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Di-cobalt phosphide (Co2P) has been conformally and continuously deposited on the surface of 

silicon nanowire (SiNW) arrays via a simple and cost-effective approach, which offers dual 

functions as both a passivation layer to protect silicon from corrosion and a catalyst layer 

promoting the hydrogen evolution reaction. The as-fabricated SiNW@Co2P core/shell 

photocathode shows excellent photoelectrocatalytic hydrogen evolution performance. 
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Abstract 

p-Silicon nanowire (SiNW) arrays have been extensively investigated in recent years as promising 

photocathodes for solar-driven hydrogen evolution. However, it remains challenging to fabricate 

SiNW photocathodes having both high photoelectrocatalytic activity and long-term operational 

stability through a simple and affordable approach. Herein, we report conformal and continuous 

deposition of a di-cobalt phosphide (Co2P) layer on lithography-patterned highly-ordered SiNW 

arrays via a cost-effective drop-casting method followed by a low-temperature phosphorization 

treatment. The as-deposited Co2P layer consists of crystalline nanoparticles and has an intimate 

contact with silicon nanowires, forming a well-defined SiNW@Co2P core/shell nanostructure. The 

conformal and continuous Co2P layer endows dual functions: on the one hand, it serves as a highly-

efficient catalyst capable of substantially improving the photoelectrocatalytic activity towards the 

hydrogen evolution reaction (HER); on the other hand, it can effectively passivate SiNWs to 

protect them from photo-oxidation, thus prolonging the lifetime of the electrode. As a consequence, 

when used for solar-driven hydrogen evolution, the SiNW@Co2P photocathode with an optimized 

Co2P layer thickness exhibits a high photocurrent density of -21.9 mA cm-2 and excellent 

operational stability of up to 20 hours, outperforming many nanostructured silicon photocathodes 

reported in the literature. The combination of passivation and catalytic functions in a single 

continuous layer represents a promising strategy for designing high-performance semiconductor 

photoelectrodes for use in solar-driven water splitting, which may simplify the fabrication 

procedures and potentially reduce the production cost.    

Keywords:  

solar-driven hydrogen evolution, silicon nanowire, cobalt phosphide, photoelectrochemical water 

splitting, drop-casting  
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1. Introduction 

The ever-growing global population has raised huge demand for energy. In order to avoid the 

depletion of non-renewable fossil fuels and to alleviate the serious environmental pollution 

associated with the consumption of fossil fuels, a consensus has been reached that renewable 

energies should be deployed on a large scale and steadily replace fossil fuels until they dominate 

the global energy supply [1]. Converting solar energy into storable and clean chemical fuels such 

as hydrogen (H2) through photoelectrochemical (PEC) water splitting represents a promising and 

sustainable approach to solar energy utilization and storage, and has re-gained considerable 

research interest in recent years [2-5]. To make the PEC-derived H2 economically competitive and 

affordable, low-cost, earth-abundant yet highly-efficient semiconductors and electrocatalysts must 

be used. To this end, silicon (Si) stands out among many other semiconductor materials because it 

is the second most abundant element in the crust and inexpensive in price; it has a band gap (1.1 

eV) allowing for light absorption over a wide window of the solar spectrum, and its conduction 

band edge is positioned negatively relative to the proton reduction potential, which is the right 

position for charge transfer when driving the hydrogen evolution reaction (HER) [6, 7]; moreover, 

the processing techniques of Si are well established and can be readily used in photoelectrode 

development. In terms of electrocatalysts, platinum (Pt) has been the state-of-the-art for the HER. 

However, the prohibitive cost and scarcity of Pt are the major limiting factors for large-scale 

applications of this efficient catalyst. In this context, many research works have recently focused 

on non-precious transition metal based HER catalysts including chalcogenides [8-15], phosphides 

[16-24], carbides [25-27], borides [28, 29] and nitrides [30], and HER performance favorably 

comparable to that of Pt was already reported. 
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In the last few years, unremitting efforts have been made to improve the PEC performance 

of Si based photocathodes by either nanostructuring Si or coupling efficient HER catalysts with Si 

or the combination of both strategies [8, 31-36]. However, in many cases the catalysts only sparsely 

cover the surface of Si micro-/nano-structured photoelectrodes [18, 19, 37-40], and the Si exposed 

to aqueous electrolyte will get oxidized over time, eventually leading to device failure. This has 

posed a great challenge for practical use of Si-based photoelectrodes in solar-driven H2 evolution. 

