different models.
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4.2.6 Implementation

SELDOM has been implemented mainly as an R package (together with calls to C
solvers) and can be installed and run in large heterogeneous clusters and supercom-
puters. The model training and model reduction are embarrassingly parallel tasks
which are automated using shell scripts and a standard queue management system.
In addition to the parallelization layer at the level of individual model training and
reduction, the simulation of each experiment is implemented as parallel individual
threads using openMP [34] exploiting a multi-core processors.

The dynamic optimization problem associated to model trained is solved as
a master NLP with an inner IVP. The NLPs are solved using the R package
MEIGOR [45], with the evaluation of the objective function performed in C code.
The solutions of IVPs are obtained by using the CVODE solver [68].

The experimental data is provided using the MIDAS file format, and it is
imported and managed using CelINOptR [158|. The SELDOM code is open source
and it is distributed as is (with minimal documentation), along with the scripts
needed to reproduce all the results and figures. The main code uses R version 2.15,
while Intel compilers were used for the solvers implemented as C/C++ or Fortran

codes.

4.2.7 Case studies

To assess the performance of SELDOM, we have chosen a number of in silico
and experimental problems in the reconstruction of signaling networks. Table 4.2
shows a compact description of some basic properties of these case studies along
with a more convenient short name for the purpose of result reporting.

For each case study, two data-sets were derived, one for inference and the
second one for performance analysis. We highlight that training and performance
assessment data-sets are not just two realizations of the same experimental designs;
they were obtained by applying different perturbations, such as different initial

conditions or the introduction of inhibitors either experimentally or n silico.
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4.2.7.1 Case studies 1a and 1b: MAPK signaling pathway

Huang et al. [70] developed a model explaining the particular structure of the
MAPKSs. This is a highly conserved motif that appears in several signaling cascades
(ERK, p38, JNK) 78] composed by 3 kinases. Essentially, Huang et al [70] explain
how this arrangement of three kinases sequentially phosphorylated in different sites
allows that a graded stimuli is relayed in a ultrasensitive switch-like manner.

To create this benchmark, the model shown in Figure 4.2 was used to generate
artificial data with no noise. The full system is composed by 12 ODEs. Based in
this system, we have derived two case studies, one fully observed (MAPK() and the
second partially observed (MAPKp). The fully observed system is essentially the
same as used in [170], while in the partially observed case only one phosporylation
state per kinase was considered (MAPK-PP, MAPKK-PP and MAPKKK).

We highlight that the model representation used in SELDOM is particularly
suitable to represent such compact descriptions of signaling mechanisms due to the
usage of Hill functions. Additionally, looking at partially observed systems is well
in line with experimental practice as state-of-the-art methods for studying signal-
ing pathways are typically targeted to particular states (e.g. phosphorylation) of
the proteins (e.g. kinases) involved in the signaling pathways.

Both the data-sets used for training and predictions are composed by 10 dif-
ferent experiments, each with different initial conditions and without added noise.
The data used for MAPKp case study is a sub-set of the MAPK(f data-set.

4.2.7.2 Case study 2: A synthetic signaling network

Resorting to logic-based ODEs, MacNamara et al [96] derived a synthetic model
representative of a typical signaling pathway. The goal was to illustrate the benefits
and limitations of different simulations for signaling pathways. This model includes
three MAPK systems (p38, ERK and JNK1) and two upstream ligand receptors
for EGF and TNF«. Apart from different on/off combinations of EGF and TNFa,
the model simulations can be perturbed by inhibiting PI3K and RAF.

The training data-set is composed by 10 experiments with different combina-
tions of ligands (EGF and TNFa on and off) and the inhibitors for RAF and
PI3K.



64

SELDOM: enSEmbLe of Dynamic logic-based Models
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Figure 4.2: MAPK signaling network. The model by Huang et al. |70] was used
to generate pseudo-experimental data for two sub-problems. The first (MAPKp)
partially observed (MAPK-PP, MAPKK-PP and MAPKKK), and the second fully
observed MAPKH.

The data-set used to assess performance was generated using the synthetic
signaling model with the same combinations of EGF and TNF«, but changing the
inhibitors. Instead of inhibiting PI3K and RAF, we generate new experiments by
considering all other states observed with exception of EGF and TNFa. The final
outcome is a validation data-set with 36 experiments.

Both data-sets (training and validation) were partially observed (11 out of 26
variables) and Gaussian noise (with standard deviation o = 0.05 and 0 mean) was

added. In this case study the inhibitors are implemented as:

. _ 1
Tinh,; = (B — Z;)- p (1 —inh,), (4.4)

where inh; is chosen as 0.9.

4.2.7.3 Case study 3: HPN-DREAM breast cancer network inference,

in stlico sub-challenge

This is an in silico problem developed by the HPN-DREAM consortium. It is a
synthetic problem that replicated the reverse phase protein array (RPPA) experi-

mental technique for studying signalling pathways with multiple perturbations as
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realistically as possible. These perturbations often consist in manipulating ligand
concentrations and adding small molecule inhibitors. To achieve this, the authors
used a large dynamic model of ErbB signaling pathways [29]. The model was
partially observed (17 variables) and perturbed with a noise model aimed at re-
producing the RRPA experimental technique as accurately as possible. In addition
to these 17 variables, 3 dummy variables consisting of noise were included to make
the challenge even more difficult. All names in the model were replaced by aliases
(eg. AB1, AB2, etc).

