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a b s t r a c t 

Accuracy may be dramatically reduced when the boundary domain is curved and numeri- 

cal schemes require a specific treatment of the boundary condition to preserve the optimal 

order. In the finite volume context, Ollivier-Gooch and Van Altena (2002) has proposed a 

technique to overcome such limitation and restore the very high-order accuracy which 

consists in specific restrictions considered in the least-squares minimization associated to 

the polynomial reconstruction. The method suffers from several drawbacks, particularly, 

the use of curved elements that requires sophisticated meshing algorithms. We propose a 

new method where the physical domain and the computational domain are distinct and 

we introduce the Reconstruction for Off-site Data (ROD) where polynomial reconstructions 

are carried out on the mesh using data localized outside of the computational domain, 

namely the Dirichlet condition situated on the physical domain. A series of numerical tests 

assess the accuracy, convergence rates, robustness, and efficiency of the new method and 

show that the boundary condition is fully integrated in the scheme with a very high-order 

accuracy and the optimal convergence rate is achieved. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

Very high-order finite volume methods require supplemental attention to achieve the optimal order. One of the major

difficulties is the boundary treatment when dealing with curved boundary domains, since polygonal meshes do not exactly

fit the physical domain. Without special attention we observe a dramatic reduction of the accuracy and the method turns out

to be a second-order accurate one [1,2] . Reaching the nominal convergence order of very high-order methods then requires

additional efforts and is of paramount importance nowadays [3,4] . Several critical issues motivate the use of very high-order

approximations with curved boundaries. For the Euler system, it is difficult to compute asymptotic solutions when using

piecewise linear approximations of the geometries [5] even for very fine meshes. Moreover, non-physical approximations

may be obtained when curved boundaries are substituted with piecewise linear straight lines [1,2] . 
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Several technologies to recover the optimal order have then been proposed and extensively tested. Deriving from the

Finite Element approach [6–9] , the Discontinuous Galerkin method [10,11] handles curved boundaries with isoparametric

elements first introduced by Bassi and Rebay [1] . A similar approach has also been developed for the Spectral Volume

method [4,12] . In short, the technology is based on two major ingredients: the mesh considers curved elements such that

the boundary of the computational domain fits with the physical boundary (at least up to a given error O ( h k )) and the

introduction of nonlinear transformations to map the curved elements to the reference one. 

The method is efficient and provides optimal order of convergence but suffers from several drawbacks. The element map-

ping introduces the Jacobian transformations in the volume and interface integrals that are evaluated in the local basis (the

reference element coordinates). Such expressions become cumbersome when dealing with high polynomial degrees and lead

to an additional computational effort. Moreover a change of sign of the Jacobian mapping, i.e. folded or tangled elements,

may occur and disqualifies the transformation [13,14] . The second and more critical drawback is the meshing procedure with

curved elements, that reveals impractical for complex geometries especially for three-dimension configurations [2] . Curved

mesh generation is a today’s challenge [3] and is far from being completely solved [15] . Meshing very complex geometries

with unstructured hybrid grids has still not reached the level of commercial grid generators. 

Alternative methods have been then proposed to avoid the nonlinear mapping and the curved mesh generation. 

• In [2] , the authors use the computational polygonal domain in place of the physical domain but modify the normal

vector involved in the wall boundary condition (see also [16] ). Accuracy improvement is obtained but, unfortunately, the

method has only been tested with quadratic boundaries and seems to be, at most, a third-order approximation since it

considers local curvature approximations, i.e. second derivatives in the Taylor expansion. 
• Another promising method is the so-called “Extensions from Subdomains” introduced in [17–19] . The idea is to derive

a new Dirichlet condition on the computational domain edge from the one evaluated on the physical boundary. An

additional contribution is obtained from the integration of the solution over a path linking points x comp and x phys lying

on their respective borders. The main advantage is that no local mapping or curved element is required but an extension

of the numerical approximation has to be evaluated in order to perform the integration of the approximation gradient

outside the computational domain. Unfortunately, the method is only available for second-order operators with diffusion

or viscosity term. The second drawback is the necessity to define path families between the edges of the computational

mesh boundary and the physical one. Such procedure introduces constrained local minimization operations to define

local one-to-one mappings x → a ( x ) from the boundary edges and the associated pieces of the physical boundary. Then,

the paths are derived from linear interpolation [ x, a ( x )]. At last, numerical integrations over the paths are required to

compute the additional contributions to update the associate Dirichlet condition on the computational boundary. 
• We also mention the unfitted Finite Element method where an inner interface corresponding to a change of material

properties does not fit with the mesh [20] . Two linear reconstructions are considered in the same cell where the interface

is localized (one for each side). Then a specific weak formulation is derived taking into account the inner interface while

flux conservation and continuity is assume to solve the problem. Extension for higer order finite elements is considered

in [21] where a local transformation, very similar to the isoparametric one, is considered to fit a local discretized interface

with the physical one using the isoparametric transformation proposed in [22] . The main drawback of the method is the

use of isoparametric transformation that involves more complex algebra and additional computational costs. 
• In the context of the finite volume method involving k -exact polynomial reconstructions, the pioneer work of Ollivier-

Gooch and Van Altena [23] gives rise to a very high-order finite volume method dealing with curved boundary for the

convection–diffusion equation and Euler and Navier–Stokes systems [24–26] . The method does not require any geomet-

rical transformation but the mesh has to be composed with curved cells that fits the physical boundary. Likewise for the

Discontinuous Galerkin method, it represents a severe drawback due to the difficulties to provide such curved elements

for complex geometries. Moreover, the method suffers from other problems. Indeed, one has to perform numerical inte-

grations over the curved elements to evaluate any source term or the initial condition mean-values and on the curved

boundaries to calculate the numerical fluxes. Integration on a piece of curves boundary for the two-dimensional situa-

tion requires an extra-effort for localizing the Gauss points, but the problem turns out to be cumbersome when dealing

with a three-dimensional domain [27] . Integration over the cell is a major difficulty. Indeed, while Gaussian points are

well-located for simple geometries, it seems almost impossible to derive numerical quadratures rules for generic curved

element except for special situations such as pieces of circles or spheres [25] . 

We propose a new and simple treatment of Dirichlet conditions in the context of very high-order finite volume methods

with a curved boundary domain. Because this paper is a proof of concept, we choose the simplest situation, namely the

steady-state convection–diffusion with Dirichlet condition on two-dimensional curved domains. Extensions such as three-

dimensional geometries, Neumann or mixed condition, and non-stationary systems will be considered in the future. 

