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Evolving Neural Networks to Optimize
Material Usage in Blow Molded
Containers

Roman Denysiuk, Fernando M. Duarte, João P. Nunes
and António Gaspar-Cunha

Abstract In industry, there is a growing interest to optimize the use of raw mate-1

rial in blow molded products. Commonly, the material in blow molded containers2

is optimized by dividing the container into different sections and minimizing the3

wall thickness of each section. The definition of discrete sections is limited by the4

shape of the container and can lead to suboptimal solutions. This study suggests5

determining the optimal thickness distribution for blow molded containers as a func-6

tion of geometry. The proposed methodology relies on the use of neural networks7

and finite element analysis. Neural networks are stochastically evolved considering8

multiple objectives related to the optimization of material usage, such as cost and9

quality. Numerical simulations based on finite element analysis are used to evaluate10

the performance of the container with a thickness profile determined by feeding the11

coordinates of mesh elements in finite element model into the neural network. The12

proposed methodology was applied to the design of industrial bottle. The obtained13

results suggested the validity and usefulness of this methodology by revealing its14

ability to identify the most critical regions for the application of material.15

Introduction16

Blow molding is an important industrial processes for manufacturing hollow plas-17

tic parts. The production of jars, bottles and similar containers are among its main18

applications. Such products are widely used all over the world to contain liquids from19
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2 R. Denysiuk et al.

drinks for human consumption to cosmetics and oil. In blow molding, a molten mate-20

rial is placed into a mold and inflated with gas whose pressure pushes the material out21

to match the mold. The costs of raw materials compose a significant share of the total22

costs of blow molded products. Thus, reducing costs and increasing competitiveness23

for manufacturing companies can be effectively achieved by minimizing the material24

use. This requires a trade-off between the costs of production and quality criteria, as25

reducing the amount of material can deteriorate important product properties.26

The conventional trial-and-error approach is tedious and inefficient to optimize27

product development. It can lead to a significant waste of time and energy whereas28

the results are highly dependent on expert experience. Computer Aided Engineering29

(CAE) has become increasingly popular to support engineering tasks. Computer30

simulations and optimization can help to reduce the number of empirical trials, thus31

saving time and money. Numerical approaches such as Finite Element Methods32

(FEMs) and optimization techniques are promising and have a long history of use in33

blow molding design.34

When optimizing blow molding, two major problems can be identified. The one is35

to determine a wall thickness distribution of the final container. The other is concerned36

with finding a shape of the preform and setting appropriate process parameters to37

produce a container with a desired thickness distribution. Optimization of thickness38

distribution is typically addressed by dividing the preform or container into distinct39

sections and optimizing the thickness of each section. In Laroche et al. (1999),40

the optimal preform thickness distribution was sought that yields a given uniform41

part thickness. In Gauvin et al. (2003), two approaches were presented, with the42

optimization aiming at finding a thickness distribution that minimizes the weight43

and satisfies mechanical constraints.44

The other problem arising in blow molding is concerned with a process optimiza-45

tion aiming at finding the optimal operating conditions that minimize the weight46

and respect the thickness distribution found by the performance optimization. In47

Thibault et al. (2007), an approach to optimize the stretch blow molding process48

was presented, aiming at establishing the optimal preform geometry (thickness and49

shape) and optimal operating conditions to produce a container with a target thick-50

ness distribution. In the above studies, optimization was performed by gradient-based51

search methods. These methods have good theoretical properties and fast conver-52

gence. However, gradient-based methods are essentially local search techniques and53

their performance highly depends on the initial point.54

Evolutionary algorithms (EAs) allow to overcome limitations associated with55

traditional optimization methods. EAs attempt to perform global search without56

using gradient information. In Huang and Huang (2007), genetic algorithm (GA)57

was used to find the optimal thickness distribution for preform. In Yang et al. (2014),58

particle swarm optimization was used to adjust parameters of a neural network in59

order to fit experimentally collected data and to obtain the appropriate lamp settings.60

The preform geometry was optimized in Biglione et al. (2016) to obtain a target wall61

thickness distribution. In Hopmann et al. (2015), this also included the optimization62

of process parameters.63
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Evolving Neural Networks to Optimize Material Usage … 3