The training data-set is composed of 20 experiments obtained by consider-
ing different combinations of 2 ligands (off, low and high) and 2 small molecule
inhibitors. The data-set used for performance assessment is composed by 128
experiments considering the inhibition of the other 15 observed states not con-
sidered in the generation of the training set and different combinations of ligand
concentrations (off, low and high).

Regarding the implementation of the inhibitors, we followed the same strategy
used in Synthetic Signaling Pathway (SSP) case-study where these are imple-
mented under the assumption that an inhibitor inh; of state z; directly affects the
concentration of x;. Such assumption is based on the challenge design and made

following the instructions of the challenge developers.

4.2.7.4 Case studies 4a and 4b: HPN-DREAM breast cancer network

inference

One of the richest data-sets of this type was recently made publicly available in
the context of the DREAM challenges (www.dreamchallenges.org). DREAM chal-
lenges provide a forum to crowdsource fundamental problems in systems biology
and medicine, such as the inference of signaling networks [67,122], in the form
of collaborative competitions. This data-set comprised time-series acquired under
eight extracellular stimuli, under four different kinase inhibitors and a control, in
four breast cancer cell lines [67].

The HPN-DREAM breast cancer was composed of two sub-challenges. In the
experimental sub-challenge the participants were asked to make predictions for 44

observed phosphoproteins, although the complete data-set was larger. As opposed
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to the in silico sub-challenge, the participants were encouraged to use all the prior
knowledge they could use and the experimental protocol along with the real names
of the measured quantities, used reagents, inhibitors, etc.

Using different combinations of inhibitors and ligands (on and off), the authors
have generated a data-set comprising 29 experiments. An additional data-set
generated with the help of a fourth inhibitor was kept unknown to the participants,
which were asked to deliver predictions for several possible inhibitors.

Here, it is assumed that the inhibitors affect mostly the downstream activity
of a given kinase. However, it is unknown how it actually influences the kinase
concentration or the ability to measure it the mutual information used find DDN

variants is computed here as:

MIM;,, = max (MIM (y (1- inh,-)) , MIM(g)) (4.5)

where inh; is a vector of the same size as gy, filled with 0.9 when the inhibition
is applied and with 0 otherwise. Regarding the implementation of the dynamic

behaviour, this is performed by modifying Hinp, ¢, of an inhibited species x, to:

"k (1 — inhy)
"k (1 — inhg) + k"%

Hinnh g, = (14 k") (4.6)

Due to the computational cost of the approach we have considered only two
cell-lines BT20 and BT549.

4.3 Results and discussion

4.3.1 Numerical experiments and method benchmarking

In this section, we describe the numerical experiments carried to show the validity
of our ensemble based approach. Besides particular considerations in the data
preprocessing or additional constraints added to the DO problem which depend
on the prior knowledge existent about the case study at hand, SELDOM has two
tuning parameters: the ensemble size and the maximum in-degree allowed in the
training process. Thus, besides showing how the method performs and illustrating

the process we also wanted to show that the method is relatively robust to the
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choice of these parameters and provide guidelines for the choice of such parameters
in future applications.

For each case study we have chosen 3 in-degrees (A, B and C) which are shown
in Table 4.2 and we have chosen a fairly large ensemble size of 100 models. We
remark that, while the choice of the ensemble size was arbitrary, the method is
robust with respect to this parameter and performs similarly well with smaller
sizes, as shown in Figure 4.6.

To assess performance in terms of training and predictive skills of the model,
we use the RMSE:

€,0
ne Mg ng

> > Do [Us” =y
RMSE = | =ho=ls=] (4.7)

€
ne Mo

2.2 ns”

e=1o0=1

To assess performance in terms of network topology inference, we have chosen
the AUPR curve, where precision (P) and recall are defined as (R):

TP
P=- —°- 4.
TP + FP (4.8)
and
TP
R 4.
R TP + FN’ (4.9)

where T'P and F' P correspond to the number of true and false positives, respec-
tively and F'N corresponds to the number of false negatives.

Other valid metrics exist, such as the Area Under Receiving Operating Charac-
teristic (AUROC). The Receiving Operating Characteristic (ROC) plots the recall,

R, as a function of the false positive rate, F' PR, which is defined as

FP

FPR= ——
R=prm

(4.10)

However, it has been argued that ROC curves can paint an excessively opti-

mistic picture of an algorithm’s performance [36], because a method can have low
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precision (i.e. large F'P/T P ratio) and still output a seemingly good ROC. Hence

we have chosen to use the AUPR measure instead.

4.3.2 Predicting trajectories for new experimental pertur-

bations

To assess the performance of SELDOM, we have run the analysis described in the
previous section to all case studies. In most cases the ensemble behaved better than
the model with lowest RMSE training value. This effect is particularly evident in
the DREAM in Silico (DREAMIS) case-study and is illustrated with the help of
figure 4.3. Additionally, in a number of case-studies (DREAMiS, DREAM cell-line
BT20 (DREAMBT20), DREAM cell-line BT549 (DREAMBT549)) there is little
correlation between the training RMSE and the predition RMSE provided that
the models are reasonably well trained.

