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SUMMARY
TERT promoter mutations reactivate telomerase, allowing for indefinite telomere maintenance and enabling
cellular immortalization. Thesemutations specifically recruit themultimeric ETS factor GABP, which can form
two functionally independent transcription factor species: a dimer or a tetramer. We show that genetic
disruption of GABPb1L (b1L), a tetramer-forming isoform of GABP that is dispensable for normal develop-
ment, results in TERT silencing in a TERT promoter mutation-dependent manner. Reducing TERT expression
by disrupting b1L culminates in telomere loss and cell death exclusively in TERT promoter mutant cells.
Orthotopic xenografting of b1L-reduced, TERT promoter mutant glioblastoma cells rendered lower tumor
burden and longer overall survival in mice. These results highlight the critical role of GABPb1L in enabling
immortality in TERT promoter mutant glioblastoma.
INTRODUCTION

Telomeresmaintain DNA integrity by protecting the ends of chro-

mosomes but progressively shorten with each cell division

(Blackburn et al., 2006; Counter et al., 1992). Telomere length

is maintained by telomerase, a multi-subunit complex that binds

and elongates the telomere ends. Telomerase reverse transcrip-
Significance

TERT promoter mutations are the third most common mutatio
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undermine immortality and reduce tumor growth. TERT promot
to activate TERT expression across multiple types of cancer. O
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to reverse tumor cell immortality while sparing TERT promote

Canc
tase (TERT) is the catalytic subunit of telomerase, and its expres-

sion is the rate-limiting step in telomerase activity across a wide

range of tissues (Bryan and Cech, 1999; Counter et al., 1998).

While normally silenced in somatic cells, over 90% of human tu-

mors reactivate TERT expression, allowing cancer cells to gain

replicative immortality by avoiding cell death and senescence

associated with telomere shortening (Chin et al., 1999; Kim
n in human cancer and the single most common mutation in
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et al., 1994; Saretzki et al., 1999; Shay and Wright, 2000). Two

activating mutation hotspots in the TERT promoter, termed

C228T and C250T, are found in over 50 tumor types, and are

the most frequent mutations in several tumor types, including

83% of primary IDH wild-type glioblastomas (GBM) and 78%

of oligodendrogliomas (Arita et al., 2013; Killela et al., 2013; Zehir

et al., 2017). These mutually exclusive mutations exist predomi-

nantly in the heterozygous state, acting as the drivers of telome-

rase reactivation (Horn et al., 2013; Huang et al., 2013; Killela

et al., 2013). In high-grade gliomas, TERT promoter mutations

correlate with increased TERT mRNA levels and enhanced telo-

merase activity (Spiegl-Kreinecker et al., 2015; Vinagre et al.,

2013). Furthermore, in tumor cells bearing TERT promoter muta-

tions, these mutations are necessary—albeit not sufficient—for

achieving replicative immortality (Chiba et al., 2015, 2017).

Both TERT promoter mutations generate identical 11-bp se-

quences that form a de novo binding site for the E26 transforma-

tion-specific (ETS) transcription factor GA-binding protein

(GABP) (Bell et al., 2015). The presence of either promoter muta-

tion allows GABP to selectively bind and activate the mutant

TERT promoter while the wild-type allele remains silenced (Akin-

cilar et al., 2016; Bell et al., 2015; Stern et al., 2015). GABP has no

known role in TERT regulation outside of TERT promoter mutant

tumors.

The GABP transcription factor is an obligate multimer consist-

ing of the DNA-binding GABPa subunit and transactivating

GABPb subunit. GABP can act as a heterodimer (GABPab)

composed of one GABPa and one GABPb subunit, or a hetero-

tetramer (GABPa2b2) composed of two GABPa and two GABPb

subunits (Rosmarin et al., 2004; Sawada et al., 1994). Two

distinct genes encode the GABPb subunit: GABPB1 encodes

GABPb1 (b1) and GABPB2 encodes GABPb2 (b2). b1 has two

isoforms transcribed from the GABPB1 locus, the shorter

GABPb1S (b1S) and the longer GABPb1L (b1L), while b2 has a

single isoform (de la Brousse et al., 1994; Rosmarin et al.,

2004). Whereas b1S is able to dimerize only with GABPa, both

b1L and b2 possess a C-terminal leucine-zipper domain (LZD)

that mediates the tetramerization of two GABPab heterodimers

(de la Brousse et al., 1994; Rosmarin et al., 2004). Although

b1L or b2 can form the GABP tetramer, GABP tetramers contain-

ing only the b1L isoform are functionally distinct from b2-contain-

ing tetramers andmay control separate transcriptional programs

(Jing et al., 2008; Yu et al., 2012). Furthermore, while abolishing

the full tetramer-specific (b1L and b2) transcriptional program

impairs the self-renewal of hematopoietic stem cells in mice

(Yu et al., 2012), inhibition of the b1L-only tetramer-specific tran-
Figure 1. The GABP Tetramer-Forming Isoform b1L Positively Regulat

(A) TERT expression following siRNA-mediated knockdown of b1 (siGABPB1) in

primary cultures. *p < 0.05, **p < 0.01, two-sided Student’s t test compared with

(B) Correlation of GABPB1L (top graphs) or GABPB1S (bottom graphs) expre

normalized counts]) from 109 TERT-expressing GBMs (left graphs) or 49 TERT pr

Black points indicate Sanger-validated TERT promoter mutant GBM and oligoden

promoter mutation status. Spearman’s rank-order correlation was used to gener

(C)GABPB1L expression following siRNA-mediated knockdown of b1 (siGABPB1

two-sided Student’s t test compared with a non-targeting siRNA control (siCTRL

(D) TERT expression following LNA-ASO knockdown of b1L (LNA-GABPB1L) in

compared with a control LNA-ASO (LNA-CTRL). *p < 0.05, **p < 0.01, two-sided

Values are mean ± SD of at least three independent experiments (A, C, and D; tw
scriptional program has minimal phenotypic consequences in a

murine system (Jing et al., 2008; Xue et al., 2008). Thus, if the

GABP tetramer-forming isoforms are necessary to activate the

mutant TERT promoter, disrupting the function of these isoforms

may be a viable approach to selectively inhibit TERT and reverse

replicative immortality in TERT promoter mutant cancer.

However, it is currently unclear whether the GABP tetramer-

forming isoforms are necessary to activate themutant TERT pro-

moter or whether the GABP dimer is sufficient. Two proximal

GABPa-binding sites are required to recruit a GABPa2b2
tetramer, and, interestingly, the TERT promoter has native

ETS-binding sites upstream of the hotspot mutations that are

required for robust activation of the mutant promoter (Bell

et al., 2015). These native ETS-binding sites are located approx-

imately three and five helical turns of DNA away from the C228T

and C250T mutation sites, respectively, which is consistent with

the optimal spacing for the recruitment of the GABP tetramer

(Bell et al., 2015; Chinenov et al., 2000; Yu et al., 1997). Here

we tested the hypothesis that the C228T andC250T hotspot pro-

moter mutations recruit the tetramer-specific GABP isoforms to

the mutant TERT promoter to enable telomere maintenance and

replicative immortality.

RESULTS

The GABP Tetramer-Forming Isoform b1L Positively
Regulates TERT Expression in TERT Promoter Mutant,
but Not Wild-Type, Tumor Cells
To determine whether the GABP dimer-forming isoform (b1S) or

the tetramer-forming isoforms (b1L and b2) regulate the mutant

TERT promoter, we performed gene knockdown experiments

in vitro and expression correlation analysis in primary tumors.

We used small interfering RNA (siRNA)-mediated knockdown

of b1—affecting b1S and b1L—and b2 in three TERT promoter

mutant glioma cell lines, six early-passage primary cultures,

and five TERT promoter wild-type and TERT-expressing cell

lines. Knockdown of b1 significantly reduced TERT expression

in eight of nine TERT promoter mutant cell cultures, but had

limited effect in theTERT promoterwild-type cultures (Figure 1A).

In contrast, siRNA-mediated knockdown of b2 had a less robust

and more variable effect on TERT expression in TERT promoter

mutant cells (Figure S1A).

We also testedwhether the expression of TERT correlates with

expression of specific GABP isoforms in clinical samples,

including TERT promoter mutant GBMs and oligodendroglio-

mas. This analysis revealed a significant positive monotonic
es TERT Expression Solely in TERT Promoter Mutant Tumor Cells

TERT promoter mutant (left) or TERT promoter wild-type (right) cell lines and

a non-targeting siRNA control (siCTRL) in each respective line.

ssion (log2[RSEM normalized counts]) versus TERT expression (log2[RSEM

omoter mutant oligodendrogliomas (right graphs). Red line indicates trend line.

droglioma samples; teal points are GBM samples that were not tested for TERT

ate Spearman rho and p values for each correlation.

) in TERT promoter mutant (left) and wild-type (right) lines. *p < 0.05, **p < 0.01,

) in each respective line.

TERT promoter mutant (left) or wild-type (right) cell lines and primary cultures

Student’s t test compared with LNA-CTRL in each respective line.

o independent experiments for SF10417). See also Figure S1.
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Figure 2. CRISPR/Cas9-Mediated Disruption of GABPB1L Reduces GABP-Mediated Activation of the Mutant TERT Promoter

(A) Exon structure for theGABPB1 locus, depicting theGABPB1S andGABPB1L isoforms. Inset shows targeting strategy for CRISPR/Cas9 editing ofGABPB1L.

Red blocks indicate sgRNA target sites. Red arrows and dashed lines indicate primer locations and target amplicon for PCR validation of editing.