A common feature that limits the applicability of the discussed approaches is64

that a container being optimized is divided into a number of sections, assuming a65

uniform thickness within each section. A proper division can be not straightforward66

as it greatly depends on the geometry of container. Poor results can be obtained if67

sections are inadequately defined. Also, such approach can lead to discontinuities in68

junctions between sections.69

The specific contributions of this paper are the application of a regression model70

to find the optimal thickness distribution as a function of the container’s geometry71

and solving the problem using multiobjective neuroevolutionary algorithm.72

Problem Formulation73

This study aims at developing a methodology for the optimization of material usage74

in blow molded containers, which is also a major concern for industry due to the75

influence of the costs of raw materials on the total production costs. The particular76

industrial bottle whose design is herein addressed has a diameter of 395 mm and77

a height of 625 mm. The material is plastic with the mass density of 1.15 × 10−9
78

g/cm3 and Poisson’s ration of 0.4. The bottle is set to experience a blowing pressure.79

The ratio between the pressure and Young’s modulus is 0.0014. The minimum and80

maximum allowable values of wall thickness are 0.1 and 2 mm, respectively. Figure 181

shows the geometry model of the bottle used in this study.82

The problem consists in determining the optimal wall thickness distribution. This83

problem involves several criteria that must be considered, such as the cost of utilized84

Fig. 1 Geometry model of
the bottle
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4 R. Denysiuk et al.

material and the product quality. In order to capture possible trade-offs between these85

criteria, the problem is posed as a multiobjective optimization problem. The mass of86

the container and the stress are two objectives ( f1 and f2) to be minimized. These87

objectives are estimated by computer simulations performed by Abaqus, the finite88

element analysis software.89

Neuroevolutionary Thickness Optimization90

This section describes the proposed methodology to design blow molded containers91

with an optimized wall thickness distribution. The main idea consists in treating the92

wall thickness as a function of container’s geometry. The realization of this ideal93

relies on capabilities of neural networks. Neural networks are used to convert the94

coordinates along the wall into the thickness values. This can also be viewed as95

a regression model. Though, it is important to point out the distinction between a96

traditional regression that makes use of data points with known input and target97

variables and the proposed methodology where only input variables are available.98

In turn, this hinders the application of traditional gradient-based methods to learn99

the parameters of’ the neural network. To overcome this issue, neuroevolution is100

used. Neuroevolution refers to the use of evolutionary algorithms to evolve neural101

networks. It provides the potential to evolve both the topology and parameters of102

neural networks. The outline of the proposed neuroevolution is given by Algorithm103

1.104

First, a population of neural networks is randomly generated in the initialization105

procedure. Each individual in the population is represented by two chromosomes. The106

first is defined by a binary string that determines the network topology by indicating107

which neurons are used in the hidden layer. The second is given by a real-valued108

string that encodes all weights and biases in the neural network.109

Each time a new individual is generated it is sent for evaluation. The evaluation110

procedure comprises decoding the individual’s genotype into the neural network,111

calculating the thickness profile of the bottle and computing the objective values112

reflecting its performance.113

Figure 2 graphically illustrates the idea behind the calculation of the thickness114

profile. The coordinates of each mesh element in finite element model are fed into the115

neural network. The output is the thickness at the corresponding location. Processing116

this way all the mesh elements gives a thickness profile of the bottle. The resulting117

finite element model with the calculated thickness profile is submitted to perform118

computer simulation, whose subsequent output is read to extract the values of the119

mass and stress.120

The population of neural networks is evolved for a predefined number of gener-121

ations using a steady-state variant of evolutionary process (lines 2–6 in Algorithm122

1). This means a single offspring is produced in each generation. Selection aims at123

selecting parents for producing offspring. This study uses a simple uniform selection124

where each population member has an equal chance to be selected.125
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Evolving Neural Networks to Optimize Material Usage … 5
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Fig. 2 Thickness calculation

Algorithm 1 Neuroevolution

1: initialization()

2: repeat

3: selection()

4: variation()

5: replacement()

