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White matter changes in microstructure associated with a
maladaptive response to stress in rats
R Magalhães1,2,3,9, J Bourgin1,4,5,9, F Boumezbeur6, P Marques1,2,3, M Bottlaender6, C Poupon6, B Djemaï6, E Duchesnay6, S Mériaux6,
N Sousa2,3, TM Jay1,4,5,10 and A Cachia1,4,7,8,10

In today’s society, every individual is subjected to stressful stimuli with different intensities and duration. This exposure can be a key
trigger in several mental illnesses greatly affecting one’s quality of life. Yet not all subjects respond equally to the same stimulus and
some are able to better adapt to them delaying the onset of its negative consequences. The neural specificities of this adaptation
can be essential to understand the true dynamics of stress as well as to design new approaches to reduce its consequences. In the
current work, we employed ex vivo high field diffusion magnetic resonance imaging (MRI) to uncover the differences in white
matter properties in the entire brain between Fisher 344 (F344) and Sprague–Dawley (SD) rats, known to present different
responses to stress, and to examine the effects of a 2-week repeated inescapable stress paradigm. We applied a tract-based spatial
statistics (TBSS) analysis approach to a total of 25 animals. After exposure to stress, SD rats were found to have lower values of
corticosterone when compared with F344 rats. Overall, stress was found to lead to an overall increase in fractional anisotropy (FA),
on top of a reduction in mean and radial diffusivity (MD and RD) in several white matter bundles of the brain. No effect of strain on
the white matter diffusion properties was observed. The strain-by-stress interaction revealed an effect on SD rats in MD, RD and
axial diffusivity (AD), with lower diffusion metric levels on stressed animals. These effects were localized on the left side of the brain
on the external capsule, corpus callosum, deep cerebral white matter, anterior commissure, endopiriform nucleus, dorsal
hippocampus and amygdala fibers. The results possibly reveal an adaptation of the SD strain to the stressful stimuli through
synaptic and structural plasticity processes, possibly reflecting learning processes.
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INTRODUCTION
Stress is a major risk factor to the development of severe mental
illnesses, including major depression, anxiety,1,2 bipolar disorders
and schizophrenia (for review, see Walker et al.3 ) and overall one
of the more common factors in eliciting dynamic changes in
brain states.4 Stress is known to trigger the activation of the
hypothalamus–pituitary–adrenal axis, culminating in the produc-
tion of glucocorticoids by the adrenals5,6 that will in turn generate,
depending on the individual and the stress stimulus character-
istics, adaptive or maladaptive psychoneuroendocrine responses
to the stressful stimulus.7 In patients with major depressive
disorder, dysregulation of the hypothalamus–pituitary–adrenal
axis elicits specific and long-lasting functional and structural
changes on a network of regions encompassing the hippo-
campus,8–10 the medial prefrontal cortex11,12 and amygdala.13,14

Subjects with ultrahigh risk for psychosis are particularly sensitive
to social stress, life events and daily hassles, which have the
potential to trigger psychiatric symptoms; they have an increased
basal cortisol level15,16 and a smaller hippocampal volume.17,18

Moreover, stressful life events in non-psychiatric subjects are
associated with a gray matter volume decrease in a network

encompassing the anterior cingulate cortex, the hippocampus and
the parahippocampal gyrus that was observed within a 3-month
period.19

Animal models have confirmed the drastic effects that stress
can have on the brain, including changes in dendritic trees,
synaptic plasticity inhibition in the hippocampus and the
hippocampal-to-prefrontal pathway,12,20,21 decreased neurogen-
esis in the hippocampus22 and apoptosis, involving corticosteroids
and glutamate receptors.23 Taken together, these findings support
the effect of stress on structural changes within networks of
spatially distributed gray matter regions.
In addition to these regional changes, increasing evidence