To overcome this problem, a chemically inert passivation layer (e.g. TiO2) was introduced to 

prevent the formation of a silicon oxide insulating layer on Si, followed by coupling of HER 

catalysts on the deposited passivation layer [31, 37, 41-43]. This Si/passivation layer/catalyst 

configuration has been demonstrated to be able to substantially improve the lifetime of Si-based 

photoelectrodes, but nevertheless the photocurrent generated will in many cases be compromised 

due to the loss of electrons when tunneling across the passivation layer [44].   

Herein, we report conformal and continuous deposition of a di-cobalt phosphide (Co2P) 

layer on highly-ordered Si nanowire (SiNW) arrays using a simple and cost-effective drop-casting 

method, followed by a post-phosphorization treatment. This single Co2P layer affords dual 

functions: on the one hand, it can efficiently catalyze the HER given its high electrocatalytic 

activity that has been extensively demonstrated recently [18, 20, 23, 45, 46]; on the other hand, it 

serves as an effective passivation layer protecting SiNWs from photo-oxidation over long-term 

operation. The as-fabricated SiNW@Co2P core/shell photocathodes exhibit a high photocurrent 

density of -21.9 mA cm-2 at 0 V vs reversible hydrogen electrode (RHE) in 0.5 M H2SO4, and can 

sustain under PEC operation conditions for at least 20 h without obvious degradation.   

 

2. Results and Discussion 
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The SiNWs were fabricated by standard e-beam lithography and subsequent deep reactive 

ion etching (DRIE) processes, as described in Experimental Section. The as-fabricated SiNWs 

have a wavy side wall (Figure 2a), which resulted from the alternate passivation and etching steps 

during the DRIE process. Similar structural feature was also observed previously in Si microwires 

(SiMWs) fabricated by the top-down RIE process [8, 47]. To incorporate the Co2P layer, a mixed 

solution of cobalt acetate and ethanol with different concentrations of Co2+ ranging from 2.25 to 

62 mM was drop-cast on the surface of SiNW arrays, and was dried at ambient conditions. A 

phosphorization treatment was then performed in a tube furnace using red phosphorous as the 

source of phosphorous (see Experimental Section). All steps involved in the process of fabrication 

are schematically illustrated in Figure 1. 

Figure 2b-2d show typical scanning electron microscopy (SEM) images of the resulting 

SiNW@Co2P photoelectrodes prepared with Co2+ concentrations of 9, 18, and 36 mM (denoted as 

SiNW@Co2P-X, X = 9, 18 and 36). No discernable difference is found between SiNW@Co2P-X 

(X 9 mM) and the as-fabricated SiNW array, in appearance (Figure S1). However, as the Co2+ 

precursor concentration increases to 18 and 36 mM, the diameter of NWs becomes larger and some 

irregular particles are found to coat on the side walls of NWs (Figure 2c and 2d). Moreover, it is 

observed that the parent Si substrate is also coated with a thick layer of Co2P. In appearance, 

SiNW@Co2P-18 and SiNW@Co2P-36 are darker than SiNW@Co2P-X (X 9 mM). 

To gain further insight into the microstructure of the deposited Co2P layer, transmission 

electron microscopy (TEM) observations were carried out. Figure 3a shows a montage TEM 

image of a single SiNW@Co2P-9, where a layer of Co2P is seen to continuously and conformally 

coat on the entire surface of the NW, forming a core/shell nanostructure. It is noted that the 

thickness of the Co2P layer varies from top to bottom of the NW. This non-uniformity is believed 
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to result from the uneven distribution of the precursor solution during the drop-casting process, 

driven by the gravimetric effect. The non-uniform layer thickness can be resolved more clearly in 

the signal map of Co2P along the NW, as shown in Figure 3b, where Co2P is found to be more 

predominant around the root of the NW than on the top (see also energy-dispersive X-ray spectra, 

i.e. EDS in Figure S2). A closer look at the NW surface shows that the coating layer consists of 

many nanoparticles (Figure 3c). These nanoparticles (NPs) have typical diameters ranging from 

3 to 6 nm and densely distribute on the surface of the NW. Selected-area electron diffraction 

(SAED) analysis of the NPs shows a well-defined ring pattern, which has been indexed as the 

orthorhombic phase of Co2P (JCPDS No. 00-032-0306). High-resolution TEM (HRTEM) 

examination further confirmed the high degree of crystallinity of individual NPs. As shown in 

Figure 3e, the measured inter-planar distance of the NP is about 0.33 nm, corresponding to the 

lattice spacing of the (020) crystal planes of orthorhombic Co2P.   