(legend continued on next page)
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association between TERT and GABPB1LmRNA in both cancer

types (Figure 1B), but no significant correlation between TERT

and GABPB1S (Figure 1B) or GABPB2 (Figure S1B) mRNA

levels. Analysis of GABP isoform and TERT expression data in

the predominantly TERT promoter wild-type colorectal cancer

revealed no positive correlation between TERT expression and

GABPB1L or GABPB2 expression, although a positive correla-

tion between TERT expression and GABPB1S expression was

found (Figure S1C). Due to the significant positive correlation be-

tweenGABPB1L expression and TERT expression in glioma, we

specifically looked for depletion of the tetramer-forming

GABPB1L isoform mRNA in our b1 knockdown study and

confirmed that this isoform mRNA was significantly depleted af-

ter siRNA-mediated knockdown in 13 of 14 cell lines (Figure 1C).

We further explored this potential dependence on the b1L iso-

form for activation of the mutant TERT promoter by directly

knocking down b1L with a degradation-inducing locked nucleic

acid anti-sense oligonucleotide (LNA-ASO) targeted to the

GABPB1L-exclusive 30 UTR of the GABPB1 transcript. This

LNA-ASO specifically depleted GABPB1L transcript levels with

no reduction in GABPB1S transcript levels (Figure S1D). LNA-

ASO-mediated knockdown of b1L reduced TERT expression

across all TERT promoter mutant cultures and had no effect on

TERT expression in all TERT promoter wild-type cultures (Fig-

ure 1D). Taken together, these data support that the GABP

tetramer-forming isoform b1L positively regulates TERT expres-

sion in TERT promoter mutant glioma.

CRISPR/Cas9-Mediated Disruption of GABPB1L

Reduces GABP-Mediated Activation of the Mutant TERT
Promoter
We then directly tested the necessity of b1L for mutant TERT

promoter activation by generating clones with reduced b1L

function from three of the aforementioned TERT promoter

mutant GBM cell lines (GBM1, T98G, and LN229) and three

TERT promoter wild-type control cell lines (NHAPC5, HCT116,

and HEK293T) using nuclease-assisted vector integration

CRISPR/Cas9 editing (Brown et al., 2016; Gapinske et al.,

2018) (Figure 2A). We isolated two independent GABPB1L-edi-

ted clones (C1 and C2) and one isogenic CRISPR control clone

(CTRL) for each parental line using one of two non-overlapping

single guide RNAs (sgRNAs) targeting GABPB1 exon 9 or an

sgRNA targeting an intergenic region of chromosome 5, respec-

tively (Figure S2A and Table S1). GABPB1 exon 9 contains the

coding sequence for the LZD, and disruption of this exon is suf-

ficient for ablation of the b1L-containing tetramer while leaving

b1S intact (Chinenov et al., 2000; Sawada et al., 1994). Each

GABPB1L-edited clone had the disruption of at least one allele
(B) Quantification of b1L tetramerization in thewild-type (POS) ormutated (DEL1-3

the products of which are unable to form a tetramer. **p < 0.01, two-sided Stude

(C) GABPa or immunoglobulin G control ChIP-qPCR for the TERT promoter in CR

two-sided Student’s t test compared with respective CTRL.

(D) TERT expression relative to CTRL for b1L-reduced TERT promoter mutant (le

compared with CTRL.

(E and F) TERT expression (E) or GABPa occupancy (F) in b1L-reduced clone

expression vector. *p < 0.05, **p < 0.01, two-sided Student’s t test compared w

Values are mean ± SD of at least two independent experiments (C and F) or

Tables S1, S2, and S3.
via integration of a puromycin or hygromycin resistance

cassette with most remaining GABPB1L alleles containing in-

dels in the LZD (Figure S2B and Table S2). Analysis of cassette

integration and locus integrity at predicted off-target cutting

sites in coding regions (Hsu et al., 2013) via PCR and Surveyor

assay, respectively, showed no aberrations outside the target

regions (Figures S3A–S3F). GABPB1L-edited clones had

reduced b1L protein levels with no measurable reduction in

b1S levels, further confirming the specificity of our editing

approach (Figure S3G).

We next examined whether the indels in the remaining

GABPB1L alleles (Figure S2B) were sufficient to generate b1L

protein with reduced tetramerization activity. Using PCR-medi-

ated site-directed mutagenesis, we replicated three mutations

(Table S3) in GABPB1L and assayed the ability of the mutant

b1L to form the GABP tetramer (Figure 2B). DEL1 and DEL2

are in-frame deletions in the GABPB1L LZD-coding region and

DEL3 is a putative loss-of-function frameshift mutation in the

same domain (Figure S2B). Each of the tested mutations

reduced the ability of b1L to form the tetramer compared with

the wild-type control, thereby indicating that the CRISPR/

Cas9-induced mutations in the GABPB1L LZD-coding region

are sufficient to produce variants of the GABP tetramer-forming

isoform b1L with reduced function. Thus, all GABPB1L-edited

clones will be referred to as ‘‘b1L-reduced’’ to encompass re-

ductions in both protein levels and protein function.

Chromatin immunoprecipitation (ChIP) of GABP followed by

qPCR at the mutant TERT promoter revealed the loss of

GABP binding in the b1L-reduced TERT promoter mutant

clones compared with the control lines (Figure 2C). Further-

more, analysis of TERT expression via qRT-PCR confirmed a

significant reduction in, but not complete loss of, TERT mRNA

across all TERT promoter mutant clones, whereas no decreases

in expression were detected in clones from TERT promoter

wild-type cells (Figure 2D). Additionally, overexpression of

exogenous b1L in each b1L-reduced clone was sufficient to

rescue both TERT expression (Figures 2E and S3H) and

GABP binding at the mutant TERT promoter (Figure 2F). Taken

together, these data confirm that the GABP tetramer-forming

isoform b1L is necessary for the complete activation of the

mutant TERT promoter.

b1L-Mediated Activation of the Mutant TERT Promoter
Is Required for Telomere Maintenance in GBM
As TERT expression is closely linked to telomere maintenance,

we next investigated the effects of reducing b1L function on

telomere length in the TERT promoter mutant cell lines. Mea-

surements of mean relative telomere length at four time points
) state. The negative (NEG) state consists of one b1L vector and one b1S vector,

nt’s t test of DEL1-3 or NEG respective to the positive control (POS).

ISPR control (CTRL) or b1L-reduced clones (C1 and C2). *p < 0.05, **p < 0.01,

ft) or wild-type (right) clones. *p < 0.05, **p < 0.01, two-sided Student’s t test

s relative to CTRL 48 hr following transfection with empty (VECTOR) or b1L

ith respective VECTOR control.

three independent experiments (B, D, and E). See also Figures S2 and S3;

Cancer Cell 34, 513–528, September 10, 2018 517



(legend on next page)

518 Cancer Cell 34, 513–528, September 10, 2018



following CRISPR/Cas9 editing uncovered significant telomere

loss only in clones from TERT promoter mutant cells with

reduced b1L function and TERT expression (Figure 3A). Expres-

sion of exogenous b1L or TERT was sufficient to halt this

telomere loss in all clones (Figure 3B). Uncontrolled telomere

shortening and uncapping can result in end-to-end fusions of

telomere-deficient chromosomes and the formation of chro-

matin bridges (Capper et al., 2007; der-Sarkissian et al.,

2004; Hackett et al., 2001). We identified chromatin bridges in

a significant proportion of the TERT promoter mutant, but not

TERT promoter wild-type, b1L-reduced clones 70–75 days after

editing, indicating widespread telomere dysfunction following

telomere loss (Figures 3C and S4A). Likewise, telomere

dysfunction was readily rescued by expression of exogenous

b1L or TERT (Figures S4B and S4C). These data support that

disrupting the b1L function is sufficient to induce telomere

loss and dysfunction in a TERT promoter mutation-dependent

manner.

Disrupting the b1L Function Is Sufficient to Induce
Short-Term and Long-Term Growth Defects in TERT

Promoter Mutant Lines In Vitro

Previous studies have reported that TERT depletion and telo-

mere dysfunction result in both immediate and long-term growth

defects (Cao et al., 2002; Fitzgerald et al., 1999; Iwado et al.,

2007; Shay and Wright, 2006). Thus we sought to determine

whether reduction of b1L results in a growth phenotype as a

result of reduced expression from the mutant TERT promoter.

Monitoring cell growth prior to significant telomere loss (days

45–48 post editing) revealed a growth defect in all TERT pro-

moter mutant b1L-reduced clones (Figure S5A). We further in-

hibited b1L in the b1L-reduced lines with an LNA-ASO to deplete

any residual b1L function and observed no further changes in cell

growth (Figure S5B) or TERT expression (Figure S5C) regardless

of TERT promoter status. Interestingly, LNA-ASO-mediated

knockdown of b1L in TERT promoter mutant control lines signif-

icantly reduced cell growth compared with the LNA-ASO con-

trols, suggesting a short-term growth effect following reduction

of b1L and TERT levels.

