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Abstract
Copy number variations (CNVs) at the 7q33 cytoband are very rarely described in the literature, and almost all of the cases
comprise large deletions affecting more than just the q33 segment. We report seven patients (two families with two siblings and
their affected mother and one unrelated patient) with neurodevelopmental delay associated with CNVs in 7q33 alone. All the
patients presented mild to moderate intellectual disability (ID), dysmorphic features, and a behavioral phenotype characterized by
aggressiveness and disinhibition. One family presents a small duplication in cis affecting CALD1 and AGBL3 genes, while the
other four patients carry two larger deletions encompassing EXOC4, CALD1, AGBL3, and CNOT4. This work helps to refine the
phenotype and narrow the minimal critical region involved in 7q33 CNVs. Comparison with similar cases and functional studies
should help us clarify the relevance of the deleted genes for ID and behavioral alterations.

Keywords 7q33CNVs .CALD1 .AGBL3 .EXOC4 .CNOT4 . Duplication

Introduction

Interstitial CNVs in 7q are a rare event and, consequently,
poorly characterized. Specifically, there are only 10 reports
in the literature of interstitial deletions involving 7q33. Two
cases are deletions (7.6 and 7 Mb) derived from chromosomal
translocations [1–3]; one case is a small deletion (100 kb)
affecting only two genes, AKR1B1 and SLC35B4, in a patient
with PHACE syndrome [4]; seven cases show large deletions
ranging from cytoband 7q32 to 7q35 [5–11]. A deletion af-
fecting 7q33 only was reported as an abstract but made no
mention of the deletion size and genes affected [7]. The two
most recent reports in the literature regarding interstitial 7q
deletions describe genomic losses in a patient with intellectual
disability (ID), language delay, andmicrocephaly [12] and in a
patient with ID and dysmorphisms [11]. Not surprisingly, giv-
en the variable sizes of the deletions and duplications in all the
reported cases, there is a widely variable phenotypic presen-
tation, most likely due to the large number of genes involved
in these variants. A summary of these reports is presented in
Table 1.

It is possible to identify several interesting genes that could
account for the ID/developmental delay (DD) phenotype as-
sociated with 7q33 CNVs, among which are EXOC4 (exocyst
complex component 4), CNOT4 (CCR4-NOT transcription
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complex, subunit 4), CALD1 (Caldesmon 1), and AGBL3
(ATP/GTP binding protein-like 3). Genotype-phenotype cor-
relations in patients can help define the most relevant genes in
this perspective.

In this report, we describe the clinical and genetic findings
of seven patients with 7q33 copy number variations (CNVs)
and extend the phenotypic spectrum of 7q33 interstitial
CNVs. We also propose that CALD1 and AGBL3 are major
contributors for the ID phenotype of these patients.

Methods

Patients

Patients 1–3 and 5–7 were ascertained within a large study of
neurodevelopmental disorders in Portugal, in which the en-
rollment of the patients and families was done by the referring
doctor. Clinical information was gathered in an anonymous
database authorized by the Portuguese Data Protection
Authority (CNPD). The study was approved by the ethics
committee of Center for Medical Genetics Dr. Jacinto
Magalhães, National Health Institute Dr. Ricardo Jorge.

Written informed consent was obtained for all participants
involved in this publication for the genetic and gene expres-
sion studies, blood collection, and for publication of results
(including photos).

Molecular karyotyping

Genomic DNA was extracted from peripheral blood using
Citogene® DNA isolation kit (Citomed, Portugal) for patients
1, 2, and 3 and QIAsymphony SP (QIAGEN GmbH,
Germany) for patients 5, 6, and 7. The aCGH analysis was
performed using aCGH Agilent 180 K custom array design,
accessible through the gene expression omnibus GEO acces-
sion number GL15397, for patients 1, 2, and 3 (according to
the previously published protocol and the across-array meth-
odology [14, 15]; Agilent 44 K oligo for patient 4; Affymetrix
CytoScan 750 K platform for patients 5 and 7. aCGH data was
analyzed using Nexus Copy Number 5.0 software with
FASST Segmentation algorithm for patients 1, 2, and 3;
DNA Analytics v4.0.76 for patient 4; Analysis Suite (ChAS
3.0) software for patients 5 and 7.