To further investigate the distribution of Co2P on the surface of SiNWs, elemental mapping 

was performed in high-angle annular dark-field scanning transmission electron microscopy 

(HAADF-STEM) mode. Figure 4a displays a representative HAADF-STEM image of 

SiNW@Co2P where the particulate feature of Co2P can be observed more clearly. As revealed by 

the elemental maps in Figures 4b-4e, both Co and P are continuously and conformally deposited 

on the surface of the SiNW, resulting in a core/shell structure, which agrees well with the bright-

field TEM observation (Figure 3a). It is worth mentioning that conformal and continuous coatings 

of Co2P were also observed for the photocathode of SiNW@Co2P-4.5 (Figure S3), indicating that 

solution-based drop-casting is an effective way of coating nanostructured photoelectrodes with a 

thin conformal passivation/catalyst layer. 
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The PEC performance of SiNW@Co2P photocathodes was comprehensively assessed in 

three-electrode configuration in 0.5 M H2SO4 (pH = 0.3) under 100 mW cm-2 illumination using 

linear scan voltammetry (LSV), Mott-Schottky (M-S) analysis, electrochemical impedance 

spectroscopy (EIS) and chronoamperometry (CA). For comparison, Pt NP decorated SiNW arrays 

(i.e. SiNW@Pt) were also fabricated and tested under the same conditions (see Experimental 

section for details). Figure 5a shows the LSV curves of bare SiNW, SiNW@Pt, and SiNW@Co2P-

X (X = 2.25, 4.5 and 9 mM) photocathodes on the reversible hydrogen electrode (RHE) scale. LSV 

curves of more SiNW@Co2P-X samples are presented in Figure S4. The bare SiNW photocathode 

only generates negligible photocurrent at 0 V vs RHE (ca. -0.1 mA cm-2), and shows an onset 

potential (Uonset, defined as the potential at which the cathodic photocurrent density is -0.5 mA cm-

2) of -0.14 V vs RHE. Upon coupling with the Co2P catalyst, the onset potentials of SiNW@Co2P-

X photocathodes are significantly shifted towards the positive direction, reaching +0.24, +0.25 and 

+0.20 V vs RHE for SiNW@Co2P-2.25, SiNW@Co2P-4.5 and SiNW@Co2P-9, respectively. 

Positive shift of the onset potential was repetitively reported previously when Si-based 

photocathodes were coupled with HER catalysts, which can be ascribed to the suppression of the 

recombination of photo-generated charge carriers [31]. Besides, the photocurrent density at 0 V vs 

RHE (J0) of SiNW@Co2P-X photocathodes is substantially enhanced, amounting to -7.4, -21.9 

and -12.2 mA cm-2 for SiNW@Co2P-2.25, SiNW@Co2P-4.5 and SiNW@Co2P-9, respectively. 

Among all samples investigated, SiNW@Co2P-4.5 is the best-performing one: it is not only better 

than the SiNW@Pt control sample, which has Uonset of +0.21 V vs RHE and J0 of -14.4 mA cm-2, 

but also outperforms many Si-based photocathodes reported previously in the literature (Table S1) 

such as MoOxSy decorated SiMW arrays (Uonset = +0.24 V and J0 = -9.83 mA cm-2) [8], reduced 

graphene oxide-decorated SiNWs (Uonset = +0.206 V and J0 = -3 mA cm-2) [48], MoS2-wrapped 
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SiNWs (Uonset = +0.3 V and J0 = -15 mA cm-2) [12], W2C modified SiNWs (Uonset = +0.2 V and J0 

= -16 mA cm-2) [27], and SiMW@cobalt dichalcogenide (Uonset = +0.29 V and J 0 = -3.22 mA cm-

2) [14]. SiNW@Co2P photocathodes prepared with precursor concentrations higher than 9 mM 

were also tested (Figure S4), J0 and the limiting photocurrent densities of these photocathodes are 

found to decrease as the precursor concentration increases. This might result from the increase in 

series resistance due to carrier depletion resulting from the reduced light absorption by the SiNW 

electrodes as a consequence of the increased thickness of the Co2P layer.  