Long-term changes in growth and cell viability may occur

due to telomere dysfunction in the TERT promoter mutant,

b1L-reduced clones. We monitored each b1L-reduced line

throughout the process of telomere loss and identified a progres-

sive loss of cell viability in b1L-reduced clones from TERT pro-

moter mutant cells, a phenotype that was absent in the clones

from TERT promoter wild-type cells (Figure 4A). We observed

complete growth arrest in both GBM1 b1L-reduced clones,
Figure 3. b1L-Mediated Activation of the Mutant TERT Promoter Is Re
(A) Telomere length at days 44, 61, and 78 in TERT promoter mutant lines or days

post editing for CTRL or b1L-reduced clones. *p < 0.05, two-sided Student’s t te

each respective line. Values are mean ± SD of at least three independent assays

(B) Relative telomere length after transfection of an empty (VECTOR), b1L, or TER

Red dotted line indicates time of transfection (at day 58 [LN229] or 61 [GBM1 an

TERT versus VECTOR at day 78/83. Values are mean ± SD of at least three inde

(C) Representative DAPI images (left images) and quantification (right graphs) of c

editing. Scale bar, 20 mm. **p < 0.01, two-sided Student’s t test compared with C

fields of view.

See also Figure S4.
and substantial but incomplete arrest of the cultures of T98G

and LN229 clones. b1L-reduced clones derived from T98G un-

derwent complete growth arrest in all cases except for one

instance when a surviving population emerged following long-

term culture. Unlike GBM1 and T98G cells, both LN229 clones

consistently had a population of viable cells emerge following

the period of massive cell death. The underlying cause of this

heterogeneity in cellular response among the three lines is un-

known, but could reflect residual function of b1L in b1L-reduced

clones, potential b1L-independent mechanisms of activation of

themutant TERT promoter, or other factors. Importantly, overex-

pression of either exogenous b1L or TERT was sufficient to

counteract the loss of viability (Figure 4B). This gradual loss of

viability signified the loss of replicative immortality in TERT pro-

moter mutant b1L-reduced clones.

b1L Regulates a Subset of GABP Transcription Factor
Targets in GBM Cells
We next explored whether the observed changes in growth rate

and cell viability are sole consequences of TERT depletion, are

mediated by changes in levels of GABP target genes, or are a

combination of both factors. The four targets selected for prelim-

inary expression analysis (COXIV, EIF6, RPS16, and TFB1M) are

essential for cell growth and have been previously identified to

recruit the b1L-containing GABP tetramer via two ETS-binding

sites in their promoter (Carter and Avadhani, 1994; Donadini

et al., 2006; Genuario and Perry, 1996; Yang et al., 2014).

SKP2 contains only one ETS-binding site in its promoter and

should be unaltered by changes in b1L (Yang et al., 2007). We

identified minimal differences in the expression of each of the

five targets between the CRISPR control and b1L-reduced

clones (Figure 5A).

To further interrogate the effects of b1L reduction on global

gene expression, we performed RNA sequencing (RNA-seq)

for our TERT promoter mutant CRISPR control and b1L-

reduced lines 45 days post editing (Figure 5B and Table S4).

We identified 161 transcripts, including TERT, differentially ex-

pressed (false discovery rate [FDR] < 0.05) after b1L reduction

that were common to all three TERT promoter mutant lines.

A majority of these differentially expressed transcripts (55%)

were transcribed from genes with GABP-bound promoters, as

determined from ENCODE ChIP-sequencing data from TERT

promoter wild-type and mutant cancer cell lines (see STAR

Methods). Interestingly, however, the vast majority (99%) of

GABP-bound genes were not differentially expressed between

the control and b1L-reduced lines. Gene ontology analysis of

these differentially expressed transcripts identified enrichment
quired for Telomere Maintenance in GBM
44, 61, and 83 in TERT promoter wild-type lines post editing relative to day 33

st comparing values between CTRL and b1L-reduced clones at day 78/83 for

.

T expression vector in TERT promoter mutant lines 78 or 83 days post editing.

d T98G] post editing). *p < 0.05, two-sided Student’s t test of values of b1L or

pendent experiments.

hromatin bridges (arrows) in CTRL or b1L-reduced clones at days 70–75 post

TRL. Quantification values are weighted mean ± SD of at least ten independent
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Figure 4. b1L Reduction Induces Loss of Replicative Immortality in TERT Promoter Mutant GBM Lines

(A) Cell viability of CTRL or b1L-reduced clonesmeasured approximately every 7 days from day 33 to day 99 post editing for TERT promoter mutant and wild-type

lines. **p < 0.01, Welch’s t test of CTRL clones versus b1L-reduced clones at day 83 post editing.

(B) Cell viability measurements following transfection with an empty (VECTOR), b1L, or TERT expression vector. Red dotted line indicates time of transfection.

*p < 0.05, **p < 0.01, Welch’s t test of vector transfected cells versus b1L and TERT transfected cells at the final recorded time point for each line. Values are

median of three independent experiments.

See also Figure S5.
in genes involved in development, cell-to-cell signaling, and

proliferation (Figure 5C and Table S5). This global transcrip-

tional analysis further validates that we have significantly in-

hibited the function of b1L in the b1L-reduced cell lines. These

data, in combination with our qPCR analysis of canonical GABP

tetramer targets, supports previous studies delineating specific

transcriptional programs that different GABP species may

control (Jing et al., 2008; Xue et al., 2008; Yu et al., 2012).

The basis for the differential sensitivity between the effects of

disrupting b1L function on the mutant TERT promoter and

selected downregulated GABP loci relative to other GABP tar-

gets is unknown, but may be due to compensation by b1S, b2,

or other ETS factors at certain GABP-binding sites and not at

other sites, or due to cell-type-specific differences in the

GABP transcriptional program. These data suggest that the

GABP-binding site created by mutations in the TERT promoter

and a subset of GABP-binding sites are more sensitive to inhi-

bition of the b1L-containing GABP tetramer, while other GABP-

bound sites are less sensitive.

b1L-Reduced GBM Lines Accrue DNA Damage and
Undergo Mitotic Cell Death in a TERT Promoter
Mutation-Dependent Manner
The direct correlation between telomere shortening and viability

loss (Figure S6A) suggested that the loss of viability is a conse-
520 Cancer Cell 34, 513–528, September 10, 2018
quence of cell death or senescence induced by telomere

dysfunction. The formation of chromatin bridges after telomere

dysfunction induces breakage-fusion-bridge cycles that lead to

the accrual of significant DNA damage in telomere-deficient cells

(der-Sarkissian et al., 2004; Hackett et al., 2001). While canonical

apoptosis and cellular senescence have been widely observed

as results of significant DNA damage after telomere dysfunction,

both mechanisms are dependent on functional p53 and retino-

blastoma tumor-suppressor (RB) pathways (Saretzki et al.,

1999; Whitaker et al., 1995). However, these two pathways are

commonly mutated in TERT promoter mutant GBM, including

the GBM1, T98G, and LN229 lines (Table S6), making apoptosis

and senescence unlikely to occur at high levels. In p53- and RB-

deficient cells, mitotic cell death has been implicated as a pri-

mary phenotype following telomere dysfunction (Fragkos and

Beard, 2011; Hayashi et al., 2015). Mitotic cell death can result

from chromosome fusions, high-level chromosomal rearrange-

ments, and DNA damage, oft-described consequences

of breakage-fusion-bridge cycles during telomere dysfunction

(Hayashi et al., 2015; Vakifahmetoglu et al., 2008; Vitale

et al., 2011).

Indeed, we observed a significant increase in the amount

of the DNA-damage marker g-H2AX exclusive to the b1L-

reduced clones from TERT promoter mutant cells by day 73

post editing (Figures 6A and S6B). Likewise, we identified giant



Figure 5. b1L Regulates a Subset of GABP Transcription Factor Targets in GBM Cells

(A) Expression of one GABP dimer target and four GABP tetramer targets relative to CTRL for b1L-reduced clones derived from TERT promoter mutant and wild-

type lines at day 45 post editing. *p < 0.05, **p < 0.01, two-sided Student’s t test comparedwith CTRL. Values aremean ± SD of at least three independent assays.

(B) Volcano plot of expression differences betweenCTRL and b1L-reduced TERT promoter mutant lines (GBM1, T98G, and LN229) as determined via RNA-seq at

day 45 post editing. Maroon-colored points represent putative GABP-regulated genes that are differentially expressed (log2 fold change > 1 and FDR < 0.05).

(C) Gene ontology terms analysis of 161 genes that are commonly differentially expressed genes between CTRL and multiple b1L-reduced TERT promoter

mutant lines.

See also Tables S4 and S5.
cell micronucleation, a prominent feature of mitotic cell death

(Ianzini and Mackey, 1997; Vakifahmetoglu et al., 2008), in

b1L-reduced, TERT promoter mutant—but not wild-type—cells
at this same time point (Figures 6B and S6C). Overexpression

of exogenous b1L or TERT was sufficient to fully rescue

both the DNA damage (Figure S7A) and mitotic cell death
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phenotypes (Figure S7B). Additionally, chromatin bridge forma-

tion, g-H2AX staining, and giant cell micronucleation accumu-

lated over three time points (days 45, 61, and 73 post editing)

in the LN229 b1L-reduced clones, thus supporting that

these phenotypes may be dependent on telomere shortening

(Figure S7C).

Moreover, cell cycle analysis of the b1L-reduced TERT pro-

moter mutant cells between day 70 and day 80 after

CRISPR/Cas9 editing revealed a modest G2/M enrichment,

another hallmark of cells undergoing mitotic cell death (Deer-

aksa et al., 2013) (Figures 6C and 6D). Cytometric analysis of

senescence and apoptosis/necrosis markers identified a

modest increase in apoptosis in TERT promoter mutant b1L-

reduced clones, thereby implicating non-apoptotic mitotic cell

death, with modest contributions from canonical apoptosis,

as the primary driver of cell death in these lines (Figure S7D).

Therefore, TERT promoter mutation-dependent telomere

dysfunction induced by reducing the function of the GABP

tetramer-forming isoform b1L and reducing TERT expression

culminates in a loss of replicative immortality characterized

by a profound loss of cell viability primarily driven by a mitotic

cell death mechanism.