suggests that stress may also disrupt the structural and functional
connectivity within neural networks.24–28 Diffusion magnetic
resonance imaging (dMRI) is an advanced technique for examin-
ing white matter (WM) anatomy providing insights on the
pathway microstructure within neural networks.29 A commonly
used feature in dMRI studies is fractional anisotropy (FA), which
estimates the degree to which tissue organization limits diffusion
of water molecules in brain WM.30 In animals, different recent
dMRI studies investigated changes in diffusion signal associated to
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chronic stress exposure. Delgado y Palacios et al.31 were the first to
report the effects of stress using in vivo dMRI in rats: using
diffusion kurtosis imaging (DKI), hippocampus microstructure was
revealed to be altered in chronically stressed rats, independently
of the hedonic state. More recently, the same team evaluated the
mean kurtosis in the PFC, caudate–putamen (CPu) and amygdala
in anhedonic-like and resilient rats and found a decrease in the
CPu in the anhedonic-like.32 In addition, using a similar chronic
mild stress (CMS) model, Kumar et al.33 showed increases in axial
diffusion (AD) and radial diffusion (RD) specifically in the CPu and
the amygdala of stressed rats. Another study using in vivo dMRI
showed an increase in the mean diffusion (MD) in the lateral
ventricles of chronically stressed rats, although no other changes
were found.27 Finally, using a mice and a social defeat stress
paradigm, Anacker et al.28 have shown correlations between
diffusion metrics and social avoidance correlating positively with
FA in the hypothalamus and hippocampus.
Here, we used dMRI and the tract-based spatial statistics (TBSS)

approach34 adapted to brain rat to investigate the WM
microstructure on the entire brain. We selected two strains of
rats, Fischer 344 (F344) and Sprague–Dawley (SD), known to have
differential response to stress,35,36 and compared their WM
microstructure, assessed by four complementary dMRI measures
(FA, MD, AD and RD), after exposure to repeated inescapable
stress. Repeated exposure to the same stressor very often results
in habituation, which leads to a decrease in the hypothalamus–
pituitary–adrenal axis response.37 In contrast to SD rats, F344 rats
show virtually no habituation or adaptation of the corticosterone
stress response during repeated stress but an exaggerated acute
stress-induced corticosterone secretion35,36 and increased anxiety-
related behaviors38 with increased amygdala volume.39 Such a
design allowed studying the effect, but also the responsivity, to
stress.

MATERIALS AND METHODS
Animals
Experiments were performed with male adult SD (n=14) and Fisher 344
(F344; n= 14) rats (Charles River, Saint-Germain-sur-l'Arbresle, France) at
8 weeks’ age (average of 200 g for SD and 180 g for F344). Rats were
housed in groups of two animals with ad libitum access to food and water
and maintained in a temperature-controlled room, with a light/dark cycle
of 12/12 h (lights on at 0600 hours). For each strain, rats were randomly
assigned to stressed (N=14) and non-stressed (N= 14) groups. Two
animals of the SD strain of the control group were killed before the end of
the 2 weeks. The protocols have been approved by the Comité d´ Éthique
en Expérimentation Animale du Commissariat à l´ Énergie Atomique et aux
Energies Alternatives—Direction des Sciences du Vivant Ile de France (CETEA/
CEA/DSV IdF) under protocol ID 12-058. All procedures were conducted in
conformity with National (JO 887–848) and European (86/609/EEC) rules
for animal experimentation.

Stress protocol
The behavioral stress protocol has been previously described elsewhere.20

Briefly, rats were placed on an elevated and unsteady platform for 30 min.
The platform was positioned 1 m above the ground and illuminated with a
high-intensity light source (1500 Lux). While on the platform, animals
showed urination, defecation, grooming and freezing. This inescapable
stress exposure (called a session) was repeated daily during 15 days
between 0900 and 1200 hours.40 We measured corticosterone levels for all
animals in control condition and after the end of the stress session.
Animals were randomly chosen to be stressed or not. This protocol was
chosen as we previously demonstrated that it causes with a similar sample
size a disruption of synaptic plasticity in the hippocampal-to-prefrontal
cortex pathway20 and changes in regional brain volumes that are
associated with an increase in plasma corticosterone levels.39

Corticosterone immunoassay
The plasma level of corticosterone was assessed as a biomarker of stress in
all experiments. Blood samples were collected from the tail under quick
anesthesia in basal conditions on day 0 (D0) and 10 min after the end of
the stress session at different times (acute stress: D1; repeated stress: D15)
for the group exposed to stress. Blood samples for the control group were
taken at D15. Anesthesia was induced with 5% isoflurane mixed with
oxygen, using a calibrated vaporizer maintained at 2% during the
sampling. Samples were centrifuged at 1000 g for 15 min, and serum
stored at − 20 °C. Plasma corticosterone was assessed by immunoassay
(Corticosterone Immunoassay, Enzo Life Sciences, Villeurbane, France).