As in [17,27] , we consider two distinct regions: the physical domain, where the continuous problem takes place, and the

computational polygonal domain, where the discretization is designed and the numerical solution is evaluated. Obviously,

Dirichlet conditions prescribed on the physical boundary have to be transferred in some way to the computational domain.

The corner-stone of our work is the design of a specific polynomial reconstruction that takes the real boundary condition

into account. Therefore we perform a reconstruction with data that are not all localized on the mesh and name the method

“Reconstruction for Off-site Data” with acronym “ROD” to highlight that data are not supported by the computational do-

main. 
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Fig. 1. Mesh notation with edge and cell reference points (blue dots), Gauss points (red dots associated to a two-point quadrature rule), and unit normal 

vectors (dashed lines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In some way, isoparametric element method involves two polynomials: one for the curved boundary and another for

the solution approximation. Conversely, the method proposed in this work uses a unique polynomial for the two associ-

ated operations. Despite, the study in [27] presents some fundamental ingredients for the polynomial reconstructions under

curved boundaries, the present paper proposes a simpler approach where all the integration procedures are performed on

the polygonal domain. 

This document is divided in seven sections. After the introduction, we formulate in Section 2 the problem we will con-

sider and the mesh notations, while we present the polynomial reconstructions in Section 3 . Section 4 is dedicated to the

curved boundary where we detail the inclusion of the Dirichlet condition prescribed on the physical boundary. We present

in Section 5 the very high-order finite volume and in Section 6 the numerical experiments. We end the document with the

conclusions of this work and some perspectives. 

2. Problem formulation and geometry 

Let � be an open bounded domain of R 

2 with boundary ∂�. We assume that the boundary is a regular Jordan curve

which admits local parametrizations. We seek function φ ≡φ( x ), x ≡ ( x 1 , x 2 ), solution of the steady-state convection–diffusion

equation 

∇ · ( uφ − κ∇φ) = f, in �, (1) 

where u = ( u 1 , u 2 ) ≡ ( u 1 (x ) , u 2 (x ) ) is a velocity field, κ ≡κ( x ) is a diffusion coefficient, and f ≡ f ( x ) is a regular source term

in �, and where a Dirichlet condition is prescribed on the boundary ∂� with a given regular function φD ≡ φD (x ) . 

A mesh M is a set of I non-overlapping convex polygonal cells c i , without gap, i ∈ C M 

= { 1 , . . . , I} , and we denote by 

�� = 

⋃ 

i ∈ C M 

c i 

the computational domain and by ∂�� the computational boundary associated to the mesh M . �� should be a represen-

tative domain approximation of � and ∂�� is the associated approximation of ∂�. To this end, we assume that the nodes

on ∂�� also belong to ∂�. We adopt the notations detailed hereafter (see Fig. 1 ): 

• for any cell c i we denote by ∂c i its boundary and by | c i | its area; the reference cell point is denoted by m i which can be

any point in c i (in the present work we consider the centroid); 
• two different cells c i and c j share a common edge e ij whose length is denoted by | e ij | and n i j = (n 1 ,i j , n 2 ,i j ) is the unit

normal vector to e ij outward to c i , i.e. n i j = −n ji ; the reference edge point is m ij which can be any point on e ij (in the

present work we consider the midpoint); if an edge of c i belongs to the boundary ∂��, the index j is replaced by letter

D; 
• for any edge e ij , we denote by q ij,r , r = 1 , . . . , R, the Gaussian integration points and ζ r the associated weights; 
• for any cell c i we associate the index set of neighbor cells ν( i ) ⊂ {1, ���, I } ∪ {D} such that j ∈ ν( i ) if e ij is a common edge

between cells c i and c j or with the boundary ∂�� if j = D . 

We enhance that � is not a polygonal domain. So, the physical domain � and its polygonal approximation �� do not

coincide, and this usually leads to a significant accuracy degradation of the numerical approximation. 

3. Polynomial reconstruction 

The polynomial reconstruction is a powerful tool to provide an accurate local representation of the underlying solu-

tion, see [28,29] for unstructured grids and hyperbolic problems. In [30] a methodology was proposed in the context of

convection–diffusion problems to achieve very high accurate approximations of the gradient fluxes and take into account
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boundary conditions. The authors introduced different types of polynomial reconstructions namely the conservative recon-

struction in cells and on boundary edges and the non-conservative reconstruction on inner edges, in order to compute ap-

proximations of the convective and the diffusive fluxes. In this work we mainly follows this methodology of reconstruction

but applied in the specific but important case of curved boundaries. 

3.1. Stencil and data 

A stencil is a collection of cells situated in the vicinity of a reference geometrical entity, for instance an edge or a

cell, where the number of elements of the stencil shall depend on the degree d of the polynomial function we intend to

construct. So, for each edge e ij and cell c i we associate stencils S ij and S i , respectively, consisting of the indices of neighbor

cells. 

Remark 3.1. A polynomial reconstruction of degree d requires n d = (d + 1)(d + 2) / 2 coefficients in 2D. So, in practice, a

stencil consists of the N d closest cells to each geometrical entity (edge or cell) with N d ≥ n d (we consider N d ≈ 1.5 n d for the

sake of robustness). 

To compute the polynomial reconstructions we need the data associated to each cell of the stencil. To this end, we

assume that vector 	 = ( φi ) i ∈ C M 

gathers the approximation of the mean-value of φ over each cell, i.e. 

φi ≈
1 

| c i | 
∫ 

c i 

φ d x. 

3.2. Conservative reconstruction for cells 

For each cell c i , the local d -th degree polynomial approximation of the underlying solution φ, based on vector 	, is

defined as 

φi (x ) = φi + 

∑ 

1 ≤| α|≤d 

R 

α
i 

[
(x − m i ) 

α − M 

α
i 

]
, 

where α = (α1 , α2 ) with | α| = α1 + α2 and the convention x α = x 
α1 
1 

x 
α2 
2 

. Vector R i = (R 

α
i 
) 1 ≤| α|≤d gathers the polynomial

coefficients, and M 

α
i 

= 

1 
| c i | 

∫ 
c i 
(x − m i ) 

α d x in order to guarantee the conservation property 

1 

| c i | 
∫ 

c i 

φi (x ) d x = φi . 

For a given stencil S i , we consider the quadratic functional 

E i (R i ) = 

∑ 

q ∈ S i 

[
1 

| c q | 
∫ 

c q 

φi (x ) d x − φq 

]2 

. (2)

We denote by ̂ R i the unique vector which minimizes the quadratic functional (2) and we set ̂ φi (x ) the polynomial which

corresponds to the best approximation in the least squares sense. 