In Figure 4.4, we show the overall picture regarding the predictive skills. Two
strategies were considered for the generation of predictions: the best individual
model and SELDOM. The RMSE values were normalized by problem and plotted
as an heatmap. Additionally, for DREAMiS, DREAMBT20 and DREAMBT549,
we added the prediction RMSE values for the top performing participants in the
corresponding DREAM challenge. The greatest gain of using an ensemble ap-
proach as shown here is in robustness. The effect of the model reduction was

relatively small (yet not neglectable) in terms of RMSE for prediction.
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Figure 4.4: The prediction RMSE values were normalized by case-study
and are shown here as an heatmap. The case studies and methods/method
variants are ordered by similarity using hierarchical clustering. SELDOM B and
SELDOM C were clearly the most robust strategies doing very well in all problems.
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The choice of ensemble size parameter affects the predictive skill of the en-
semble and the computational resources needed to solve the problem. To verify
if this choice was an appropriate one we plotted the average prediction RMSE
as a function of the number of models ny, used to generate the ensemble. The
average RMSE was computed by sampling multiple models from the family of 100
models available to compute the trajectories. This is shown in Figure 4.6 for the
DREAMIS case-study. With the exception of the combination MAPKp/SELDOM
A the outcome for all case-studies is that SELDOM would have done similarly well
with a smaller number of models and the prediction RMSE versus na, always con-
verged asymptotically. The mediocre results MAPKp/SELDOM A appear to be
the result the of a poor choice for the maximum in-degree parameter (A=1) which

is too small.
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4.3.2.1 Ensemble for network inference

To assess the performance of SELDOM for the network topology inference prob-
lem, we compared SELDOM with a number methods implemented in the Mutual
Information NETworks (MINET) package [105]: MRNET [106], Maximum Rel-
evance minimum redundancy NETwork Backward (MRNETB) [104], CLR [51]
and ARACNE [51]. This comparison is particularly pertinent in this case as the
estimation of the mutual information is done using the same method and parame-
terization. However, these methods are not designed to recover directed networks.
To surmount this limitation, we have introduced the comparison with two other
methods for directed networks, TDARACNE [101] and MIDER [170].

In Figure 4.7, we show the overall results regarding the ability of SELDOM
and other network inference methods to reverse engineer the known synthetic
networks associated with the models used to generate the data. Comparing with
static inference methods, SELDOM behaved consistently well in terms of providing
networks with high AUPR score. The sparsest case of SELDOM (A) provided the
most interesting results and the network found is comparable to the best solution
found by the winning team of the in silico sub-challenge.

Without the independent model reduction step, the results were mediocre re-
garding the inference of the network topology. The independent model reduction
is fundamental for the performance of SELDOM as a method for network inference

and the information contained in the dynamics can help discard spurious links.

4.4 Conclusions

In this paper we have presented an ensemble method for the generation of dy-
namic predictions and inference of signaling networks. The method handles the
indeterminacy of the problem by generating, in a data-driven way, an ensemble of
dynamic models combining methods from information theory, global optimization
and model reduction. When making predictions about untested experimental con-
ditions, the ensemble approach was the most robust and most of the times the best
option comparing with the individual model predictions. Regarding the network

inference problem, the ensemble approach did systematically well in all of the in
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silico cases considered in this work. This suggests that exploiting the information
contained in the dynamics, as SELDOM does, helps the network inference problem
allowing to disregard spurious interactions.

The proposed pipeline is flexible and can be adapted in principle to any signal-
ing or gene regulation dataset obtained upon perturbation, even if prior knowledge
is not available. At the same time, it is also able to to incorporate prior knowledge
about the problem, for instance in the form of constraints (e.g. the small-molecule
inhibitors used in the DREAMBT20 and DREAMBT549 case studies). We have
tackled the indeterminacy of the problem by generating a family of solutions, al-
though other strategies, based in data-re-sampling methods and supervised learn-
ing (similarly to what has been recently proposed by Huynh-Thu et al. [74]), might
work well too. A systematic comparison of ensemble generation methods either
based in problem structure or data re-sampling techniques should be considered
in further work.

All the relevant software used here is available as open source, including the
scripts with the implementations of the problems considered. Date files use the
MIDAS [136] format.
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Figure 4.7: Heatmap with AUPR scores for different methods and case
studies. The AUPR values were normalized by case-study and are shown here as
an heatmap. The sparsest version of SELDOM (A) did consistently well in all the
case studies. SELDOM B and C did an average job with MAPK{f but provided
good solutions for all other case-studies. The comparisons are only provided for
in silico problems with known solution. Additionally, the solution for the top
performing team in the DREAM challenge is only available for DREAMiS.



Chapter 5

libAMIGO: A generic library for
defining dynamic optimization

problems in C

libAMIGO is a C library for implementing and sharing dynamic optimization prob-
lems in systems biology. The library was developed because of the need to share
problems with other research groups and colleagues in a platform independent and
license free manner. The inputs and outputs are well specified and its organization
follows a similar structure to that of the AMIGO [11] software in Matlab. Two
interfaces are provided, one for R and another for Matlab, which can be used as

starting point to build interfaces for other languages.