6: until the stopping criterion is met

Evolutionary operators are applied to parents in order to produce offspring in the126

variation procedure. Variation plays a crucial role in the exploration of the search127

space. Multichromosomal representation used in this study allows the application of128

operators that proved effective in the exploration of binary and continuous search129

spaces. Herein, a simple bit-flip mutation is performed on the binary string. A par-130

ticular attention is given to a continuous variation operator, as most of the genome is131

represented by a real-valued chromosome encoding all weights and biases, which are132

central to the expressiveness of the neural network. Different continuous variation133

operators are investigated in the experimental study.134

Replacement aims at forming a population of the next generation relying on135

the concept of the survival of the fittest from natural evolution. As the proposed136

neuroevolution is designed to deal with multiple objectives, replacement must ensure137

the convergence and diversity of population. These two requirements are known138

to be somewhat conflicting in nature. The adopted replacement strategy relies on139

the concept of the Pareto dominance to provide convergence and the hypervolume140

measure to ensure diversity. First, the population is sorted using the nondominated141

sorting procedure to find individuals in the last nondominated front. Then among the142

found individuals the one with the least volume of exclusively dominated objective143

space is removed (Beumea et al. 2007).144
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6 R. Denysiuk et al.

The result of the above described process is expected to be a set of neural networks,145

where each neural network gives the design of the container providing a specific146

trade-off between its mass and mechanical properties.147

Computational Experiments148

Experimental Setup149

Neuroevolutionary algorithm developed for optimizing a wall thickness distribution150

was investigated with different variation operators, taking advantage of multichro-151

mosomal representation. For real-coded genetic algorithm (GA) operator, simulated152

binary crossover (SBX) and polynomial mutation (PM) were used. Evolution strat-153

egy (ES) operator was used with a non-isotropic mutation. Differential evolution154

(DE) operator with rand/1/bin variant and PM was employed. Covariance matrix155

adaptation (CMA) operator was used with a step size adaptation rule relying on a156

population-based notion of success.157

The numerical simulations based on finite element analysis were carried out by158

Abaqus 6.13-4 provided in a network licensing format. A high computational time159

required for each simulation and a limited number of analysis jobs allowed to be run160

simultaneously on a network restricted considerably optimization runs. Thus, five161

independent runs were performed by each neuroevolutionary variant. The population162

size of 50 was used and the number of available evaluations was 100. The other163

parameter settings are shown in Table 1. The results were quantitatively assessed164

using the hypervolume measure (Zitzler and Thiele 1998).165

Table 1 Parameter settings (n—is a chromosome length)

Operator Parameters

SBX pc � 1, ηc � 20

PM pm � 1/n, ηm � 20

ES τ0 � 1/
√

2n, τ1 � 1/
√

2
√

n, σ 0 � √
1/(3n)

DE C R � 1, F � 0.5

CMA

d � 1 + n/2, ptarget
succ � 1/

(
5 +

√
1/2

)
,

cp � ptarget
succ /

(
2 + ptarget

succ

)
, cc � 2/(n + 2),

ccov � 2/
(

n2 + 6
)
, pthresh � 0.44
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Evolving Neural Networks to Optimize Material Usage … 7

Results166

Table 2 shows the final results of statistical runs with respect to the hypervolume.167

The last row of the table refers to the hypervolume for all nondominated solutions168

obtained by combining results of the five runs. The results indicate that GA is the169

worst performing operator. It can be because crossover treat genes independently170

when producing offspring. This causes a disruptive effect on the linkage between171

genes. Although ES does not explicitly accounts for relations between genes, its172

slightly better performance can be explained by the self-adaption mechanism that173

learns mutation strength for each gene. Both DE and CMA mechanisms allow for174

the adaptation to fitness landscape. CMA works better for extreme runs, whereas DE175

gives the best median value and the hypervolume for the approximation set composed176

by the results of all runs. This can be because CMA has a larger number of parameters177

that require proper settings.178

Since the hypervolume values presented in Table 2 differ slightly, it can mislead-179

ingly appear that the results obtained by different variants are quite similar. However,180

such seemingly small differences with respect to the hypervolume can be significant181

in practical terms. It can be understood when comparing the results of GA and DE182

