Acetylation Genotype and the Genetic Susceptibility to Prostate Cancer in a Southern European Population

Sandra Costa,1,2* Daniela Pinto,2 Antonio Morais,3 André Vasconcelos,2 Jorge Oliveira,3 Carlos Lopes,2,4 and Rui Medeiros2,4

1ICVS, Life and Health Sciences Research Institute, Health Science School, Minho University, Braga, Portugal
2Molecular Oncology/Department of Pathology, Instituto Português de Oncologia - Porto, Porto, Portugal
3Urology Department, Instituto Português de Oncologia - Porto, Porto, Portugal
4ICBAS, Abel Salazar Institute for the Biomedical Sciences, Porto, Portugal

BACKGROUND. Epidemiologic studies have suggested that environmental factors and diet are important risk factors in the pathogenesis of prostate cancer. The N-acetyltransferases (NAT) are important enzymes in activation and inactivation of various carcinogens, including those found in well-cooked meat and cigarette smoke.

METHODS. We analyzed DNA samples from 146 prostate cancer patients and 174 healthy men. We used PCR–RFLP method to analyze NAT1 and NAT2 polymorphisms.

RESULTS. We did not find statistically significant differences in NAT1 genotypes frequencies between prostate cancer patients and control group. We observed an association of the slow acetylator genotype, NAT2*6/NAT2*6 with prostate cancer protection (P = 0.017; OR = 0.31, 95% CI 0.11–0.84). Multivariate logistic regression analysis confirmed this association (P = 0.030; OR = 0.32, 95% CI 0.12–0.89).

KEY WORDS: NAT; polymorphisms; prostate cancer; acetylation; heterocyclic aromatic amines

INTRODUCTION

Prostate cancer is one of the most common malignancies in Western countries, being the second in cancer incidence and the third in cancer mortality among men in Portugal [1]. Several factors are associated with an increased risk for prostate cancer. Epidemiologic studies have suggested that environmental factors, including ultra-violet radiation [2], smoking [3] and diet, including meat and fat intake [4], are involved in the development of prostate cancer. Many chemical and dietary carcinogens, especially heterocyclic amines derived from well-cooked meat, seem to be involved in the pathogenesis of prostate cancer [5].

The N-acetyltransferase (NAT) activity enrolls an important step in both activation and inactivation of numerous carcinogens, found for example in well-cooked meat and cigarette smoke, respectively [6]. Therefore, the acetylator status may modify individual response to various chemicals and thus individual cancer susceptibility.

NATs are encoded by two genes, NAT1 and NAT2, located in chromosome 8p 21.3-23.1 [7]. Both genes are highly polymorphic. To date, 29 NAT2 alleles have been identified [8]. Individuals who have two or more NAT2 polymorphisms have a slow acetylator phenotype, individuals heterozygous for NAT2 polymorphisms have a rapid/intermediate acetylator phenotype, and those who lacked NAT2 polymorphisms have a rapid acetylator phenotype. Among all the NAT2 allelic

*Correspondence to: Sandra Costa, ICVS—Health Sciences School, Minho University, Campus Gualtar, 4710-057 Braga, Portugal.
E-mail: sandracostas@portugalmail.com
Received 23 July 2004; Accepted 12 November 2004
DOI 10.1002/pros.20241
Published online 16 February 2005 in Wiley InterScience (www.interscience.wiley.com).
variants, two (NAT2*5 and NAT2*6) were shown to account for most of slow NAT2 acetylator genotypes in Caucasian populations [9]. Previous studies have found associations between NAT2 polymorphisms and cancer risk [10–15].

Polymorphisms in NAT1 yield over 25 variant alleles [8]. A common NAT1 allelic variant (NAT1*10) is associated with increased catalytic activity (rapid acetylator phenotype) [16]. This allelic variant has been associated with increased risk to colorectal cancer, compared with NAT1*4 homozygotes [17].

It has been reported that human prostate epithelial cells metabolize potential carcinogens [17]. Furthermore, Wang et al. demonstrated the expression of NAT1 and NAT2 transcripts in prostate cells [5]. Therefore, individual susceptibility to prostate cancer may be modified by genetic polymorphisms in NAT1 and NAT2 enzymes. The aim of this study was to assess the association between NAT1 and NAT2 polymorphisms and prostate cancer in a Portuguese population.