Quantitative PCR confirmations

Primers for qPCR were designed using Primer3Plus software
(http://www.bioinformatics.nl/cgi-bin/primer3plus/
primer3plus.cgi) and taking into account standard
recommendations for qPCR primer development [16]. A set
of primers was designed for exon 10 of the CNOT4 gene
(NM_001008225) and for exon 4 of the CALD1 gene (NM_T
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033138). The reference genes used were SDC4 (NM_002999)
and ZNF80 (NM_007136) localized in the 20q12-q13 and
3p12 regions, respectively. qPCR reactions were carried out
in a 7500-FAST Real-Time PCR machine (Thermo Fisher
Scientific, Waltham, MA, USA) using Power SYBR
Green® (Thermo Fisher Scientific, Waltham, MA, USA).
The specificity of each of the reactions was verified by the
generation of a melting curve for each of the amplified frag-
ments. The primer efficiency was calculated by the generation
of a standard curve fitting the accepted normal efficiency per-
centage. Quantification was performed as described elsewhere
[17]. Ct values obtained for each test were analyzed in
DataAssist ™ software (Thermo Fisher Scientific, Waltham,
MA, USA). First-strand complementary DNA (cDNA) was
synthesized using SuperScript® III Reverse Transcriptase
(RT) (Thermo Fisher Scientific, Waltham, MA, USA).

FISH analysis

FISH was performed in metaphase chromosome spreads from
cultured peripheral blood cells from patient 6. The FISH probe
was generated using the BAC clone RP11-615F13 (Empire
Genomics, Buffalo, NY, USA) and labeled with Green 5-
Fluorescein dUTP. Analysis was performed according to the
manufacturer’s indication, and the fluorescence signals were
captured using an Isis Fluorescence Imaging System,
MetaSystems (Altlussheim, Germany).

Gene fusion exploratory analysis

Total RNA isolation and cDNA synthesis was performed as
described above. In order to determine the presence of a fusion
gene at the breakpoints of the 7q33 duplication described in
patients 5 and 6, a set of primers were designed for amplifi-
cation and sequencing of possible gene fusions, namely those
linkingCALD1 exon 4 withAGBL3 exon 16 and AGBL3 exon
16 with CALD1 exon 4. The fragments were amplified by
PCR and sequenced on an automated DNA-sequencer ABI
3730 XL DNA Analyzer (Thermo Fisher Scientific,
Waltham, MA, USA).

Results

Clinical description

Patients 1, 2, and 3

The proband of the first family (patient 1) is a male who
was evaluated at 12 years of age for psychomotor delay,
ID, and dysmorphic fea tures . Parents are non-
consanguineous and the delivery was uncomplicated, with
normal growth parameters. At the time of the first

consultation, he had short stature, weight was in the
25th centile, and the occipitofrontal circumference
(OFC) was in the 75th centile. Evaluation with the
Wechsler Intelligence Scale for Children (third edition)
[18] was performed at childhood and showed a full-scale
IQ of 42, associated with behavioral changes such as ag-
gressiveness, hyperactivity, and disinhibition. The patient
is currently 24 years old. He is dysmorphic, with a bul-
bous and snub nose (with concave root of the nose),
down-slanting palpebral fissures, epicanthic folds, deep
set eyes, thin upper lip, poor dental implantation and nar-
row cleft palate, dysplastic and posteriorly rotated ears,
and prognathism (Fig. 1a). Additionally, he also has
bushy eyebrows, spiky hair with a frontal cowlick, and
two hair whorls at the forehead. The hands present light
membranous syndactyly of the second to third digits and
feet with brachydactyly, sandal gap, and fetal pads. Brain
magnetic resonance imaging (MRI) detected a peri-
vascular space enlargement while the echocardiogram
and abdominal ultrasound retrieved no abnormalities.