3.3. Non-conservative reconstruction for inner edges 

For each inner edge e ij , the local d -th degree polynomial approximation of the underlying solution φ, based on vector 	,

is defined as 

φi j (x ) = 

∑ 

0 ≤| α|≤d 

R 

α
i j (x − m i j ) 

α, 

where vector R i j = (R 

α
i j 
) 0 ≤| α|≤d gathers the polynomial coefficients (notice that in this case | α| starts with 0). For a given

stencil S ij with # S i j elements and vector ω i j = (ω i j,q ) q =1 , ... , # S i j 
of positive weights of the reconstruction, we consider the

quadratic functional 

E i j (R i j ) = 

∑ 

q ∈ S i j 

ω i j,q 

[
1 

| c q | 
∫ 

c q 

φi j (x ) d x − φq 

]2 

. (3)

We denote by ˜ R i j the unique vector which minimizes the quadratic functional (3) and we set ˜ φi j (x ) the polynomial which

corresponds to the best approximation in the least squares sense. 

Remark 3.2. The weights are fundamental to provide the maximum principle and the stability of the scheme. In the simu-

lations, we shall prescribe ω i j,q = 3 for the adjacent cells while we set ω i j,q = 1 for the other cells of the stencil. A deeper
analysis to justifying the weights choice is given in [27,30]. 
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Fig. 2. The physical boundary ∂� and the boundary edge e i D with Gauss points (red dots associated to a two-point quadrature rule) and edge midpoints 

m i D (blue dots): left – situation when curved cells are considered; right – situation considered in this work with straight-edge cell and an associated 

collocation point b i D associated to m i D . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. Conservative reconstruction for computational boundary edges 

We treat the computational boundary edges in a particular way in order to take into account the prescribed Dirichlet

condition. For each boundary edge e i D on ∂��, the local d -th degree polynomial approximation of the underlying solution

φ is defined as 

φi D (x ;ψ i D ) = ψ i D + 

∑ 

1 ≤| α|≤d 

R 

α
i D 

[
(x − m i D ) 

α − M 

α
i D 

]
, 

where vector R i D = (R 

α
i D 

) 1 ≤| α|≤d gathers the polynomial coefficients, ψ i D ∈ R is a free parameter which shall be set later,

and M 

α
i D 

= (p i D − m i D ) 
α in order to guarantee the conservation property 

ψ i D = φi D (p i D ;ψ i D ) , (4) 

with p i D a given collocation point. The crucial point is that p i D will be a distinct point from midpoint m i D ∈ e i D . For a given

stencil S i D with # S i D elements and vector ω i D = (ω i D ,q ) q =1 , ... , # S i D 
of positive weights of the reconstruction, we consider the

quadratic functional 

E i D (R i D ) = 

∑ 

q ∈ S i D 
ω i D ,q 

[
1 

| c q | 
∫ 

c q 

φi D (x ;ψ i D ) d x − φq 

]2 

. (5) 

We denote by ̂ R i D the unique vector which minimizes the quadratic functional (5) and we set ̂ φi D (x ;ψ i D ) the polynomial

which corresponds to the best approximation in the least squares sense for the given parameter ψ i D and point p i D . 

Remark 3.3. The motivation for introducing the weights either for the case of a non-conservative polynomial reconstruc-

tion or for a conservative polynomial reconstruction for computational boundary edges is presented in [30] as well as the

importance to set larger values for the adjacent cells. We refer the reader to [30] for more details. 

4. Reconstructions for Off-site Data (ROD) 

4.1. The Ollivier-Gooch and Van Altena method 

An accurate approximation of boundary conditions on curved boundaries is of paramount importance when dealing with

very high-order methods, since to approximate a curved boundary with a polygonal mesh generally leads to a second-order

approximation [3] . The seminal paper of Ollivier-Gooch and Van Altena [23] introduces a technique for constraining the

least-squares problem associated to the polynomial reconstructions on the boundary elements. Such approach requires that

the reconstructed solution satisfies the boundary condition exactly at the flux integration points (collocation points) [25] . In

order to properly represent the boundary condition, the mesh has to fit with the physical boundary, that is, the edges of the

mesh are curved for matching the real boundary (see Fig. 2 ). As mentioned in the introduction, this approach brings several

drawbacks: one has to carefully design Gauss quadrature procedures to take into account curved boundaries for preserving

the accuracy [26] , and designing boundary-fitted mesh for non polygonal domains is still nowadays a difficult task [3] . In

this work we avoid the difficult construction of boundary-fitted mesh and solely work on the easy to construct polygonal

mesh. 

4.2. The ROD method 

We propose a different technique to prescribe Dirichlet conditions on curved boundaries. The main idea is to distinguish

the computational domain from the physical one, and, perform all computations on the polygonal cells, but taking into

account the information located on the physical boundary via the polynomial reconstructions. “Off-site Data” method is
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meant to remind that the scheme and the solutions are acting on the computational domain ��, but including information

which is not associated to any geometrical entity of �� (cell, edge, or point). The main advantages are: 

• numerical integration of flux or functions are only carried out on the polygonal domain and not on the complex physical

domain; 
• no curved elements are required, only the computational polygonal mesh is necessary; 
• no geometrical transformations are required involving possibly complex Jacobian functions for the integrals; 
• no Gaussian points on the physical boundary ∂� are required; 
• the method design does not depend on the number of spacial dimensions. 

The technique is intrinsically associated to the conservative polynomial reconstruction given in Section 3.4 where, for

a given edge e i D of the computational boundary ∂��, we define the polynomial approximation 

̂ φi D (x ;ψ i D ) depending on

parameter ψ i D and point p i D which satisfies the conservation property (4) . We also mention that b i D stands for a point on

the physical boundary ∂�, somewhere facing edge e i D as depicted in Fig. 2 -right while m i D stands for the edge midpoint. 

The Dirichlet condition will be enforced via a clever choice of the values of free parameter ψ i D and point p i D . As a conse-

quence one has to design a procedure to compute the free parameter such that we simultaneously satisfy the conservation

and provide a very high-order approximation of the boundary condition. 

4.2.1. Second-order approximation 

A simple approach consists in using p i D = m i D and in setting the free parameter as ψ i D = φD (m i D ) . Such a choice pro-

vides no more than a second-order convergence rate since m i D does not represent exactly the physical boundary. Moreover,

we need an extension of function φD in the neighborhood of the boundary to guarantee that φD (m i D ) makes sense since

m i D �∈ ∂�. 

