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Abstract 

Obesity is a major health problem that is linked to decreased sperm count. It is hypothesized that an 

obesity-associated reduction in adiponectin secretion may be responsible for impairment of 

spermatogenesis. Therefore, the aim of the study was to evaluate the direct role of adiponectin in 

spermatogenesis and steroid synthesis in adult mice. This study showed that adiponectin receptors 

(AdipoR1 and AdipoR2) were localized in Leydig cells and seminiferous tubules in the testis of 

adult mice. The result of the in vitro study showed the direct action of adiponectin on 

spermatogenesis by stimulating cell proliferation (PCNA) and survival (Bcl2) and by suppressing 

cell apoptosis. Treatment of testis with adiponectin also enhanced transport of the energetic 

substrates glucose and lactate to protect cells from undergoing apoptosis. Adiponectin treatment 

further showed a significant reduction in oxidative stress and nitric oxide. Our findings suggest that 

adiponectin effectively facilitates cell survival and proliferation, as well as protects from apoptosis. 

Thus, adiponectin treatment may be responsible for enhancing sperm counts. Interestingly, this 

study showed the stimulatory effect of adiponectin in spermatogenesis but showed an inhibitory 

effect on testosterone and estradiol synthesis in the testes. Based on the present study, it is 

hypothesized that systemic adiponectin treatment may be a promising therapeutic strategy for the 

improvement of spermatogenesis and sperm count. 
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Introduction 

Obesity is a condition of excess accumulation of white adipose tissue (WAT) and has been 

associated with insulin resistance and hypogonadism (Phillips & Tanphaichitr, 2010). During the 

last few decades, a marked decline in male fertility due to a deterioration in semen quality was 

noted by a meta-analysis (Swan and Elken, 1999). The decline in male fertility has occurred in 

parallel with increasing rates of obesity. This suggests that obesity could be a possible reason for 

infertility and reduced fecundity in males. The molecular mechanism that links obesity with 

abnormal sperm production and infertility in males is not well understood. Adipose tissue is known 

to secrete a number of factors called adipokines that causes metabolic changes in various part of the 

body, including reproductive tissues. Adiponectin is most abundantly secreted adipokine (Scherer et 

al., 1995), and its circulating level decreases with obesity, but increases with the weight loss (Yang 

et al., 2001).  

Adiponectin has many metabolic functions, such as the regulation of glucose and lipid 

metabolism, energy homeostasis, and potent insulin-sensitizing functions in various tissues, 

including testes. The obesity-associated decline in circulating adiponectin level also causes 

decreased insulin sensitivity (insulin resistance) and glucose intolerance in gonad cells (Rak et al., 

2017). It is also possible that the obesity-associated, abnormal insulin signaling will induce an 

adverse effect on the testes (Papaetis et al., 2013). Glucose serves as the basic fuel molecule and 

provides important nutritional support to developing germ cells in the testes (Banerjee et al., 2014). 

The glucose transporter 8 (GLUT8) is one of the main glucose transporters in the testes (Gomez et 

al., 2006). The majority of glucose taken up by the testicular cells is converted to lactate, which is 

utilized as a key energy substrate by the developing germ cells and it also protects germ cells from 

undergoing apoptosis (Rato et al., 2012). Although adiponectin plays an important role in the 

https://www.tandfonline.com/author/Phillips%2C+Karen+P
https://www.tandfonline.com/author/Tanphaichitr%2C+Nongnuj


  

metabolic activities by regulating insulin sensitivity, the role of adiponectin in testicular energy 

homeostasis remains unknown. 

Adiponectin and its receptors (AdipoR1 and AdipoR2) are demonstrated in different testicular 

cells, suggesting a possible regulation of testicular function by adiponectin (Kadivar et al., 2016). 

While the physiological relevance of adiponectin and its receptors in the male reproductive tract has 

received only a little attention, expression of AdipoR1 and AdipoR2 in the testicular cells suggests a 

role in various reproductive activities. In rats, adiponectin is found mainly in the Leydig cells, 

whereas AdipoR1 is expressed in seminiferous tubules (Caminos et al., 2008). Further, our study 

showed a positive correlation with total sperm concentration in the seminal plasma. Adiponectin 

receptors in the testes increased during sexual maturation in chickens (Ocon grove et al., 2008). 

These studies suggested a possible important contribution of adiponectin in testicular activities. 

However, obesity induces metabolic disturbances that lead to increased oxidative stress (Furukawa 

et al., 2004), and this increased oxidative stress has been reported to contribute to the decline in 

reproductive functions (                 2014).  

To date, a comprehensive understanding of the adiponectin action and underlying mechanism in 

the testes is not well investigated; we, therefore, sought to elucidate the direct role of adiponectin on 

spermatogenic, testicular steroidogenic, and metabolic activities in adult mice. To examine the 

effect of adiponectin on spermatogenesis, we assessed the changes in the expression rate of cell 

proliferation (PCNA), survival (Bcl2) and apoptosis (caspase-3). To determine the effect of 

adiponectin on steroidogenesis, we examined the changes in the expression rate of LH-R, StAR, 

and 3β-HSD and the changes in the levels of testosterone and estradiol. To determine the impact of 

adiponectin on metabolic activities, we determined the expression changes of insulin receptors, 

glucose and lactate transporters (GLUT8 and MCT2 & 4), and lactate dehydrogenase activity, tissue 



  

glucose, and changes in antioxidant (SOD, Catalase, and GPx) and TBARS, nitric oxide levels were 

evaluated in the testis of adult mice. 