5.1 Problem Definition

The type of problems considered by AMIGO [11] can be described in a simplified

manner as:
minimize  F(y,...)
0,u,x0
subject to & = f(z,u,w,0) (5.1)
I‘(to) = 2o

y=g(z,t,0,u)

7
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where & describes a dynamic system of ODE and ¢ is an observation of x which
is obtained by integrating # between ¢, (initial time) and ¢; (final time). The
integration is interrupted at given time points to observe the system (¢;) via an
observation function g or to introduce discontinuities in the system (t,) through
control variables (u). Apart from the ODEs, the system behavior is controlled by
a number of continuous () or integer/binary (w) parameters, initial conditions xg
and control variables (u), may or not be partially known a priory, and the formu-
lated optimization problems typically tries to find the values for these variables
which minimize some criterion defined by F'.

The problems considered may be of distinct nature. For example, in a parame-
ter estimation problem, F is typically the squared difference between the simulation
and some experimentally observed value, scaled by a weight typically related with
the confidence deposited in the accuracy of the observations, for every experiment

(€), observed species (0) and sampling point (s):

0 ns

F= ZZZ (5 = )" (5.2)

e=1 o=1 s=1
and our goal is to find # such that this value is minimized. To provide a general
implementation for equation 5.2, we need to manage data from several experiments
including initial conditions, observation errors experimental data and implement
simulation breaks when perturbations/controls are added to the system (i.e. han-
dle discontinuities). In addition most deterministic optimization solvers will re-
quire that a gradient is provided, and this is also implemented in libAMIGO. The
gradient can be roughly approximated by finite differences [15] or computed more
reliably by numerically solving the parameter sensitivity equations, which can be
done efficiently e.g. CVODES [145]. The parametric sensitivities(S;(t)) are given
by the solution of S;:

of of

Si = 8yS + op;

(5.3)

where 8f are the partial derivatives of the RHS equations with respect to the model

states, and a;{i are the partial derivatives of the RHS equations with respect to the

model parameters we want to estimate.
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The library can also be used to implement other more general dynamic op-
timization problems. An example would be the case where u (sometimes also
the values for t¢,) should make the system behave optimally in some sense. Such
formulations are commonly applied for experimental design, 7.e. find the most
informative experiment possible or in industrial applications, e.g. maximize the

production of a given compound [14].

5.2 Implementation

The implementation of ibAMIGO was guided by three main objectives: portabil-
ity, efficiency, scalability. Regarding efficiency, the implementation of libAMIGO
circles around CVODES [145] from the SUNDIALS suite. CVODES is a solver
for the solution of dynamic systems of ODE, that also enables sensitivity analysis.
This tool is implemented in C and is currently the state of the art for this purpose,
being actively maintained and improved.

The advantage of using libAMIGO instead of CVODES alone is the reduction
in the time needed to implement a problem. We establish well defined inputs for
the dynamic optimization problem, perform memory management, implement a
number of common objectives and simulation tasks (e.g. sensitivity analysis), and
provide two interfaces, one in Matlab (AMIGO2) and the other in R (SELDOM).
These interfaces can be extended to other scripting environments with C inter-
facing capabilities, such as Python or Julia. Memory allocation and deallocation
are managed by the library being the programmer responsible for populating the
memory.

Regarding portability, the code can be easily compiled for Linux, Windows and
MacOS. Additionally, we have chosen to use only components written in open-
source C or Fortran that can be compiled with GNU compilers. Nevertheless,
proprietary compilers (e.g. Intel compilers) can also be used.

The code is organized around two main C structures: the AMIGO _Model and
the AMIGO _problem, which illustrated in Figure 5.1. Each AMIGO _model con-

tains all the information about a given experiment: the initial conditions, experi-

mental data and results. AMIGO _Problem stores the pointers to all AMIGO models

and the lower and upper bounds for all global parameters (which affect all ex-
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periments), local local parameters (affect only some experiments, e.g. estimated
initial conditions), and other information needed for the optimization problems.
All memory allocation and deallocation is dynamic and handled by libAMIGO by
means of simple commands.

Regarding scalability, the implementation of ibAMIGO is thread safe and built
to make use of MPI [58] and openMP [35]. Parallelism using openMP is imple-
mented by default and is achieved by parallelizing the loop that simulates all exper-
iments. However, other smarter ways of implementing this task can be achieved.
For example, in [116] ibAMIGO was used in conjuction with openMP [35] to
parallelize a more coarse grained loop. This could be easily achieved by creating
multiple copies of the data structures allowing parallelization in a shared memory

environment.