Reducing b1L Function Impairs Tumor Growth and
Extends Mouse Survival In Vivo

To determine the effects of b1L disruption in a TERT promoter

mutant setting in vivo, we orthotopically injected CRISPR con-

trol or b1L-reduced LN229 cells expressing luciferase into

nude mice and monitored tumor engraftment and growth via

bioluminescence imaging (BLI). A proportion of the mice in-

jected with b1L-reduced tumor cells did not show evidence of

tumor formation over the time course, and those that did form

tumors showed significantly decreased tumor growth when

compared with mice injected with control cells (Figures 7A

and 7B). Importantly, mice injected with the control lines had

a significantly shorter median survival than mice bearing the

b1L-reduced lines (Figure 7C). All mice were validated for tumor

burden post-mortem via visual inspection. Despite LN229 C1

and C2 having an attenuated growth arrest phenotype

compared with the other lines (Figure 4A), b1L disruption and

reduced TERT expression in these lines were sufficient to signif-

icantly inhibit tumor formation and growth and extend survival in

mice injected with them. Furthermore, lentiviral transduction of

LN229 C1 and C2 with a TERT expression vector was sufficient

to rescue both the tumor growth and survival phenotypes in an

independent cohort (Figures 7D–7F). In conclusion, inhibition of

the mutant TERT promoter through disrupting the b1L function

is sufficient to prolong survival in mice bearing LN229 GBM

xenografts.
Figure 6. b1L-Reduced GBM Lines Accrue DNA Damage and Undergo

(A) Representative images (left images) and quantification (right graphs) of g-H2AX

20 mm. **p < 0.01, two-sided Student’s t test compared with CTRL (n.s., not signifi

(B) Representative DAPI images (left images) and quantification (right graphs) of g

post editing. Scale bar, 20 mm. *p < 0.05, **p < 0.01, two-sided Student’s t test c

mean ± SD of at least ten independent fields of view.

(C and D) Histograms (C) and quantification (D) for cell-cycle analysis of CTRL or

post editing.

See also Figures S6 and S7; Table S6.
DISCUSSION

Telomerase reactivation occurs in more than 90% of human

cancers and is fundamental for tumor cell immortalization.

While the occurrence of TERT promoter mutations early in

GBM evolution suggests they are important for tumorigenesis,

their role in maintaining telomere length, replicative immor-

tality, and cell viability at later time points has been relatively

unexplored. We have identified the tetramer-forming b1L

isoform of GABP to be a necessary component for full

activation of the mutant TERT promoter and replicative

immortality in TERT promoter mutant, but not wild-type,

GBM cells. These results add to recent studies showing that

TERT promoter mutations are necessary but not sufficient

for cellular immortalization in TERT promoter mutant tumor

cells (Chiba et al., 2017; Li et al., 2015). Our results also

suggest binding of the b1L-containing GABP tetramer to

the mutant TERT promoter is necessary to maintain maximal

expression of TERT.

Telomere shortening and loss of cellular proliferation has been

previously observed in brain tumor cultures after sustained inhi-

bition of telomerase (Barszczyk et al., 2014; Castelo-Branco

et al., 2011; Marian et al., 2010). One difference between these

studies and ours is that in addition to potently reducing the

expression of TERT, our b1L-reduced clones had concomitant

deregulation of a subset of GABP-regulated genes that may in-

fluence the observed TERT-dependent phenotypes. Although

overexpression of exogenous TERT rescued cell growth of the

cells with reduced b1L function, expression of TERT at more

physiological levels through activation of the endogenous wild-

type TERT allele may allow for more precise analysis of pheno-

types. Thus, we cannot fully rule out that other b1L target genes

may contribute to the in vitro and in vivo phenotypes we

observed.

The growth decrease occurring as early as 48 hr after LNA-

ASO-mediated knockdown of b1L raises the possibility that, in

addition to the gradual and protracted loss of viability, b1L and

TERT reduction also could have immediate effects. As telomere

length is heterogeneous within tumor cell cultures (der-Sarkis-

sian et al., 2004; Wang et al., 2013), cells with shorter telomeres

may be more vulnerable upon reduction of TERT expression.

Conversely, we expect that the subset of GBM cells with longer

telomeres—and not those with critically short telomeres—would

preferentially survive through the cell expansion required to

establish the clonal cultures of b1L-reduced cells, then succumb

to gradual decreases in telomere length at later time points.

Overall this ongoing process could contribute to the gradual

loss of viability detected in the bulk population assays. The

more immediate effect in our LNA-ASO cell experiments
Mitotic Cell Death in a TERT Promoter Mutation-Dependent Manner

staining in CTRL or b1L-reduced clones at days 70–75 post editing. Scale bar,

cant). Quantification values are sums of at least ten independent fields of view.

iant cell micronucleation (GCM) in CTRL or b1L-reduced clones at days 70–75

ompared with CTRL (n.s., not significant). Quantification values are weighted

b1L-reduced LN229 (top graphs) and NHAPC5 (bottom graphs) lines at day 75
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Figure 7. Reduction of b1L Impairs Tumor Growth and Extends Mouse Survival In Vivo

(A) Representative in vivo imaging system bioluminescent images of CTRL or b1L-reduced LN229-derived tumors at 7 time points post intracranial injection

(injected on cellular day 51 post editing). DPI, days post injection.

(legend continued on next page)
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is consistent with an acute telomere-mediated cell death pheno-

type in NRAS-mutant melanoma due to dependence on TERT

expression from the mutant promoter (Reyes-Uribe et al.,

2018). However, due to the limitations of our CRISPR/Cas9

experimental design and focus on later time points, further

studies to investigate the mechanism of immediate cellular ef-

fects following reduction—or elimination—of b1L function in

TERT promoter mutant GBM will require inducible systems and

single-cell analysis.

b1L tetramerization activity and TERT expression were

reduced but not eliminated in our experiments. Attempts to

further suppress TERT mRNA expression in the b1L-reduced

clones through LNA-ASO-mediated knockdown of b1L had

no effect. Therefore, a low level of expression of TERT from

the mutant promoter may be maintained independent of b1L

function. Although our data strongly support b1L as the main

driver of TERT expression from the mutant promoter and the

primary factor enabling cell immortality in TERT promoter

mutant GBM, they also support the existence of a secondary

mechanism contributing to the overall TERT expression level

in TERT promoter mutant tumor cells. Secondary mechanisms

could involve an activating structural change in the mutant

TERT promoter G-quadruplex or activation through recruitment

of other ETS factors (Chaires et al., 2014; Li et al., 2015; Lim

et al., 2010; Makowski et al., 2016). Additionally, the GABP

tetramer-forming isoform b2 may be able to partially activate

TERT expression at the mutant TERT promoter. b2 knockdown

significantly reduced TERT expression levels in a subset of

TERT promoter mutant GBM lines. However, the absence of

a positive correlation between GABPB2 and TERT expression

levels in glioma tissue samples and the near total loss of the

occupancy of GABP at the mutant TERT promoter after disrup-

tion of b1L suggest that b2 plays a more minor role, at least

when b1L is present. We cannot, however, exclude the possi-

bility that b2 plays a role in regulating the mutant TERT pro-

moter in a small subset of cells. Therefore, to fully eliminate

TERT expression in TERT promoter GBM, it may be necessary

to jointly inhibit b1L alongside one or more secondary mecha-

nisms of TERT expression.

Overall, the present study gives credence to b1L as a poten-

tial therapeutic target for tumor cells with the mutant TERT

promoter. GABP is recruited to the mutant TERT promoter in

multiple cancer types (Akincilar et al., 2016; Bell et al., 2015;

Stern et al., 2015). The prevalence of identical TERT promoter

mutations across a large number of cancer types (Bell et al.,

2016; Zehir et al., 2017) highlights the potentially widespread

role of the b1L-containing GABP tetramer as a dominant factor
(B) Relative tumor bioluminescence quantified twice per week for each group (CT

sided Student’s t test compared with CTRL peak luminescence. Values are mea

(C) Kaplan-Meier survival curve displaying disease-specific survival of mice (Si

b1L-reduced cells over time. **p < 0.01, log-rank test compared with CTRL.

(D) TERT expression 4 days post transduction of CTRL or b1L-reduced LN229

expression vector. **p < 0.01, two-sided Student’s t test relative to respective ve

(E) Relative tumor bioluminescence quantified twice per week for each group (n =

lentiviral expression vector. **p < 0.01, two-sided Student’s t test comparedwith v

of all mice in each group.