Capacitance-voltage measurements were performed in the dark in 0.5 M H2SO4 at a 

frequency of 10 kHz to further investigate the flat band potential (Ufb) of the photocathodes. Figure 

5b shows the M-S plots of the bare SiNW arrays and the best-performing SiNW@Co2P-4.5 

electrodes. Both SiNW and SiNW@Co2P-4.5 show a negative M-S slope, characteristic of p-type 

semiconductors. Ufb can be derived from the following M-S equation [48]:  

1

𝐶2
= 2

𝑈𝑎−𝑈𝑓𝑏−
𝑘𝑇

𝑞

𝑞𝑁𝑑𝑠0𝐴
2

                                                  (1) 

where C is the space charge capacity, Ua stands for the applied potential, k represents the 

Boltzmann constant, T is the absolute temperature, q the electron charge, Nd the donor density, s 

the dielectric constant of materials, 0 the electric permittivity of vacuum, and A the surface area. 

The band bending (Ub) of semiconductor photoelectrodes can be determined by the applied 

potential and Ufb through the following formula [48, 49]: 

 𝑈𝑏 = 𝑈𝑎 − 𝑈𝑓𝑏                                                    (2) 

Since Ua is negative under the cathodic reaction for proton reduction, a large Ufb will lead to a 

large absolute value of Ub, namely, a photocathode having a more positive Ufb will exhibit a larger 

band bending. As a result, the separation of photo-generated electrons and holes will proceed faster 

at the electrode/electrolyte interface, and meanwhile the surface charge trapping and 
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recombination can be largely suppressed. According to Figure 5b, Ufb of SiNW and SiNW@Co2P-

4.5 is +0.23 and +0.33 V vs RHE, respectively, suggesting that a larger band bending can be 

achieved for the SiNW@Co2P-4.5 photocathode. This reasonably explains why remarkably large 

Uonset and J0 were obtained for the SiNW@Co2P photocathodes. 

 The charge transfer kinetics at the interface between the electrolyte and bare SiNW or 

SiNW@Co2P-4.5 was further studied at +0.15 V vs RHE using EIS under 100 mW cm-2 

illumination. Figure 5c shows the EIS Nyquist plots of the SiNW and SiNW@Co2P-4.5 

photocathodes. The Nyquist plots are fitted with the equivalent circuit models shown in the inset 

of Figure 5c, where Rs represents the equivalent series resistance, Wd is the Warburg resistance 

arising from diffusion in NW arrays, Q1 and Q2 are the constant phase elements, R1 stands for the 

charge transport resistance at the interface between SiNW and Co2P layer, and Rct is the resistance 

of charge transfer at the electrode/electrolyte interface. As revealed in the zoomed view of Nyquist 

plots in Figure 5c inset, after coupling with the Co2P layer, Rs of the SiNW@Co2P-4.5 

photocathode is increased as a consequence of the introduction of the Co2P layer. Nevertheless, 

Rct of the SiNW@Co2P-4.5 electrode is significantly reduced, only amounting to 10.3 , ca. 150 

times smaller than that of the bare SiNW photocathode (Rct = 1583 , Table S2). This indicates 

that the deposited Co2P catalyst layer has substantially expedited the charge transfer kinetics of 

SiNWs during solar-driven hydrogen evolution, which is consistent with the above M-S analysis.  

 Long-term stability under PEC operation conditions is of essential importance for practical 

deployment of PEC devices for solar-driven hydrogen production. Without appropriate 

passivation, Si-based photocathodes will be photo-oxidized in short period of time even in a strong 

acidic (i.e. reductant) solution, leading to the failure of devices [31, 44]. Presently, the most 

commonly used passivation strategy is to coat Si-based photoelectrodes with a continuous layer of 
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wide-band-gap semiconductor (e.g. TiO2, SiO2) that not only allows for the penetration of incident 

light but also has excellent chemical stability and enables tunneling for the transport of photo-

generated charge carriers [37, 50, 51]. Recently, some researchers demonstrated that a continuous 

layer of HER catalysts having good enough electrochemical stability can effectively protect Si 

from oxidation [8, 20], besides helping to promote the HER, thus offering dual functions. Co2P 

has been widely reported to have good electrochemical stability when used as an HER catalyst 

[46], and is therefore a good candidate of choice. Figure 5d shows the chronoamperometric curves 

of SiNW@Co2P-4.5 mM and SiNW@Pt photocathodes recorded at 0 V vs RHE under 100 mW 

cm-2 illumination in 0.5 H2SO4. The photocurrent density of the SiNW@Co2P photocathode slowly 

decreases in the beginning 3 hours and then gets stabilized at 17.9 mA cm-2 up to 20 hours without 

obvious degradation, exhibiting superior operational stability. The H2 bubbles were evolving 

during the whole long-term stability test, as shown in the digital photograph in Figure 5d inset 