Material and Methods 

Animals used for the study: 

The institutional animal ethics committee approved all animal studies (No. F.Sc/IAEC/2014-

15/224). All experiments were conducted in accordance with principles and procedures approved by 

Departmental Research Committee, Banaras Hindu University. Mice (Mus musculus) of Parkes 

strain with average weight 30-35 g of 90-95 days were used for this study. Mice were maintained 

under hygienic conditions in a well-ventilated room, housed in polypropylene cages (430mm x 

270mm x 50 mm), had 12-hour photoperiod (6 AM to 6 PM, light), controlled temperature (24±2º 

C) and humidity, and were fed standard pelleted commercial laboratory chow (Amrut Laboratory 

Animal Feeds, Pune, India) and drinking water ad libitum. Dry rice husks were used as the bedding 

material. Adult male mice (n=9) were euthanized by decapitation while under a mild-dose of 

anesthetic ether. Their testes were quickly dissected out and either fixed in Bouin’s f uid fo  

immunohistochemistry or immediately processed for in vitro study. 

The peptide used for the study: 

The 18 amino acid, adiponectin peptide [NH2-LQVYGDGDHNGLYADNVN-COOH] dissolved in 

phosphate buffer saline (PBS - 0.1 M) was used in this study, which is synthesized in the laboratory 

of Dr. Puran S Bora. This peptide resembles mouse adiponectin peptide, having the globular 

domain (amino acid residues 216-233) at C-terminus of adiponectin protein (247 amino acid) that is 

highly conserved among mammalian species. This globular region of adiponectin shows a strong 

affinity with AdipoR1 but has moderate affinity for AdipoR2 (Yamauchi et al., 2003). 

In vitro study 



  

The dissected mice testes were cleaned of any adhered fat tissue in DMEM (Himedia, Mumbai, 

India) containing 250 U/ml penicillin and 250 mg/ml streptomycin sulfate. Each testis was cut into 

2-3 pieces (~15-20 mg in weight) and cultured by the method described previously (Banerjee et al., 

2012). The two different doses of adiponectin peptide (Low Dose = 0.1 µg/mL and High Dose = 1 

µg/ml) were selected in accordance with the previous study with some modifications (Caminos et 

al., 2008). The 1 µg/ml dose was earlier suggested as a physiological dose of adiponectin (Rossi and 

Lord, 2013). The control group received 10 µl of 0.1 M PBS per ml of medium per culture well. 

Each control and treatment group was run in triplicate. The culture medium was a mixture of 

DMEM (with sodium pyruvate and L-G u  min )  nd H m’s F-12 (1:1; v:v) (Himedia) containing 

100 U/ml penicillin, 100 mg/ml streptomycin, and 0.1% BSA (Sigma). After an initial incubation 

period of 2 hours at 35º C, the culture medium was discarded and testis (one slice per well) were 

finally cultured in 1 ml medium in a humidified atmosphere with 95% air and 5% CO2 to maintain 

pH 7.4 for 12 hours at 35º C. In the control group, testicular sections were only incubated in culture 

media without any treatment. Each treatment group was run in triplicate. Testis cultured under these 

conditions appears healthy and do not show any sign of necrosis. Testis slices were collected at the 

end of culture, washed several times with PBS, and stored at -20º C for immunoblot study, steroid 

assay, and biochemical estimations. 

Immunohistochemistry (IHC) 

Immunohistochemical detection of adiponectin receptors (AdipoR1 and AdipoR2) was carried out 

in Bouin’s fix d  paraffin-embedded adult mice testicular sections. The testicular sections (6 µm 

thick) were deparaffinized in xylene followed by hydration through graded alcohol and subjected to 

antigen retrieval in a microwave oven. The sections were then treated with 3% H2O2 in methanol 

for blocking endogenous peroxidase activity. The sections were incubated with blocking serum for 



  

1 hour, followed by overnight incubation with the primary antibody (dilution given in Table 1) at 4º 

C. The sections were then washed in PBS and incubated with the horseradish peroxidase tagged 

secondary antibody (dilution 1:200) for 2.5 hours at room temperature. After incubation with the 

secondary antibody, sections were washed in PBS and incubated with the chromogen substrate 

(0.1%; 3,3 diaminobenzidinetetrahydrochloride in 0.05 M Tris pH -7.6 and 0.01% H2O2) in the dark 

for1-2 minutes. After this sections were dehydrated and mounted with DPX. Slides were analyzed 

under a light microscope (Nikon, Tokyo, Japan) and photographed. 