AMIGO Problem

openMP
for(i in 1:Number Experiments){
AMIGO_Model
Experiments Parameters
Initial Solution Initial Conditions
Current Solution Controls Values
Upper Bounds Control Times
Lower Bounds Simulation Results
Indexes Experimental Data
Statistics Weights
Number of Threads Indices
Gradient Options Sensitivities Results
IVP Solver Options
Function Pointers

Figure 5.1: Data structures used in libAMIGO. All the information necessary
for the simulation of an experiment is contained in the AMIGO model which is
completely independent from other experiments. This makes usage of openMP [35]
to parallelize certain loops trivial. The information needed to interpret the overall
results from all experiments is gathered in AMIGO _Problem.
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5.3 Applications

5.3.1 AMIGO2

AMIGO?2 is a large update to the first version of AMIGO [11] tool box. This
toolbox gathers a large collection of numerical methods for simulation and op-
timization of systems biology problems, namely: identifiability analysis, optimal
experimental design and parameter estimation. The last three tasks are formulated
as NLP optimization problems. The libAMIGO was developed for AMIGO2.

The main goal of having a library independent of Matlab was that the prob-
lems could easily be exported in a platform independent manner. For example,
libAMIGO implements the log-likelihood, which allows the parameter estimation
problem to be solved with a C or Fortran optimization solvers. In [116-118|
libAMIGO was used to run problems exported by AMIGO [11] in Matlab.

However, ibAMIGO can also be used inside of AMIGO. Implementing the
whole dynamic optimization problem in C gives us easy access to NLP solvers
available in C or Fortran which avoids the overhead of constantly using callbacks
from C to Matlab. Additionally embarrassingly parallel tasks can be easily par-
allelized without the need of proprietary software by means of openMP [35] and
MPT [58].

The structure of the interface built between Matlab, AMIGO and libAMIGO is
depicted in Figure 5.2. The experimental data is processed and RHS equations in C
are generated by AMIGO. Three so-called execution modes that use libAMIGO are
allowed in AMIGO2: costMex, fullMex and fullC. The costMex mode evaluates
the cost function. The fullMex version can be used to run local searches with
a nonlinear least square estimator (NL2SOL [40]) without the need of Matlab
callbacks. Finally, the fullC is meant to be run without the usage of Matlab.
While using the costMex and fullMex, the RHS file is compiled within MALTAB
using the Matlab EXecutable (MEX) engine along with a C interface designed for
this purpose. On the other hand, while using the fullC execution mode, a RHS
file is generated, an illustrative main file and instructions to compile with GNU

compilers are provided.
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in C
Execute Compile
Experimental Matlab
Dataand |<f— Matlab Shared
settings Libraries
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Matlab runtime
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ODEs
Right Hand +
Side Equations

Executable libAMIGO

Load Data.mat o,

main function
or Mex
Interface

Results

Figure 5.2: The sructure of the interface built for libAMIGO. Matlab in con-
junction with AMIGO2 is used to generate the RHS equation and necessary data
structures. The MEX interface written in C is compiled along with Matlab shared
libraries and the RHS equations. It is possible to call the interface from C programs
as long as the data has been saved a priori in a Matlab data file.

5.3.2 BioPreDyn-Bench

From the optimization point of view, the parametric identification is an interesting
and open problem. Due to its non-convexity, even relatively small problems can
not be solved with guarantees of optimality in a reasonable amount of time. Due to
the lack of a standardized definition for the full problem (model and experimen-
tal design), it is hard and error-prone to implement such dynamic optimization
problems solely from literature. More relevantly, this typically requires some field
specific knowledge and collaboration with groups with know-how in optimization
is often hindered because problems can not be easily shared.

The Systems Biology Markup Language (SBML) was successful in providing a
standardized format for defining models of systems biology. Not only it works well,
but is also widely accepted as the de facto standard by the community. However,
systems biology problems as the ones considered in this work, often require more
complex considerations involving the experimental design. Efforts in this direction

have been made. An example is the standard Minimal Information Required in
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the Annotation of Models (MIRIAM) [93]. Despite of these the efforts, to the best
of our knowledge, no tools for simulation supporting MIRIAM have been made
available.

The BioPreDyn-Bench [168] is a suite of bechmark problems for dynamic mod-
eling in systems biology. This suite is composed of 6 problems (problems B1 to B6)
which try to capture different problem sizes and biological aspects (metabolism,
signaling and gene regulation). Formally, the problems are described in great de-
tail and distributed in several formats: Matlab, AMIGO [11], Copasi [69] and C.
The C implementations are based in libAMIGO. A main C function is provided
along with examples on how to use for different purposes like simulating, com-
puting the cost function or adapting a specific cost function. For the purpose of
benchmarking optimization algorithms, the user only needs to write a small pro-
gram as optimization driver, therefore allowing the use of any optimization code
which can be interfaced with C.

Here, the option of using openMP to accelerate problems with multiple ex-
periments/simulations is also available. Particularly, problems B2 and B5 fall in
this category. To assess the performance gains by using openMP, we compiled
libAMIGO with GNU compilers and ran the problem in a Linux cluster node.
This node is composed of two octa-core Intel Xeon E5-2660 CPUs. The number
of cores used to simulate the different experiments was incremented until the total
number of experiments, and the time needed to evaluate the cost function was
recorded. Figures 5.3 and 5.4 show the obtained speedup as a function of the
used number of cores. Despite being below the theoretical optimal, the usage of
openMP results in a significant speedup . Using 3 cores in problem B2 resulted in
a 2.5 fold reduction in the time needed to perform the computations while using

5 cores resulted in a 4.5 fold reduction in problem B5.
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Figure 5.3: The speedup gained by using openMP in problem B2. The speedup in
the time spent in the computation is shown as a function of the number of used
cores.The perfomance gain is below optimal but quite reasonable when 3 cores are
used. Performance decreases rapidly when more than 3 cores are used.
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Figure 5.4: The speedup gained by using openMP in problem B5. The speedup in
the time spent in the computation is shown as a function of the number of used
cores. The perfomance gain is below optimal but quite reasonable when 5 cores
are used. Performance decreases rapidly when more than 5 cores are used.