(F) Kaplan-Meier survival curve displaying disease-specific survival of mice (Envi

cells following stable transduction with a control (V) or TERT (T) lentiviral express
responsible for enabling replicative immortality in cancer. This

is particularly relevant as direct telomerase inhibitors block tu-

mor cell immortality, but can also affect TERT in normal stem

and germ cells (Jager and Walter, 2016; Shay and Wright,

2006). Although GABP is a transcription factor, it is an intriguing

target due to its dual function as a dimer and tetramer. b1L is

not required for normal development in mice, and in GBM cells

the majority of GABP target genes do not seem to be as sen-

sitive to reduction of b1L compared with the mutant TERT pro-

moter. Thus, inhibiting the dispensable tetramer-forming b1L

isoform while leaving the dimer and other cell-essential GABP

isoforms unperturbed could be a viable strategy to block

cellular immortality in TERT promoter mutant tumors, including

glioma.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Cyclophilin B Pierce antibodies Cat# PA1-027A; RRID: AB_2169138

GABPB1 Proteintech Cat# 12597-1-AP; RRID: AB_10951115

Goat anti-rabbit secondary antibody i-Cor Biosciences Cat# 926-68071; RRID: AB_10956166

GABPa Santa Cruz Biotechnology Cat# sc-22810; RRID: AB_2247389

IgG Cell Signaling Technology Cat# 2729S; RRID: AB_1031062

gH2AX AF647 EMD Millipore 05-636-AF647

Bacterial and Virus Strains

Firefly Luciferase Lentifect� Purified Lentiviral Particles Genecopoiea LPP-FLUC-Lv105

Chemicals, Peptides, and Recombinant Proteins

Dharmafect 1 Dharmacon T-2001-02

POWER SYBR Green Complete Master Mix Applied Biosystems 4367659

Lipofectamine 2000 Invitrogen 11668-030

Puromycin Millipore-Sigma P8833

Hygromycin B Solution Omega Scientific HG-80

KAPA Robust2G DNA polymerase KAPA Biosystems KK5023

In-Fusion HD Cloning Plus Takara 638910

X-tremeGENE HP DNA Transfection Reagent Roche 06366546001

Nano-Glo� Live Cell Substrate Promega N205A

Nano-Glo� LCS Dilution Buffer Promega N206A

Cell titer 96 aqueous MTS Promega G3581

Formaldehyde Sigma F8775

ssoAdvanced Universal SYBR Green Supermix Bio-Rad 1725270

Resolution Solution from GC-RICH PCR System Roche 19024024

Phenol:Chloroform:Isoamyl Alcohol Invitrogen 15593-031

TRIzol LifeTechnologies 15596018

Methanol Sigma 179337

VECTASHIELD Antifade Mounting Medium with DAPI Vector Laboratories H-1200

Hoechst� 33342 Thermofisher 62249

AnnexinV-PE BD Biosciences 556421

C-12-FDG Setareh Biotech 7188

D-Luciferin GoldBio LUCK-100

Critical Commercial Assays

KAPA Stranded mRNA-Seq kit KAPA Biosystems KK8421

Power SYBR Green Cells-to Ct kit Ambion 4402953

In-Fusion HD Cloning Takara Bio 121416

QuikChange Lightning Site-Directed Mutagenesis Agilent 210518

ChIP-IT High Sensitivity� ActiveMotif 53040

Cold Fusion Cloning Kit System Biosciences MC010B-1

Surveyor Mutation Detection IDT 706025

Deposited Data

RNA-seq data European Genome

Archive (EGA)

EGAS0000100258.2

Scripts https://github.com/UCSF-Costello-Lab/

Tert-gabp
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Cell Lines

GBM1 Bell et al., 2015 N/A

T98G ATCC Cat# CRL-1690; RRID: CVCL_0556

LN229 ATCC Cat# CRL-2611; RRID: CVCL_0393

HEK293T ATCC Cat# CRL-3216; RRID: CVCL_0063

NHAPC5 Ohba et al., 2016 N/A

HCT116 ATCC ATCC CRL-247

SF10417-GNS Costello Lab N/A

SF7996-GNS Costello Lab N/A

SF8249 Costello Lab N/A

SF9030 Costello Lab N/A

SF11411 Costello Lab N/A

LN18 ATCC Cat# CRL-2610; RRID: CVCL_0392

hNPCs Xu et al., 2016 N/A

Experimental Models: Organisms/Strains

Mice / athymic (nu/nu) Simonsen Laboratories Sim:(NCr) nu/nu fisol

Mice / athymic (nu/nu) Envigo (formerly Harlan) Hsd:Athymic Nude Foxn1nu

Oligonucleotides

Genomic editing: See Table S1

GUSB forward: CTCATTTGGAATTTTGCCGATT Bell et al., 2015 N/A

GUSB reverse: TTCAAGTGCTGTCTGATTCCAAT Bell et al., 2015 N/A

TERT forward: TCACGGAGACCACGTTTCAAA Bell et al., 2015 N/A

TERT reverse: TTCAAGTGCTGTCTGATTCCAAT Bell et al., 2015 N/A

GABPB1 forward: TCCACTTCATCTAGCAGCACA This paper N/A

GABPB1 reverse: GTAATGGTGTTCGGTCCACTT This paper N/A

GABPB1L forward: ATTGAAAACCGGGTGGAATC This paper N/A

GABPB1L reverse: CTGTAGGCCTCTGCTTCCTG This paper N/A

GABPB2 forward: CGCCACCATCGAGATGTCG This paper N/A

GABPB2 reverse: TCCAGAGCTATGTCAAAGGCT This paper N/A

SKP2 forward: ATGCCCCAATCTTGTCCATCT This paper N/A

SKP2 reverse: CACCGACTGAGTGATAGGTGT This paper N/A

COXIV forward: CAGGGTATTTAGCCTAGTTGGC This paper N/A

COXIV reverse: GCCGATCCATATAAGCTGGGA This paper N/A

EIF6 forward: CCGACCAGGTGCTAGTAGGAA This paper N/A

EIF6 reverse: CAGAAGGCACACCAGTCATTC This paper N/A

TFB1M forward: GTTGCCCACGATTCGAGAAAT This paper N/A

TFB1M reverse: GCCCACTTCGTAAACATAAGCAT This paper N/A

RPS16 forward: TCGGACGCAAGAAGACAGC This paper N/A

RPS16 reverse: AGCAGCTTGTACTGTAGCGTG This paper N/A

TERT+47 forward: GCCGGGGCCAGGGCTTCCCA Bell et al., 2015 N/A

TERT+47 reverse: CCGCGCTTCCCACGTGGCGG Bell et al., 2015 N/A

TEL forward: CGGTTTGTTTGGGTTTGGGTTTGG

GTTTGGGTTTGGGTT

Cawthon, 2002; Lin et al.,

2010; Xie et al., 2015

N/A

TEL reverse: GGCTTGCCTTACCCTTACCCTTAC

CCTTACCCTTACCCT

Cawthon, 2002; Lin et al.,

2010; Xie et al., 2015

N/A

SGC forward: CAGCAAGTGGGAAGGTGTAATCC Cawthon, 2002; Lin et al.,

2010; Xie et al., 2015

N/A

SGC reverse: CCCATTCTATCATCAACGGGGTACAA Cawthon, 2002; Lin et al.,

2010; Xie et al., 2015

N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

DEL1 forward: GCCTCTGCTTCCTGTTTCTTTAGGAG

CTGCTGT

This paper N/A

DEL1 reverse: ACAGCAGCTCCTAAAGAAACAGGAA

GCAGAGGC

This paper N/A

DEL2 forward: GCAGAGGCCTACAGACAGTTGGAA

GCTATGAC

This paper N/A

DEL2 reverse: GTCATAGCTTCCAACTGTCTGTAGG

CCTCTGC

This paper N/A

DEL3 forward: GTCATAGCTTCCAACTGTAGGCCT

CTGCTTCC

This paper N/A

DEL3 reverse: GGAAGCAGAGGCCTACAGTTGGA

AGCTATGAC

This paper N/A

Recombinant DNA

siRNA Non-targeting Dharmacon D-001206-13

siGABPB1 Dharmacon L-013083-00

siGABPB2 Dharmacon M-016074-00

LNA Scramble control: TTTAAGCCGATGCGTT Exiqon 300603-00

LNA GABPB1L 3’ UTR: CTAACCAACAACGATC Exiqon 300603-00

spCas9 Addgene #41815

sgRNAs Addgene #47108

pBiT1.1-C [TK/LgBiT] Promega N196A

pBiT2.1-C [TK/LgBiT] Promega N197A

pBiT1.1-C-GABPB1L-WT/DEL1/DEL2/DEL3 This paper N/A

pBiT-2.1-C-GABPB1L This paper N/A

pBiT-2.1-C-GABPB1S This paper N/A

pCMV6-Neo control vector OriGene PCMV6NEO

pCMV6-Neo-GABPB1L This paper N/A

pCI-Neo-hEST2 Meyerson et al., 1997 Addgene # 1781

Software and Algorithms

R v1.7.1 R Project https://cran.r-project.org/mirrors.html

cutadapt v.1.8.1 https://doi.org/10.14806/

ej.17.1.200

http://cutadapt.readthedocs.io/en/stable/

installation.html

TopHat v.2.0.14 https://doi.org/10.1186/

gb-2013-14-4-r36

https://ccb.jhu.edu/software/tophat/index.shtml

GENCODE V19 GENCODE https://www.gencodegenes.org/releases/19.html

edgeR v3.7 https://doi.org/10.18129/

B9.bioc.edgeR

https://bioconductor.org/packages/release/bioc/

html/edgeR.html

GO-TermFinder v0.86 https://doi.org/10.1093/

bioinformatics/bth456

https://metacpan.org/release/GO-TermFinder

BEDOPS v.2.4.32 https://doi.org/10.1093/

bioinformatics/bts277

https://bedops.readthedocs.io/en/latest/

FlowJo v10 FlowJo, LLC https://www.flowjo.com/solutions/flowjo/

downloads

Prism v7 GraphPad https://www.graphpad.com/how-

to-buy/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Joseph F.

Costello (joseph.costello@ucsf.edu).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines and Primary Cell Cultures
GBM1 (male), T98G (male), LN229 (female), and LN18 (male) cells were cultured in DMEM/Ham’s F-12 1:1 media, 10% FBS, 1%

Penicillin/Streptomycin. The GBM1 primary culture was previously described in Bell et al. (2015). HEK293T (female) and NHAPC5

(male) cells were cultured in DMEM H-21 media, supplemented with 10% FBS, 1% Non- Essential Amino Acids, 1% Glutamine

and 1% Penicillin/Streptomycin. The NHAPC5 culture was previously described in Ohba et al. (2016). HCT116 cells (male) were

cultured in McCoy’s 5A media supplemented with 10% FBS and 1% Penicillin/Streptomycin.