Western blotting  

The testicular slices were pooled and homogenized in suspension buffer (0.01 M Tris pH 7.6, 0.001 

M EDTA pH = 8.0, 0.1 M NaCl, 1 µg/ml aprotinin, 100 µg/ml PMSF) to produce 20% (w/v) 

homogenate. Further, extraction of protein and immunoblotting was performed as described 

previously (Banerjee et al., 2012). An equal amount of proteins (60 µg) as estimated by the method 

of Bradford (1976) was loaded on to 10% SDS–PAGE for electrophoresis. Thereafter, proteins 

were transferred electrophoretically to polyvinylidene difluoride (PVDF) membrane (Millipore 

India Pvt. Ltd.) overnight at 50V, 4º C. The membranes were blocked for 1 hour with phosphate 

buffer saline (PBS- 0.1 M, pH 7.4; NaH2PO4 -16 mM; Na2HPO4 64 mM;NaCl 154mM; 0.02% 

Tween 20) containing 5% fat-free dry milk and incubated with primary antibodies (dilution given in 

Table 1) for 3 hours at room temperature. Membranes were then washed with three changes of 

PBST for 10 minutes. Immunoreactive bands were detected by incubating the membranes with 

horseradish peroxidase tagged secondary antibody (dilution 1:4000); for 1.5 hours. Finally, the blot 

was washed three times with PBST and developed with enhanced chemiluminescence (ECL) 

detection system (BioRad, USA). A Western blot for each protein was repeated three times. The 

densitometric analysis of the blots was performed by scanning and quantifying the bands for density 



  

value by using computer-assisted image analysis software (Image J 1.38x, NIH, USA). The 

densitometric data were presented as the mean of the integrated density value ± SEM. The bands 

obtained from western blot were normalized to β-actin (Sigma Aldrich, St. Louis, MO, USA). 

Biochemical assays 

Testicular glucose was estimated using commercially available biochemical kits (Autospan, India) 

while testicular lactate dehydrogenase (LDH) was measured using a commercially available LDH 

(P-L) Kit (Coral Clinical Systems, India). The total nitrate/nitrate level was estimated using 

vanadium trichloride method in accordance with the protocol of Miranda et al., 2001. 

Antioxidative Enzyme Activities 

Superoxide Dismutase (SOD) Assay 

SOD activity was measured in accordance with the method of Das et al., (2000). In brief, 10% 

testicular homogenate was prepared in PBS. The clear supernatant obtained was further diluted ten 

times with PBS. The supernatant (100 µL) was mixed with1.4 mL of a mixture containing 50mM 

phosphate buffer, 20 mM L-methionine, 10 mM hydroxylamine hydrochloride, 50 mM EDTA, and 

1% Triton X-100 and were incubated at 37° C for 5 minutes. After incubation, 80 µL of 100 µM 

riboflavin was added to each sample and kept under the SOD illuminated white light for 10 minutes 

The reaction was stopped by the addition of 1 mL of Griess reagent (consisting of 0.1 % NED and 1 

% sulphanilamide) to each sample. The absorbance was observed for 2 minutes at 543 nm with a 

UV–visible spectrophotometer. The enzyme activity was expressed as units per milligram protein. 

Catalase Assay 

Catalase activity was estimated in the samples according to the method of Aebi (1984). The ten 

 im s di u  d sup  n   n  s mp     s mix d  i h 10 μL of  bso ute ethanol, vortexed and incubated 



  

on ice for 30 minutes. Then, 450 µL of the reaction mixture was mixed with 50 µL of Triton X-100. 

An aliquot of 100 µL of above sample was taken along with 2.8 mL of 50 mM PBS. The change in 

OD was measured at 240 nm with and without the addition of the substrate (6 mM of H2O2) in the 

spectrophotometer. Catalase activity was expressed as nano-Kat per milligram protein. (One Kat is 

defined as 1 mole of H2O2 consumed per second per milligram protein). 

Glutathione Peroxidase (GPx) Assay 

The GPx activity in the supernatant was measured according to the method of Mantha et al., (1993). 

The 50 µL of s mp     s  mix d  i h  ss y mix u   consis  d of 398 μL phosph    buff   (50 mM  

pH 7 4)  2 μ  of EDT  (1 mM)  10 μL of sodium  zid  (1 mM)  500 μL of N DPH (0 5 mM)  40 μ  

of GSH (0.2 mM) and 1 U glutathione reductase. The enzymatic reaction mixture was allowed to 

equilibrate at room temperature  Th     c ion   s s     d by  h   ddi ion of 100 μ  of 100 mM 

H2O2, and the absorbance was scanned kinetically for 3 minutes at 340 nm using UV–visible 

spectrophotometer. The GPx activity was expressed as nmol of NADPH oxidized per minute per 

milligram protein using an extinction coefficient [6.22 mM
−1

 cm
−1

] for NADPH. 

Lipid Peroxidation Assay 

Lipid peroxidation was estimated spectrophotometrically by thiobarbituric acid-reactive substances 

(TBARS) method as described earlier (Ohkawa et al., 1979). In brief, 10% testicular homogenates 

were prepared in PBS. The 0.2 mL supernatant was mixed with 3.2 mL of TBA reagent (containing 

0.2 mL of 8.1% SDS, 1.5 mL of 20% acetic acid (pH 3.5), 1.5 mL of 0.8% TBA). The mixture was 

incubated at 95° C in the water bath for 1 hour, cooled on ice, centrifuged at 500 g for 10 minutes at 

4º C. The absorbance of the clear supernatant was measured at 534 nm using a spectrophotometer. 

It is expressed in terms of thiobarbituric acid reactive substances (TBARS) formed (nmol) per 

milligram protein. 