5.3.3 Exploiting cluster computing using SELDOM

The methodological framework of SELDOM is discussed in detail in Chapter 4.

However, in this section we provide more details on the implementation and some
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computational aspects of SELDOM and its relation with libAMIGO.

Briefly, SELDOM performs inference of dynamic models/networks by using an
ensemble approach. Instead of training a single model, in SELDOM, we train
many models at the same time and then combine the results at the end. The
individual training of each model in the ensemble is an embarrassingly parallel
task as no communication between them is necessary.

The shift from Matlab to R was motivated by the lack of Matlab licenses at
the computer cluster accessible to perform the computations shown here. How-
ever, as libAMIGO was already implemented the cost of writing an interface in
R to libAMIGO was relatively small. Additionally, SELDOM uses a number of
preprocessing features from other softwares already implemented in R, such as
CellNOptR [157].

SELDOM was built as an R package containing the libAMIGO source code.
libAMIGO computes the cost the function and the built interface is responsible
for populating the memory. The implementation is independent of the model size
and all memory is dynamically allocated. Basically the RHS consists of a series of
loops that interpret the vector illustrated in Table 5.1. This means problem size
can be changed dynamically without any intermediate compilation.

Each independent model training was launched as a batch job using the LSF
grid system [176]. To reduce further the time to obtain the solutions, we activated
openMP in the evaluation of different experiments. The results shown in Chapter
4 were computed this such approach.

To assess the speedup obtained by openMP we launched R in a node with 32
cores composed of 4 Intel® Xeon®) Processor E5-2670. We computed the speedup
achieved while computing the dynamic trajectories for the whole ensemble model
(100 trajectories for the DREAMIS case study). This is illustrated in Figure 5.5.
We increased the number of used cores/threads used by openMP [35] until 10 and
monitored the obtained speedups. Until the threshold of 8 cores the improvement
is close to optimal. After that, performance drops quickly. Comparing with the
results shown in the previous section, there is a huge improvement which is likely
due to the usage of a more recent processor, the Intel compilers and other problem

dependent characteristics.
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Figure 5.5: The speedup in the time spent in the computation is shown as a
function of the number of used cores for the DREAMiS case-study while using
SELDOM. The speedup gained by using openMP [35] is almost linear until 8
cores. With more than 8 cores there is a significant loss of of performance.
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Table 5.1: Each model in the ensemble is encoded as a vector which is interpreted
by the RHS function.



Chapter 6

Conclusions

6.1 Summary of the work and main contributions

In this thesis, we have developed methods for reverse engineering of signaling
networks from experimental data. Because the detailed molecular mechanisms (e.g.
reactions) behind the functioning of these systems are poorly characterized from
the biochemical point of view it is hard to build dynamic models for these systems
in a straightforward manner. Despite of this, certain pathways are relatively well
characterized from a qualitative point of view and graphs describing interactions
between different proteins and the flow of information can be obtained from data-
bases, literature mining or derived manually by experts on a particular biological
question.

In the work described in Chapter 3, we assume a PSN is available. This network
is a directed graph with a known sign (activation or inhibition). This network is
then used to build a nested model where several mechanistic/qualitative hypothe-
ses are encoded and are associated with binary decision variables. On the other
hand, the parameters that describe the interactions between model states quan-
titatively are not known and have to be estimated. Exploring the whole space of
models is unfeasible for the size of problems considered here. Thus, we formulated
the problem as a MINLP problem and used metaheuristic methods combined with
deterministic local solvers to find solutions that are able to describe the exper-

imental data well. In n silico case studies we could recover the correct model
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structure in a reliable manner. In a different case study with data from a hepa-
tocellular carcinoma cell line (HepG2), we were able to locate a number of high
quality solutions.

Finding solutions within the MINLP framework is more manageable than full
search space exploration. However, MINLPs are very hard to solve, even using
metaheuristics. We compared the behavior of several algorithms and found that
the convergence specially for the HepG2 case study was relatively low. To improve
convergence, we developed a relaxation (the integrality constraints in the decision
variables were dropped) tailored to this problem. The problem was then formulated
as a sequence of NLP problems and the final solutions polished with the MINLP
solvers.

In Chapter 4, we extend the work of Chapter 3 by assuming no prior knowledge
PSN is available. We rapidly found that the method on chapter 3 could not be
applied if we assumed a fully connected graph. Thus, we derived a so-called DDN
composed of mutual information scores between pairs of variables and imposed
a constraint on the maximum number of input connections (indegree) from each
node in the graph. We were well aware, both from the theoretical perspective
[154] and from the practical of the HepG2 case-study results in Chapter 3, that
several networks would be able to explain the network behavior equally well. Thus,
we decided to explore the landscape of possible model structures by developing
a sampling procedure based in the mutual information scores. Each graph was
then used to build a nested model similar to those from Chapter 3 and trained
individually.