(see also Movie S1). In stark contrast, the photocurrent density of the SiNW@Pt photocathode 

diminishes quickly from the initial -14.2 mA cm-2 to -9.2 mA cm-2 within only 1 hour. In fact, Pt, 

despite its high activity for HER, has been proven to have poor electrochemical stability in harsh 

acidic or alkaline solutions due to the high mobility of Pt atoms under electrochemical conditions 

[52]. Figure 5d unambiguously demonstrates that the deposited conformal and continuous layer 

of Co2P over SiNWs can indeed serve as a passivation layer, substantially improving the lifetime 

of photoelectrodes.  

 

3. Conclusions 

We have fabricated SiNW@Co2P core/shell nanostructured photocathodes based on simple 

and cost-effective drop-casting of precursor solution on lithography-patterned Si nanowire arrays, 
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followed by a post-phosphorization treatment at an elevated temperature. The deposited Co2P is 

conformal and continuous, and can serve both as a passivation layer to protect Si from photo-

oxidation and as a catalyst layer to promote the hydrogen evolution reaction, showing favorable 

bi-functionality. Upon optimizing the drop-casting conditions, the best-performing SiNW@Co2P 

photocathode exhibits a hydrogen evolution onset potential of +0.25 V vs RHE, a photocurrent 

density as high as -21.9 mA cm-2 at 0 V vs RHE and an excellent catalytic stability of 20 hours 

under photoelectrochemical hydrogen evolution conditions, outperforming many nanostructured 

Si photocathodes reported in the literature. Combining passivation and catalytic functions in a 

single continuous layer represents a promising strategy for designing high-performance 

photoelectrodes, which may simplify the fabrication procedures and potentially reduce the 

production cost. It can be expected that the photoelectrochemical hydrogen evolution performance 

would be further improved if Si nanowire electrodes with buried p-n junctions are used and 

coupled with a continuous layer of catalytically active and electrochemically stable HER catalysts.  

 

4. Experimental Section 

4.1 Fabrication of highly-ordered SiNW arrays:  

The SiNW arrays were fabricated using e-beam lithography followed by deep reactive ion 

etching of Si. Briefly, a 200 nm thick AlCuSi film was sputter-coated (Singulus Timaris FTM) on 

the unpolished side of a p-type Si (100) wafer (Boron doped, 130  cm, LG Silitron). A layer of 

300 nm SiO2 was then deposited on the polished surface of the Si wafer by plasma-enhanced 

chemical vapor deposition (PECVD, STPS MPX CVD). Subsequently, a layer of negative 

photoresist (ARN 7520, 200 nm) was spin-coated over the deposited SiO2. Well-ordered arrays (7 

mm × 7 mm) with a square pillar size of 150 nm and a pitch of 225 nm (center to center spacing) 
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were patterned by e-beam lithography (Vistec EBPG 5200) over the whole wafer. The pattern was 

developed and transferred into the underlying SiO2 layer by reactive ion etching (RIE, SPTS APS 

ICP) to form a SiO2 mesh mask for the subsequent deep RIE process (DRIE, SPTS Pegasus IDP) 

to obtain SiNW arrays of 1 µm length. A cleaning process was then followed using oxygen plasma 

(PVA TEPLA Plasma Asher) for 15 min. Afterwards, the SiO2 layer on the top of the SiNWs was 

removed using HF vapor etcher (SPTS uEtch System). The Si wafer was diced into 12 mm × 20 

mm pieces using a dicing saw (DISCO DAD 3350), with the patterned area (7 mm × 7 mm) in the 

center of each piece. The ohmic contact between AlCuSi and Si wafer was made by thermally 

annealing the as-diced pieces at 400 oC in high-purity nitrogen (N2, 99.999%) for 1 min at a 

ramping rate of 2 oC min-1. 