  

Steroid hormone assay: testosterone (T) and estradiol (E2) 

Testicular T and E2 level were estimated using the ELISA kit purchased from DiaMetra, Giustozzi 

(Foligno (PG), Italy; lot no.: DKO0002/DKO003) and validated by spiking control (Banerjee et al., 

2012; Verma and Krishna, 2017). In brief, 25 µl of the standards, control or samples (testicular 

homogenate or media) were added to each well of the ELISA plate. Subsequently, the enzyme 

conjugate solution was added to each of these wells. The ELISA plate was then incubated at 37º C 

for 1 hour. The wells were then aspirated and washed 3 times with wash solution. Then, 100 µl of 

the tetramethyl benzidinechromogen (TMB) solution was added to each well and the plate was 

incubated at room temperature for 15 min. Finally, 100 µl of stop solution (0.2 M sulfuric acid) was 

added and the optical density (OD) was noted at 450 nm using a microplate reader (BioRad). The 

standard curve ranged from 0.2 to 16 ng/ml for T and 20 to 2000 pg/ml for E2. The lowest 

detectable concentration of T and E2 that can be distinguished from the zero standards is 0.07 ng/ml 

and 8.68 pg/ml respectively at the 95% confidence limit. The coefficient of intra-assay variation 

was 5.8% for T and <9% for E2 and that of inter-assay variation was 10.5% for T and <10% for E2.  

Statistical analysis 

Data are expressed as mean ± SEM. The significance of the differences between groups was 

determined by one-way analysis of variance (ANOVA) followed by Bonferroni’s test using SPSS 

software 12 for Windows (SPSS Inc, IBM, Chicago, IL, USA) to compare the data from different 

groups. Correlation studies were performed by linear regression analysis using the method of 

P   son’s coefficient in all groups pooled together. The data were considered significant if p< 0.05. 

Results 

Immunolocalization of AdipoR1 and AdipoR2 protein in the testis of adult mice 



  

The presence of AdipoR1 and AdipoR2 protein was demonstrated immunohistochemically in the 

testis of adult mice. The AdipoR1 positive staining was mainly observed in interstitial Leydig cells. 

In contrast, negligible AdipoR1 immunostaining was observed in the seminiferous tubules (Sertoli 

and germ cells) (Figure. 1, a and b). Immunostaining of AdipoR2 was mainly found in the germ 

cells within seminiferous tubules of the testis particularly in round spermatids while no 

immunostaining was observed in the interstitium of the testis (Figure 1, c and d),. 

Changes in the expression of AdipoR1, AdipoR2 and AMPK proteins in the testis treated in 

vitro with adiponectin 

The testis treated in vitro with the low and high doses of adiponectin showed a dose-dependent, 

significant (P<0.05) increase in the expression of AdipoR1, AdipoR2, and AMPK proteins as 

compared with the control. Immunoblot of AdipoR1, AdipoR2, and AMPK proteins showed the 

single immunoreactive band at ~42, 43, and 62 kDa (Figure 2a-c). 

Direct effect of adiponectin on the expression of insulin receptor (IR), pAKT/AKT, GLUT8, 

MCT2, and MCT4 proteins in the testis of adult mice 

The testis treated in vitro with either low or high dose of adiponectin showed a dose-dependent 

significant increase in the expression of IR, pAKT/AKT, GLUT8, MCT2, and MCT4 proteins 

compared to the control. Immunoblot of IR, pAKT, AKT, GLUT8, MCT2, and MCT4 proteins 

showed the single immunoreactive band at ~92, 57, 57, ~47, 40, 43  kDa respectively (Figure 2d-e, 

Figure 3a-c). 

Direct effect of adiponectin on the tissue glucose level and LDH activity in the testis of adult 

mice 



  

The testes treated in vitro with either low- or high-doses of adiponectin showed a dose-dependent 

significant (p < 0.05) increased in the intra-testicular glucose concentration as well as LDH enzyme 

activity compared to the control (Figure 3d-e). 

The in vitro effect of adiponectin on the expression of markers of cell growth (pERK1/2), 

proliferation (PCNA), survival (Bcl2) and apoptosis (Caspase-3) in the testis of adult mice 

The testis treated in vitro with either low or high dose of adiponectin showed a dose-dependent 

significant increase in expression of markers of cell growth (pERK1/2) and proliferation (PCNA) 

(Figure 4a). Both the dose of adiponectin treatment showed significant (P<0.05) increase in the 

expression of cell survival marker, Bcl2 protein. Both the dose of adiponectin treatment showed 

dose-dependent significant (P<0.05) decrease in the expression of the cell apoptotic marker, 

caspase-3 protein (Figure 4b). Immunoblot of pERK1/2, PCNA, Bcl2, and Caspase3 proteins 

showed the single immunoreactive band at ~42, 29, 26 and 32 kDa respectively. 

Direct effect of adiponectin treatment on the activities of antioxidant enzymes (SOD, Catalase, 

and GPx), Lipid peroxidation, and nitric oxide level in the testes of adult mice 

The direct effect of low- and high-doses of adiponectin treatment showed a marked variation in 

testicular anti-oxidative enzyme activity. The testes treated in vitro with either low- or high-dose of 

adiponectin showed a dose-dependent significant (p<0.05) increase in the level of testicular SOD, 

Catalase, and GPx enzyme activities, whereas significant (p<0.05) decrease in the lipid peroxidation 

and nitric oxide (total nitrate/nitrite) levels compared to the control testis (Figure 5). 