Tissue preparation
Twenty-four hours after the last day of repeated inescapable stress or after
daily handling in control animals, rats were anesthetized with sodium
pentobarbital (100–150 mg kg− 1, intraperitoneally (i.p.)), followed by
intracardiac perfusion with physiological NaCl solution and 4% cold
paraformaldehyde in 0.01 M phosphate-buffered saline (pH= 7.4). After
perfusion, the brain was harvested maintaining integrity and stored in 4%
PFA in phosphate-buffered saline at 4 °C. Before MRI, the brains were
washed into phosphate-buffered saline for 24 h to remove the fixation
solution and then placed into a custom-built MRI-compatible tube. The
tube was filled with Fluorinert, an MRI susceptibility-matching fluid (Sigma-
Aldrich, St Louis, MO, USA).

Acquisition of diffusion MRI data
Diffusion ex vivo data with high spatial and angular resolution were
acquired to quantify the subtle changes in the WM microstructure within
the entire rat brain. The ex vivo MRI acquisitions were performed on a 7 T
preclinical scanner (PharmaScan, Bruker, Ettlingen, Germany) using a
home‐made quadrature birdcage coil (inside diameter = 28 mM). Diffusion
images were acquired using a Spin-Echo Multi Shot Echo Planar Imaging
(repetition time (TR) = 26 s, echo time (TE) = 29 ms, 90° excitation pulse
followed by a 180° refocusing pulse, 4 segments, 4 averages, total
time= 24 h16 m 03 s). One hundred four interleaved slices with 0.25 mM

thickness were acquired, with a matrix size of 106× 106, a field-of-view of
25.44 × 25.44 mM and an in-plane resolution of 0.24 × 0.24 mM. Following
10 acquisitions with no diffusion sensitization (b=0 s mm−2), diffusion-
weighted images were acquired along 200 noncollinear directions
(b= 4000 s mm−2). The physicist performing the MRI acquisition was blind
to the group allocation (stress versus no stress).

Preprocessing of diffusion MRI
The dMRI images were reconstructed using an in-house script and visually
inspected for brain lesions and artefacts, after which two subjects (one
F344 and one SD from the control group) were excluded because of the
presence of artefacts. All the data were pre-processed using the FMRIB
Software Library41 (FSL, http://fsl.fmrib.ox.ac.uk/fsl/) v5.0.6 using the
following steps: bias field correction using FAST,42 correction of the field
inhomogeneity, estimated from b0 images, on all volumes; eddy current
distortions and movement correction with fsl ‘eddy_correct’ command-line
tool (the first volume without diffusion sensitization was chosen as the
reference volume for the affine registration); segmentation of the brain
signal using BET:43 BET was applied to the mean of the images without
diffusion sensitization, with the resulting mask being applied to all
volumes. The gradient vector directions were rotated for each subject
according to the eddy correct output.44

Tensor fitting and scalar maps were calculated using FSL FDT ‘dtifit’
command line45,46 using the corrected vector directions. These maps were
used to obtain the FA, AD, MD and RD maps (see Figure 1). These indexes
derived from dMRI provide complementary information of WM micro-
structure. Although discussed, FA is classically considered to reflect the
degree of myelination and axonal density.47–50 AD measures diffusivity
parallel to axonal fibers and AD decreases are thought to reflect pathology
of the axon itself, such as from trauma or ischemic changes.47 RD measures
diffusivity perpendicular to axonal fibers and appears to be more strongly
correlated with myelin abnormalities, like demyelination, as observed in
multiple sclerosis.51

TBSS
Whole-brain voxel-based statistical analysis was performed using the TBSS
approach34 distributed as part of FSL adapted to the rat brain. The FA maps

White matter microstructure and response to stress
R Magalhães et al

2

Translational Psychiatry (2017), 1 – 9

http://fsl.fmrib.ox.ac.uk/fsl/


of all subjects obtained in the tensor-fitting step were aligned into a
common space using a study-dedicated template and the nonlinear
registration tool FNIRT.52 The template was defined as the most
representative animal, calculated during the TBSS pipeline as the one that
minimizes transformations. Next, all the FA images were averaged and

thinned in order to create the mean FA skeleton. A threshold of 0.3 was
applied to this skeleton in order to restrict the analysis to the WM tracts,
and thus defining the final voxels for analysis. The AD, MD and RD maps of
all animals were then warped into this skeleton map using the nonlinear
transformations previously calculated for the FA maps.