SF7996 (male; passage 6), SF8249 (male; passage 4), SF8279 (male; passage 4), SF9030 (male; passage 3), and SF11411 (female;

passage 4) are TERT promoter-mutant, IDH1-wild-type patient-derived early passage glioma neurosphere (GNS) GBM cultures and

were previous described in Fouse et al. (2014) (Fouse et al., 2014). SF7996 (GNS) and GBM1 (serum) are derived from the same piece

of tumor tissue from one patient and differ only in derivation conditions. SF10417 (male; passage 9) is a TERT promoter-mutant,

IDH1-mutant patient-derived early passage recurrent high-grade GNS oligodendroglioma culture. hNPCs (male) are human Neural

Precursor Cells derived from human induced pluripotent stem cells as previous described (Xu et al., 2016). All GNS cells and hNPCs

were cultured in Neurocult NS-A (Stem Cell Technologies) supplemented with 2 mM L-Glutamine, 1% Penicillin/Streptomycin, B-27

without vitamin A (Invitrogen), N2 supplement, 20 ng/mL EGF, and 20 ng/mL bFGF, and 1% sodium pyruvate. SF10417 was addi-

tionally supplemented with 20 ng/mL PDGF-AA. hNPCs were additionally supplemented with 5 ng/mL heparin. Cells were grown on

1.6 ug/cm2 laminin-coated flasks and dissociated with StemPro Accutase (Gibco). All cells were maintained at 37� Celsius, 5%CO2.

LN229, T98G, HEK293T, LN18 and HCT116 were acquired from ATCC through the UCSF Cell Culture Facility and validated for cell

identity via STR testing. The GBM1, SF7996, SF8249, SF8279, SF9030, SF11411, and SF10417 cells are patient-derived cultures

validated to be tumor by exome-seq and/or RNA-seq. hNPCs (Xu et al., 2016) were a generous gift from Haoqian Xu and Michael

Oldham at University of California, San Francisco. All cells tested negative for mycoplasma contamination.

Animals
Mice and Animal Housing

Athymic (nu/nu) female mice at 5 weeks of age were purchased from Simonson Laboratories (Figures 7A–7C) and Harlan Labora-

tories (Figures 7D and 7E). Fivemice were grouped per cage. Humane endpoints for sacrifice were established as >15%body weight

loss from last weighing and/or the presence of gross neurological symptoms such as hunching, asocial behavior, or spastic behavior.

All protocols regarding animal studies were approved by the UCSF Institutional Animal Care and Use Committee (IACUC; protocol

AN111064-03B) for Dr. Theodore Nicolaides at the University of California, San Francisco.

Orthotopic Xenografting and In Vivo Imaging

144 hr prior to orthotopic xenografting, LN229 control and b1L-reduced lines were stably transduced with Firefly Luciferase

Lentifect� Purified Lentiviral Particles catalog # LPP-FLUC-Lv105 (Genecopoiea) with MOI=5. Separately, 240 hr prior to orthotopic

xenografting, LN229 control and b1L-reduced lines were stably transduced with either EF1a-TERT-RFP-Bsd catalog # LV1131-RB

(GenTarget) or EF1a-empty-RFP-Bsd catalog # LVP-427 lentiviral particles withMOI=0.5. Transduced cells were selected in 5 mg/mL

blasticidin (Sigma-Aldrich) for 72 hr, validated for TERT and RFP expression via RT-qPCR and fluorescent imaging, respectively, and

stably transduced with Firefly Luciferase Lentifect� Purified Lentiviral Particles catalog # LPP-FLUC-Lv105 (Genecopoiea) with

MOI=5. All cells were verified for stable luciferase expression prior to injection. 30,000 LN229 CRISPR control or b1L-reduced cells

51 days post-editing per mouse (CTRL=12 mice; C1=12 mice; C2=10 mice) or 50,000 LN229 stably transduced TERT (T) or empty

vector (V) CRISPR control or b1L-reduced cells (7 mice per group) were injected into the frontal cortex. Animal’s body weight was

measured 3 times per week, tumor size via bioluminescent imaging (BLI) on a Xenogen IVIS Spectrum Imaging Systemwas evaluated

2 times per week, and general behavior and symptomatology was evaluated daily. All BLI images were taken with small binning and a

normalized exposure of 30 s recorded 12 min after intraperitoneal injection of 5 mL/g of 30 mg/mL D-Luciferin catalog # LUCK-100

(GoldBio).

METHOD DETAILS

TCGA Expression Data Set
The collection of the data from The Cancer Genome Atlas (TCGA) (Cancer Genome Atlas Research Network, 2008) was compliant

with all applicable laws, regulations, and policies for the protection of human subjects, and necessary ethical approvals were ob-

tained. Analysis of all data analysis was done in R project version 3.3.2 (http://www.r-project.org/). RSEM normalized RNA-seq

expression data for GABP isoforms (GABPA: uc002yly; GABPB1S: uc001zyc, uc001zyd, uc001zye, uc001zyf; GABPB1L: uc001zya,

uc001zyb; GABPB2: uc001ewr, uc001ews, uc001ewt) and TERTwere downloaded along with clinical information from TCGA (level 3

normalized data, December 2015, http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm) for 143GBM (109 TERT-expressing and

34 TERT- non-expressing) samples, 49 oligodendroglioma (49 TERT promoter-mutant samples), and 249 colorectal cancer

(249 TERT-expressing) samples. TERT mutation status was obtained, when available, from Ceccarelli et al for the glioma samples

(Ceccarelli et al., 2016). GABP isoforms were analyzed for monotonic associations with TERT using Spearman’s correlation. H0:

Spearman’s Rho=0; H1: Spearman Rhos0; a=0.05. A linear trend-line was generated using the PCA orthogonal regression line.
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Transcriptome Sequencing and Analysis
Total cellular RNA was isolated from GBM1, T98G, and LN229 CRISPR control and b1L-reduced clones 45 days post-editing via

standard TRIzol protocol (ThermoFisher). Prior to library synthesis, RNA was treated with DNase (Roche), scored on an Agilent

2100 Bioanalyzer for quality control, and quantified on a Qubit� Fluoremeter using the Qubit RNA HS Assay kit (ThermoFisher).

Only the samples with RIN >7 were used for RNA-seq. RNA-seq libraries were prepared with the KAPA Stranded mRNA-Seq kit

for Illumina platforms (KAPA Biosystems) according to manufacturer’s instructions. Briefly, 1 mg RNA was used for mRNA capture.

After fragmentation, first strand synthesis, second strand synthesis, and A-tailing, Illumina adaptors with dual indexes were ligated.

The libraries were amplified 11 cycles before pooling with 8-10 samples/lane for sequencing. All libraries were sequenced at the

UCSF Center for Advanced Technology on an Illumina HiSeq4000 sequencer with paired-end reads and an average read length

of 50 base pairs.

Adapter and polyA sequences were removed from reads using cutadapt v1.8.1, with the minimum overlap between adapter

and the 30 of the read set to 1 nt. Reads shorter than 20 nts after adapter trimming were discarded. Reads were aligned

with TopHat (v2.0.14) using a GENCODE V19 transcriptome-guided alignment with parameters –r 200 –library-type fr-first-

strand, –prefilter-multihits genome. To estimate transcript abundance, aligned data was processed with FeatureCounts

(v1.4.6) with parameters -s 2 -B -p -O -T 24 using a GENCODE V19 GTF reference.

EdgeR was used to determine differential expression between the six b1L-reduced clones and three CRISPR control clones from

TERT promoter mutant lines. All three CRISPR control clones were used as a reference (‘‘REF’’) in comparison to the six b1L-reduced

clones (‘‘TEST’’). Geneswith <1cpm/3 samples were discarded from the analysis prior to library size calculation. The Beyer-Hardwick

Method was used to determine genes significantly altered between the ‘‘REF’’ and ‘‘TEST’’ with FDR<0.05. Non-directional

GO-TermFinder was used to determineGO-enriched processes for differentially expressed genes. GABPA-bound genes were deter-

mined from ENCODE GABPA ChIP-seq data for all available cancer cell lines (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/

encodeDCC/wgEncodeRegTfbsClustered/wgEncodeRegTfbsClusteredV3.bed.gz). BEDOPS closest-features was used to deter-

mine transcription start sites within 3 kb of called GABPA peaks presented inR2 samples. These transcription start sites are referred

to ‘‘GABP-bound genes’’ throughout the text.

siRNA and LNA-ASO Knockdown
Non-targeting, GABPB1, and GABPB2-directed siRNA pools were obtained from Dharmacon. Scrambled control and GABPB1L 3’

UTR-directed Locked Nucleic Acid Antisense Oligonucleotides (LNA-ASOs) were obtained from Exiqon. 100 mL of cells were seeded

at a density of 30,000 cells/mL in a 96-well plate and transfected 24 hr after with a final concentration of 50 nM siRNA or 25 nM LNA-

ASO and 0.1 uL of Dharmafect 1 reagent (Dharmacon). At 48 and 72 hr post-transfection, cells were lysed and cDNA was generated

using the POWERSYBRGreen Cells-to-Ct kit (Ambion). Quantitative PCRwas performed tomeasure the expression levels ofGUSB,

TERT, GABPB1L, and GABPB2 as described below. All siRNAs and LNA-ASOs were independently validated at 48 and 72 hr post-

transfection for >50% knockdown of target transcript in all cell lines.