The in vitro effect of adiponectin on steroid synthesis and on the expression of steroidogenic 

markers (LH-R, StAR, 3β-HSD, and Aromatase) in the mice testis 



  

The testes treated in vitro with either low- or high-dose of adiponectin showed a significant 

(P<0.05) decline in the intra-testicular concentration of both T and E2 compared to the control 

(Figure 6a). 

The testis treated in vitro with the high dose of adiponectin showed significantly (P<0.05) decreased 

expression of the steroidogenic marker (LH-R  S  R  3β-HSD, and Aromatase) proteins compared 

to the control. The low dose of adiponectin generally decreased the expression of LH-R protein, but 

not the S  R  3β-HSD, and aromatase proteins as compared with the control (Figure 6b).  

Correlation analysis data 

A correlation analysis was performed to find out how the various parameters correlated with each 

other in the control and adiponectin (Low dose, 0.1 µg/mL; High dose; 1 µg/mL) treated groups. A 

positive correlation was found between testicular expression of IR, GLUT8 with an expression of 

pAKT/AKT proteins (Table 2a); PCNA expression level correlated positively with expression of 

the GLUT8 protein and intra-testicular glucose level (Table 2b), and also a positive correlation was 

found between testicular anti-oxidant enzymes (SOD, Catalase, and GPx) with PCNA and Bcl2 

proteins. 

Discussion 

The aim of this study was to evaluate the hypothesis that obesity-associated decline in adiponectin 

level is responsible for impaired sperm production (infertility) in adult mice. The present 

immunohistochemical study has clearly demonstrated the presence of AdipoR1 and AdipoR2 in the 

testis, particularly in the Leydig and germ cells respectively. Our findings were consistent with the 

earlier reports that showed the presence of both adiponectin and its receptors in different testicular 

cells (Ocon-Grove et al., 2008; Kadivar et al., 2016). In rats, adiponectin is found mainly in Leydig 

cells, whereas AdipoR1 is expressed in seminiferous tubules (Caminos et al., 2008). The results of 



  

the present study corroborate with earlier findings that suggest Leydig cells and seminiferous 

tubules are the major sites of adiponectin synthesis and action in the testes of mice (Rak et al., 

2017). This study together with the earlier report (Martin, 2014) thus clearly suggests adiponectin as 

a potential regulator of testicular functions through endocrine and/or paracrine mechanisms. 

The testis treated in vitro with adiponectin showed a significant dose-dependent increase in 

expression of PCNA (cell proliferation) and Bcl2 (cell survival), but they showed a significant 

decline in expression of caspase-3 (cell apoptosis). The results of this in vitro study suggest a direct 

action of adiponectin, even in the absence of gonadotropins, on spermatogenesis by stimulating 

cells proliferation and survival and by suppressing the rate of apoptosis. The direct action of 

adiponectin in the cells proliferation and survival is supported by the previous findings that showed 

the presence of adiponectin receptors in the seminiferous tubules and mice deficient of AdipoR2 

resulted in atrophy of seminiferous tubule and aspermia (Bjursell et al., 2007). Simultaneously with 

a sharp increase in spermatogenesis, Sertoli cell function and sperm motility during sexual 

maturation in chicken were found a marked increase in expression of adiponectin receptors in the 

testis (Ocon-Grove et al., 2008). These findings suggest that increased adiponectin improves 

spermatogenesis, whereas the decline in adiponectin as found during obesity may be responsible for 

suppression of spermatogenesis (infertility). However, the mechanism by which adiponectin affects 

spermatogenesis is not yet fully elucidated. 

The testis treated in vitro with adiponectin showed a significant, dose-dependent increase in 

expression of AdipoR1 and AdipoR2. This study also showed a dose-dependent significant increase 

in expression of insulin receptor and AMP-activated protein kinase (AMPK) proteins in the testis 

treated in vitro with adiponectin, simultaneously with the increase in the expression of adiponectin-

receptors. Based on our findings it may be hypothesized that adiponectin affects testis by up-



  

regulating AdipoR1 and AdipoR2 through AMPK signaling (Wu et al., 2013), although our study 

requires further confirmation by blocking AMPK. A number of earlier studies have also shown that 

the insulin-sensitizing effect of adiponectin may be mediated by activation of AMPK (Yamauchi et 

al., 2002, Tomas et al., 2002; Kahn et al., 2005). These findings further suggest that activation of 

AMPK may be a probable mechanism by which adiponectin increases insulin sensitivity in the 

testes (Combs et al., 2004). Thus, the treatment of adiponectin may improve insulin sensitivity in 

the testes, which is required for fertility in male (Loeken, 2012; Schoeller et al., 2012). 

Spermatogenesis is a high-energy dependent process that requires glucose for energy. There are 

multiple mechanisms and involvement of various factors that are associated with glucose transport 

to testis (Banerjee et al., 2014), but the role of adiponectin in this process is not yet elucidated. 

Interestingly, in our present study, the testes treated with adiponectin in vitro showed a significant, 

dose-dependent increase in the expression of GLUT8 and IR proteins as well as increased uptake 

of intra-testicular glucose level. This finding is consistent with our earlier report suggesting the 

significant role of insulin in up-regulating the expression of GLUT8, which subsequently increases 

the transportation of glucose in the testis (Chen et al., 2003; Gomez et al., 2006; Banerjee et al. 