4.2 Fabrication of SiNW@Co2P and SiNW@Pt:  

The drop-casting technique was used to deposit Co precursors onto SiNWs. The drop-

casting solution contained varying concentrations of (CH3COO)2Co  4H2O (Sigma-Aldrich) in 

ethanol (Sigma-Aldrich). The solution was stirred for 15  20 min until a clear pink solution was 

obtained. The solution was then drop-cast over the patterned SiNW electrode using micro-pipette 

(20 μL), and the Si photoelectrode was subsequently left in fume hood for slow evaporation of 

ethanol. The process of phosphorization was carried out in a tube furnace using red phosphorus 

(P, Sigma Aldrich) as the phosphorus source. The Si substrate was placed in a ceramic boat with 

0.5 g of red P placed at the upstream side. The furnace was ramped to 500 oC at a rate of 10 oC 

min-1, kept at this temperature for 2 h, and then cooled down naturally to room temperature. A 

constant N2 flow of 800 sccm passed through the work tube in the whole process. Pt decorated 

SiNW photocathodes (SiNW@Pt) were fabricated employing electroless deposition of Pt on 
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SiNWs under calibrated 1 sun conditions in a mixture of 0.001 M K2PtCl6 in 1 : 50 (H2O : HF) of 

HF (48% HF Sigma Aldrich) solution for 1 min. 

4.3 Characterization:  

The morphology and microstructure of the samples were examined by scanning electron 

microscopy (SEM, FEI Quanta FEG 650) and aberration-corrected transmission electron 

microscopy (FEI Titan ChemiSTEM operating at 200 keV). For the TEM observations, the wires 

were scratched off the Si substrate and directly dispersed on a lacey carbon copper grid using water 

as a medium. The grid was then dried at 80°C in a vacuum oven. 

4.4 Photoelectrochemical tests:  

The PEC performance of the SiNW@Co2P electrodes was evaluated in a three-electrode 

configuration with a graphite rod as the counter electrode and a saturated calomel electrode (SCE) 

as the reference. The electrolyte consisted of 0.5 M H2SO4 (Sigma-Aldrich) having a pH value of 

0.3. The PEC tests were carried out in a jacketed quartz cell having a round flat window of quartz. 

A calibrated 1 sun solar simulator with a built-in AM 1.5 filter (Oriel® LCS-100TM) was used as 

the light source. Linear scan voltammetry (LSV), electrochemical impedance spectroscopy (EIS), 

Mott-Schottky (M-S) analysis and chronoamperometry were performed using a Zennium 

electrochemical workstation (Zahner). The EIS measurements were conducted in the frequency 

range of 10 mHz – 200 kHz at a fixed potential of +0.15 V vs RHE under nominal illumination of 

100 mW cm-2, with an AC voltage amplitude of 10 mV. The sample temperature was maintained 

at 23 oC by circulating water through the water jacket of the PEC cell during the test using a 

refrigerated chiller (HAAKE Phoenix II, Thermo Scientific). Unless otherwise stated, all potentials 

are reported versus reversible hydrogen electrode (RHE) by converting the potentials measured 

versus SCE through the following equation: 

U(RHE) = U(SCE) + 0.241 + 0.059  pH                              (3) 
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Figure Captions 

Figure 1. Schematic illustration of the fabrication of SiNW@Co2P photocathodes. 

 

Figure 2. SEM images showing the morphology of (a) as-fabricated SiNW arrays and 

SiNW@Co2P photocathodes prepared with cobalt precursor concentrations of (b) 9 mM, (c) 18 

mM and (d) 36 mM. 

 

Figure 3. (a) Montage TEM image showing conformal and continuous deposition of the Co2P 

layer on SiNW. (b) EDS signal map showing the distribution of Co2P along the SiNW. The 

intensity of Co2P is more predominant around the root than that on the top. (c, d) High-

magnification TEM images of SiNW@Co2P. Inset of (d): SAED pattern taken over the Co2P 

nanoparticles. (e) HRTEM image. 

 

Figure 4. (a) HAADF-STEM image of an individual SiNW@Co2P and the elemental maps of (b) 

Si, (c) Co, (d) P and (e) their overlay. 

 

Figure 5. (a) Linear scan voltammograms of bare SiNW, SiNW@Pt and SiNW@Co2P 

photocathodes recorded under 100 mW cm-2 illumination. (b) Mott-Schottky plots of bare SiNW 

and SiNW@Co2P-4.5 photocathodes measured in the dark at 10 kHz. (c) Nyquist plots of the bare 

SiNW and SiNW@Co2P-4.5 photocathodes recorded at +0.15 V vs RHE under 100 mW cm-2 

illumination. Insets: zoomed view in the high frequency region (left) and equivalent circuit models 

(right). (d) Long-term stability tests conducted at 0 V vs RHE for SiNW@Pt and SiNW@Co2P-
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4.5 photocathodes. All the measurements were carried out in 0.5 M H2SO4 solution at room 

temperature.   
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Figure 2. Thalluri et al. 
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