4.2.2. Very high-order approximation: ROD1 

In order to enforce the Dirichlet condition more accurately, we now set p i D = b i D and the free parameter ψ i D = φD (b i D ) .

Notice that the flux integration will nonetheless be computed on the straight edge of the computational mesh as presented

in Section 5.2 and not on the physical boundary as in [23] . We expect a very high-order accuracy since the reconstruction

satisfies the Dirichlet condition at one point associated to the true physical boundary. 

4.2.3. Very high-order approximation: ROD2 

The major drawback of the method ROD1 is that the least-squares problem (5) is based on point p i D that depends on

the physical domain boundary and if the physical boundary evolves, for instance for time dependent moving domains or

interface tracking problems, one has to rebuild the whole reconstruction procedure for boundary cells/edges. We improve

the previous technique by decoupling the Dirichlet condition from the interpolation problem still preserving the very high-

order accuracy. We start again by setting the collocation point p i D = m i D as in the second-order method. Hence the least-

squares procedure (5) no longer depends on the physical boundary position. Next the free parameter ψ i D is computed in a

special way. To this end, let us introduce the functional 

ψ i D → B i D (b i D ;ψ i D ) = ̂

 φi D (b i D ;ψ i D ) − φD (b i D ) . (6)

Notice that B i D is affine with respect to ψ i D . 

We now seek for ψ 

∗
i D 

as the unique solution which satisfies the affine problem 

B i D (b i D ;ψ i D ) = 0 . (7)

We compute the solution of this problem by taking two values ψ 

1 
i D 

, ψ 

2 
i D 

∈ R , ψ 

1 
i D 

� = ψ 

2 
i D 

, and after some algebraic simplifi-

cations one get 

ψ 

∗
i D = 

ψ 

2 
i D 
B i D (b i D ;ψ 

1 
i D 

) − ψ 

1 
i D 
B i D (b i D ;ψ 

2 
i D 

) 

B i D (b i D ;ψ 

1 
i D 

) − B i D (b i D ;ψ 

2 
i D 

) 
. (8)

In other words, we adjust the free parameter at point m i D to satisfy the Dirichlet condition at b i D . In practice, we take

ψ 

1 
i D 

= φD (m i D ) and ψ 

2 
i D 

= φD (m i D ) + 1 since ψ 

∗
i D 

is supposed to be close to φD (m i D ) . 

Remark 4.1. The methods ROD1 and ROD2 mainly differ in the structure of the matrix that compute the polynomial coeffi-

cients with respect to the data and the Dirichlet condition. In the first case, the matrix depends on the position of the point

where the Dirichlet is evaluated but does not require the additional treatment given in relation (8) . On the contrary, the

ROD2 method provides a matrix that does not depend of the position of the Dirichlet condition but an extra-computational

effort is necessary to fix the free parameter with (8) . To sum-up, if one considers a fix curved domain, the ROD1 method

is more efficient whereas the ROD2 technique is well-adapted to situations where the physical boundary changes with time

or during an iterative process. 

Remark 4.2. The coefficients ̂ R i D of the polynomial function 

̂ φi D (x ;ψ i D ) are obtained as the matrix-vector product between

the Moore-Penrose matrix associated to the least-square problem and the vector of cell values in the stencil [30] . The matrix

structure does not depend on the physical boundary position by construction but only depends on the computational mesh.
The Dirichlet condition is only prescribed via functional (6) and satisfies condition (7) . 
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5. Very high-order finite volume scheme 

5.1. Generic finite volume scheme 

To obtain a finite volume scheme, Eq. (1) is integrated over each cell c i and applying the divergence theorem we get ∫ 
∂c i 

( uφ − κ∇φ) · n i d s = 

∫ 
c i 

f d x, 

where ∂c i is the cell boundary and n i is the associated outward unit vector. Considering the Gaussian quadrature with

R ∈ N 

∗ points for the line integrals, i.e. of order 2 R , we get the residual expression 

∑ 

j∈ ν(i ) 

| e i j | 
[ 

R ∑ 

r=1 

ζr 

(
F 

C 
i j,r + F 

D 
i j,r 

)] 

− f i | c i | = O(h 

2 R 
i ) , (9) 

with the physical fluxes given by 

F 

C 
i j,r = u (q i j,r ) · n i j φ(q i j,r ) and F 

D 
i j,r = −κ(q i j,r ) ∇φ(q i j,r ) · n i j , 

and with h i = max j∈ ν(i ) | e i j | , while f i stands for an approximation of order 2 R of the mean value of f over cell c i . Notice

that if cell c i is not triangular, we split it into sub-triangles which share the cell centroid as a common vertex and apply

the quadrature rule on each sub-triangle as in [31] . Using the different polynomial reconstructions see previous sections, we

design the numerical scheme with two main ingredients: the flux computation and the solver. We use a similar technique

proposed in [27,30] , particularly the matrix-free approach is adopted, based on the residual operator construction. 

5.2. Numerical fluxes 

Numerical fluxes are computed with respect to the edges: 

• for the inner edges e ij , the fluxes at the quadrature point q ij,r write 

F 

C 
i j,r = 

[
u (q i j,r ) · n i j 

]+ 
̂ φi (q i j,r ) + 

[
u (q i j,r ) · n i j 

]−
̂ φ j (q i j,r ) , 

F 

D 
i j,r = −κ(q i j,r ) ∇ 

˜ φi j (q i j,r ) · n i j ;
• for the boundary edges e i D , the fluxes at the quadrature point q i D, r write 

F 

C 
i D ,r = [ u (q i D ,r ) · n i D ] 

+ 
̂ φi (q i D ,r ) + [ u (q i D ,r ) · n i D ] 

−
̂ φi D (q i D ,r ) , 

F 

D 
i D ,r = −κ(q i D ,r ) ∇ 

̂ φi D (q i D ,r ) · n i D . 

Notice that all the fluxes are computed on the edges of the computational domain without any reference to the physical

domain. The Dirichlet condition on ∂� is implicitly contained in the polynomial reconstructed function 

̂ φi D . 

5.3. Residual operator and solver 

For any vector 	 in R 

I , we define the residual operators for cells c i , i = 1 , . . . , I, as 

G i (	) = 

∑ 

j∈ ν(i ) 

| e i j | 
[ 

R ∑ 

r=1 

ζr 

(
F 

C 
i j,r + F 

D 
i j,r 

)] 

− f i | c i | , 

which corresponds to the finite volume scheme (9) cast in residual form. Gathering all the components of the residuals

provides a global affine operator G(	) = ( G i (	) ) i ∈ C M 

and we seek vector 	
 ∈ R 

I , solution of the problem G(	) = 0 . The

GMRES method, powered by a preconditioning matrix, is carried out to compute an approximation of 	
 as in [27,30] . 