Patient 2 (patient 1’s sister) was observed for the first
time at 19 years of age. Pregnancy and delivery were un-
complicated. At the time of the clinical evaluation, she
presented short stature, weight was in the 95th centile,
and OFC was in the 75th centile. She presented several
dysmorphic features, similar to the brother’s: snub nose
with a concave root, bushy eyebrows, spiky hair with a
frontal cowlick and two hair whorls at forehead, deep set
eyes, epicanthic folds, thin upper lip, and poor dental im-
plantation (Fig. 1b). She also had a short neck; narrow
palate; and small dysplastic ears, posteriorly rotated.
Abnormalities of the hands and feet included light mem-
branous syndactyly and brachydactyly, respectively.
Computed tomography (CT) scanning, echocardiogram,
and abdominal ultrasound showed no abnormalities.
Evaluation with the Wechsler Intelligence Scale for
Children (third edition) showed a full-scale IQ of 62.
Currently, she is 29 years old. Concerning behavior, she
presents aggressiveness (similar to her brother) and
disinhibition.

Patient 3 is the mother of patients 1 and 2. She has some
clinical features similar to the daughter, such as facial dys-
morphic features (milder) and brachydactyly (Fig. 1c). She
has mild ID, although no formal neuropsychological eval-
uation was performed; she did not complete the fourth
grade of school but she has the ability to do household
chores.

Patient 4

Patient 4 was born at term to unrelated parents that are
phenotypically normal. He was noted to be dysmorphic at
birth and was admitted to the hospital because of

30 Neurogenetics (2018) 19:27–40
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respiratory grunting. He had feeding problems early on. At
4 months of age, a right inguinal hernia was detected. He
was noted to have a wide open anterior fontanelle at
8 months. Otitis media developed and a congenital meatal
stenosis required meatoplasty at age 4 years. An evaluation
at 10 years old revealed that he weighed 39.75 kg (centile
75) and had a height of 139.8 cm (centile 50) and an OFC
of 57.2 cm (all within normal parameters) (Fig. 1d).
Currently, he has hypertelorism and myopia. Behavioral
issues were noticed at 4 years of age and he was referred
to Child Psychiatry. His attention span was poor. He had
aggressive outbursts, unpredictable behavior, and used bad
language. He also presented a low frustration threshold,
was impulsive, and with oppositional behavior. Currently,
he has poor peer relationships (has no friends); he still has
odd habits regarding feeding (concerns about bacteria on
food) and is preoccupied with germs, death, bugs, and
smells. He had a diagnosis of attention deficit and hyper-
active disorder (ADHD) and developmental dyspraxia at
age 11 years. He also has a tendency to be disinhibited.

Patients 5, 6, and 7

The proband of this family (patient 5) was evaluated at
11 years of age. Parents are non-consanguineous and delivery
was uncomplicated, with normal somatometric parameters (at
birth and now). He currently presents moderate ID (IQ = 54),
associated with behavioral alterations (opposition, lack of

attention, impulsiveness, and sexual disinhibition). He does
not have significant facial dysmorphisms besides strabismus.

Patient 6 (patient 5’s brother) is a 9-year-old boy with mild
ID (IQ = 67) and aggressive behavior. He presents normal
weight, height, and OFC (at birth and currently) and does
not have significant facial dysmorphisms. He is short sighted
(myopia).

Their parents were described as having learning difficulties
at school. The mother (here referred as patient 7) has a docu-
mented ID (IQ < 60 at 20 years of age), a psychiatric disorder
(emotional lability, obsessive behavior), and epilepsy.
Although the father was not formally evaluated in the consul-
tation by the responsible physician, he is described as healthy.
Due to the mother’s health condition, patients 5 and 6 current-
ly live in an institution, since the mother does not have the
intellectual and behavioral ability to take care of them. The
facial appearance of patients 5 and 6 is presented in Fig. 1e, f.

A clinical comparison between the cases is presented in
Table 2.