2014, Anjum et al., 2016). This study thus showed an increased concentration transport of glucose 

in the testes treated in vitro with adiponectin. These observations thus suggest that treatment of 

adiponectin may increase testicular intake of glucose level by insulin mediated increased 

expression of GLUT8 in the testes. To find out the signaling pathway of adiponectin and insulin-

mediated glucose uptake, phosphorylated AKT levels were evaluated in the testis. The testis treated 

in vitro with a low and high dose of adiponectin showed a significant increase in the expression of 

pAKT protein simultaneously with increased expression of GLUT8 and IR proteins. Furthermore 

the adiponectin-induced changes in GLUT8 (r= 0.941; p<0.05; Table 2a) and IR (r= 0.929; p<0.05; 



  

Table 2a) expression level correlated significantly with the changes in pAKT/AKT ratio in the 

testis. It is well recognized that AKT is involved in many signaling pathways including glucose 

trafficking (Huang et al., 2007). However, in this study, AKT may also function as a signaling 

molecule in adiponectin-induced changes in the expression of the GLUT8 protein in the testis. 

Further, in this study, the testes treated in vitro with adiponectin showed a significant correlation 

between the increase in the expression of testicular GLUT8 (r= 0.885; p<0.05; Table 2b) and intra-

testicular glucose (r = 0.889; p<0.05; Table 2b) level with the increase in the expression of PCNA. 

These observations thus suggest that adiponectin-induced increased availability of glucose may be 

responsible for increased cell proliferation or increased rate of spermatogenesis in the testis. It has 

earlier been shown that the testicular glucose is involved in a series of metabolic changes that 

finally contribute to active spermatogenesis by cell proliferation (Villarroel-Espíndola et al., 2015). 

Glucose transports by GLUTs that occur across the blood-testis-barrier to the Sertoli cell are crucial 

events of spermatogenesis. The results of our study showed, for the first time, the active 

participation of adiponectin in increased transport of glucose in the testis of mice. Sertoli cells 

convert glucose to lactate by enzyme lactate dehydrogenase. The conversion of increased 

glucose level to pyruvate via glycolysis and further pyruvate got converted to lactate in the Sertoli 

cells, which is catalyzed by the enzyme LDH (Rato et al., 2012). The testes treated in vitro with 

adiponectin showed simultaneously the significant increase in the expression of insulin receptor and 

phosphorylation of AKT protein, together with the significant increase in LDH enzyme activity. 

This finding also corroborates with the earlier reports that Sertoli cells treated with insulin showed 

increased LDH protein and intracellular lactate content (Rocha et al., 2014) and insulin-deprived 

Sertoli cell down-regulate lactate synthesis by suppressing LDH-A enzyme (Blackshaw and 

Elkington, 1990). Based on these findings it is postulated that adiponectin regulates the production 



  

of lactate by insulin-mediated increased synthesis of LDH in the testis. Lactate produced by Sertoli 

cell influences the survival of pachytene spermatocytes during the spermatogenesis (Jutte et al., 

1983). Glucose metabolism, therefore, is critical for normal spermatogenesis (Alves et al., 2013). 

Lactate is transported to germ cells through a family of proton-linked plasma membrane 

transporters known as monocarboxylate transporter (MCT) 2 and 4 (Oliveira et al., 2011). MCT4 

transports lactate from Sertoli cells to the extracellular spaces, whereas MCT2 transports lactate 

from the extracellular space to germ cells (Rato et al., 2012). Activation of AMPK is known as a 

stimulator of MCT4 expression. The testis treated in vitro with adiponectin showed a dose-

dependent significant increase in the expression of MCT2 and MCT4 proteins. Our findings thus 

suggest that adiponectin, by increasing expression of MCT2 and MCT4, transport lactate to the 

germ cells and prevent apoptosis. 

It is well known that oxidative stress can adversely affect spermatogenesis (Chandra et al., 

2009); whereas anti-oxidant enzymes protect testicular germ cells against the apoptotic effects of 

oxidative stress (Aitken and Roman, 2008). Our study examined the attenuating effects of 

adiponectin on testicular oxidative stress. The results showed a significant, dose-dependent increase 

in the antioxidant enzymes (SOD, Catalase, and GPx) activity, but a significant decrease in TBARS 

level (lipid peroxidation) in the testis of mice treated in vitro with adiponectin. The adiponectin-

induced increase in anti-oxidant enzymes (SOD, Catalase, and GPx) were significantly correlated 

with changes in the expression of PCNA (r= 0.904, 0.882, 0.78; p<0.05; Table 2b) and Bcl2 (r= 

0.83, 0.709, 0.772; p<0.05; Table 2b) proteins in the testis. These results are consistent with the 

earlier published report, in which increased Bcl2 expression was shown to protect cells against 

apoptosis by enhancing anti-oxidant enzyme activities (Hockenbery et al., 1993). The increased 

nitric oxide can also mediate tissue injury and cell death (Murphy, 1999). Our study showed a 



  

significant decrease in the testicular level of nitric oxide upon treatment with adiponectin in vitro. 

The increased serum level of nitric oxide was shown in the mice during decreased testicular activity 

such as during senescence (Banerjee et al., 2012). The result of our study thus suggests that 

increased oxidative stress may be one of the mechanisms for the manifestation of testicular 

impairment during obesity, whereas treatment of adiponectin due to its anti-oxidant and anti-nitric 

oxide effect may improve testicular functions. 