In this case, we were specially concerned with the predictive skills of the mod-
els obtained, more particularly we were interested in making predictions about
untested experimental conditions. Therefore, excessive model complexity was ad-
dressed by applying a simple, yet effective, iterative model reduction procedure
based in the AIC. Indeed, we found many models explained the data similarly
well, but it was hard to select a model with high predictive skill. The combination
of all trained models into a an ensemble model proved to be the most robust choice
for predicting the trajectories for new experiments and for predicting the network
structure. Our results were assessed using a number of in silico case studies de-

rived by us, and another set of in silico and experimental case studies from the
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HPN-DREAM breast cancer network inference challenge.

Ensemble methods have been widely used in weather forecasting and for ma-
chine learning applications. In a review of ensemble methods applied to systems
biology, Swigon [153| describes the usage of ensemble methods using the Bayesian
framework. Although the Bayesian point of view is a nice framework to represent
the problem, the application of Bayesian inference to the dynamic models derived
for SSP, DREAMiS, DREAMBT20 and DREAMBT549 would have been unfeasi-
ble. With a relatively small number of models we were able to generate predictions
similar (DREAMBT20 and DREAMBT549) or significantly better (DREAMIS)
than those of the best performers of the DREAM challenge.

Finally, in Chapter 5 we describe the implementation of the ibAMIGO. This
library was used to implement the methods used in the studies shown in Chapters
3 and 4. This library is built around the CVODES solver and was developed to
facilitate the implementation and sharing of systems biology models. This library
arose from the need of being able to share and implement our dynamic optimiza-
tion problems in a license free and platform independent manner. Some practical
applications of ibAMIGO are described. Because the library is implemented in
C, we could explore parallelization using libraries such as openMP. Very signifi-
cant speedups could be obtained for some problems with moderate implementation
efforts.

The inference of signaling pathways can be handled using a dynamic optimiza-
tion framework. Reliability of the models needs to assessed a posteriori due ex-
pected ill-posedness and ill-conditioning. The problems at hand are nonlinear and
non-covex. The problem, as stated here, is composed by several computationally
demanding tasks, specially in terms of computation time. However, by applying
state of the art numerical methods, heuristics, meta-heuristics, relaxations and the

usage of multicore and cluster computing, significant gains can be obtained.

6.2 Further work

In chapter 4 we derived an ensemble approach to tackled the indeterminacy of
the problem by generating a family of solutions. Recently Huynh-Thu et al. [74]

have proposed an ensemble approach to build dynamic models based in data-re-
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sampling methods and supervised learning. A possible reformulation of SELDOM
could benefit form this type of strategies. A systematic comparison of ensemble
generation methods either based in problem structure or data re-sampling tech-
niques (e.g. boosting method) should be considered in further work.

Due to limitations in the available computational power we formulated the
training of the SELDOM models as an NLP problem. Considering binary decision
variables could improve the interpretability of the models and perhaps even im-
prove their predictive power. This was not tried and should be also considered in
further work.

The DREAM-HPN Breast Cancer challenge provides data for 4 cancer cell-
lines. It is expected that differences at the genome level cause cell-lines to behave
differently at the signaling level. However, these cell-lines certainly share some
common features. Maybe a formulation taking into the account the resemblance
in terms of model structure and parameters of the different cell-lines can help
us build models with improved predictive power or highlight the mechanisms by
which different cell-lines behave differently.

During this work we have used and developed a number of in silico and exper-
imental case-studies. Often developing or integrating the case-studies was a very
laborious task. The BioPreDyn-Bench [168] presents a series of well documented
benchmark problems implemented in a systematic manner facilitating its integra-
tion in existing pipelines for parameter estimation. A similar collection of problems
for reverse engineering of dynamic models and network inference could be built by
implementing and documenting the problems considered here in a standard format
like MIDAS [136].
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Appendix A

Supplementary Materials

Additional File 1 - S1 File

Supplementary materials for chapter 3.

Additional File 2 - S2 File

Case studies, used scripts and results for chapter 4.
https://drive.google.com /file/d /0B2Kw{3dJgHSOcmYyeGhNdTF4Q3c

Additional File 3 - S1 Fig

Relationship between the training RMSE and the prediction RMSE
for the MAPKp problem. The prediction RMSE is plotted here against the
training RMSE for each individual model (blue) and the ensemble (red).

Additional File 4 - S2 Fig

AUPR curves for different algorithms applied to MAPKp problem.

Additional File 5 - S3 Fig

Ensemble predictive skill depending on ensemble size (case study MAPKp).

This curve was computed by bootstrapping multiple n, models from the available
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100 models, i.e. we sampled multiple realizations of the individual predictions for
the same ensemble size and computed the average value. These curves converge
asymptotically and show that the chosen ensemble size parameter is adequate.

Equivalent predictions could have been obtained with smaller ensemble sizes.