Molecular findings

aCGH

aCGH in patient 1 revealed a maternally inherited 2.08 Mb
deletion at chromosome region 7q33 (chr7:133,176,651–
135,252,871, hg19) containing 15 genes (according to the
DECIPHER database) [19]. A qPCR assay for the CNOT4

Fig. 1 Facial features of the
patients
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gene was designed and used for validation and determination
of the copy number of the region in the sister and both parents,
confirming the presence of only one copy of the segment in
the patient, sister, and mother. The father presented two copies
for the analyzed segment.

Patient 4 was found to carry a de novo 3.04 Mb deletion at
chromosome region 7q33 (chr7:132,766,730–135,802,894, hg19)
containing 21 genes (according to the DECIPHER database).

Patient 5 presented a 216 kb maternal duplication at 7q33
region (chr7:134,598,205–134,807,358, hg19) containing
three genes (CALD1, AGBL3, and C7orf49). A qPCR assay
for the CALD1 gene was designed and used for validation of
the copy number of the region in the patient and both parents
and for the determination of the CNV in his brother,
confirming the presence of three copies of the fragment in
patients 5, 6, and 7 (mother). The father presented two copies
for the analyzed fragment (a result concordant with the
aCGH). Patient 5 also performed a targeted exome sequencing
comprising 4813 genes associated with known clinical phe-
notypes based on the OMIM database, but no significant path-
ogenic variants were identified.

A comparison between the molecular alterations identified
in the reported patients is presented in Fig. 2 and Table 3.

FISH results

FISH analysis in patient 6 revealed a signal in chromo-
some 7 that is indicative of the presence of the duplication
in tandem, excluding a location in another chromosome
(Fig. 3d).

Fusion transcript results

Considering that, according to Newman and colleagues,
most of the duplications’ CNVs are in tandem and could
originate fusion genes at the breakpoints [20], we have
designed a set of assays in order to test for the presence
of such chimeric transcripts. A fusion transcript between
AGBL3 exon16 and CALD1 exon4 was detected in patients
5 and 6 (Fig. 3e). This finding is in agreement with the
FISH analysis and also indicates that the duplication is
not inverted. This hypothesis was also reinforced by the
fact that it was not possible to amplify any PCR products
indicative for an inverted duplication in patient 5 (Fig. 3e).
According to our analysis, the identified AGBL3-CALD1
gene fusion transcript would lead to an out of frame protein
from CALD1 on (Fig. 3f).

Fig. 2 Schematic representations and overlap of the CNVs found in the
patients. A 3Mb genomic portion of the cytoband 7q33 is shown. RefSeq
genes present within the genomic region (in pink; transcriptional direction

represented by the arrows) are shown. The overlapping deleted region for
all the patients is shaded in gray. Individual red horizontal bars represent
deletions. In each CNV, the corresponding patient is indicated

Neurogenetics (2018) 19:27–40 33

Author's personal copy



Constraint metrics

Several constraint metrics for all the 21 genes affected in pa-
tient 4 (with the larger CNV) are presented in Table 4. EXOC4
and CNOT4 are two of the genes with the highest ranks in the
haploinsufficiency score (predicted probability of exhibiting
haploinsufficiency); the data was retrieved from DECIPHER
database, where the score was determined using the classifi-
cation model published by Huang et al. [21]).

Discussion

While 7q33 CNVs are rare events, several interstitial deletions
of chromosome 7q have been described in the recent past
ranging from 7.6 to 13.8 Mb in size all [2, 5, 6, 11, 12]. In
this work, we report seven patients (from three families) with
7q33 CNVs, all affecting at least the CALD1 and AGBL3
genes (Fig. 2 and Tables 2 and 3). Patients 5, 6, and 7 all
present a small 216 kb duplication affecting the CALD1,
AGBL3, and C7orf49 genes, confirmed by FISH analysis to
be in tandem and to lead to the formation of a fusion gene (Fig.
3e). This type of chimeric genes can be related to clinical
phenotypes [20]. In fact, an enrichment of rare, brain-
expressed chimeric genes was observed in individuals with
schizophrenia, with functional studies suggesting a disrupting
effect of these fusion genes in critical neuronal pathways [22].
Because both breakpoints occur in intronic regions, the genes
are fused by AGBL3 intron 15 and CALD1 intron 3, leading to
a fused transcript between AGBL3 exon 16 and CALD1 exon
4 without any apparent compromise of exonic regions (Fig.
3b, f). The variable amplification of the chimeric messenger
RNA (mRNA) indicates that the fused transcript is likely to be
degraded, though not completely, since we were able to am-
plify it in one of the samples collected from patient 5, but not
in the other. Also, for patient 6, the fusion transcript was only
possible to amplify in the first sample collected using a nested
PCR protocol (Fig. 3e). The transcript was also not possible to
detect in cultured blood cells for patient 6. This variability in
the degradation of the product is not surprising, as it has been
described before in a very similar study [23].