6. Numerical results 

In order to validate the implementation of the methods and assess the accuracy and the convergence rates, we manu-

facture several analytic solutions on specific domains which require the computation of an associated source term to satisfy

Eq. (1) . Vector 	
 = (φ
 
i 
) i ∈ C M 

gathers the numerical approximations of the mean values of φ while vector 	 = ( φi ) i ∈ C M 

gathers the exact mean values φi of φ, that is φi = (1 / | c i | ) ∫ c i φ d x . 

The normalized L 1 - and L ∞ -norm errors, denoted by E 1 and E ∞ 

, are computed, respectively, as 

E 1 (M ) = 

∑ 

i ∈ C M 

| φ
 
i 

− φi || c i | ∑ 

i ∈ C M 

| φi || c i | 
and E ∞ 

(M ) = 

max i ∈ C M 

| φ
 
i 

− φi | ∑ 

i ∈ C M 

| φi || c i | 
. 
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Fig. 3. Manufactured solution (left panel) and source term (right panel) for the low Péclet number test case. (For interpretation of the colormap in this 

figure, the reader is referred to the web version of this article). 

Fig. 4. Coarse uniform triangular Delaunay mesh prescribed for the annulus domain. 

 

 

 

 

 

 

The convergence rate for the normalized L 1 - and L ∞ -norm errors between two different meshes M 1 and M 2 , with DOF 1
and DOF 2 degrees of freedom, respectively, where DOF 1 � = DOF 2 , is evaluated as 

O α(M 1 , M 2 ) = 2 

| log (E α(M 1 ) /E α(M 2 )) | 
| log (DOF 1 /DOF 2 ) | , α ∈ { 1 , ∞} . 

In all the simulations, the weights in functionals (3) and (5) are set to ω i j,q = 3 , i ∈ C M 

, j ∈ ν( i ), q ∈ S ij , if e ij is an edge of c q
and ω i j,q = 1 , otherwise. 

For the sake of simplicity, we name the method given in Section 4.2.1 as “second-order method”, the one given in

Section 4.2.2 as “ROD1 method”, and the proposed method, presented in Section 4.2.3 , as “ROD2 method”. The method-

ology of validation consists in observing the rates of convergence under mesh refinement when very high-order polynomial

reconstructions ( P k , k = 1 , 3 , 5 ) are employed for different strategies dealing with Dirichlet boundary conditions defined on
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Table 1 

Annulus problem for low Péclet number – Errors and convergence rates for the second-order, ROD1, and ROD2 methods with uniform trian- 

gular Delaunay meshes. 

Second-order method ( Section 4.2.1 ) 

P 1 P 3 P 5 

DOF E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ 

736 2.17E −02 – 4.56E −02 – 3.87E −03 – 9.88E −03 – 3.84E −03 – 9.82E −03 –

2828 6.62E −03 1.77 1.24E −02 1.94 1.04E −03 1.95 2.79E −03 1.88 1.04E −03 1.94 2.81E −03 1.86 

11,500 1.52E −03 2.10 3.59E −03 1.76 2.63E −04 1.97 7.11E −04 1.95 2.63E −04 1.97 7.12E −04 1.96 

45,248 4.07E −04 1.93 1.01E −03 1.84 6.74E −05 1.99 1.85E −04 1.97 6.74E −05 1.99 1.85E −04 1.97 

177,880 1.35E −04 1.61 3.08E −04 1.74 1.71E −05 2.01 4.71E −05 2.00 1.71E −05 2.01 4.71E −05 2.00 

Reconstruction for Off-site Data (ROD1) method ( Section 4.2.2 ) 

P 1 P 3 P 5 

DOF E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ 

736 2.06E −02 – 4.55E −02 – 1.55E −04 – 9.14E −04 – 5.06E −05 – 2.22E −04 –

2828 6.21E −03 1.78 1.21E −02 1.97 9.63E −06 4.13 6.51E −05 3.93 3.30E −07 7.48 4.95E −06 5.65 

11,500 1.43E −03 2.10 3.49E −03 1.77 4.92E −07 4.24 3.93E −06 4.00 5.43E −09 5.85 9.15E −08 5.69 

45,248 3.82E −04 1.93 1.02E −03 1.80 3.72E −08 3.77 4.13E −07 3.29 9.38E −11 5.93 2.84E −09 5.07 

177,880 1.28E −04 1.59 3.27E −04 1.66 3.76E −09 3.35 2.44E −08 4.14 1.76E −12 5.81 4.21E −11 6.15 

Reconstruction for Off-site Data (ROD2) method ( Section 4.2.3 ) 

P 1 P 3 P 5 

DOF E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ 

736 2.07E −02 – 4.56E −02 – 1.54E −04 – 9.01E −04 – 4.74E −05 – 2.13E −04 –

2828 6.22E −03 1.78 1.21E −02 1.97 9.67E −06 4.11 6.47E −05 3.91 3.25E −07 7.40 4.91E −06 5.60 

11,500 1.43E −03 2.10 3.50E −03 1.77 4.92E −07 4.25 3.92E −06 4.00 5.39E −09 5.84 9.17E −08 5.68 

45,248 3.82E −04 1.93 1.02E −03 1.80 3.71E −08 3.77 4.13E −07 3.29 9.43E −11 5.91 2.84E −09 5.07 

177,880 1.28E −04 1.59 3.27E −04 1.66 3.76E −09 3.35 2.44E −08 4.13 1.76E −12 5.82 4.21E −11 6.15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the physical curved domains. Only smooth solutions of the steady-state two-dimensional convection–diffusion equation are 

considered. The different curved physical domains are 

• An annulus domain in Section 6.1 . We simulate with triangular (possibly refined) grids low Péclet number, high Péclet

number and pure convection problems. 
• A rose-shaped domain in Section 6.2 . A deformation of the annulus allows to define branches on the interior and exterior

boundaries. We simulate with triangular and quadrilateral grids two different cases, a rose with three-three branches and

another five-three branches. 