The earlier literature showed species-specific variable effects of adiponectin on gonadal 

steroidogenesis. The granulosa cells of rats and humans treated with adiponectin showed the 

increased synthesis of progesterone and estradiol only in presence of IGF-1 (Chabrolle et al., 2007; 

2009). Whereas, adiponectin inhibited steroidogenesis in bovine ovaries by inhibiting CYP11A1 

and CYP17A1 in the theca cells, but showed no effect on granulose cells (Lagaly et al., 2008). In 

swine, ovaries treated with adiponectin showed increased expression of StAR but decreased 

expression of CYP19 (Ledoux et al., 2006). The present in vitro study showed that adiponectin 

alone significantly decreases the testicular synthesis of T and E2. This is in accordance with an 

earlier study in the ovary of the bat that when treated with adiponectin saw a significant decline in 

androgen synthesis (Singh and Krishna, 2012). In our study, adiponectin treatment inhibited the 

steroid synthesis mainly by dose-dependent inhibition of the expression of LH-R protein in the 

testis. The testis treated in vitro with an only high dose of adiponectin showed a significant decrease 

in expression of steroidogenic enzymes, StAR, 3β-HSD, and aromatase, but a low dose of 

adiponectin showed no significant variation in the expression of steroidogenic enzymes. This study 

thus indicates that adiponectin suppresses T and E2 synthesis by suppressing the testicular 

expression of LH-receptor as well as other steroidogenic markers, StAR, 3B HSD, and aromatase. 



  

In brief, our study showed the localization of adiponectin receptors (AdipoR1 and AdipoR2) in 

Leydig cells and seminiferous tubules in the testis of adult mice. The result of our in vitro study 

showed the direct action of adiponectin on spermatogenesis by stimulating cell proliferation 

(PCNA) and survival (Bcl2) and by suppressing cell apoptosis. Treatment of testis with adiponectin 

also enhances transport of energy substrate lactate to protect germ cells from undergoing apoptosis 

(Figure 7). Thus, adiponectin treatment may be responsible for enhancing sperm counts. The 

adiponectin treatment further showed a significant reduction in oxidative and nitrosative stress. 

Interestingly, our study showed the stimulatory effect of adiponectin in spermatogenesis but showed 

an inhibitory effect on steroid synthesis in the testis. In conclusion, the present results suggest a 

putative role of adiponectin pertaining to the male reproductive activities. Based on the present 

study, we hypothesize that systemic adiponectin treatment may be a promising therapeutic strategy 

for the improvement of sperm count. 
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Figures Legends 

Figure 1. Immunolocalization of adiponectin receptors (AdipoR1 and AdipoR2) in the adult mice 

testis sections. Representative 6 µm sections, at two different magnifications, are presented. The 

AdipoR1 (a & b) positive immunostaining is mainly localized in the interstitial Leydig cells (Lc) 

(marked with black arrowhead). The AdipoR2 (c & d) positive immunostaining is localized in the 

seminiferous tubules (ST) mainly in the round spermatids (SR) (marked with red arrowhead). The 

negative control for AdipoR1 protein was shown (e) Scale bars, 50 µm (a, c, e); 10 µm (b & d). 

Figure 2. Representative western blots and densitometric analysis of (a) AdipoR1, (b) AdipoR2, (c) 

AMPK, (d) IR, and (e) pAKT/AKT proteins in the mice testis after in vitro adiponectin treatments 

with low dose (0.1 µg/mL) and high dose (1 µg/mL) compared to control group. %RIDV, 

percentage relative integrated density value. Values are represented as mean ± SEM. Value (*) & 

(#) is significantly different (P < 0.05) in both the doses versus control. 

Figure 3. Representative western blots and densitometric analysis of (a) GLUT8,(b) MCT2, and (c) 

MCT4 proteins in the mice testis after in vitro adiponectin treatments with a low dose (0.1 µg/mL) 

and high dose (1 µg/mL) compared to control group. %RIDV, percentage relative integrated density 

value. (d) Changes in the intra-testicular glucose level and (e) testicular lactate dehydrogenase 



  

(LDH) activity after in vitro adiponectin treatments with a low dose (0.1 µg/mL) and high dose (1 

µg/mL) compared to control group. Values are represented as mean ± SEM. Value (*) & (#) is 

significantly different (P < 0.05) in both the doses versus control. 

Figure 4. Representative western blots and densitometric analysis of (a) pERK1/2 and PCNA 

proteins, (b) Bcl2 and Caspase-3 proteins after in vitro adiponectin treated testis with a low dose 

(0.1 µg/mL) and high dose (1 µg/mL) compared to control group. %RIDV, percentage relative 

integrated density value. Values are represented as mean ± SEM. Value (*) & (#) is significantly 

different (P < 0.05) in both the doses versus control. 

Figure 5.Changes in the activities of testicular antioxidative enzymes (a) SOD, (b) Catalase, (c) 

GPx (d) lipid peroxidation (LPO), and (e) total Nitrate/nitrite after in vitro adiponectin treatment 

with low dose (0.1 µg/mL) and high dose (1 µg/mL) compared to control group. Values are 

represented as mean ± SEM. Value (*) & (#) is significantly different (P < 0.05) in both the doses 

versus control. 