RT-qPCR
Quantitative PCR was performed with POWER SYBR Green Complete Master Mix (LifeTechnologies) to measure the expression

levels of GUSB (forward primer: CTCATTTGGAATTTTGCCGATT; reverse primer: CCGAGTGAAGATCCCCTTTTTA), TERT (forward

primer: TCACGGAGACCACGTTTCAAA; reverse primer: TTCAAGTGCTGTCTGATTCCAAT), GABPB1 (forward primer: TCCACTT

CATCTAGCAGCACA; reverse primer: GTAATGGTGTTCGGTCCACTT), GABPB1L (forward primer: ATTGAAAACCGGGTGGAATC;

reverse primer: CTGTAGGCCTCTGCTTCCTG), GABPB2 (forward primer: CGCCACCATCGAGATGTCG; reverse primer: TCCA

GAGCTATGTCAAAGGCT), SKP2 (forward primer: ATGCCCCAATCTTGTCCATCT; reverse primer: CACCGACTGAGTGATAG

GTGT), COXIV (forward primer: CAGGGTATTTAGCCTAGTTGGC; reverse primer: GCCGATCCATATAAGCTGGGA), EIF6 (forward

primer: CCGACCAGGTGCTAGTAGGAA; reverse primer: CAGAAGGCACACCAGTCATTC), TFB1M (forward primer: GTTGCCCAC

GATTCGAGAAAT; reverse primer: GCCCACTTCGTAAACATAAGCAT), and RPS16 (forward primer: TCGGACGCAAGAAGACAGC;

reverse primer: AGCAGCTTGTACTGTAGCGTG). Each sample was measured in triplicate on the Applied Biosystems 7900HT Fast

Real-Time System.Melting curvesweremanually inspected to confirmPCR specificity. Relative expression levels were calculated by

the deltaCT method against GUSB.

CRISPR-Cas9 Editing
Plasmids encoding spCas9 and sgRNAs were obtained from Addgene (Plasmids #41815 and #47108). Oligonucleotides for con-

struction of sgRNAs were cloned into the sgRNA plasmid as previously described (Brown et al., 2016). Target sequences for sgRNAs

are provided in Table S1. Targeting vectors PuroR TV and HygroR TV were acquired and incorporated at target loci as previously

described (Gapinske et al., 2018). In brief, LN229, NHAPC5, HEK293T, HCT116, and T98G cells were transfected with Lipofectamine

2000 (Invitrogen) according to themanufacturer’s instructions in 24well plates. GBM1cells were transfected by electroporation using

a Gene Pulser XCell (BioRad) in PBS at 140 Volts, 950 mF. Each cell line was transfected with equal amounts of Cas9, target sgRNA,

targeting vector PuroR TV (GBM1, LN229, HCT116, HEK293T, and T98G) or HygroR TV (NHAPC5) and universal sgRNA. Cleaving of

the targeting vector by the universal sgRNA-directed Cas9 allowed for integration of the PuroR or HygroR cassette at the control or
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GABPB1L target loci. Integration only occurs post-cutting of both the targeting vector and target genomic locus. Clonal populations

were selected with Puromycin (0.5 mg/ml HCT116 and T98G, 1 mg/ml GBM1 and LN229, and 2 mg/ml HEK293T) or Hygromycin

(0.5 mg/ml for NHAPC5).

Analysis of On-Target and Off-Target Editing
Analysis of on-target and off-target mutations was conducted as previously described (Gapinske et al., 2018). In brief, genomic DNA

from each clone was isolated using the Animal Genomic DNA Purification Mini Kit (Earthox Life Sciences). PCRs to detect integration

of the targeting vector at on-target or off-target sites were performed using KAPA2G Robust PCR kits (Kapa Biosystems) according

to the manufacturer’s instructions. The DNA sequences of the primers for each target are provided in Table S1. PCR products were

visualized in 2% agarose gels and images were captured using a ChemiDoc-It2 (UVP). Indels at off-target sites were analyzed with

the Surveyor Mutation Detection kit (IDT) by first amplifying the target locus using PCR with KAPA Robust2G DNA polymerase. The

resulting PCR products were melted and re-annealed according to manufacturer’s instructions, and 18 mL of the reannealed duplex

was mixed with 1mL of Surveyor Nuclease and 1 mL of Enhancer Solution and incubated at 42� Celsius for 1 hr. Final product was

loaded onto a 10% TBE polyacrylamide gel and run at 200 V for 30 min. The gels were stained with ethidium bromide and visualized

using a ChemiDoc-It2 (UVP). On-target editing of GABPB1L (Figure S2A) or control locus (Figure S3B) was evaluated by PCR to

detect the integration of the targeting vector. DNA sequencing of the alleleswithout integrationwas used to detect indels (Figure S2B).

Analysis of off-target mutations was performed by testing integration of the targeting vector at predicted off-target sites (Hsu et al.,

2013) in coding regions for each sgRNA used in each cell line (Figures S3A and S3D–S3F). For predicted off-target sites within coding

sequences we performed Surveyor assays to detect indels (Figure S3C).

Immunoblotting
Immunoblotting for Cyclophilin B (loading control) and b1 (b1S and b1L) was performed using a rabbit anti-Cyclophilin B antibody

PA1-027A (Pierce antibodies; 1:1,000 dilution) and rabbit anti-GABPb1 antibody 12597-1-AP (Proteintech; 1:500 dilution) using

the NuPAGE system (Thermofisher), according to the provider’s instructions. Detection of primary bands was done using the Li-Cor

goat anti-rabbit 680RD secondary antibody (1:15,000 dilution) on the Li-Cor Odyssey Fc imaging system.

NanoBiT Protein-Protein Interaction Assay
Full-length GABPB1L or GABPB1S was cloned into either the pBiT1.1-C [TK/LgBiT] or pBiT2.1-C [TK/LgBiT] vectors (Promega;

N196A and N197A, respectively) using In-Fusion HD Cloning (Takara). In accordance with the manufacturer’s instructions, the

QuikChange Lightning Site-Directed Mutagenesis kit (Agilent) was used to introduce three separate deletions (DEL1-3) into the

pBiT1.1-C-GABPB1L vector (see Table S3 for mutagenesis primers). Mutagenized plasmids were validated using Sanger

sequencing and purified for use in the NanoBiT assay. Prior to use, 1 volume NanoBiT vector was diluted into 3 volumes of

pCMV6-Neo control vector (OriGene) to a final volume of 10 ng/mL. 100 mL of LN229 or NHAPC5 cells were seeded at a density

of 30,000 cells/mL in 96-well plates 24 hr prior to transfection. Cells were transfected with a total of 100 ng of plasmid DNA and

0.3 mL X-tremeGENE HP DNA Transfection Reagent (Roche) according to manufacturer’s instructions. The following combinations

were used to assay b1L tetramer formation in LN229 and NHAPC5 cells:

POS: pBiT1.1-C-GABPB1L-WT + pBiT-2.1-C-GABPB1L

NEG: pBiT1.1-C-GABPB1L-WT + pBiT-2.1-C-GABPB1S

DEL1: pBiT1.1-C-GABPB1L-DEL1 + pBiT-2.1-C-GABPB1L

DEL2: pBiT1.1-C-GABPB1L-DEL2 + pBiT-2.1-C-GABPB1L

DEL3: pBiT1.1-C-GABPB1L-DEL3 + pBiT-2.1-C-GABPB1L

24 hr following transfection, Nano-Glo� Live Cell Substrate diluted in Nano-Glo� LCS Dilution Buffer (Promega; N205A and

N206A, respectively) was added directly to the cells and luminescence was assayed 1 hr later on a GloMax� 96 MicroPlate Lumin-

ometer (Promega) according to manufacturer’s instructions. All data were normalized to the positive control (POS) for each cell line.

Cell Proliferation and Viability Assays
100 mL of cells were seeded at a density of 5,000 cells/mL in 96-well plates. At t=0, 48 and 96 hr post-seeding, MTS (Cell titer 96

aqueous MTS, Promega) was incubated for 2 hr at 37� Celsius in a ratio of 1:5 in media, according to manufacturer’s instructions.

Plate was read on the Bioplate Synergy 2 microplate reader at 490 nm. Cell proliferation of individual samples was calculated by

normalizing absorbance to their corresponding absorbance at t=24 hr. Each time point was analyzed in triplicates. For cell viability,

cells were trypsinized, collected and counted on a hemocytometer with trypan-blue exclusion approximately every 7 days from day

33 to day 102 post-editing, or until the minimal sensitivity limits of the assay were reached. Between viability time points, cells were

split prior to confluency and replated at 1/8th density to ensure consistent growth conditions. The ratio between viable and dead

cells was used to determine cell viability. It is important to note that trypsinization of cells undergoing telomere dysfunction may

have influenced to the viability phenotype in the GBM1 and T98G clones after day 85 post- editing.

Chromatin Immunoprecipitation
Chromatin immunoprecipitation (ChIP) for GABPa was performed using the ActiveMotif High Sensitivity kit. In brief, GBM1, T98G,

HCT116, and HEK293T CRISPR controls and b1L-reduced clones were grown to 80% confluency in 15 cm plates and fixed with
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4% formaldehyde. Chromatin was sonicated to a size range of 200-1200 bp by the Diagenode Biorupter. 12-18 mg of chromatin was

used per GABPa (Santa Cruz Biotechnology: sc-22810) and IgG control (Cell Signaling: 2729) immunoprecipitation for each cell type.