Figure 1. Representative image of the diffusion MRI data (b0 map) and diffusion metrics (FA, MD, RD, AD) in a rat brain. AD, axial diffusivity; FA,
fractional anisotropy; MD, mean diffusivity; MRI, magnetic resonance imaging; RD, radial diffusivity.

Figure 2. Three-dimensional reconstructions of the white matter skeleton used for TBSS analyses (lateral and top views). White matter tracts
were color-coded based on the Paxinos and Watson atlas.54 TBSS, tract-based spatial statistics.
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Figure 3. Plasma levels of corticosterone (mean± s.d.) obtained in control and after stress in F344 and SD rats. (a) Longitudinal data at baseline
(D0), after acute stress (D1) and after chronic stress (D15). (b) Comparison between strains before stress (D0) and after chronic stress (D15).
Significance levels: *Po0.05, ***Po0.001. F344, Fischer 344; SD, Sprague–Dawley.

Figure 4. White matter tracts with microstructural differences between control rats and stressed rats. Top panel represents an axial brain slice
with voxels with significant main effect of stress (red–yellow scale) superimposed on the white matter skeleton used for TBSS analyses. Bottom
panel provides histogram of white matter tracts microstructure (FA, MD or RD) in control (black) and stressed (light gray) rats. Only tracts with
significant main effect of stress on FA (a), MD (b) or RD (c) are represented. For illustration purpose, the tracts were slightly dilated. FA,
fractional anisotropy; MD, mean diffusivity; RD, radial diffusivity; TBSS, tract-based spatial statistics.
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Statistical analysis for the skeletonized maps of FA, AD, MD and RD
was performed using the ‘randomise’ fsl command-line tool, yielding a
non-parametric test based on randomization methods. A total of 10 000
random permutations were used with threshold-free cluster
enhancement,53 and multiple comparison corrections for family-wise error
results were considered significant at Po0.05. Six different contrasts were
calculated, testing for the effect of stress (‘Stress4No stress’; ‘StressoNo
stress’), strain (‘SD4F344’; ‘SDoF344’) and stress-by-strain interaction.
Labeling of significant clusters in the FA skeleton was based on the

standard Paxinos and Watson atlas54 and cross-validated by visual
inspection (Figure 2). Descriptive statistics were then calculated separately
for each WM bundles.

RESULTS
Corticosterone plasma level
As expected, we found a significant main effect of stress on
corticosterone plasma levels (F(25, 1) = 54.87, P= 2.7 × 10− 7) after
chronic stress exposure (increase) in both strains ((SD rats: n= 6,
197 ± 65.34 ng ml− 1 and F344 rats: n= 8, 273.75 ± 59.50 ng ml− 1)
when compared with non-stressed rats (SD rats: n= 6,
63.66 ± 41.86 ng ml− 1 and F344 rats: n= 6, 92.50 ± 44.01 ng ml− 1).
There was also a significant difference between the two strains
after 15 days of stress exposure with a higher plasma corticoster-
one level in F344 rats compared with SD rats (T(11) = 2.18, P= 0.02;
Figure 3). There was no variance difference in corticosterone
plasma levels between strains (SD versus F344) in control and
stressed animals nor difference between conditions (stress versus
no stress) in SD and F344 (Fligner–Killeen non-parametric test of
homogeneity of variances, all P-values40.2).