MATERIALS AND METHODS

Patients

Consecutive patients (n = 146) with histologically confirmed prostate cancer (median age 66 years) were enrolled in this study between 1999 and 2000 from the Department of Urology of the Portuguese Institute of Oncology, Porto. Clinical characterization including Gleason grade, disease status, age at diagnosis, and prostate specific antigen (PSA) was obtained from medical records. The control group consisted of 174 healthy individuals with no evidence of neoplastic disease and a median age of 64 years. All participants were Caucasian living in Porto district.

Approximately, 8 ml of venous blood was obtained with a standard venipuncture technique using EDTA tubes. DNA was extracted from the white blood cell fraction from each study subject using a salting-out protocol [18].

Genotyping of NAT1 and NAT2 Polymorphisms

For NAT1 genotype analysis we used a PCR–RFLP method already described [19]. PCR conditions was performed as follows: 100 ng of genomic DNA was added to 0.25 μM of each primer, 0.2 mM of each dNTP, 1.5 mM MgCl2, 1 × Taq buffer and 1 U of Taq DNA-polymerase to a final volume of 50 μl. Thirty five cycles were performed, consisting of 98°C (30 sec) for denaturation, 62°C (1 min) for primer annealing, and 72°C (1 min) for primer extension. After amplification, 15 μl of PCR was digested with 20 U of the Kpn I and Taq I restriction enzymes (positions 480 and 590) specific for the two different NAT2 allelic variants to be screened (NAT2*5 and NAT2*6, respectively). Restriction products were submitted to electrophoresis in 2% agarose gels. After digestion with Kpn I, the 481-T (NAT2*4) and 481-C (NAT2*4) alleles were visualized as fragments of 290 bp and 170 plus 120 bp, respectively (Fig. 2A). The 590-A (NAT2*6) and 590-G (NAT2*4) alleles were visualized as fragments of 290 and 230 plus 60 bp, respectively, after digestion with Taq I (Fig. 2B).

Statistical Analysis

Analysis of data was performed using the program SPSS for Windows (version 11.0). Chi-square analysis was used to compare categorical variables. A 5% level significance was used in the analysis. The odds ratio...
(OR) and its 95% confidence interval (CI) was calculated as a measure of the association between \(\text{NAT1} \) and \(\text{NAT2} \) genotypes and prostate cancer risk. Multivariate logistic regression analysis was used to calculate the adjusted OR and 95% CI for the influence of \(\text{NAT} \) genotypes in the risk of prostate cancer, with adjustment for age. We stratified the analysis according to Gleason grade, disease status, age at diagnosis (median age), and risk of disease progression (PSA higher than 10 mg/ml).

RESULTS

The frequencies of \(\text{NAT1} \) genotypes in prostate cancer cases and controls are shown in Table I. The most common genotype was \(\text{NAT1}^*4/\text{NAT1}^*4 \) both in cases (73.6%) and controls (75.2%). The \(\text{NAT1}^*11 \) allele was rare in controls (0.7%) and was not found in the case groups. The frequency of \(\text{NAT1}^*10 \) genotypes was similar between cases and controls. There were not statistically significant differences in \(\text{NAT1} \) genotypes between prostate cancer patients and healthy individuals.

The frequency of \(\text{NAT2} \) genotypes in cases and controls is shown in Table II. A statistically significant difference was observed in the frequency of a \(\text{NAT2} \) slow acetylator genotype, \(\text{NAT2}^*6/\text{NAT2}^*6 \), in prostate cancer patients (3.4%) when compared with the control group (10.3%) \((P = 0.017; \text{OR} = 0.31, 95\% \text{ CI} 0.11–0.84)\).

Fig. 2. RFLP of the PCR products of the \(\text{NAT2} \) alleles. \(\text{Kpn I restriction (A)} \) 290 bp fragment—\(\text{NAT2}^*5 \) allele; 170 plus 120 bp fragments—\(\text{NAT2}^*4 \) allele. \(\text{Taq I restriction (B)} \) 290 bp fragment—\(\text{NAT2}^*6 \) allele; 230 bp plus 60 bp fragments (not visualized)—\(\text{NAT2}^*4 \) allele. (\(M --- \text{100 bp DNA ladder (Gibco BRL)} \)).