Figure 6. (a) Showed changes in the intra-testicular testosterone (T) and intra-testicular estradiol 

(E2) level of control; low dose adiponectin (0.1 µg/ml APN) and high dose adiponectin (1 µg/ml 

APN)  (b) Representative western blots and densitometric analysis of LH-R, StAR, Aromatase, and 

3β-HSD proteins after in vitro adiponectin treated testis with a low dose (0.1 µg/mL) and high dose 

(1 µg/mL) compared to control testis. %RIDV, percentage relative integrated density value. Values 

are represented as mean ± SEM. Value (*) & (#) is significantly different (P < 0.05) in both the 

doses versus control. 

Figure 7. Schematic illustration of adiponectin signal transduction pathway implicating a crosstalk 

with the insulin signaling pathway in the regulation of Sertoli cells and germ cells proliferation, 



  

survival, apoptosis, metabolism, and oxidative stress status. Activation of insulin (IR) and 

adiponectin receptors (AdipoRs)by adiponectin triggers a cascade of signaling events. Most of the 

metabolic effects of insulin are mediated through phosphorylation of AKT, leading to transport of 

glucose in the Sertoli cells. Sertoli cells are capable of metabolizing a variety of energetic fuels, 

including glucose and lactate. Adiponectin-mediated activation of AMPK is the probable 

mechanism by which adiponectin enhances both glucose uptake and Lactate dehydrogenase (LDH) 

activity. LDH is the enzyme responsible for the conversion of glucose to lactate. Lactate is 

transported from Sertoli cell to germ cell through a proton-linked transporters MCT4 and MCT2. 

Lactate produced by Sertoli cell influences the survival of pachytene spermatocytes and prevent 

apoptosis during the normal process of spermatogenesis. Apart from this activation of AdipoRs 

directly triggers germ cell growth (pERK), proliferation (PCNA), survival (Bcl2), apoptosis 

(Caspase-3), and antioxidant (SOD, Catalase, GPx), thereby regulating testicular oxidative and 

nitrosative stress. 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 



  

 



  

 



  

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 



  

 

 

Table 1. Details of the antibodies used for Immunohistochemistry and Immunoblotting 

experiments. 

 

S.No. Antibody Species raised in; 

Monoclonal/Polyclonal 

 

Source 

 

Dilutions 

(used for Western 

blot) 

1 AdipoR1 Rabbit; Polyclonal Santacruz (Biotechnology Inc., 

CA, USA) 

1:300 (WB) 

1:50 (IHC) 

2 AdipoR2 Rabbit; Polyclonal Thermo Fisher Scientific Inc. 1:150 (WB) 

1:25 (IHC) 

3 AMPK Rabbit; Polyclonal Genscript 1:1000 

4 IR Rabbit; Polyclonal Santacruz (Biotechnology Inc., 

CA, 

USA) 

1:1000 

5 AKT Rabbit; Polyclonal Genscript 1:500 

6 pAKT Rabbit; Polyclonal Genscript 1:300 

7 GLUT8 Rabbit; Polyclonal Santacruz (Biotechnology Inc., 
CA, USA) 

1:500 

8 MCT2 Rabbit; Polyclonal Santacruz (Biotechnology Inc., 

CA, USA) 

1:300 

9 MCT4 Rabbit; Polyclonal Santacruz (Biotechnology Inc., 

CA, USA) 

1:500 

10 pERK1/2 Rabbit; Polyclonal Genscript 1:500 

11 PCNA  Rabbit; Polyclonal Thermo Fisher Scientific Inc. 1:1500 

12 Bcl2 Rabbit; Polyclonal Santacruz (Biotechnology Inc., 

CA, 

USA) 

1:1000 

13 Caspase-3 Rabbit; Polyclonal Santacruz (Biotechnology Inc., 

CA, 

USA) 

1:250 

13 LH-R Rabbit; Polyclonal Santacruz (Biotechnology Inc., 

CA, USA) 

1:500 

14 STAR Rabbit; Polyclonal Santacruz (Biotechnology Inc., 

CA, USA) 

1:1500 

15 HSD3b Rabbit; Polyclonal Santacruz (Biotechnology Inc., 

CA, USA) 

1:500 

16 Aromatase Rabbit; Polyclonal Santacruz (Biotechnology Inc., 

CA, USA) 

1:600 

 

 

 

 



  

Table 2. Correlation study 

 

(a) Correlation of pAKT/AKT with IR and GLUT8 expression. 

Parameters pAKT/AKT 

IR 0.928* 

GLUT8 0.941* 

 

* Values are significantly different at p < 0.05 level. 

 

(b) Correlation of PCNA and Bcl2 with GLUT8, intra-testicular glucose, SOD, Catalase, and GPx. 

 

Parameters GLUT8 Testicular 

glucose level 

SOD Catalase GPx 

PCNA 0.885* 0.889* 0.904* 0.882* 0.78* 

Bcl2 - - 0.83* 0.709* 0.772* 

 

* Values are significantly different at p < 0.05 level. 

 

 

 

 

 

 

 

 



  

 

Highlights 

 AdipoR1 is localized in the Leydig cells and AdipoR2 is localized in the seminiferous 

tubules mainly round spermatids in the testis of adult mice. 

 Adiponectin effectively facilitates cell proliferation and survival, and protects from 

apoptosis.  

 Adiponectin treatment showed a significant reduction in oxidative and nitrosative stress. 

 Systemic adiponectin treatment may be a promising therapeutic strategy for the 

improvement of testicular metabolism and hence sperm count. 

 

 

 

 

 