White matter microstructure
The final number of animals involved in the analysis was as
follows: 11 SD rats (four control and seven stressed) and 13 F344
(six control and seven stressed).
The WM skeleton in which statistical tests were conducted was

constituted by a total of 6254 voxels. All the statistical tests were
done with 23 degrees of freedom.
TBSS analyses revealed no significant main effect of strain

(‘F344’ versus ‘SD’) in FA, AD, MD or RD maps (Pcorrected40.05).
In contrast, we found a main effect of stress (‘control’ versus

‘stress’) in several WM bundles, with increased FA (peak
T-value = 5.720, peak-corrected P-value = 0.012, cluster size of
3126 voxels) and decreased RD (peak T-value = 4.621, peak-
corrected P-value = 0.011, cluster size of 3480 voxels) and MD
(peak T-value = 4.598, peak-corrected P-value = 0.037, cluster size
of 1515 voxels) in stressed animals compared with controls
(Figure 4). These stress-related differences were distributed over
the entire brain and involved WM bundles in posterior and
anterior areas, on both hemispheres (Table 1).
Finally, significant strain-by-stress interactions were found in

MD, RD and AD maps (Figure 5), with a stress-related decrease in
SD rats and an absence of change in F344 rats. Significant
interactions involved WM bundles in the left hemisphere and
included the following: the corpus callosum (cc), external capsule
(ec) and deep cerebral WM (dcw) for MD, RD and AD measures;
the anterior commissure (ac), dorsal and intermediate endopiri-
form nucleus (DEn/IEn) and amygdala for MD and RD measures;
and dorsal hippocampus commissure (dhc) on MD. All statistics
related to these results can be found on Table 2.

DISCUSSION
This diffusion MRI study reveals that 15 days of repeated exposure
to the same inescapable stressor in rats leads to microstructural
WM changes—increased FA and decreased MD and RD—of
several WM bundles distributed in the entire brain. Furthermore,
differential stress effects were observed in SD and F344 rat strains,

which are known to have a different behavioral and physiological
habituation to repeated stress.35,36

Several WM bundles reported in this study (including amygdala
fibers, dcw, DEn/IEn fibers, dorsal hippocampus, fimbria of the
hippocampus, external capsule and corpus callosum) connect
brain areas associated with emotion formation and processing,
attention, and learning and memory.14,55–57 Of note, some of
these bundles interconnect the hippocampus (dhc and fi) or
connect the hippocampus to the amygdala, prefrontal cortex and
anterior thalamic nuclei (ec, cc, StrlCg and dcw), regions
consistently reported to be affected by stress.7,9,10,12,14 Changes
found in ac, proximal to the olfactory bulb and in Denien58

may indicate a stress-related alteration in sensory circuits,
possibly because of a readjustment of the perception of their
surroundings.
To our knowledge, this is the first study to show the effects of

repeated acute stress exposure in two strains with different stress
sensitivity and habituation. Indeed, we show decreased MD, RD
and AD in several brain bundles in SD rats, whereas no such
differences were observed in F344 rats. This is particularly relevant,
as SD rats were able to adjust their stress response to the repeated
exposure to acute stress (resilience), therefore, showing an
adaptive response that may be triggered by the acquisition of
coping mechanisms that are paralleled by the decreases in MD, RD
and AD, despite the overall increase in FA. In contrast, F344
(nonresilient) rats, which display a maladaptive response, do not
reveal significant changes in these parameters. These findings
suggest that differential response to repeated acute stressors may
be revealed by or are associated with the ability to trigger
structural plastic events in WM.
A few preclinical dMRI studies previously reported measurable

effects of stress on several brain regions, and in all cases
addressing the impact of chronic stress. Indeed, a significant
decrease in the mean and radial kurtosis in the hippocampus was
detected following CMS in rats.31 More recently, the same team
reported significant stress-related increases in AD and RD in the
CPu and in the amygdala, respectively, along with a mean kurtosis
decrease in the CPu in anhedonic-like animals compared with
resilient animals.32 Such effects were interpreted as the result of

Table 1. Abbreviations of the white matter tracts investigated in the
study

Abbreviation White matter tract

ac Anterior commissure
amygfib Amygdala fibers
cc Corpus callosum
dcw Deep cerebral white matter
denien Dorsal and intermediate endopiriform nucleus fibers
dhc Dorsal hippocampus commissure
ec External capsule
fi Fimbria of the hippocampus
ic Internal capsule
inwh Intermediate white layer
lovo Lateral orbital cortex/ventral orbital cortex
mfb Medial forebrain bundle
nsplh Nigrostriatal bundle/peduncular part of the lateral

hypothalamus
nv Navicular nu basal forebrain
opt Optic tract
optot Olivary pretectal nu/nu of the optic tract
prlcg Prelimbic cortex/cingulate cortex
strfibers Striatum fibers
strmlfr Superior thalamic radiation/medial lemniscus/