TABLE I. \(\text{NAT1} \) Genotype Frequencies in Prostate Cancer Cases and Controls With Odds Ratio (OR)

<table>
<thead>
<tr>
<th>(\text{NAT1}) genotype</th>
<th>Cases</th>
<th>Controls</th>
<th>OR (95% CI)(^a)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{NAT1}^*4/\text{NAT1}^*4)</td>
<td>95</td>
<td>109</td>
<td>0.92 (0.53–1.58)</td>
<td>0.772</td>
</tr>
<tr>
<td>(\text{NAT1}^*4/\text{NAT1}^*10)</td>
<td>26</td>
<td>29</td>
<td>1.01 (0.55–1.82)</td>
<td>0.974</td>
</tr>
<tr>
<td>(\text{NAT1}^*10/\text{NAT1}^*11)</td>
<td>0</td>
<td>1</td>
<td>—</td>
<td>0.345</td>
</tr>
<tr>
<td>(\text{NAT1}^*10/\text{NAT1}^*10)</td>
<td>6</td>
<td>6</td>
<td>1.13 (0.35–3.59)</td>
<td>0.836</td>
</tr>
</tbody>
</table>

\(^a\)OR were calculated from the ratio of the number of genotypes in interest versus all the other genotypes.
Multivariate logistic regression analysis confirmed this association of NAT2*6/NAT2*6 genotype with prostate cancer protection ($P = 0.030$; OR $= 0.32$, 95% CI 0.12–0.89).

The association of NAT1 genotypes and clinico-pathologic features of prostate cancer cases studied is shown in Table III. No differences were found in the frequencies of NAT1 genotypes regarding median age of diagnosis, Gleason grade, disease status (advanced or localized), and PSA levels. The same results were obtained considering NAT2 genotypes (Table IV). However, NAT2*6/NAT2*6 genotype frequency was higher in prostate cancer patients with PSA levels lower than 10 mg/ml, with suggestive statistical significance ($P = 0.054$).

TABLE II. NAT2 Genotype Frequencies in Prostate Cancer Cases and Controls With OR

<table>
<thead>
<tr>
<th>NAT2 genotype</th>
<th>Cases</th>
<th></th>
<th>Controls</th>
<th></th>
<th>OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT24/NAT24</td>
<td>9</td>
<td>6.2</td>
<td>9</td>
<td>5.2</td>
<td>1.20 (0.46–3.11)</td>
<td>0.701</td>
</tr>
<tr>
<td>NAT24/NAT25</td>
<td>39</td>
<td>26.7</td>
<td>54</td>
<td>31.0</td>
<td>0.81 (0.49–1.31)</td>
<td>0.396</td>
</tr>
<tr>
<td>NAT24/NAT26</td>
<td>38</td>
<td>26.0</td>
<td>32</td>
<td>18.4</td>
<td>1.56 (0.091–2.66)</td>
<td>0.100</td>
</tr>
<tr>
<td>NAT25/NAT26</td>
<td>31</td>
<td>21.1</td>
<td>37</td>
<td>21.3</td>
<td>0.99 (0.058–1.70)</td>
<td>0.995</td>
</tr>
<tr>
<td>NAT25/NAT25</td>
<td>24</td>
<td>16.4</td>
<td>24</td>
<td>13.8</td>
<td>1.23 (0.66–2.27)</td>
<td>0.509</td>
</tr>
<tr>
<td>NAT26/NAT26</td>
<td>5</td>
<td>3.4</td>
<td>18</td>
<td>10.3</td>
<td>0.31 (0.11–0.84)</td>
<td>0.017</td>
</tr>
</tbody>
</table>

aOR was calculated from the ratio of the number of genotypes in interest versus all the other genotypes.

bAdjusted OR for age (logistic regression analysis): OR $= 0.32$, 95% CI 0.12–0.89; $P = 0.03$.