Nevertheless, and since the degradation of the AGBL3-
CALD1 chimeric gene does not appear to be complete, it is
plausible that it might also contribute for the phenotype, since
it could interfere with parent gene function [22].

Additionally, although the pathogenic contribution of the
chimeric AGBL3-CALD1 gene cannot be excluded, the detect-
ed rearrangement could also impair the individual expression
of both the AGBL3 and CALD1 genes.

The AGBL3 (ATP/GTP binding protein-like 3) gene en-
codes a cytosolic carboxypeptidase (CCP3) that is able to
mediate both the deglutamylation and deaspartylation of tu-
bulin [24]. The deglutamylation of tubulin plays an importantTa
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role in regulation of the microtubule cytoskeleton, of known
relevance for neurons; in fact, the control of the length of the
polyglutamate side chains linked to tubulin was shown to be
critical for neuronal survival [25], which would make this
gene a possible contributor to the patients’ phenotype.
However, and although tubulin is a key protein in regulation
of the microtubule cytoskeleton and this is of known relevance
for neurons [25], there is not enough evidence that AGBL3
does have a function in cytoskeleton regulation in neurons. In
fact, according to the GTEx portal [26], AGBL3 has very low
expression in most of the tissues in human, with only the testis
presenting a slightly higher expression at the mRNA level [24,

26]. Therefore, the contribution of this gene to the ID pheno-
type is actually unclear.

The other gene affected by this rearrangement is CALD1
(Caldesmon1) which encodes for the caldesmon protein and is
widely expressed, including in the nervous system.
Caldesmon is an actin-linked regulatory protein that binds
and stabilizes actin filaments and regulates actin-myosin inter-
action playing an important role in cell motility regulation
[27]. Since caldesmon has numerous functions in cell motility
(such as migration, invasion, and proliferation), executed
through the reorganization of the actin cytoskeleton [28], its
alteration is likely to have a functional contribution for ID

Fig. 3 Schematic representation ofCADL1 and AGBL3 genes at the 7q33
cytoband. a Schematic representation of the normal location of CADL1
and AGBL3 genes. b The hypothesis that the duplicated region
(highlighted in gray) is located in tandem and not inverted is
represented, which would hypothetically lead to the formation of a gene
fusion between AGBL3 and CALD1. c The hypothesis that the duplicated
region (highlighted in gray) is located in tandem and inverted is
represented, which would hypothetically lead to the formation of a gene
fusion between AGBL3 and AGBL3 and between CALD1 and AGBL3.
The red triangle represents the possible fusion between AGBL3 and
CALD1 (in the Bin tandem not inverted^ scenario), the green triangle
the possible fusion between AGBL3 and AGBL3, and the blue triangle
the possible fusion between CALD1 and AGBL3 (in the Bin tandem