Additional File 6 - S4 Fig

Time course trajectories for the training data (M APKp case study).
The median in red is surrounded by the predicted non-symmetric 20% ,60% and

95% confidence intervals.

Additional File 7 - S5 Fig

Time course predictions for the MAPKp case study. The median in red is
surrounded by the predicted non-symmetric 20% ,60% and 95% confidence inter-

vals.

Additional File 8 - S6 Fig

Relationship between the training RMSE and the prediction RMSE for
the MAPKIf problem. The prediction RMSE is plotted here against the training
RMSE for each individual model (blue) and the ensemble (red).

Additional File 9 - S7 Fig

AUPR curves for different algorithms applied to MAPKTf problem.

Additional File 10 - S8 Fig

Ensemble predictive skill depending on ensemble size (case study MAPKY).
The effect of the ensemble size n 4 in the prediction RMSE value. This curve was
computed by bootstrapping multiple n, models from the available 100 models,

i.e. we sampled multiple realizations of the individual predictions for the same
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ensemble size and computed the average value. These curves converge asymptot-
ically and show that the chosen ensemble size parameter is adequate. Equivalent

predictions could have been obtained with smaller ensemble sizes.

Additional File 11 - S9 Fig

Time course trajectories for the training data (MAPKIf case study). The
median in red is surrounded by the predicted non-symmetric 20% ,60% and 95%

confidence intervals.

Additional File 12 - S10 Fig

Relationship between the training RMSE and the prediction RMSE for
the SSP problem. The prediction RMSE is plotted here against the training
RMSE for each individual model (blue) and the ensemble (red).

Additional File 13 - S11 Fig

AUPR curves for different algorithms applied to SSP problem.

Additional File 14 - S12 Fig

Ensemble predictive skill depending on ensemble size (case study SSP).
The effect of the ensemble size n 4 in the prediction RMSE value. This curve was
computed by bootstrapping multiple n, models from the available 100 models,
i.e. we sampled multiple realizations of the individual predictions for the same
ensemble size and computed the average value. These curves converge asymptot-
ically and show that the chosen ensemble size parameter is adequate. Equivalent

predictions could have been obtained with smaller ensemble sizes.

Additional File 15 - S13 Fig

Time course predictions for the SSP case study. The median in red is sur-

rounded by the predicted non-symmetric 20% ,60% and 95% confidence intervals.
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Additional File 16 - S14 Fig

Time course trajectories for the training data (SSP case study). The

median in red is surrounded by the predicted non-symmetric 20

Additional File 17 - S15 Fig

AUPR curves for different algorithms applied to DREAMIiS problem.

Additional File 18 - S16 Fig

Time course trajectories for the training data (DREAMBT20 case study).

The median in red is surrounded by the predicted non-symmetric 20

Additional File 19 - S17 Fig

Time course predictions for the DREAMIiS case study. The median in
red is surrounded by the predicted non-symmetric 20% ,60% and 95% confidence

intervals.

Additional File 20 - S18 Fig

Relationship between the training RMSE and the prediction RMSE for
the DREAMBT20 problem. The prediction RMSE is plotted here against the
training RMSE for each individual model (blue) and the ensemble (red).

Additional File 21 - S19 Fig

Ensemble predictive skill depending on ensemble size (case study DREAMBT?20).
The effect of the ensemble size ny in the prediction RMSE value. This curve was
computed by bootstrapping multiple n, models from the available 100 models,
i.e. we sampled multiple realizations of the individual predictions for the same
ensemble size and computed the average value. These curves converge asymptot-
ically and show that the chosen ensemble size parameter is adequate. Equivalent

predictions could have been obtained with smaller ensemble sizes.
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Additional File 22 - S20 Fig

Time course predictions for the DREAMBT20 case study. The median
in red is surrounded by the predicted non-symmetric 20%, 60% and

95% confidence intervals.

Additional File 23 - S21 Fig

Time course trajectories for the training data (DREAMBT20 case study).
The median in red is surrounded by the predicted non-symmetric 20% ,60% and

95% confidence intervals.

Additional File 24 - S22 Fig

Relationship between the training RMSE and the prediction RMSE for
the DREAMBTS549 problem. The prediction RMSE is plotted here against
the training RMSE for each individual model (blue) and the ensemble (red).

Additional File 25 - S23 Fig

Ensemble predictive skill depending on ensemble size

(case study DREAMBT549). The effect of the ensemble size ny, in the pre-
diction RMSE value. This curve was computed by bootstrapping multiple n
models from the available 100 models, 7.e. we sampled multiple realizations of
the individual predictions for the same ensemble size and computed the average
value. These curves converge asymptotically and show that the chosen ensemble
size parameter is adequate. Equivalent predictions could have been obtained with

smaller ensemble sizes.

Additional File 26 - S24 Fig

Time course predictions for the DREAMBT?549 case study. The median in
red is surrounded by the predicted non-symmetric 20% , 60% and 95% confidence

intervals.
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Additional File 27 - S25 Fig

Time course trajectories for the training data (DREAMBT549 case
study). The median in red is surrounded by the predicted non-symmetric 20%
,60% and 95% confidence intervals.
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