variants, whose Pareto front approximations are shown in Fig. 3. Solutions forming183

both approximations lie sufficiently close to each other, being the most distant in the184

vicinity of the knee points.185

However, the knee point region of the Pareto front is particularly interesting from186

an engineering perspective. When comparing the results with respect to the hyper-187

volume DE variant gives an improvement of 1.71% relative to GA. Whereas in terms188

of the knee solutions the reduction by 32.34% of the material usage is achieved,189

which is significant for industry.190

Visualization of the obtained Pareto optimal solutions leads to several important191

observations. In particular, there is a part of the Pareto optimal region where the192

material usage can be significantly reduced from the maxim value of 2.032 kg to193

approximately 0.2 kg with relatively a small degradation in mechanical properties.194

This can be the most interesting part from a practical perspective. However, a further195

reduction in the material results in a significant degradation of mechanical properties.196

Although such solutions are appealing from an economic point of view, they may be197

unacceptable as important quality criteria can be not met. Thus, these results further198

highlight the importance of proper tools to support product development.199

Table 2 Results for statistical runs of different operators

Hypervolume GA ES DE CMA

Min. 0.9687 0.9713 0.9805 0.9882

Median 0.9701 0.9723 0.9897 0.9893

Max. 0.9746 0.975 0.9902 0.9905

Total 0.9749 0.976 0.9918 0.9916
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8 R. Denysiuk et al.

Fig. 3 Nondominated
solutions

Fig. 4 Nondominated
solutions near the knee
points

Figure 4 shows the Pareto optimal solutions in the vicinity of the knee points. For200

both approximations, four different solutions are highlighted. For these solutions and201

solutions S1 and S6 that refer to the corners of the Pareto fronts, Fig. 5 depicts the202

wall thickness of bottle along the vertical axis from top to down. Corner solutions S1203

and S6 represent extreme scenarios with minimum and maximum values of thickness204

along the entire bottle. On the other hand, solutions S2–S5 show intermediate sce-205

narios representing different trade-offs between the use of material and mechanical206

properties. The difference can be observed between the thickness distributions of207

solutions given by GA and DE. The former offers larger values starting from the top.208

Whereas the latter yields values close to the minimum for the most positions and209

only increases thickness in the bottom of bottle. This way, neuroevolution identifies210

the most critical regions for applying material. It is also noteworthy that GA provides211

a valid design of the bottle. The comparison is for illustration purpose and to stress212

464519_1_En_33_Chapter � TYPESET DISK LE � CP Disp.:25/4/2018 Pages: 12 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Evolving Neural Networks to Optimize Material Usage … 9

Fig. 5 Thickness distribution from top to bottom of the bottle

the importance of the neuroevolutionary design. Overall, these results demonstrate213

the ability of the proposed methodology to determine the material distribution for214

the bottle given its geometry, characteristics and design criteria to meet.215
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10 R. Denysiuk et al.

Conclusions216

In blow molding industry, the product competitiveness can be effectively increased217

by reducing the costs of raw materials. This study suggested a methodology to opti-218

mize the material usage in blow molded products. This methodology aims at deter-219

mining the optimal distribution of material as a function of the product geometry.220

Motivated by the universal approximation property, this function is approximated221

by neural network. The structure and parameters of the network are determined by222

neuroevolution. The search is performed addressing multiple objectives, minimizing223

the usage of material and the degradation of mechanical properties. This leads to a set224

of Pareto optimal networks representing different trade-offs between the objectives,225

which allows to obtain a valuable information about design alternatives and enables226

a posteriori decision making.227

The application of the proposed methodology is demonstrated in a case study228

addressing the design of industrial bottle. Finite element analysis software was229

employed to simulate the response of the particular design to a static pressure. Differ-230

ent variants of neuroevolutionary algorithm were investigated. The obtained results231

indicate the importance of using proper search strategies and the ability of neuroevo-232

lution to optimize the thickness distribution under given conditions. Generality is a233

major advantage of the proposed methodology, as its applicability is independent of234

the bottle geometry.235

In future, the developed methodology will be applied to optimize the preform and236

operating conditions.AQ1237
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