inverted^ scenario). d FISH analysis for the duplicated region using the
BAC clone FISH probe RP11-615F13 located in CALD1 gene where it is
possible to observe a signal indicative of the presence of the duplication in
tandem (arrow). e PCR amplification of potential fusion products from
patients’ and controls’ cDNA. Only the PCR product corresponding to
the AGBL3 and CALD1 fusion transcript was possible to amplify
(indicated by the arrow) in patients 5 and 6. The absence of a PCR
product for both control and patient 5’s cDNA on the right (blue
triangle) is not in support of the presence of this fusion product
(Bduplication inverted^). f Sanger sequencing of the PCR fragment
amplified by AGBL3_16F and CALD1_4R revealed that AGBL3 exon
16 and CALD1 exon 4 were fused at the cDNA pf patient 5
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pathogenesis, as this is a common biological theme linking
many ID-causative genes. Caldesmon overexpression induced
by excess glucocorticoids was described to lead to altered
patterns of neuronal radial migration through the reorganiza-
tion of the cytoskeleton and impact on nervous system struc-
ture and function [29, 30]. Caldesmon is an important regula-
tor of axon development [31] and may also play a role in
synaptogenesis, synaptic plasticity, and dendritic arborization
[32].

Four of the patients presented larger deletions also affecting
the EXOC4 and CNOT4 genes. Considering that patients 1 and
2 are siblings and present the same deletion and very similar
phenotypes, the main comparison should be made with patient
4. Concerning the behavioral phenotype, patients 1, 2, and 4

display aggressive behavior, disinhibition, and hyperactivity.
Patients 1 and 2 also present some overlapping facial
dysmorphisms with those of a patient previously described by
Dilzell and colleagues—bulbous nose, thin upper lip, philtrum
anomalies, small ears, and low posterior hairline [11]. The de-
letions’ overlap for these four patients is defined by the deletion
of patients 1, 2, and 3, resulting in a 2.08-Mb region that in-
cludes 15 genes. EXOC4 (EXOCYST COMPLEX
COMPONENT 4) is one of the common genes deleted among
the first four patients. EXOC4 is the human homolog of Sec8 in
yeast.EXOC4/Sec8 encodes a member of the exocyst complex,
broadly expressed in rat brain, localized in the synapses, and
which plays a role in neurotransmitter release [33]. Sec8 was
described to be involved in the directional movement of

Table 4 OMIM entrance, haploinsufficiency score, and constraint metrics for the genes deleted in patient 4 (the largest deletion)

7q33 List of all the
genes affected
in P4

AGBL3, AKR1B1, AKR1B10, AKR1B15, BPGM, C7orf49, C7orf73, CALD1, CHCHD3,
CNOT4, EXOC4, FAM180A, LRGUK, MTPN, NUP205, SLC13A4, LUZP6, STRA8,
TMEM140, WDR91, SLC35B4

Gene Morbid gene OMIM HI
score
%

DDG2P ClinVar Constraint metrics

Synonymous
(z)

Missense
(z)

LoF
(pLI)

CNV
(z)

AGBL3 No – 64.11% – 10dels/11dups – – – –

AKR1B1 No – 25.64% – 9dels/10dups − 0.32 0.27 0 − 2.25
AKR1B10 No – 77.14% – 9dels/11dups − 0.28 − 0.27 0 − 4.12
AKR1B15 No – 85.40% – 9dels/11dups 0.02 − 1.03 0 − 3.36
BPGM Yes 222800, erythrocytosis due to

bisphosphoglycerate mutase
deficiency, AR

22.09% – 11dels/11dups/1SNV 0.16 0.77 0.13 0.5

C7orf49 No – 80.37% – 10dels/11dups − 0.13 − 0.36 0.34 0.56

C7orf73 No – 24.71% – 11dels/11dups – – – –

CALD1 No – 20.28% – 10dels/11dups 1.02 − 0.14 1 0.73

CHCHD3 No – 6.30% – 9dels/13dups 0.18 0.15 0.04 − 0.13
CNOT4 No – 6.19% – 11dels/12dups 0.14 3.38 1 0.81

EXOC4 No – 4.22% – 18dels/18dups/1SNV − 0.09 − 0.27 0 − 1.74
FAM180A No – 63.78% – 11dels/11dups − 0.26 − 0.33 0.34 1.16

LRGUK No – 71.82% – 10dels/12dups 0.6 − 1.63 0 − 1.4
MTPN No – 15.71% – 11dels/11dups 0.57 2.05 0.75 0.98