fasciculus retroflexus

White matter tracts were labeled based on the Paxinos and Watson atlas.54
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Figure 5. White matter tract changes in microstructure associated with maladaptative response to stress. Interaction graphs provide the mean
values of white matter tract microstructure - FA (a), MD (b) or RD (c) - in control (black) and stressed (light gray) animals, in F344 (circles with
solid lines) and SD (squares with dotted lines) rats. ac, anterior commissure; amygFib, amygdala fiber; cc, corpus callosum; dcw, deep cerebral
white matter; denien, dorsal and intermediate endopiriform nucleus fiber; dhc, dorsal hippocampus commisure; ec, external capsule;
FA, fractional anisotropy; F344, Fischer 344; MD, mean diffusivity; RD, radial diffusivity; SD, Sprague–Dawley.
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axonal degeneration and demyelination within WM bundles with
disrupted microstructural spatial coherence. A FA decrease
interpreted as a potential loss of myelin sheath was also found
in the corpus callosum, bilateral frontal cortex and bilateral
hypothalamus in rats after a similar CMS protocol.33

Such contrasting results are likely to reflect the temporal
dynamics of the stress response (and its successful, or not,
adaptation). Yet, we cannot exclude that other methodological
differences may also explain the difference in FA change direction,
including the stress paradigm (repeated acute stress versus CMS),
image acquisition (in vivo dMRI versus ex vivo data with higher
spatial resolution and higher signal-to-noise ratio) or image
analysis (measure in a priori preselected regions of interest,
mostly within gray matter structures versus voxel-wise analysis on
the whole WM tracts).
Increased WM FA has been repeatedly associated to learning59–

61 via neuronal plasticity processes (for example, synaptogenesis
and dendritic branching) and glial remodeling (for example,
modification of astrocyte processes).62 An increased FA was found
in the corpus callosum after a spatial learning task and such
increase was supported by significant increases in immune
reactivity for a myelin marker, suggesting an increase in the
cellular organization and packing of axons or myelin.59,63 More
recently, TBSS analysis also revealed higher FA in skilled learning

rats in comparison with control64 that could be explained by
increases in myelination. On the other hand, a reduction in MD
was found in both rat hippocampi before and after learning a
hippocampal-dependent spatial navigation task.61 Data from both
human and animal studies indicate the potential for rapid changes
in dMRI indices,61,65 suggesting changes in structural plasticity in
specific brain regions. The patterns of FA increase/RD decrease are
likely related to a tissue density increase due to reshaping of
neuronal or glial processes, and/or enhancement of tissue
organization, including strengthening of axonal or dendritic
backbones and surrounding tissue.66 Myelination, known to be
modified by experience and maturation,67,68 may also partly
explain the RD decrease observed in the stressed rats as RD
increases have previously been associated with demyelination
processes.69,70 Of note, an activity-dependent myelination has
been recently proposed in a human study of motor training,
where the FA change in WM was accompanied by adjacent gray
matter density alterations.71

This study presents some limitations that should be considered.
Here the susceptible/resilient differences are achieved by using
different strains. We cannot discard the possibility that the
mechanisms that lead to different responses to stress within a
single strain are different, or if the results found are specific to the
SD strain, making its generalization harder. In addition, corticos-
terone was the only measure used to access the stress response,
and although it is known to be one of the more representative
markers of stress, the use of complementary behavioral assess-
ment could be beneficial. Other limitations include the lack of
direct histological correlations between DTI indices and morpho-
logical markers due to the exclusive ex vivo approach. In vivo
longitudinal measurements would have allowed comparisons
before and after stress, however, at the expense of signal-to-noise
ratio and diffusion MRI spatial and angular resolution.
To conclude, we identified microstructural changes in the key

WM tracts like the corpus callosum and the amygdala fibers linked
to the frontolimbic circuitry with a functional relevance for
cognitive performance and emotional response. Our data
demonstrate that SD rats able to adjust to repeated exposure to
an acute stress leads to significant changes in dMRI indices. These
changes are not well understood, but we demonstrate that dMRI
may offer a novel measure of microstructural remodeling
occurring in response to stress to further explore the neural basis
of adaptive and maladaptive response to stress in rodents and
provide quantitative biomarkers to evaluate novel treatments to
the protection of stress effects.
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