6.1. Annulus domain 

In this first set of numerical tests we consider an annulus domain with center at (0, 0) characterized by the interior and

exterior circumferences �I and �E , respectively, with radius r I = 0 . 5 and r E = 1 . For the convection–diffusion problem (1) ,

we prescribe a constant radial velocity u and κ = 1 . We then seek for a manufactured solution, invariant by rotation, given

be 

φ(x 1 , x 2 ) = a 
(
exp (ur ′ ) + exp (−ur ′ ) + b 

)
, r ′ ≡ r ′ (r) = 

(2 r − (r E + r I )) 

(r E − r I ) 
, 

with r 2 = x 2 
1 

+ x 2 
2 

such that r ′ ∈ [ −1 , 1 ] . We also prescribe homogeneous Dirichlet conditions on the two boundaries �I and

�E and deduce that b = − exp (u ) − exp (−u ) while a = 1 / ( exp (u ) + exp (−u ) − 2) guarantees the property φ ∈ [ −1 , 0 ] in �.

The associated source term f is obtained after substituting the solution into Eq. (1) . 

Low Péclet number. We first address the low Péclet number situation setting u = 1 . We plot in Fig. 3 the manufactured

solution and the source term. The simulations were carried out with successive refined uniform triangular Delaunay meshes

(see Fig. 4 ). Observe that boundary vertices belong to the true physical domain boundary. 

We report in Table 1 the errors and the convergence rates for the second-order, and the two ROD methods. The second-

order approach provides at most a second-order convergence for both error norms, whatever the degree of the polynomial

reconstruction. These results are expected since the Dirichlet condition is affected with a mismatch of order O(h 2 ) due to

the erroneous location with respect to the physical boundary. The two other methods recover the optimal order and achieve

an effective second-, fourth-, and sixth-order convergence rates for P 1 , P 3 , and P 5 polynomial reconstructions, respectively,

while no oscillations are reported. The accuracy of both methods are quite comparable and clearly overcome the second-

order limitation expected when dealing with the curved boundary with non-fitted cells. 
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Fig. 5. Manufactured solution (left panel) and source term (right panel) for the high Péclet number test case. (For interpretation of the colormap in this 

figure, the reader is referred to the web version of this article). 

Fig. 6. Coarse non-uniform triangular Delaunay mesh prescribed for the annulus domain for the high Péclet number test case. 

 

 

 

 

 

 

 

 

High Péclet number. Large Péclet number is prescribed taking u = 10 and we plot in Fig. 5 the manufactured solution and the

source term. This test addresses the scheme robustness and accuracy to preserve the boundary condition when dealing with

small boundary layers with respect to the dimension of the whole geometry. The simulations were carried out with suc-

cessive refined Delaunay meshes plotted in Fig. 6 where, again, the boundary vertices belong to the physical boundary.The

meshes are refined close to the boundaries to better capture the boundary layers. 

In Table 2 , we report the errors and the convergence rates for the three methods. As for the low Péclet problem the

second-order method reaches at most a second-order convergence for both error norms while the two ROD methods achieve

an effective second-, fourth-, and sixth-order convergence rates for P 1 , P 3 , and P 5 polynomial reconstructions, respectively.

We conclude that the very high-order methods effectively handle large Péclet number situations achieving optimal conver-

gence rates without any oscillation. 
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Table 2 

Annulus problem for high Péclet number — Errors and convergence rates for the second-order, ROD1, and ROD2 methods with adapted 

triangular Delaunay meshes. 

Second-order method ( Section 4.2.1 ) 

P 1 P 3 P 5 

DOF E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ 

4292 1.16E −02 – 3.63E −02 – 6.36E −04 – 4.04E −03 – 1.20E −03 – 2.07E −03 –

16,398 2.73E −03 2.16 1.32E −02 1.51 2.11E −04 1.64 6.15E −04 2.81 2.48E −04 2.36 4.67E −04 2.22 

63,364 3.57E −04 3.01 4.30E −03 1.66 5.74E −05 1.93 1.28E −04 2.32 6.10E −05 2.08 1.16E −04 2.06 

250,732 1.17E −04 1.62 1.20E −03 1.86 1.53E −05 1.93 3.00E −05 2.11 1.53E −05 2.01 2.93E −05 2.01 

996,002 8.10E −05 0.53 3.07E −04 1.98 3.85E −06 2.00 7.38E −06 2.03 3.85E −06 2.01 7.35E −06 2.00 

Reconstruction for Off-site Data (ROD2) method ( Section 4.2.2 ) 

P 1 P 3 P 5 

DOF E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ 

4292 1.08E −02 – 3.46E −02 – 9.47E −04 – 2.43E −03 – 2.93E −04 – 5.83E −04 –

16,398 2.52E −03 2.17 1.27E −02 1.49 5.61E −05 4.22 2.14E −04 3.63 5.88E −06 5.83 1.48E −05 5.48 

63,364 3.17E −04 3.07 4.19E −03 1.65 4.92E −06 3.60 1.68E −05 3.77 8.08E −08 6.34 2.69E −07 5.93 

250,732 1.25E −04 1.35 1.17E −03 1.85 1.23E −07 5.36 1.42E −06 3.60 1.10E −09 6.24 5.65E −09 5.62 

996,002 8.39E −05 0.58 3.01E −04 1.97 7.15E −09 4.13 8.87E −08 4.02 1.00E −11 6.82 8.52E −11 6.08 

Reconstruction for Off-site Data (ROD2) method ( Section 4.2.3 ) 

P 1 P 3 P 5 

DOF E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ 

P 1 P 3 P 5 

DOF E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ 

4292 1.08E −02 – 3.46E −02 – 9.47E −04 – 2.43E −03 – 2.92E −04 – 5.83E −04 –

16,398 2.52E −03 2.17 1.27E −02 1.49 5.61E −05 4.22 2.14E −04 3.63 5.88E −06 5.83 1.48E −05 5.48 

63,364 3.17E −04 3.07 4.19E −03 1.65 4.92E −06 3.60 1.68E −05 3.77 8.08E −08 6.34 2.69E −07 5.93 

250,732 1.25E −04 1.35 1.17E −03 1.85 1.23E −07 5.36 1.42E −06 3.60 1.10E −09 6.24 5.65E −09 5.62 

996,002 8.39E −05 0.58 3.01E −04 1.97 7.15E −09 4.13 8.87E −08 4.02 1.00E −11 6.82 8.52E −11 6.08 

Fig. 7. Manufactured solution (left panel) and source term (right panel) for the pure convection test case. (For interpretation of the colormap in this figure, 

the reader is referred to the web version of this article). 

 

 

 

 

Pure convection. We address the pure convection situation setting κ = 0 and u = 1 and plot in Fig. 7 the manufactured

solution and the source term. The simulations were carried out with successive refined uniform triangular Delaunay meshes

presented in Fig. 4 and, as in the previous tests, the boundary vertices belong to the boundary curves. 