NUP205 Yes 616893, nephrotic syndrome, type
13

11.40% – 11dels/12dups/1SNV − 0.77 0.87 1 0.18

SLC13A4 No – 40.17% – 11dels/11dups 0.64 2.16 0.92 − 0.96
LUZP6 No – 86.19% – 11dels/11dups – – – –

STRA8 No – 56.99% – 10dels/11dups 1.42 0.74 0 0.51

TMEM140 No – 83.19% – 10dels/11dups − 0.01 − 0.05 0.04 –

WDR91 No – 46.24% – 10dels/11dups 0.7 1.12 0 0.51

SLC35B4 No – 21.16% – 9dels/12dups − 1.1 0.44 0 0.04

OMIM Online Mendelian Inheritance in Man, HI score Haploinsufficiency Score index—high ranks (e.g., 0–10%) indicate that a gene is more likely to
exhibit haploinsufficiency, and low ranks (e.g., 90–100%) indicate that a gene is more likely NOT to exhibit haploinsufficiency (retrieved from
DECIPHER), LoF loss of function, CNVs copy number variations, z Z score is the deviation of observed counts from the expected number for one
gene (positive Z scores = gene intolerance to variation, negative Z scores = gene tolerant to variation) (retrieved from ExAC), pLI probability that a given
gene is intolerant of loss-of-function variation (pLI closer to one =more intolerant the gene is to LoF variants, pLI ≥ 0.9 is extremely LoF intolerant)
(retrieved from ExAC), del deletion, dup duplication, SNV single nucleotide variant, ins insertion, indel insertion/deletion
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AMPA-type glutamate receptors towards synapses, promoting
the membrane communication between polarized cells, as well
as in the delivery of NMDA (N-methyl-D-aspartate) receptors
to the cell surface in neurons through the interaction of Sec8
PZD domain with synapse-associated protein 102 (SAP102)
[34, 35]. Sec8 was also described to bind to postsynaptic den-
sity protein-95 (PSD-95), essential for synaptic function [36].

Yue and colleagues reported a patient with DD and
macrocephaly who presented a de novo translocation
t(7;10)(q33;q23), together with a paternal 7-Mb deletion at
7q33. The authors hypothesized that the phenotype might
arise due to the resulting EXOC4-PTEN fusion protein and/
or haploinsufficiency of the disrupted genes [3]. The patient
had some clinical features in common with the four patients
reported here: he also presented ID, delayed speech, hypoto-
nia, and facial dysmorphisms. Unfortunately, a picture is not
available in order to allow a comparison with the present cases
(Thomas Haaf and Susan Holder, personal communication).

The heterozygous deletion of this gene is thus common to
four of the patients here described and to the patient reported
by Yue and colleagues. At this point, we can only hypothesize
that EXOC4 haploinsufficiency can result in neurotransmis-
sion and synaptic impairment, and thus contribute to ID in
these patients. However, we cannot disregard that the dele-
tions present in patients 1, 2, 3, and 4 encompass other inter-
esting genes.

One of those is the CNOT4 (CCR4-NOT transcription
factor complex, subunit 4) gene which encodes a protein that
belongs to the conserved Ccr4-Not complex, involved in bio-
logical processes such as transcription regulation, mRNA deg-
radation, histone methylation, and DNA repair [37–39]. The
disruption of the proper methylation state of several genes has
been shown to be associated with several neurodevelopmental
disorders (see [40] for revision). In yeast, the CNOT4 homo-
log Not4 functions as an E3 ubiquitin ligase and controls the
level of Jhd2, the yeast ortholog of JARID1C [41]. This is
interesting since mutations in JARID1C (lysine-specific
demethylase 5C) were reported in patients with X-linked ID,
revealing that the correct expression of this protein is essential
for correct neuronal function [42–44]. Mersman and col-
leagues demonstrated that in the yeast, JARID1C homolog
protein (Jhd2) levels are also regulated by CNOT4 via a
polyubiquitin-mediated degradation process [41]. More re-
cently, Not4 was also described to be involved in the regula-
tion of JAK/STAT pathway-dependent gene expression, an
important pathway involved in organogenesis and immune
and stress response in Drosophila [39]. The International
Mouse Phenotyping Consortium [45] reports that mice carry-
ing a homozygous intragenic deletion in Cnot4 present pre-
weaning lethality (with complete penetrance), while the het-
erozygous mice have an abnormal caudal vertebrae morphol-
ogy, hematopoiesis, and immune system defects [46]. No
mention is made to central nervous system (CNS) or cognitive