Enrichment at the TERT promoter was determined by qPCR with the ssoAdvanced Universal SYBR Green Supermix (Biorad) sup-

plemented with Resolution Solution fromGC-RICH PCRSystem (Roche). The following primer set was used for qPCR: TERT+47 (for-

ward: 5’-GCCGGGGCCAGGGCTTCCCA-3’; reverse: 5’ CCGCGCTTCCCACGTGGCGG-3’; Tm=74� Celsius). PCR was carried out

on the Applied Biosystems 7900HT Fast Real-Time System. Three replicate PCR reactions were carried out for each sample.

Telomere Length Measurement
All telomere length measurements were conducts using the telomere qPCR protocol initially described in Cawthon, (2002) and later

modified in Lin et al. (2010). DNA was collected from CRISPR control and b1L-reduced cell lines at days 33, 44, 61, 78, and 83 post-

CRISPR-Cas9 editing using Phenol:Chloroform:Isoamyl Alcohol (Invitrogen) according to manufacturer’s instructions. DNA was

diluted to a final concentration of 2 ng/mL prior to analysis. Telomere length was measured by qPCR with POWER SYBR Green mas-

ter mix on the Applied Biosystems 7900HT Fast Real-Time System using the following telomere (TEL) and single gene control (SGC)

primer sets: TEL-qPCR, primer forward: CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT, primer reverse: GGCTTGC

CTTACCCTTACCCTTACCCTTACCCTTACCCT; SGC-qPCR, primer forward: CAGCAAGTGGGAAGGTGTAATCC primer reverse:

CCCATTCTATCATCAACGGGGTACAA (Cawthon, 2002; Lin et al., 2010; Xie et al., 2015). The following PCR conditions were

used: 95� Celsius for 10min followed by 40 cycles of data collection at 95� Celsius for 15 s, 60� Celsius anneal for 30 s and 72� Celsius
extend for 30 s along with 80 cycles of melting curve from 60� Celsius to 95� Celsius. Relative telomere length was determined as the

linear relationship between TEL and SGC (T/S). Three independent RT-qPCR reactions were carried out for each sample, with each

independent experiment performed on distinct days with distinct populations of cells.

Exogenous b1L and TERT Overexpression
GABPB1L human cDNA (OriGene) was cloned into pCMV6-Neo Vector (OriGene) using the Cold Fusion Cloning Kit (System Biosci-

ences) according to manufacturer’s instructions. The pCMV6-Neo-GABPB1L plasmids obtained were validated by Sanger

sequencing using the manufacturer’s primers. 2 mg pCMV6-Neo (empty vector, for control purposes), pCMV6-Neo-B1L or pCI-

Neo-hEST2 (Addgene) were transfected into each GBM1, T98G, and LN229 CRISPR control clone (CTRL) or b1L-reduced clone

(C1 and C2) using 6 mL X-tremeGENE HP DNA Transfection Reagent (Roche) according to producer’s instructions at day 61

(GBM1 and T98G) or day 58 (LN229) post-editing. C1/C2 and b1L/TERT refers to the clone number and cDNA transfected, respec-

tively. Overexpression of exogenous b1L and TERTmRNAwas confirmed by RT-qPCR as described above. Clones weremaintained

in 100 mg/mL G418 (Invivogen) and validated for continuedGABPB1L and TERT expression three weeks post-transfection. Lentiviral

TERT rescue is described above under the ‘‘Orthotopic xenografting and in vivo bioluminescent imaging’’ subheading. pCI neo-

hEST2 was a gift from Robert Weinberg (Meyerson et al., 1997) (Addgene plasmid # 1781).

Fluorescent Imaging and Quantification
CTRL and b1L-reduced clones were seeded at a density of 25,000 cells/mL on day 70 post-editing. Cells were fixed in 4% formal-

dehyde and permeabilized in 100%methanol before co-staining with DAPI and anti-gH2AX AF647 conjugated antibody (EMD Milli-

pore 05-636-AF647) at 4� Celsius overnight. All images were taken at 63x magnification on an AxioImager M1 upright fluorescent

microscope (Zeiss) with 2.8 ms exposure. Post-processing and signal normalization of images was done using the on-board

ZEN2 software. Quantification of extent of chromatin bridge formation and giant cell micronucleation was performed as follows:

each slide was assigned a randomized number to blind the quantifier prior to counting. Ten computationally randomized unique

40x fields of view with a cell number of n>20 were used per slide. For each field of view, total cell number, number of chromatin

bridges, and number of giant micronucleated cells were counted. Only nuclei completely in the field of view were counted. A

chromatin bridge was defined as a solid strand of nuclear material linking two distinctly independent nuclei. Two nuclei linked by

a chromatin bridge were counted as one cell. A giant micronucleated cell was defined as a single cell containing nR5 uncondensed

nuclei. The weighted proportion of chromatin bridges and giant micronucleated cells was determined per field of view and summed

into an aggregate proportion. All methods and quantifications were verified using the same parameters as described above by an

independent party. Quantification of gH2AX was performed similarly to chromatin bridge and giant cell micronucleation counting

with the following differences: n>10 cells per field of view was used as a threshold and individual visible gH2AX foci were counted

per cell per field of view. This procedure was likewise followed to quantify LN229 clones at day 45 and day 61 post-editing (n=4 fields

of view).

Flow Cytometry
On day 75 post-editing, 300,000 cells/line were stained with a combination of Hoechst� 33342 (Thermofisher; 10 ng/mL),

AnnexinV-PE (BD Biosciences #51-65875X; 1:1,000 dilution), and C-12-FDG (Setareh Biotech; 33 mM final concentration) for

45 min at 37� Celsius in the dark. Samples were run for 10,000 counts on a Sony SH800 cytometer and analyzed on FlowJo�.

The same gating strategy was used for all experiments. All data were collected ONLY after a stable flow of cells had been established.

Then, FSC-A vs. FSC-H gating was used to select for singlets along the positive diagonal. Next, FSC-A vs. SSC-A gating was used to

remove all cellular debris (FSC-A/SSC-A low particles). Finally, non-specific antibody/fluorophore uptake was used to gate against

dead cells with compromised membranes.
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QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis was done using GraphPad Prism 7. Non-parametric Spearman correlation was used for GABP isoforms versus

TERT and telomere length versus viability analysis (a=0.05). Adjusted p values after multiple comparison correction are reported for

each correlation. A non-parametric Spearman correlation was chosen due to the failure of a subset of data sets to meet the homo-

scedasticity assumption of the Pearson test. Mouse survival data for the orthotopic xenograft experiments were analyzed with the

Kaplan-Meier Log-Rank Test (a=0.05). The non-parametric Welch’s t-test was used as listed for samples with unequal sample sizes

(a=0.05). A two-sided heteroscedastic Student’s t-test was used as listed for all other assays (a=0.05) after confirming differences in

variances between tested groups. All error bars shown are mean ± S.D. A sample size of 3 independent experiments (biological rep-

licates) was used for all experiments, unless otherwise noted, in order to ensure appropriate statistical power to detect a statistically

significant change of at least two-fold. 3 technical replicates per biological replicate were used for each experiment as noted.

DATA AND SOFTWARE AVAILABILITY

All data used for GABP isoform and TERT expression correlations are available for public access from the TCGA (level 3 normalized

data, December 2015, http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm). All raw data used for RNA-seq analysis has

been deposited in the European Genome Archive (EGA) under ID code EGAS0000100258.2. Scripts used for RNA-seq analysis

are available at https://github.com/UCSF-Costello-Lab/Tert-gabp.
e8 Cancer Cell 34, 513–528.e1–e8, September 10, 2018

http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm
https://github.com/UCSF-Costello-Lab/Tert-gabp

	Disruption of the β1L Isoform of GABP Reverses Glioblastoma Replicative Immortality in a TERT Promoter Mutation-Dependent M ...
	Introduction
	Results
	The GABP Tetramer-Forming Isoform β1L Positively Regulates TERT Expression in TERT Promoter Mutant, but Not Wild-Type, Tumo ...
	CRISPR/Cas9-Mediated Disruption of GABPB1L Reduces GABP-Mediated Activation of the Mutant TERT Promoter
	β1L-Mediated Activation of the Mutant TERT Promoter Is Required for Telomere Maintenance in GBM
	Disrupting the β1L Function Is Sufficient to Induce Short-Term and Long-Term Growth Defects in TERT Promoter Mutant Lines I ...
	β1L Regulates a Subset of GABP Transcription Factor Targets in GBM Cells
	β1L-Reduced GBM Lines Accrue DNA Damage and Undergo Mitotic Cell Death in a TERT Promoter Mutation-Dependent Manner
	Reducing β1L Function Impairs Tumor Growth and Extends Mouse Survival In Vivo

	Discussion
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	Cell Lines and Primary Cell Cultures
	Animals
	Mice and Animal Housing
	Orthotopic Xenografting and In Vivo Imaging


	Method Details
	TCGA Expression Data Set
	Transcriptome Sequencing and Analysis
	siRNA and LNA-ASO Knockdown
	RT-qPCR
	CRISPR-Cas9 Editing
	Analysis of On-Target and Off-Target Editing
	Immunoblotting
	NanoBiT Protein-Protein Interaction Assay
	Cell Proliferation and Viability Assays
	Chromatin Immunoprecipitation
	Telomere Length Measurement
	Exogenous β1L and TERT Overexpression
	Fluorescent Imaging and Quantification
	Flow Cytometry

	Quantification and Statistical Analysis
	Data and Software Availability