DISCUSSION

Prostate cancer appears to be dependent on the interaction between environmental and genetics factors, particularly dietary [21]. Several studies reported that diet could alter steroid hormonal profile and modify prostate cancer risk [22]. It has been proposed that heterocyclic amines and polycyclic hydrocarbons, which are produced by cooking meat at high temperature, act as carcinogens in prostate cancer carcinogenesis [5,17].

TABLE III. Association of NAT1 Genotypes With the Clinical and Pathological Features of Prostate Cancer Cases Studied

<table>
<thead>
<tr>
<th>NAT1 genotypes</th>
<th>Median age</th>
<th>Gleason grade</th>
<th>PSA levels</th>
<th>Disease status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age >66</td>
<td>Age ≤66</td>
<td>Gleason >7</td>
<td>PSA >10</td>
</tr>
<tr>
<td>n (%), P value</td>
</tr>
<tr>
<td>NAT14/NAT14</td>
<td>40 (71.4), 0.607</td>
<td>55 (75.3), 0.422</td>
<td>77 (73.3), 0.422</td>
<td>64 (72.7), 0.741</td>
</tr>
<tr>
<td>NAT14/NAT110</td>
<td>13 (23.2), 0.448</td>
<td>13 (17.8)</td>
<td>23 (21.9), 0.209</td>
<td>19 (21.6), 0.964</td>
</tr>
<tr>
<td>NAT14/NAT111</td>
<td>1 (1.8), 0.682</td>
<td>1 (1.4), 0.682</td>
<td>1 (1.0)</td>
<td>2 (2.3), 0.527</td>
</tr>
<tr>
<td>NAT110/NAT110</td>
<td>2 (3.6), 0.472</td>
<td>4 (5.5), 0.571</td>
<td>4 (3.8)</td>
<td>3 (3.4), 0.202</td>
</tr>
</tbody>
</table>
NAT enzymes are involved in the metabolism of many carcinogens, including heterocyclic amines present in cooking meat at high temperature [4,17]. Both NAT1 and NAT2 are responsible for both N-acetylation (usually deactivation) and O-acetylation (usually activation) activities of aromatic and heterocyclic amines carcinogens [23]. Another fact that should be taken in consideration is that prostate cancer has been associated with genetic alterations that include regions of deletions on different chromosomal regions, such as 8p 22-23 [24], which is the region of NAT genes [7]. Therefore, we hypothesise that NAT1 and NAT2 acetylation genotypes could be associated with susceptibility to prostate cancer.

We observed no association between NAT1 polymorphism and prostate cancer susceptibility. Controversial results have been reported regarding the role of NAT1 and NAT2 in the susceptibility to prostate cancer [10,25,26]. Previous reports presenting different results [10,27], could be explained by the geographic difference between populations, since the frequencies of NAT1 and NAT2 polymorphisms differ greatly with ethnical characteristics [8]. In our results, the NAT2 slow acetylator genotypes, NAT2*6/NAT2*6, was significantly associated with prostate cancer ($P = 0.030$; OR = 0.32, 95% CI 0.12–0.89). It is well known that this slow acetylator genotype presents a lower enzyme activity than rapid genotypes [28]. Individuals that present this genotype show a lower capacity of metabolizing carcinogens. Many N-hydroxy heterocyclic amines, carcinogens are metabolically activated to a great extent by NAT2 [6,29], and these carcinogens seem to be of potential carcinogenicity to human prostate epithelial cells [5,17]. Therefore, carriers of NAT2*6/NAT2*6 genotype have a lower capacity to activate carcinogens. This is consistent with the protective effect of NAT2*6/NAT2*6 genotype to prostate cancer that we reported in our study. Furthermore, we found that NAT2*6/NAT2*6 genotype is over-represented in the group of prostate cancer patients with PSA levels lower than 10 mg/ml in comparison with patients with PSA levels higher than 10 mg/ml. This reinforces a role for NAT2*6/NAT2*6 genotype in the prostate cancer biology.

Several reports have shown the contribution of genetic polymorphisms to the risk of prostate cancer [30–35]. Our study brings new reports that may help to clarify the function of NAT polymorphisms in prostate cancer development. Our results suggest a role of NAT2 polymorphisms in the carcinogenic pathway of prostate cancer in a population of Southern Europe. Future studies concerning the association of NAT genotypes and environmental or lifestyle factors (e.g., diet) will be important to elucidate the real meaning of NAT polymorphisms in the susceptibility to prostate cancer.