We report in Table 3 , the errors and the convergence rates for the three methods. As in the previous situations, the

second-order boundary approach is doomed to a second-order of accuracy while the two other methods efficiently handle

the convection problem with curved boundaries with no oscillations and no artificial diffusion. 



R. Costa et al. / Applied Mathematical Modelling 54 (2018) 752–767 763 

Table 3 

Annulus problem for pure convection – Errors and convergence rates for the second-order, ROD1, and ROD2 methods with uniform triangular 

Delaunay meshes. 

Second-order method ( Section 4.2.1 ) 

P 1 P 3 P 5 

DOF E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ 

736 1.01E −02 – 4.43E −02 – 6.78E −03 – 1.07E −02 – 6.88E −03 – 1.01E −02 –

2828 3.62E −03 1.52 2.35E −02 0.94 1.92E −03 1.88 2.92E −03 1.93 1.93E −03 1.89 2.85E −03 1.88 

11,500 8.67E −04 2.04 1.07E −02 1.12 4.81E −04 1.97 7.19E −04 2.00 4.82E −04 1.98 7.18E −04 1.97 

45,248 2.23E −04 1.98 1.91E −03 2.51 1.24E −04 1.98 1.86E −04 1.98 1.24E −04 1.98 1.86E −04 1.98 

177,880 6.85E −05 1.72 4.07E −03 1.11 3.15E −05 2.00 4.72E −05 2.00 3.15E −05 2.00 4.72E −05 2.00 

Reconstruction for Off-site Data (ROD1) method ( Section 4.2.2 ) 

P 1 P 3 P 5 

DOF E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ 

736 8.75E −03 – 3.87E −02 – 2.35E −04 – 1.26E −03 – 3.48E −05 – 1.32E −04 –

2828 3.45E −03 1.38 2.15E −02 0.87 2.47E −05 3.35 1.09E −04 3.63 1.25E −06 4.95 5.26E −06 4.79 

11,500 8.07E −04 2.07 1.03E −02 1.05 1.58E −06 3.91 9.50E −06 3.48 2.34E −08 5.67 1.14E −07 5.46 

45,248 2.06E −04 2.00 1.81E −03 2.54 1.21E −07 3.76 8.04E −07 3.61 5.04E −10 5.60 3.11E −09 5.26 

177,880 6.49E −05 1.69 4.05E −03 1.17 8.45E −09 3.89 9.60E −08 3.10 8.65E −12 5.94 5.76E −11 5.83 

Reconstruction for Off-site Data (ROD2) method ( Section 4.2.3 ) 

P 1 P 3 P 5 

DOF E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ 
736 8.75E −03 – 3.87E −02 – 2.36E −04 – 1.26E −03 – 3.57E −05 – 1.33E −04 –

2828 3.45E −03 1.38 2.15E −02 0.87 2.47E −05 3.35 1.10E −04 3.63 1.25E −06 4.98 5.27E −06 4.80 

11,500 8.07E −04 2.07 1.03E −02 1.05 1.59E −06 3.91 9.50E −06 3.49 2.34E −08 5.68 1.14E −07 5.47 

45,248 2.06E −04 2.00 1.81E −03 2.54 1.21E −07 3.76 8.04E −07 3.61 5.04E −10 5.60 3.11E −09 5.26 

177,880 6.49E −05 1.69 4.05E −03 1.17 8.45E −09 3.89 9.61E −08 3.10 8.64E −12 5.94 5.76E −11 5.83 

Fig. 8. Manufactured solution (left panel) and source term (right panel). (For interpretation of the colormap in this figure, the reader is referred to the 

web version of this article). 

 

6.2. Rose-shaped domain 

We now consider a more complex geometry where the annulus is transformed by a diffeomorphism mapping which

consists in a periodic transformation of the boundaries in the following way: 

�I : 

[
x 1 
x 2 

]
= R I (θ ;αI ) 

[
cos (θ ) 
sin (θ ) 

]
and �E : 

[
x 1 
x 2 

]
= R E (θ ;αE ) 

[
cos (θ ) 
sin (θ ) 

]
, 
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Fig. 9. Coarse uniform triangular Delaunay mesh (left panel) and uniform quadrilateral mesh (right panel) prescribed for the rose-shaped domain. 

Table 4 

Rose-shaped problem – Test 1 – Errors and convergence rates for the ROD2 method with uniform triangular Delaunay meshes. 

P 1 P 3 P 5 

DOF E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ 

667 2.21E −02 – 4.91E −02 – 3.59E −04 – 3.56E −03 – 2.20E −04 – 1.52E −03 –

2590 6.23E −03 1.86 1.40E −02 1.85 1.85E −05 4.38 2.30E −04 4.04 2.77E −06 6.45 3.04E −05 5.77 

10,274 1.48E −03 2.09 4.49E −03 1.65 1.17E −06 4.00 2.02E −05 3.53 5.58E −08 5.67 1.12E −06 4.79 

41,367 3.29E −04 2.16 1.21E −03 1.88 9.17E −08 3.66 1.53E −06 3.71 7.02E −10 6.28 2.07E −08 5.73 

165,599 6.96E −05 2.24 3.45E −04 1.81 6.58E −09 3.80 1.07E −07 3.83 1.37E −11 5.68 3.85E −10 5.74 

Table 5 

Rose-shaped problem – Test 1 – Errors and convergence rates for the ROD2 method with uniform quadrilateral meshes. 

P 1 P 3 P 5 

DOF E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ 

660 6.42E −02 – 8.73E −02 – 1.41E −03 – 7.86E −03 – 9.75E −04 – 4.73E −03 –

2760 1.61E −02 1.93 2.23E −02 1.91 2.56E −04 2.39 8.45E −04 3.12 1.20E −05 6.15 8.33E −05 5.65 

11,280 4.02E −03 1.97 5.60E −03 1.96 2.00E −05 3.62 8.48E −05 3.27 1.66E −07 6.08 1.08E −06 6.17 

46,080 9.87E −04 2.00 1.38E −03 1.99 1.14E −06 4.07 5.93E −06 3.78 2.76E −09 5.83 2.00E −08 5.68 

185,280 2.47E −04 1.99 3.45E −04 1.99 7.50E −08 3.91 3.84E −07 3.93 7.72E −11 5.14 3.42E −10 5.85 

 

 

 

where ( r, θ ) are the polar coordinates and R I (θ ;αI ) and R E (θ ;αE ) , αI , αE ∈ R , are given by 

R I (θ ;αI ) = r I 

(
1 + 

1 

10 

sin (αI θ ) 
)

and R E (θ ;αE ) = r E 

(
1 + 

1 

10 

sin (αE θ ) 
)
. 

The global mapping from the Rose-shaped domain onto the annulus then reads [
y 1 
y 2 

]
→ 

[
x 1 
x 2 

]
= T (y 1 , y 2 ) = 

(
R E − r 

R E − R I 

R I (θ ;αI ) + 

r − R I 

R E − R I 

R E (θ ;αE ) 
)[

cos (θ ) 
sin (θ ) 

]
. 

The manufactured solution on the Rose-shaped domain is then given by 

ψ(x 1 , x 2 ) = φ(T −1 (x 1 , x 2 )) . 

Notice that we recover the annulus geometry with αI = αE = 0 . The associated source term f is obtained from Eq. (1) while

homogeneous Dirichlet boundary condition still holds on the new boundaries �I and �E . All the simulations have been

carried out with κ = 1 and u = 1 . 

First test. The transformation is parametrized with αI = 3 and αE = 3 and we plot in Fig. 8 the manufactured solution and

the source term in the new domain. 
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Fig. 10. Manufactured solution (left panel) and source term (right panel). (For interpretation of the colormap in this figure, the reader is referred to the 

web version of this article). 

Fig. 11. Coarse uniform triangular Delaunay mesh (left panel) and uniform quadrilateral mesh (right panel) prescribed for the rose-shaped domain. 

 

 

 

 

 

 

We carried out the simulations with successive refined regular triangular Delaunay meshes and also with quadrilateral

meshes, see Fig. 9 , to show the ability of the method to handle different cell shapes. 

We report in Table 4 the errors and the convergence rates obtained with the ROD2 method (Delaunay meshes) while

Table 5 reports the same informations for the quadrilateral meshes. We obtain the optimal convergence orders and no oscil-

lation is reported. Computations have also been carried out with the second-order boundary approximation (not presented

here) and we observe a second-order of convergence due to an inadequate treatment of the boundary condition. 

Second test. The second test deals with a more wavy boundary setting αI = 3 and αE = 5 . We plot in Fig. 10 the manufac-

tured solution and the source term. 

As in the previous case, simulations with successive refined regular Delaunay meshes or quadrilateral meshes have been

carried out, see Fig. 11 . 



766 R. Costa et al. / Applied Mathematical Modelling 54 (2018) 752–767 

Table 6 

Rose-shaped problem – Test 2 – Errors and convergence rates for the ROD2 method with uniform triangular Delaunay meshes. 

P 1 P 3 P 5 

DOF E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ 

645 2.71E −02 – 6.97E −02 – 6.80E −04 – 8.76E −03 – 5.12E −04 – 5.86E −03 –

2550 7.56E −03 1.86 2.30E −02 1.61 4.49E −05 3.95 7.62E −04 3.55 1.29E −05 5.36 2.45E −04 4.62 

10,244 1.89E −03 2.00 7.30E −03 1.65 3.71E −06 3.59 1.28E −04 2.57 2.98E −07 5.42 1.39E −05 4.12 

40,789 4.10E −04 2.21 1.97E −03 1.89 2.53E −07 3.89 6.70E −06 4.27 9.53E −09 4.98 4.91E −07 4.84 

162,011 9.63E −05 2.10 5.92E −04 1.75 1.89E −08 3.76 9.37E −07 2.85 1.20E −10 6.34 1.07E −08 5.55 

Table 7 

Rose-shaped problem – Test 2 – Errors and convergence rates for the ROD2 method with uniform quadrilateral meshes. 

P 1 P 3 P 5 

DOF E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ E 1 O 1 E ∞ O ∞ 

660 6.91E −02 – 1.11E −01 – 5.06E −03 – 3.27E −02 – 5.37E −03 – 3.60E −02 –

2760 1.74E −02 1.93 2.85E −02 1.90 3.94E −04 3.57 3.57E −03 3.10 1.33E −04 5.17 1.61E −03 4.35 

11,280 4.37E −03 1.96 7.13E −03 1.97 4.70E −05 3.02 3.83E −04 3.17 2.27E −06 5.78 5.07E −05 4.91 

46,080 1.08E −03 1.99 1.77E −03 1.98 3.36E −06 3.75 2.50E −05 3.88 4.85E −08 5.47 1.07E −06 5.48 

185,280 2.71E −04 1.99 4.42E −04 1.99 2.05E −07 4.02 1.57E −06 3.98 1.11E −09 5.42 1.41E −08 6.22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We report in Tables 6 and 7 the errors and the convergence rates obtained with the ROD2 method and we confirm

the ability of the scheme to preserve the optimal order in function of the polynomial degree used for the reconstruction

procedure. 

7. Conclusions 

We have presented a very high-order finite volume scheme to solve the steady-state bi-dimensional convection–diffusion

problem based on a new class of polynomial reconstructions. Two approaches were proposed to overcome the second-order

accuracy limitation when dealing with non-polygonal domain and Dirichlet boundary conditions. The first one consists in

analytically constraining the boundary element reconstructions in order to satisfy the boundary condition at a point on

the physical domain boundary. Such approach differs from the Olliver-Gooch and Van Altena approach in the sense that

the flux calculation is performed on the straight edge and no curved element is necessary. The proposed ROD method

consists in constraining the boundary reconstructions by a posteriori computing the associated free parameter such that the

reconstructions satisfy appropriately the boundary condition. This procedure relies on the fact that the least-squares matrix

associated to the reconstruction is decoupled from the boundary parameterization and, therefore, is less sensitive to the

boundary location. 

Several numerical tests considering simple and complex curved domains were simulated to observe that we achieve

effective optimal order of accuracy both for structured and unstructured meshes for the two-dimensional linear steady-state

convection–diffusion problem. A pure convection problem (hyperbolic scalar equation) was also tested and optimal order

accuracy rates were achieved without any reported oscillations. 

This work represents a proof of concept showing that very high-order of accuracy Finite Volume scheme on unstructured

can handle curved boundary conditions at the optimal order of accuracy without the need for a boundary fitted mesh or

complex transformations. For future works we plan to extend this approach to other boundary conditions (Neumann, Robin),

to unsteady systems (Euler, Navier–Stokes) with time evolving domain (piston, pulsating interfaces, etc.). We also plan to

investigate the extension of ROD to unstructured 3D mesh. Even if, conceptually speaking, the ROD method does not depend

on the space dimension, the machinery needed in three-dimensional will demand delicate validation and verification. 
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