deficits, or craniofacial features in these mice. However, the
literature reports its E3 ubiquitin ligase activity (UPS function
being a common theme in neurodevelopmental genetics) and
the functional connection to other known ID-causative genes
further reinforces the possible contribution of CNOT4 for the
phenotype in patients 1, 2, 3, and 4.

Besides the analysis of the candidate genes in the 7q33
affected region, it is also important to take into account the
patients described in DECIPHER database [19], with dele-
tions and duplications that partially overlap the 7q33 affected
region, summarized in Tables 4 and 5. Regarding the dele-
tions, there are two patients (DECIPHER 280233 and
331287) with small inherited deletions affecting only the
EXOC4 gene. Even though for patient 331287 the submitters
classified it as likely pathogenic, the phenotypic description of
the transmitting progenitor is not provided. Additionally, we
became aware of the existence of at least two more patients
(unrelated, one with speech delay and the other with ID and
hypotonia) carrying small deletions affecting only EXOC4
gene that are inherited from the presumably healthy parents
(personal communication by Audrey Briand-Suleau, Cochin
Hospital, Paris, France). Concerning the duplications, there
are two DECIPHER patients (255520 and 251768) carrying
duplications affecting EXOC4, inherited from normal parents.
As mentioned before, in these cases, it is important to deter-
mine if the duplicated region is located in tandem or not, in
order to fully understand the impact of the duplication in the
expression of the contained genes. For this reason, the
inherited duplications in DECIPHER cases 255520 and
251768 must be interpreted with caution. In the literature,
there are few reports of duplication affecting the 7q33
cytoband [2, 13]. Although their size is significantly larger
than that of the duplication in patients 5, 6, and 7, the patients
with duplications in this region reported by Malmgren and
colleagues appear to have a lighter phenotype than those with
the corresponding deletion. As for the report of Bartsch and
colleagues, both reported patients have a very severe presen-
tation, which might be due to the duplicated region being very
large, encompassing the entire genomic region from 7q33
until the telomere. The difference in size makes the cases
reported in these two publications very difficult to compare
with patients 5, 6, and 7.

In the Database of Genomic Variants (DGVs), there are no
deletions as large as the one present in patient 4. As for the
duplicated region, there are no similar duplications in DGV.
There are three small deletions in this region (affecting
AGBL3, CALD1, and TMEM140 genes); however, the pres-
ence of these deletions should be interpreted with care, as
many of these large studies of control populations might have
false calls and/or affected individuals as controls and they
cannot be the basis of exclusion of a candidate alteration,
especially in the light of other genetic and functional evidence
supporting its relevance.
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Nevertheless, these six cases raise doubts about the
straightforward contribution of EXOC4 for the NDD pheno-
type, leaving AGBL3, CNOT4, andCALD1 as the more prom-
ising candidates.

In summary, this work presents seven patients with inter-
stitial 7q33 CNVs and suggests that EXOC4, CNOT4,
AGBL3, and CALD1 genes are likely contributing for ID and
a behavioral phenotype, characterized by aggressiveness and
disinhibition. CNVs could impact the phenotype observed in
these patients not only by means of haploinsufficiency but
also due to the formation of chimeric genes, as the one ob-
served in the patients with the duplication. Chimeras may
disrupt critical brain processes, including neurogenesis, neu-
ronal differentiation, and synapse formation, supporting the
idea that chimeric genes play a role in the illness, at least in
a small number of affected individuals, as recent publications
have illustrated [22, 47]. Further studies need to be performed
in order to better understand the contribution of each gene
within this region to the phenotype.
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