ACKNOWLEDGMENTS

The authors thank the Liga Portuguesa Contra o Cancro—Centro Regional do Norte (Portuguese

<table>
<thead>
<tr>
<th>NAT2 genotypes</th>
<th>Median age</th>
<th>Age >66 (n, %)</th>
<th>P value</th>
<th>Age ≤66 (n, %)</th>
<th>P value</th>
<th>Grade</th>
<th>Gleason >7 (n, %)</th>
<th>P value</th>
<th>Gleason ≤7 (n, %)</th>
<th>P value</th>
<th>PSA levels</th>
<th>PSA >10 (n, %)</th>
<th>P value</th>
<th>PSA ≤10 (n, %)</th>
<th>P value</th>
<th>Disease status</th>
<th>Advanced (n, %)</th>
<th>P value</th>
<th>Localized (n, %)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT24/NAT24</td>
<td></td>
<td>4 (5.6)</td>
<td>0.535</td>
<td>16 (22.5)</td>
<td>0.267</td>
<td></td>
<td>28 (24.6)</td>
<td>0.241</td>
<td>25 (24.6)</td>
<td>0.460</td>
<td>8 (33.3)</td>
<td>0.083</td>
<td>0.019</td>
<td>16 (21.9)</td>
<td>0.083</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT24/NAT25</td>
<td></td>
<td>18 (25.4)</td>
<td>0.856</td>
<td>20 (26.7)</td>
<td>0.112</td>
<td></td>
<td>31 (27.2)</td>
<td>0.935</td>
<td>31 (27.2)</td>
<td>0.791</td>
<td>8 (24.2)</td>
<td>0.083</td>
<td>0.200</td>
<td>20 (27.4)</td>
<td>0.083</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT24/NAT26</td>
<td></td>
<td>19 (26.8)</td>
<td>0.112</td>
<td>12 (16.0)</td>
<td>0.883</td>
<td></td>
<td>25 (21.9)</td>
<td>0.832</td>
<td>25 (21.9)</td>
<td>0.136</td>
<td>4 (12.1)</td>
<td>0.083</td>
<td>0.900</td>
<td>14 (19.2)</td>
<td>0.083</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT25/NAT26</td>
<td></td>
<td>12 (16.9)</td>
<td>0.083</td>
<td>12 (16.0)</td>
<td>0.046</td>
<td></td>
<td>17 (14.9)</td>
<td>0.496</td>
<td>17 (14.9)</td>
<td>0.308</td>
<td>6 (18.2)</td>
<td>0.083</td>
<td>0.900</td>
<td>12 (16.4)</td>
<td>0.083</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT25/NAT25</td>
<td></td>
<td>2 (2.8)</td>
<td>0.526</td>
<td>3 (4.0)</td>
<td>0.365</td>
<td></td>
<td>5 (4.4)</td>
<td>0.496</td>
<td>5 (4.4)</td>
<td>0.054</td>
<td>3 (9.1)</td>
<td>0.083</td>
<td>0.900</td>
<td>4 (5.5)</td>
<td>0.083</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT26/NAT26</td>
<td></td>
<td>2 (2.8)</td>
<td>0.526</td>
<td>3 (4.0)</td>
<td>0.365</td>
<td></td>
<td>5 (4.4)</td>
<td>0.496</td>
<td>5 (4.4)</td>
<td>0.054</td>
<td>3 (9.1)</td>
<td>0.083</td>
<td>0.900</td>
<td>4 (5.5)</td>
<td>0.083</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
We thank Dr. Carlos Torres and Dr. Isabel Torres for their support. We also thank Dr. Carlos Torres and Dr. Isabel Torres for their helpful assistance in the management of normal controls.

REFERENCES

28. Cascoiri I, Drakoulis N, Brockmoller J, Maurer A, Sterling K, Roots I. Arylamine N-acetyltransferase (NAT2) mutations and their allelic linkage in unrelated Caucasian individuals:

